MAX541ACSA+T [MAXIM]

D/A Converter, 1 Func, Serial Input Loading, 1us Settling Time, PDSO8, 0.150 INCH, LEAD FREE, SOIC-8;
MAX541ACSA+T
型号: MAX541ACSA+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

D/A Converter, 1 Func, Serial Input Loading, 1us Settling Time, PDSO8, 0.150 INCH, LEAD FREE, SOIC-8

文件: 总12页 (文件大小:239K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1082; Rev 2; 12/99  
+5V, Serial-Input, Voltage-Output, 16-Bit DACs  
General Description  
Features  
The MAX541/MAX542 are serial-input, voltage-output,  
16-bit digital-to-analog converters (DACs) that operate  
from a single +5V supply. They provide 16-bit perfor-  
mance ( 1ꢀLS ꢁIꢀ and DIꢀ) over temperature ꢂithout  
any adjustments. The DAC output is unbuffered, result-  
ing in a loꢂ supply current of 0.3mA and a loꢂ offset  
error of 1ꢀLS.  
Full 16-Bit Performance Without Adjustments  
+5V Single-Supply Operation  
Low Power: 1.5mW  
1µs Settling Time  
Unbuffered Voltage Output Directly Drives 60k  
Loads  
The DAC output range is 0V to V  
. For bipolar opera-  
REF  
SPI/QSPI/MICROWIRE-Compatible Serial Interface  
tion, matched scaling resistors are provided in the  
MAX542 for use ꢂith an external precision op amp  
(such as the MAX400), generating a  
Power-On Reset Circuit Clears DAC Output to 0V  
V
output  
REF  
(unipolar mode)  
sꢂing. The MAX542 also includes Kelvin-sense con-  
nections for the reference and analog ground pins to  
reduce layout sensitivity.  
Schmitt Trigger Inputs for Direct Optocoupler  
Interface  
A 16-bit serial ꢂord is used to load data into the DAC  
latch. The 10MHz, 3-ꢂire serial interface is compatible  
ꢂith LPꢁ™/QLPꢁ™/MꢁCROWꢁRE™, and it also interfaces  
directly ꢂith optocouplers for applications requiring isola-  
tion. A poꢂer-on reset circuit clears the DAC output to 0V  
(unipolar mode) ꢂhen poꢂer is initially applied.  
Ordering Information  
INL  
(LSB)  
PART  
TEMP. RANGE  
PIN-PACKAGE  
MAX541ACPA  
MAX541SCPA  
MAX541CCPA  
MAX541ACLA  
MAX541SCLA  
MAX541CCLA  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
8 Plastic DꢁP  
8 Plastic DꢁP  
8 Plastic DꢁP  
8 LO  
1
2
4
1
2
4
The MAX541 is available in 8-pin plastic DꢁP and LO  
packages. The MAX542 is available in 14-pin plastic  
DꢁP and LO packages.  
8 LO  
Applications  
High-Resolution Offset and Gain Adjustment  
ꢁndustrial Process Control  
8 LO  
Ordering Information continued at end of data sheet.  
Automated Test Equipment  
Functional Diagrams  
Data-Acquisition Lystems  
V
DD  
General Description  
RFB  
INV  
TOP VIEW  
MAX542  
R
FB  
R
INV  
REFF  
REFS  
V
14  
RFB  
OUT  
1
2
3
4
5
6
7
DD  
16-BIT DAC  
OUT  
13 INV  
MAX542  
AGNDF  
AGNDS  
AGNDF  
AGNDS  
REFS  
REFF  
12 DGND  
1
2
3
4
8
7
6
5
V
DD  
OUT  
AGND  
REF  
16-BIT DATA LATCH  
CS  
LDAC  
SCLK  
DIN  
11  
10  
9
LDAC  
DIN  
DGND  
DIN  
CONTROL  
LOGIC  
MAX541  
N.C.  
SERIAL INPUT REGISTER  
DGND  
CS  
SCLK  
CS  
8
SCLK  
DIP/SO  
DIP/SO  
Functional Diagrams continued at end of data sheet.  
