MAX5393 [MAXIM]

Dual 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometers; 双256抽头,易失,低电压线性变化数字电位器
MAX5393
型号: MAX5393
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Dual 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometers
双256抽头,易失,低电压线性变化数字电位器

电位器
文件: 总13页 (文件大小:2228K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-5035; Rev 0; 10/09  
Dual 256-Tap, Volatile, Low-Voltage  
Linear Taper Digital Potentiometers  
General Description  
Features  
The MAX5391/MAX5393 dual 256-tap, volatile, low-  
voltage linear taper digital potentiometers offer three  
end-to-end resistance values of 10kI, 50kI, and 100kI.  
Operating from a single +1.7V to +5.5V power sup-  
ply, these devices provide a low 35ppm/NC end-to-end  
temperature coefficient. The devices feature an SPIK  
interface.  
S Dual 256-Tap Linear Taper Positions  
S Single +1.7V to +5.5V Supply Operation  
S Low 12µA Quiescent Supply Current  
S 10kI, 50kI, and 100kI End-to-End Resistance  
Values  
S SPI-Compatible Interface  
The small package size, low supply voltage, low sup-  
ply current, and automotive temperature range of the  
MAX5391/MAX5393 make the devices uniquely suitable  
for the portable consumer market, battery backup indus-  
trial applications, and the automotive market.  
S Wiper Set to Midscale on Power-Up  
S -40NC to +125NC Operating Temperature Range  
Ordering Information  
The MAX5391/MAX5393 include two digital potentio-  
meters in a voltage-divider configuration. The MAX5391/  
MAX5393 are specified over the -40NC to +125NC auto-  
motive temperature range and are available in a 16-pin,  
3mm x 3mm TQFN and a 14-pin TSSOP package,  
respectively.  
END-TO-END  
RESISTANCE (kI)  
PART  
PIN-PACKAGE  
MAX5391LATE+  
MAX5391MATE+  
MAX5391NATE+  
MAX5393LAUD+  
MAX5393MAUD+  
MAX5393NAUD+  
16 TQFN-EP*  
16 TQFN-EP*  
16 TQFN-EP*  
14 TSSOP  
10  
50  
100  
10  
14 TSSOP  
50  
Applications  
Low-Voltage Battery Applications  
Portable Electronics  
14 TSSOP  
100  
Note: All devices are specified in the -40NC to +125NC tem-  
perature range.  
Mechanical Potentiometer Replacement  
Offset and Gain Control  
+Denotes a lead(Pb)-free/RoHS-compliant package  
*EP = Exposed pad.  
Adjustable Voltage References/Linear Regulators  
Automotive Electronics  
Functional Diagram  
WA  
V
DD  
BYP  
HA  
LA  
CHARGE  
PUMP  
CS  
SCLK  
DIN  
LATCH  
POR  
256 DECODER  
HB  
SPI  
MAX5391  
MAX5393  
WB  
LB  
LATCH  
256 DECODER  
GND  
SPI is a trademark of Motorola, Inc.  
_______________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
Dual 256-Tap, Volatile, Low-Voltage  
Linear Taper Digital Potentiometers  
ABSOLUTE MAXIMUM RATINGS  
DD  
V
to GND ...........................................................-0.3V to +6V  
Continuous Power Dissipation (T = +70NC)  
A
H_, W_, L_ to GND......................................-0.3V to the lower of  
14-Pin TSSOP (derate 10mW/NC above +70NC) ......796.8mW  
16-Pin TQFN (derate 14.7mW/NC above +70NC) ...1176.5mW  
Operating Temperature Range ....................... -40NC to +125NC  
Junction Temperature ....................................................+150NC  
Storage Temperature Range............................ -65NC to +150NC  
Lead Temperature (soldering, 10s) ................................+300NC  
(V + 0.3V) or +6V  
DD  
All Other Pins to GND .............................................-0.3V to +6V  
Continuous Current into H_, W_, and L_  
MAX5391L/MAX5393L................................................... Q5mA  