SPI and QSPI are trademarks of Motorola, Inc.  
MICROWIRE is a trademark of National Semiconductor Corp.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 1-800-835-8769.  
+5V, Serial-Input, Voltage-Output, 16-Bit DACs  
ABSOLUTE MAXIMUM RATINGS  
V
to DGID ...........................................................-0.3V to +6V  
14-Pin Plastic DꢁP (derate 10.00mW/°C above +70°C)...800mW  
14-Pin LO (derate 8.33mW/°C above +70°C) ...............667mW  
14-Pin Ceramic LS (derate 10.00mW/°C above +70°C ..800mW  
Operating Temperature Ranges  
DD  
CS, LCꢀK, DꢁI, LDAC to DGID ..............................-0.3V to +6V  
REF, REFF, REFL to AGID ........................-0.3V to (V + 0.3V)  
AGID, AGIDF, AGIDL to DGID........................-0.3V to +0.3V  
DD  
OUT, ꢁIV to AGID, DGID ......................................-0.3V to V  
RFS to AGID, DGID..................................................-6V to +6V  
Maximum Current into Any Pin............................................50mA  
Continuous Poꢂer Dissipation (T = +70°C)  
A
8-Pin Plastic DꢁP (derate 9.09mW/°C above +70°C).....727mW  
8-Pin LO (derate 5.88mW/°C above +70°C) .................471mW  
MAX541 _C_ A/MAX542_C_D. .............................0°C to +70°C  
MAX541 _E_ A/MAX542_E_D............................-40°C to +85°C  
MAX542CMJD.................................................-55°C to +125°C  
Ltorage Temperature Range.............................-65°C to +150°C  
ꢀead Temperature (soldering, 10s) .................................+300°C  
DD  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= +5V 5ꢃ, V  
= +2.5V, AGID = DGID = 0, T = T  
A
to T  
, unless otherꢂise noted.)  
MAX  
DD  
REF  
MꢁI  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Sits  
STATIC PERFORMANCE—ANALOG SECTION (R = )  
Resolution  
I
16  
MAX54_A  
0.5  
0.5  
0.5  
0.5  
1.0  
2.0  
4.0  
1.0  
1
ꢁntegral Ionlinearity  
ꢁIꢀ  
V
DD  
= 5V  
MAX54_S  
MAX54_C  
ꢀLS  
Differential Ionlinearity  
Zero-Code Offset Error  
Zero-Code Tempco  
Gain Error (Iote 1)  
DIꢀ  
ZLE  
Guaranteed monotonic  
ꢀLS  
ꢀLS  
T
A
T
A
T
A
T
A
T
A
= +25°C  
= T  
= T  
to T  
to T  
2
MꢁI  
MꢁI  
MAX  
MAX  
ZL  
0.05  
ppm/°C  
ꢀLS  
TC  
= +25°C  
= T to T  
5
10  
MꢁI  
MAX  
Gain-Error Tempco  
0.1  
6.25  
1.0  
ppm/°C  
DAC Output Resistance  
R
OUT  
(Iote 2)  
MAX542  
kΩ  
R
/R  
FS ꢁIV  
Sipolar Resistor Matching  
Sipolar Zero Offset Error  
Ratio error  
0.015  
10  
T
= +25°C  
A
A
MAX542  
ꢀLS  
T
= T  
to T  
20  
MꢁI  
MAX  
Sipolar Zero Tempco  
SZL  
MAX542  
0.5  
ppm/°C  
ꢀLS  
TC  
Poꢂer-Lupply Rejection  
PLR  
4.75V V  
5.25V  
1.0  
3.0  
DD  
REFERENCE INPUT  
Reference ꢁnput Range  
V
R
(Iote 3)  
2.0  
11.5  
9.0  
V
REF  
Unipolar mode  
Reference ꢁnput Resistance  
(Iote 4)  
kΩ  
REF  
MAX542, bipolar mode  
DYNAMIC PERFORMANCE—ANALOG SECTION (R = , unipolar mode)  
Voltage-Output Lleꢂ Rate  
LR  
C = 10pF (Iote 5)  
25  
1
V/µs  
µs  
to 1/2ꢀLS of FL, C = 10pF  
Output Lettling Time  
2
_______________________________________________________________________________________  
+5V, Serial-Input, Voltage-Output, 16-Bit DACs  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +5V 5ꢃ, V  
= +2.5V, AGID = DGID = 0, T = T  
A
to T  
, unless otherꢂise noted.)  
MAX  
DD  
REF  
MꢁI  
PARAMETER  
SYMBOL  
CONDITIONS  
Major-carry transition  
Code = 0000 hex; CS = V ; LDAC = 0;  
MIN  
TYP  
MAX  
UNITS  
DAC Glitch ꢁmpulse  
10  
nVs  
DD  
Digital Feedthrough  
10  
nVs  
LCꢀK, DꢁI = 0 to V  
levels  
DD  
DYNAMIC PERFORMANCE—REFERENCE SECTION  
Reference -3dS Sandꢂidth  
Reference Feedthrough  
Lignal-to-Ioise Ratio  
SW  
Code = FFFF hex  
1
1
MHz  
mVp-p  
dS  
Code = 0000 hex, V  
= 1Vp-p at 100kHz  
REF  
LIR  
92  
75  
120  
Code = 0000 hex  
Code = FFFF hex  
Reference ꢁnput Capacitance  
C
ꢁI  
pF  
STATIC PERFORMANCE—DIGITAL INPUTS  
ꢁnput High Voltage  
ꢁnput ꢀoꢂ Voltage  
ꢁnput Current  
V
2.4  
V
V
ꢁH  
V
0.8  
1
ꢁꢀ  
ꢁI  
V
= 0  
µA  
pF  
V
ꢁI  
ꢁnput Capacitance  
Hysteresis Voltage  
POWER SUPPLY  
Positive Lupply Range  
Positive Lupply Current  
Poꢂer Dissipation  
C
(Iote 6)  
10  
ꢁI  
V
0.40  
H
V
DD  
4.75  
5.25  
1.1  
V
0.3  
1.5  
mA  
mW  
DD  
PD  
TIMING CHARACTERISTICS  
(V  
= +5V 5ꢃ, V  
= +2.5V, AGID = DGID = 0, CMOL inputs, T = T  
to T  
, unless otherꢂise noted.)  
MAX  
DD  
REF  
A
MꢁI  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MHz  
ns  
LCꢀK Frequency  
f
10  
CꢀK  
LCꢀK Pulse Width High  
LCꢀK Pulse Width ꢀoꢂ  
CS ꢀoꢂ to LCꢀK High Letup  
CS High to LCꢀK High Letup  
LCꢀK High to CS ꢀoꢂ Hold  
LCꢀK High to CS High Hold  
DꢁI to LCꢀK High Letup  
DꢁI to LCꢀK High Hold  
LDAC Pulse Width  
t
45  
45  
45  
45  
30  
45  
40  
0
CH  
t
Cꢀ  
ns  
t
t
t
ns  
CLL0  
CLL1  
ns  
(Iote 6)  
MAX542  
ns  
CLH0  
CLH1  
t
ns  
t
ns  
DL  
t
ns  
DH  
t
50  
50  
ns  
LDAC  
t
MAX542 (Iote 6)  
ns  
CS High to LDAC ꢀoꢂ Letup  
ꢀDACL  
V
High to CS ꢀoꢂ  
DD  
20  
µs  
(poꢂer-up delay)  
Note 1: Gain Error tested at V  
= 2.0V, 2.5V, and 3.0V.  
REF  
Note 2: R  
tolerance is typically 20ꢃ.  
OUT  
Note 3: Min/max range guaranteed by gain-error test. Operation outside min/max limits ꢂill result in degraded performance.  
Note 4: Reference input resistance is code dependent, minimum at 8555 hex.  
Note 5: Lleꢂ-rate value is measured from 0ꢃ to 63ꢃ.  
Note 6: Guaranteed by design. Iot production tested.  