MAX5391M/MAX5393M................................................. Q2mA  
MAX5391N/MAX5393N ................................................. Q1mA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
DD  
= +1.7V to +5.5V, V = V , V = GND, T = T  
to T  
, unless otherwise noted. Typical values are at V = +1.8V,  
MAX DD  
H_  
DD L_  
A
MIN  
T
= +25NC.) (Note 1)  
A
PARAMETER  
Resolution  
DC PERFORMANCE (Voltage-Divider Mode)  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
N
256  
Tap  
Integral Nonlinearity  
INL  
(Note 2)  
(Note 2)  
-0.5  
-0.5  
-0.5  
+0.5  
+0.5  
+0.5  
LSB  
LSB  
Differential Nonlinearity  
Dual-Code Matching  
DNL  
Register A = Register B  
(DV /V )/DT, no load  
LSB  
Ratiometric Resistor Tempco  
5
ppm/NC  
W
W
MAX5391L/MAX5393L  
MAX5391M/MAX5393M  
MAX5391N/MAX5393N  
MAX5391L/MAX5393L  
MAX5391M/MAX5393M  
MAX5391N/MAX5393N  
-3  
-1  
-2.2  
-0.6  
-0.3  
2.2  
0.6  
0.3  
Full-Scale Error  
Zero-Scale Error  
Code = FFh  
Code = 00h  
LSB  
LSB  
-0.5  
3
1
0.5  
DC PERFORMANCE (Variable Resistor Mode)  
Integral Nonlinearity  
R-INL  
(Note 3)  
(Note 3)  
-1.0  
-0.5  
+1.5  
+0.5  
LSB  
LSB  
Differential Nonlinearity  
R-DNL  
DC PERFORMANCE (Resistor Characteristics)  
I
pF  
Wiper Resistance  
R
(Note 4)  
200  
WL  
Terminal Capacitance  
Wiper Capacitance  
C _, C _ Measured to GND  
H
10  
50  
35  
L
C _  
Measured to GND  
No load  
pF  
W
End-to-End Resistor Tempco  
End-to-End Resistor Tolerance  
AC PERFORMANCE  
Crosstalk  
TC  
ppm/NC  
%
R
DR  
Wiper not connected  
-25  
+25  
HL  
(Note 5)  
-90  
600  
100  
50  
dB  
MAX5391L/MAX5393L  
Code = 08H,  
10pF load,  
-3dB Bandwidth  
BW  
MAX5391M/MAX5393M  
MAX5391N/MAX5393N  
kHz  
V
DD  
= 1.8V  
Total Harmonic Distortion Plus  
Noise  
THD+N Measured at W, V = 1V  
H_  
at 1kHz  
0.02  
%
RMS  
MAX5391L/MAX5393L  
400  
1200  
2200  
Wiper Settling Time (Note 6)  
t
S
MAX5391M/MAX5393M  
MAX5391N/MAX5393N  
ns  
2
______________________________________________________________________________________  
Dual 256-Tap, Volatile, Low-Voltage  
Linear Taper Digital Potentiometers  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
DD  
= +1.7V to +5.5V, V = V , V = GND, T = T  
to T  
, unless otherwise noted. Typical values are at V = +1.8V,  
MAX DD  
H_  
DD L_  
A
MIN  
T
= +25NC.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Charge-Pump Feedthrough at W_  
POWER SUPPLIES  
V
RW  
f
= 600kHz, C  
= 0nF  
200  
nV  
P-P  
CLK  
OUT  
Supply Voltage Range  
V
DD  
1.7  
27  
12  
5.5  
V
V
V
= 5.5V  
= 1.7V  
DD  
Standby Current  
FA  
DD  
DIGITAL INPUTS  
V
DD  
V
DD  
V
DD  
V
DD  
= 2.6V to 5.5V  
= 1.7V to 2.6V  
= 2.6V to 5.5V  
= 1.7V to 2.6V  
70  
75  
Minimum Input High Voltage  
V
% x V  
% x V  
IH  
DD  
30  
25  
+1  
Maximum Input Low Voltage  
V
IL  
DD  
Input Leakage Current  
Input Capacitance  
-1  
FA  
5
pF  
TIMING CHARACTERISTICS—SPI (Note 7)  
SCLK Frequency  
f
10  
MHz  
ns  
MAX  
SCLK Clock Period  
t
100  
40  
40  
40  
0
CP  
CH  
SCLK Pulse-Width High  
SCLK Pulse-Width Low  
CS Fall to SCK Rise Setup Time  
SCLK Rise to CS Rise Hold Time  
DIN Setup Time  
t
ns  
t
ns  
CL  
t
ns  
CSS  
CSH  
t
ns  
t
40  
0
ns  
DS  
DH  
DIN Hold Time  
t
ns  
SCLK Rise to CS Fall Delay  
t
10  
ns  
CS0  
SCLK Rise to SCLK Rise Hold  
Time  
t
40  
ns  
ns  
CS1  
CS Pulse-Width High  
t
100  
CSW  
Note 1: All devices are 100% production tested at T = +25NC. Specifications over temperature limits are guaranteed by design  
A
and characterization.  
Note 2: DNL and INL are measured with the potentiometer configured as a voltage-divider (Figure 1) with H_ = V  
and L_ =  
DD  
GND. The wiper terminal is unloaded and measured with a high-input-impedance voltmeter.  
Note 3: R-DNL and R-INL are measured with the potentiometer configured as a variable resistor (Figure 1). DNL and INL are  
measured with the potentiometer configured as a variable resistor. H_ is unconnected and L_ = GND. For V = +5V, the  
DD  
wiper terminal is driven with a source current of 400FA for the 10kI configuration, 80FA for the 50kI configuration, and  
40FA for the 100kI configuration. For V = +1.7V, the wiper terminal is driven with a source current of 150FA for the  
DD  
10kI configuration, 30FA for the 50kI configuration, and 15FA for the 100kI configuration.  
Note 4: The wiper resistance is the value measured by injecting the currents given in Note 3 into W_ with L_ = GND.  
R
= (V  
- V )/I  
.
W_  
W_  
H_ W_  
Note 5: Drive HA with a 1kHz GND to V  
amplitude tone. LA = LB = GND. No load. WB is at midscale with a 10pF load.  
DD  
Measure WB.  
Note 6: The wiper-settling time is the worst-case 0 to 50% rise time, measured between tap 0 and tap 127. H_ = V , L_ = GND,  
DD  
and the wiper terminal is loaded with 10pF capacitance to ground.  
Note 7: Digital timing is guaranteed by design and characterization, not production tested.  
_______________________________________________________________________________________  
3
Dual 256-Tap, Volatile, Low-Voltage  
Linear Taper Digital Potentiometers  
H
N.C.  
W
W
L
L
Figure 1. Voltage-Divider and Variable Resistor Configurations  
Typical Operating Characteristics  
(V  
DD  
= 1.8V, T = +25NC, unless otherwise noted.)  
A
SUPPLY CURRENT  
vs. DIGITAL INPUT VOLTAGE  
SUPPLY CURRENT  
vs. TEMPERATURE  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
30  
25  
10,000  
30  
25  
20  
15  
10  
V
= 5V  
DD  
V
DD  
= 5V  
1000  
100  
10  
20  
15  
10  
5
V
= 2.6V  
DD  
V
V
= 2.6V  
= 1.8V  
DD  
DD  
V
= 1.8V  
DD  
1
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
DIGITAL INPUT VOLTAGE (V)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
1.7 2.2 2.7 3.2 3.7 4.2 4.7 5.2  
V
(V)  
DD  
RESISTANCE (W_-TO-L_)  
vs. TAP POSITION (10kI)  
RESISTANCE (W_-TO-L_)  
vs. TAP POSITION (50kI)  
RESISTANCE (W_-TO-L_)  
vs. TAP POSITION (100kI)  
10  
9
8
7
6
5
4
3
2
1
0
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
0
51  
102  
153  
204  
255  
0
51  
102  
153  
204  
255  
0
51  
102  
153  
204  
255  
TAP POSITION  
TAP POSITION  
TAP POSITION  
4
______________________________________________________________________________________  
Dual 256-Tap, Volatile, Low-Voltage  
Linear Taper Digital Potentiometers  
Typical Operating Characteristics (continued)  
(V  
DD  
= 1.8V, T = +25NC, unless otherwise noted.)  
A
WIPER RESISTANCE  
vs. WIPER VOLTAGE  
END-TO-END RESISTANCE PERCENTAGE  
CHANGE vs. TEMPERATURE  
VARIABLE RESISTOR DNL  
vs. TAP POSITION (10kI)  
0.05  
0.04  
0.03  
0.02  
0.01  
0
0.10  
0.08  
0.06  
0.04  
0.02  
0
140  
100kI  
120  
100  
80  
50kI  
-0.02  
-0.04  
-0.06  
-0.08  
-0.10  
10kI  
V
= 5V  
DD  
-0.01  
-0.02  
-0.03  
V
= 1.8V  
DD  
V
= 2.6V  
DD  
I
= 150µA  
WIPER  
60  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
WIPER VOLTAGE (V)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
0
0
0
51  
102  
153  
204  
255  
255  
255  
TAP POSITION  
VARIABLE RESISTOR DNL  