_______________________________________________________________________________________  
3
+5V, Serial-Input, Voltage-Output, 16-Bit DACs  
__________________________________________Typical Operating Characteristics  
(V  
= 5V, V  
= +2.5V, T = +25°C, unless otherꢂise noted.)  
REF  
A
DD  
SUPPLY CURRENT  
vs. REFERENCE VOLTAGE  
ZERO-CODE OFFSET ERROR  
vs. TEMPERATURE  
SUPPLY CURRENT  
vs. TEMPERATURE  
0.35  
0.34  
0.33  
0.32  
0.31  
0.30  
1.0  
0.8  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0.29  
0.28  
-60  
-40 -20  
0
20  
40  
60  
80 100  
0
1
2
3
4
5
6
-20  
20  
60  
100  
140  
TEMPERATURE (°C)  
REFERENCE VOLTAGE (V)  
TEMPERATURE (°C)  
INTEGRAL NONLINEARITY  
vs. TEMPERATURE  
DIFFERENTIAL NONLINEARITY  
vs. TEMPERATURE  
GAIN ERROR  
vs. TEMPERATURE  
1.0  
0.8  
1.0  
0.8  
1.0  
0.8  
0.6  
0.6  
0.6  
0.4  
0.4  
0.4  
0.2  
0.2  
0.2  
+INL  
+DNL  
0
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-DNL  
-INL  
-60  
-60  
-60  
-20  
20  
60  
100  
140  
-20  
20  
60  
100  
140  
-20  
20  
60  
100  
140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
REFERENCE CURRENT  
vs. CODE  
INTEGRAL NONLINEARITY  
vs. CODE  
DIFFERENTIAL NONLINEARITY  
vs. CODE  
200  
160  
120  
80  
1.00  
1.00  
0.75  
0.75  
0.50  
0.25  
0.50  
0.25  
0
0
-0.25  
-0.25  
-0.50  
-0.50  
-0.75  
-1.00  
40  
-0.75  
-1.00  
0
0
10k 20k 30k 40k 50k 60k 70k  
DAC CODE  
0
10k 20k 30k 40k 50k 60k 70k  
DAC CODE  
0
10k 20k 30k 40k 50k 60k 70k  
DAC CODE  
4
_______________________________________________________________________________________  
+5V, Serial-Input, Voltage-Output, 16-Bit DACs  
Typical Operating Characteristics (continued)  
(V  
= +5V, V  
= +2.5V, T = +25°C, unless otherꢂise noted.)  
REF  
A
DD  
FULL-SCALE STEP RESPONSE  
FULL-SCALE STEP RESPONSE  
(f = 20MHz)  
(f  
= 10MHz)  
SCLK  
SCLK  
C = 10pF  
L
L
C = 10pF  
L
L
R =   
R = ∞  
OUT  
500mV/div  
OUT  
500mV/div  
1µs/div  
400ns/div  
DIGITAL FEEDTHROUGH  
MAJOR-CARRY OUTPUT GLITCH  
CS  
(5V/div)  
SCLK  
5V/div  
OUT  
OUT  
(AC-COUPLED,  
50mV/div)  
(AC-COUPLED,  
100mV/div)  
2µs/div  
2µs/div  
CODE = 0000 hex  
Pin Descriptions  
MAX541  
PIN  
NAME  
FUNCTION  
1
2
3
4
5
6
7
8
OUT  
AGID  
REF  
DAC Output Voltage  
Analog Ground  
Voltage Reference ꢁnput. Connect to external +2.5V reference.  
Chip-Lelect ꢁnput  
CS  
LCꢀK  
DꢁI  
Lerial Clock ꢁnput. Duty cycle must be betꢂeen 40ꢃ and 60ꢃ.  
Lerial Data ꢁnput  
Digital Ground  
DGID  
V
DD  
+5V Lupply Voltage  
_______________________________________________________________________________________  
5
+5V, Serial-Input, Voltage-Output, 16-Bit DACs  
________________________________________________Pin Descriptions (continued)  
MAX542  
PIN  
1
NAME  
RFS  
FUNCTION  
Feedback Resistor. Connect to external op amp’s output in bipolar mode.  
DAC Output Voltage  
2
OUT  
3
AGIDF  
AGIDL  
REFL  
REFF  
CS  
Analog Ground (force)  
4
Analog Ground (sense)  
5
Voltage Reference ꢁnput (sense). Connect REFL to external +2.5V reference.  
Voltage Reference ꢁnput (force). Connect REFF to external +2.5V reference.  
Chip-Lelect ꢁnput  
6
7
8
LCꢀK  
I.C.  
Lerial Clock ꢁnput. Duty cycle must be betꢂeen 40ꢃ and 60ꢃ.  
Io Connection. Iot internally connected.  
Lerial Data ꢁnput  
9
10  
11  
12  
DꢁI  
LDAC  
DGID  
LDAC ꢁnput. A falling edge updates the internal DAC latch.  
Digital Ground  
Junction of internal scaling resistors. Connect to external op amp’s inverting input in  
bipolar mode.  
13  
14  
ꢁIV  
V
DD  
+5V Lupply Voltage  
t
t
CSH1  
LDACS  
CS  
t
CSHO  
t
CSS1  
t
t
t
CL  
CSSO  
CH  
SCLK  
t
DH  
t
DS  
D15  
D14  
D0  
DIN  
LDAC*  
t
LDAC  
*MAX542 ONLY  
Figure 1. Timing Diagram  
6
_______________________________________________________________________________________  
+5V, Serial-Input, Voltage-Output, 16-Bit DACs  
+2.5V  
10µF  
+5V  
0.1µF  
0.1µF  
MC68XXXX  
V
REF (REFF) (REFS)  
DD  
UNIPOLAR  
OUT  
PCS0  
MOSI  
SCLK  
CS  
MAX495  
EXTERNAL OP AMP  
OUT  
DIN  
MAX541/MAX542  
SCLK  
(GND)  
(LDAC)  
DGND  
AGND_  
(
) ARE FOR MAX542 ONLY  
Figure 2a. Typical Operating Circuit—Unipolar Output  
+2.5V  
10µF  
+5V  
0.1µF  
0.1µF  
REFF  
+5V  
RFB  
MC68XXXX  
V
REFS  
DD  
R
INV  
PCS0  
MOSI  
SCLK  
IC1  
CS  
R
INV  
FB  
BIPOLAR  
OUT  
EXTERNAL OP AMP  
MAX400  
DIN  
OUT  
SCLK  
LDAC  
DGND  
MAX542  
-5V  
(GND)  
AGNDF  
AGNDS  
Figure 2b. Typical Operating Circuit—Bipolar Output  
major-carry transitions. ꢁt also loꢂers the DAC output  
impedance by a factor of eight compared to a standard  
R-2R ladder, alloꢂing unbuffered operation in medium-  
load applications.  
Detailed Description  
The MAX541/MAX542 voltage-output, 16-bit digital-to-  
analog converters (DACs) offer full 16-bit performance  
ꢂith less than 1ꢀLS integral linearity error and less than  
1ꢀLS differential linearity error, thus ensuring monoton-  
ic performance. Lerial data transfer minimizes the num-  
ber of package pins required.  
The MAX542 provides matched bipolar offset resistors,  
ꢂhich connect to an external op amp for bipolar output  
sꢂings (Figure 2b). For optimum performance, the  
MAX542 also provides a set of Kelvin connections to  
the voltage-reference and analog-ground inputs.  
The MAX541/MAX542 are composed of tꢂo matched  
DAC sections, ꢂith a 12-bit inverted R-2R DAC forming  
the 12 ꢀLSs and the 4 MLSs derived from 15 identically  
matched resistors. This architecture alloꢂs the loꢂest  
glitch energy to be transferred to the DAC output on  
_______________________________________________________________________________________  
7
+5V, Serial-Input, Voltage-Output, 16-Bit DACs  
Digital Interface  
The MAX541/MAX542’s digital interface is a standard  
3-ꢂire connection compatible ꢂith LPꢁ/QLPꢁ/  
MꢁCROWꢁRE interfaces. The chip-select input (CS)  
frames the serial data loading at the data-input pin  
(DꢁI). ꢁmmediately folloꢂing CS’s high-to-loꢂ transition,  
the data is shifted synchronously and latched into the  
input register on the rising edge of the serial clock input  
(LCꢀK). After 16 data bits have been loaded into the  
serial input register, it transfers its contents to the DAC  
latch on CS’s loꢂ-to-high transition (Figure 3a). Iote  
that if CS is not kept loꢂ during the entire 16 LCꢀK  
cycles, data ꢂill be corrupted. ꢁn this case, reload the  
DAC latch ꢂith a neꢂ 16-bit ꢂord.  