vs. TAP POSITION (50kI)  
VARIABLE RESISTOR DNL  
vs. TAP POSITION (100kI)  
VARIABLE RESISTOR INL  
vs. TAP POSITION (10kI)  
0.10  
0.08  
0.06  
0.04  
0.02  
0
0.10  
0.08  
0.06  
0.04  
0.02  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
-0.02  
-0.04  
-0.06  
-0.08  
-0.10  
-0.02  
-0.04  
-0.06  
-0.08  
-0.10  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
I
= 150µA  
WIPER  
I
= 30µA  
51  
I
= 15µA  
51  
WIPER  
WIPER  
0
102  
153  
204  
255  
0
102  
153  
204  
255  
51  
102  
153  
204  
TAP POSITION  
TAP POSITION  
TAP POSITION  
VARIABLE RESISTOR INL  
vs. TAP POSITION (50kI)  
VARIABLE RESISTOR INL  
vs. TAP POSITION (100kI)  
VOLTAGE-DIVIDER DNL  
vs. TAP POSITION (10kI)  
0.5  
0.4  
0.5  
0.4  
0.10  
0.08  
0.06  
0.04  
0.02  
0
0.3  
0.3  
0.2  
0.2  
0.1  
0.1  
0
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.02  
-0.04  
-0.06  
-0.08  
-0.10  
I
= 30µA  
I
= 15µA  
WIPER  
WIPER  
0
51  
102  
153  
204  
255  
0
51  
102  
153  
204  
255  
51  
102  
153  
204  
TAP POSITION  
TAP POSITION  
TAP POSITION  
_______________________________________________________________________________________  
5
Dual 256-Tap, Volatile, Low-Voltage  
Linear Taper Digital Potentiometers  
Typical Operating Characteristics (continued)  
(V  
DD  
= 1.8V, T = +25NC, unless otherwise noted.)  
A
VOLTAGE-DIVIDER DNL  
vs. TAP POSITION (50kI)  
0.10  
VOLTAGE-DIVIDER DNL  
vs. TAP POSITION (100kI)  
VOLTAGE-DIVIDER INL  
vs. TAP POSITION (10kI)  
0.10  
0.08  
0.06  
0.04  
0.02  
0
0.5  
0.4  
0.08  
0.06  
0.04  
0.02  
0
0.3  
0.2  
0.1  
0
-0.02  
-0.04  
-0.06  
-0.08  
-0.10  
-0.02  
-0.04  
-0.06  
-0.08  
-0.10  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
51  
102  
153  
204  
255  
0
51  
102  
153  
204  
255  
0
51  
102  
153  
204  
255  
TAP POSITION  
TAP POSITION  
TAP POSITION  
VOLTAGE-DIVIDER INL  
vs. TAP POSITION (100kI)  
VOLTAGE-DIVIDER INL  
vs. TAP POSITION (50kI)  
TAP-TO-TAP SWITCHING TRANSIENT  
(CODE 127 TO CODE 128) (10kI)  
MAX5391 toc21  
0.5  
0.4  
0.5  
0.4  
0.3  
0.3  
V
W_-L_  
0.2  
0.2  
20mV/div  
0.1  
0.1  
0
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
CS  
5V/div  
0
51  
102  
153  
204  
255  
0
51  
102  
153  
204  
255  
400ns/div  
TAP POSITION  
TAP POSITION  
TAP-TO-TAP SWITCHING TRANSIENT  
TAP-TO-TAP SWITCHING TRANSIENT  
MAX5391M P0WER-ON TRANSIENT  
(CODE 127 TO CODE 128) (50kI)  
(CODE 127 TO CODE 128) (100kI)  
MAX5391 toc24  
MAX5391 toc22  
MAX5391 toc23  
V
W_-L_  
V
W_-L_  
1V/div  
20mV/div  
V
W_-L_  
20mV/div  
CS  
5V/div  
CS  
5V/div  
V
DD  
5V/div  
2µs/div  
1µs/div  
1µs/div  
6
______________________________________________________________________________________  
Dual 256-Tap, Volatile, Low-Voltage  
Linear Taper Digital Potentiometers  
Typical Operating Characteristics (continued)  
(V  
DD  
= 1.8V, T = +25NC, unless otherwise noted.)  
A
MIDSCALE FREQUENCY  
RESPONSE (10kI)  
MIDSCALE FREQUENCY  
RESPONSE (50kI)  
MIDSCALE FREQUENCY  
RESPONSE (100kI)  
10  
10  
0
10  
0
V
= 5V  
DD  
V
= 5V  
V
DD  
= 5V  
DD  
0
-10  
-20  
-30  
V
= 1.8V  
-10  
-20  
-30  
-10  
-20  
-30  
DD  
V
= 1.8V  
DD  
V
= 1.8V  
DD  
V
= 1V  
P-P  
IN  
V
= 1V  
V = 1V  
IN P-P  
IN  
P-P  
0.01  
1
100  
10k  
0.01  
1
100  
10k  
0.01  
1
100  
10k  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY  
CROSSTALK vs. FREQUENCY  
0.20  
0
0.18  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
-20  
-40  
10kI  
100kI  
50kI  