External Reference  
The MAX541/MAX542 operate ꢂith external voltage ref-  
erences from 2V to 3V. The reference voltage deter-  
mines the DAC’s full-scale output voltage. Kelvin  
connections are provided ꢂith the MAX542 for optimum  
performance.  
Power-On Reset  
The MAX541/MAX542 have a poꢂer-on reset circuit to  
set the DAC’s output to 0V in unipolar mode ꢂhen V  
DD  
is first applied. This ensures that unꢂanted DAC output  
voltages ꢂill not occur immediately folloꢂing a system  
poꢂer-up, such as after a loss of poꢂer. ꢁn bipolar  
mode, the DAC output is set to -V  
.
REF  
Alternatively, for the MAX542, LDAC alloꢂs the DAC  
latch to update asynchronously by pulling LDAC loꢂ  
after CS goes high (Figure 3b). Hold LDAC high during  
the data-loading sequence.  
CS  
DAC  
UPDATED  
SCLK  
DIN  
D15 D14 D13 D12 D11 D10 D9 D8  
MSB  
D7 D6 D5 D4 D3 D2 D1 D0  
LSB  
Figure 3a. MAX541/MAX542 3-Wire Interface Timing Diagram (LDAC = DGND for MAX542)  
CS  
SCLK  
DIN  
D15 D14 D13 D12 D11 D10 D9 D8  
MSB  
D7 D6 D5 D4 D3 D2 D1 D0  
LSB  
LDAC  
DAC  
UPDATED  
Figure 3b. MAX542 4-Wire Interface Timing Diagram  
8
_______________________________________________________________________________________  
+5V, Serial-Input, Voltage-Output, 16-Bit DACs  
Unbuffered Operation  
Unbuffered operation reduces poꢂer consumption as  
Applications Information  
Reference and Analog Ground Inputs  
The MAX541/MAX542 operate ꢂith external voltage ref-  
erences from 2V to 3V, and maintain 16-bit performance  
if certain guidelines are folloꢂed ꢂhen selecting and  
applying the reference. ꢁdeally, the reference’s  
temperature coefficient should be less than  
0.4ppm/°C to maintain 16-bit accuracy to ꢂithin 1ꢀLS  
over the 0°C to +70°C commercial temperature range.  
Lince this converter is designed as an inverted R-2R  
voltage-mode DAC, the input resistance seen by the volt-  
age reference is code-dependent. The ꢂorst-case input-  
resistance variation is from 11.5k(at code 8555 hex) to  
200k(at code 0000 hex). The maximum change in load  
current for a 2.5V reference is 2.5V / 11.5k= 217µA;  
therefore, the required load regulation is 7ppm/mA for a  
maximum error of 0.1ꢀLS. This implies a reference  
output impedance of less than 18m. ꢁn addition, the  
impedance of the signal path from the voltage  
reference to the reference input must be kept loꢂ  
because it contributes directly to the load-regulation  
error.  
ꢂell as offset error contributed by the external output  
buffer. The R-2R DAC output is available directly at  
OUT, alloꢂing 16-bit performance from +V  
to AGID  
REF  
ꢂithout degradation at zero scale. The DAC’s output  
impedance is also loꢂ enough to drive medium loads  
(R > 60k) ꢂithout degradation of ꢁIꢀ or DIꢀ; only  
the gain error is increased by externally loading the  
DAC output.  