100kI  
-60  
-80  
-100  
-120  
-140  
50kI  
10kI  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
1000  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
CHARGE-PUMP FEEDTHROUGH  
BYP RAMP vs. C  
AT W_ vs. C  
BYP  
BYP  
120  
100  
80  
60  
40  
20  
0
700  
600  
500  
400  
300  
200  
100  
0
0
0.02  
0.04  
0.05  
0.08  
0.10  
0
200  
400  
600  
800  
CAPACITANCE (µF)  
CAPACITANCE (pF)  
_______________________________________________________________________________________  
7
Dual 256-Tap, Volatile, Low-Voltage  
Linear Taper Digital Potentiometers  
Pin Configurations  
TOP VIEW  
TOP VIEW  
12  
11  
10  
9
+
GND  
LB  
1
2
3
4
5
6
7
14 LA  
13 HA  
12 WA  
8
7
6
5
CS  
N.C. 13  
HA 14  
HB  
BYP  
N.C.  
GND  
WB  
I.C.  
BYP  
CS  
11  
V
DD  
MAX5393  
MAX5391  
WA  
LA  
15  
16  
10 N.C.  
*EP  
9
8
SCLK  
DIN  
+
1
2
3
4
*EP = EXPOSED PAD  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX5391  
(TQFN-EP)  
MAX5393  
(TSSOP)  
Resistor B High Terminal. The voltage at HB can be higher or lower than the voltage at  
LB. Current can flow into or out of HB.  
1
2
3
3
4
2
HB  
WB  
LB  
Resistor B Wiper Terminal  
Resistor B Low Terminal. The voltage at LB can be higher or lower than the voltage at HB.  
Current can flow into or out of LB.  
4
5
5
1
I.C.  
GND  
N.C.  
Internally Connected. Connect to GND.  
Ground  
6, 11, 13  
10  
No Connection. Not internally connected.  
Internal Power-Supply Bypass. For additional charge-pump filtering, bypass to GND with  
a capacitor close to the device.  
7
6
BYP  
8
9
7
8
Active-Low Chip-Select Input  
Serial-Interface Data Input  
Serial-Interface Clock Input  
CS  
DIN  
10  
12  
9
SCLK  
11  
V
DD  
Power-Supply Input. Bypass V  
to GND with a 0.1FF capacitor close to the device.  
DD  
Resistor A High Terminal. The voltage at HA can be higher or lower than the voltage at  
LA. Current can flow into or out of HA.  
14  
15  
16  
13  
12  
14  
HA  
WA  
LA  
Resistor A Wiper Terminal  
Resistor A Low Terminal. The voltage at LA can be higher or lower than the voltage at HA.  
Current can flow into or out of LA.  
EP  
Exposed Pad (MAX5391 Only). Connect to GND.  
8
______________________________________________________________________________________  
Dual 256-Tap, Volatile, Low-Voltage  
Linear Taper Digital Potentiometers  
C
does affect the startup time of the charge pump;  
BYP  
Detailed Description  
however, C  
does not impact the ability to commu-  
BYP  
The MAX5391/MAX5393 dual 256-tap, volatile, low-volt-  
age linear taper digital potentiometers offer three end-to-  
end resistance values of 10kI, 50kI, and 100kI. Each  
potentiometer consists of 255 fixed resistors in series  
between terminals H_ and L_. The potentiometer wiper,  
W_, is programmable to access any one of the 256 tap  
points on the resistor string.  
nicate with the device, nor is there a minimum C  
requirement. The maximum wiper impedance specifi-  
cation is not guaranteed until the charge pump is fully  
BYP  
settled. See the BYP Ramp vs. C  
Operating Characteristics for C  
pump settling time.  
graph in the Typical  
impact on charge-  
BYP  
BYP  
SPI Digital Interface  
The MAX5391/MAX5393 include a SPI interface that pro-  
vides a 3-wire write-only serial-data interface to control  
the wiper tap position through inputs chip select (CS),  
data in (DIN), and data clock (SCLK). Drive CS low to  
load data from DIN synchronously into the serial shift  
register on the rising edge of each SCLK pulse. The  
MAX5391/MAX5393 load the last 10 bits of clocked data  
into the appropriate potentiometer control register once  
CS transitions high. See Figures 2 and 3. Data written  
to a memory register immediately updates the wiper  
position. Keep CS low during the entire data stream to  
prevent the data from being terminated.  
The potentiometers in each device are programmable  
independently of each other. The MAX5391/MAX5393  
feature an SPI interface.  
Charge Pump  
The MAX5391/MAX5393 contain an internal charge  
pump that guarantees the maximum wiper resistance,  
R , to be less then 200I for supply voltages down to  
WL  
1.7V. Pins H_, W_, and L_ are still required to be less  
than V + 0.3V. A bypass input, BYP, is provided to  
DD  
allow additional filtering of the charge-pump output, fur-  
ther reducing clock feed through that may occur on H_,  
W_, or L_. The nominal clock rate of the charge pump  
is 600kHz. BYP should remain resistively unloaded as  
any additional load would produce a ripple of approxi-  
The first two bits A1:A0 (address bits) address one of  
the two potentiometers. See Table 1. The power-on reset  
(POR) circuitry sets the wiper to midscale.  
mately I  
/(600kHz x C  
BYP  
) volts. See the Charge-  
BYP  
Pump Feedthrough at W_ vs. C  
graph in the Typical  
BYP  
Operating Characteristics for C  
sizing guidelines with  
BYP  
respect to clock feedthrough to the wiper. The value of  
Table 1. SPI Register Map  
Bit Number  
1
A1  
0
2
A0  
0
3
4
5
6
7
8
9
10  
D0  
D0  
D0  
D0  
Bit Name  
D7  
D7  
D7  
D7  
D6  
D6  
D6  
D6  
D5  
D5  
D5  
D5  
D4  
D4  
D4  
D4  
D3  
D3  
D3  
D3  
D2  
D2  
D2  
D2  
D1  
D1  
D1  
D1  
Write Wiper Register A  
Write Wiper Register B  
Write to Both A and B  
0
1
1
1
COMMAND  
STARTED 10-BIT  
WIPER REGISTER  
LOADED  
CS  
SCLK  
DIN  
A0  
A1  
D7  
D6  
D5  
D4  
D3  
D0  
D2  
D1  
Figure 2. SPI Digital Interface Format  
_______________________________________________________________________________________  
9
Dual 256-Tap, Volatile, Low-Voltage  
Linear Taper Digital Potentiometers  
t
CSW  
CS  
t
CS1  
t
CH  
t
t
CP  
t
CSH  
CSO  
t
CSS  
t
CL  
t
DH  
t
DS  
SCLK  
DIN  
Figure 3. SPI Timing Diagram  
REG A: The data byte writes to register A, and the wiper  
of potentiometer A moves to the appropriate position at  
the rising edge of CS. D[7:0] indicates the position of the  
wiper. D[7:0] = 00h moves the wiper to the position clos-  
est to LA. D[7:0] = FFh moves the wiper closest to HA.  
D[7:0] is 80h following power-on.  
Applications Information  
Variable Gain Amplifier  
Figure 4 shows a potentiometer adjusting the gain of a  
noninverting amplifier. Figure 5 shows a potentiometer  
adjusting the gain of an inverting amplifier.  
REG B: The data byte writes to register B, and the wiper  
of potentiometer B moves to the appropriate position at  
the rising edge of CS. D[7:0] indicates the position of the  
wiper. D[7:0] = 00h moves the wiper to the position clos-  
est to LB. D[7:0] = FFh moves the wiper to the position  
closest to HB. D[7:0] is 80h following power-on.  
Adjustable Dual Regulator  
Figure 6 shows an adjustable dual linear regulator using  
a dual potentiometer as two variable resistors.  
Adjustable Voltage Reference  
Figure 7 shows an adjustable voltage reference circuit  
using a potentiometer as a voltage divider.  
REG A and B: The data byte writes to registers A and  
B, and the wipers of potentiometers A and B move to the  
appropriate position. D[7:0] indicates the position of the  
wiper. D[7:0] = 00h moves the wiper to the position clos-  
est to L_. D[7:0] = FFh moves the wiper to the position  
closest to H_. D[7:0] is 80h following power-on.  
10 _____________________________________________________________________________________  
Dual 256-Tap, Volatile, Low-Voltage  
Linear Taper Digital Potentiometers  
H_  
L_  
V
IN  
V
OUT  
W_  
V
IN  
V
OUT  
W_  
H_  
L_  
Figure 4. Variable-Gain Noninverting Amplifier  
Figure 5. Variable-Gain Inverting Amplifier  
V
V
OUT1  
OUT1  
OUT2  
OUT2  
+2.5V  
IN  
V
REF  
OUT  
H_  
L_  
H_  
L_  
H_  
MAX8866  
V+  
MAX6037  
IN  
W_  
W_  
W_  
SET1  
SET2  
L_  
GND  
Figure 6. Adjustable Dual Linear Regulator  
Figure 7. Adjustable Voltage Reference  
______________________________________________________________________________________ 11  
Dual 256-Tap, Volatile, Low-Voltage  
Linear Taper Digital Potentiometers  
Variable-Gain Current-to-Voltage Converter  
Figure 8 shows a variable-gain current-to-voltage con-  
verter using a potentiometer as a variable resistor.  
Offset Voltage Adjustment Circuit  
Figure 11 shows an offset voltage adjustment circuit  
using a dual potentiometer.  
LCD Bias Control  
Figure 9 shows a positive LCD bias control circuit using  
a potentiometer as a voltage-divider.  
Process Information  
PROCESS: BiCMOS  
Programmable Filter  
Figure 10 shows a programmable filter using a dual  
potentiometer.  
R3  
+1.8V  
H_  
H_  
W_  
W_  
R1  
R2  
V
OUT  
I
S
L_  
L_  
V
OUT  
V
OUT  
= I x ((R3 x (1 + R2/R1)) + R2)  
S
Figure 8. Variable Gain I-to-V Converter  
Figure 9. Positive LCD Bias Control Using a Voltage-Divider  
+1.8V  
WA  
WB  
LA  
HA  
V
IN  
LB  
HB  
V
OUT  
V
IN  
R3  
V
OUT  
R1  
HA  
LA  
HB  
LB  
R2  
WA  
WB  
Figure 10. Programmable Filter  
Figure 11. Offset Voltage Adjustment Circuit  
12 _____________________________________________________________________________________  
Dual 256-Tap, Volatile, Low-Voltage  
Linear Taper Digital Potentiometers  
Package Information  
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character,  
but the drawing pertains to the package regardless of RoHS status.  
PACKAGE TYPE  
14 TSSOP  
PACKAGE CODE  
U14+1  
DOCUMENT NO.  
21-0066  
16 TQFN-EP  
T1633+5  
21-0136  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied.  
Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
13  
©
2009 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX5393EVKIT+

PC USB to 3-Wire Interface or Stand-Alone 3-Wire Serial-Interface Operation
MAXIM

MAX5393EVMINIQU

PC USB to 3-Wire Interface or Stand-Alone 3-Wire Serial-Interface Operation
MAXIM

MAX5393EVMINIQU+

PC USB to 3-Wire Interface or Stand-Alone 3-Wire Serial-Interface Operation
MAXIM

MAX5393LAUD+

Dual 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometers
MAXIM

MAX5393MAUD+

Dual 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometers
MAXIM

MAX5393NAUD+

Dual 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometers
MAXIM

MAX5393NAUD+T

Digital Potentiometer,
MAXIM

MAX5394

Single, 256-Tap Volatile, SPI, Low-Voltage Linear Taper Digital Potentiometer
MAXIM

MAX5394LATA+T

Digital Potentiometer, BICMOS, PDSO8,
MAXIM

MAX5394MEVKIT

1.7V to 5.5V Wide Input Supply Range
MAXIM

MAX5395

Single, 256-Tap Volatile, I2C, Low-Voltage Linear Taper Digital Potentiometer
MAXIM

MAX5395LATA+T

Single, 256-Tap Volatile, I2C, Low-Voltage Linear Taper Digital Potentiometer
MAXIM