External Output Buffer Amplifier  
The requirements on the external output buffer amplifier  
change ꢂhether the DAC is used in the unipolar or  
bipolar mode of operation. ꢁn unipolar mode, the output  
amplifier is used in a voltage-folloꢂer connection. ꢁn  
bipolar mode (MAX542 only), the amplifier operates  
ꢂith the internal scaling resistors (Figure 2b). ꢁn each  
mode, the DAC’s output resistance is constant and is  
independent of input code; hoꢂever, the output amplifi-  
er’s input impedance should still be as high as possible  
to minimize gain errors. The DAC’s output capacitance  
is also independent of input code, thus simplifying sta-  
bility requirements on the external amplifier.  
The requirement for a loꢂ-impedance voltage reference  
is met ꢂith capacitor bypassing at the reference inputs  
and ground. A 0.1µF ceramic capacitor ꢂith short leads  
betꢂeen REFF and AGIDF (MAX542), or REF and  
AGID (MAX541), provides high-frequency bypassing.  
A surface-mount ceramic chip capacitor is preferred  
because it has the loꢂest inductance. An additional  
10µF betꢂeen REFF and AGIDF (MAX542), or REF  
and AGID (MAX541), provides loꢂ-frequency bypass-  
ing. A loꢂ-ELR tantalum, film, or organic semiconductor  
capacitor ꢂorks ꢂell. ꢀeaded capacitors are accept-  
able because impedance is not as critical at loꢂer fre-  
quencies. The circuit can benefit from even larger  
bypassing capacitors, depending on the stability of the  
external reference ꢂith capacitive loading. ꢁf separate  
force and sense lines are not used, tie the appropriate  
force and sense pins together close to the package.  
ꢁn bipolar mode, a precision amplifier operating ꢂith  
dual poꢂer supplies (such as the MAX400) provides  
the  
V
output range. ꢁn single-supply applications,  
REF  
precision amplifiers ꢂith input common-mode ranges  
including AGID are available; hoꢂever, their output  
sꢂings do not normally include the negative rail  
(AGID) ꢂithout significant degradation of performance.  
A single-supply op amp, such as the MAX495, is suit-  
able if the application does not use codes near zero.  
Lince the ꢀLSs for a 16-bit DAC are extremely small  
(38.15µV for V  
= 2.5V), pay close attention to the  
REF  
external amplifier’s input specification. The input offset  
voltage can degrade the zero-scale error and might  
require an output offset trim to maintain full accuracy if  
the offset voltage is greater than 1/2ꢀLS. Limilarly, the  
input bias current multiplied by the DAC output resis-  
tance (typically 6.25k) contributes to the zero-scale  
error. Temperature effects also must be taken into con-  
sideration. Over the 0°C to +70°C commercial tempera-  
ture range, the offset voltage temperature coefficient  
(referenced to +25°C) must be less than 0.42µV/°C to  
add less than 1/2ꢀLS of zero-scale error. The external  
amplifier’s input resistance forms a resistive divider ꢂith  
the DAC output resistance, ꢂhich results in a gain error.  
AGID must also be loꢂ impedance, as load-regulation  
errors ꢂill be introduced by excessive AGID resis-  
tance. As in all high-resolution, high-accuracy applica-  
tions, separate analog and digital ground planes yield  
the best results. Tie DGID to AGID at the AGID pin to  
form the “star” ground for the DAC system. Alꢂays refer  
remote DAC loads to this system ground for the best  
possible performance.  
_______________________________________________________________________________________  
9
+5V, Serial-Input, Voltage-Output, 16-Bit DACs  
To contribute less than 1/2ꢀLS of gain error, the input  
resistance typically must be greater than:  
Unipolar Configuration  
Figure 2a shoꢂs the MAX541/MAX542 configured for  
unipolar operation ꢂith an external op amp. The op amp  
is set for unity gain, and Table 1 lists the codes for this  
circuit.  
1
2
1
16  
6.25kΩ ÷  
= 819MΩ  
2
The settling time is affected by the buffer input capaci-  
tance, the DAC’s output capacitance, and PC board  
capacitance. The typical DAC output voltage settling  
time is 1µs for a full-scale step. Lettling time can be  
significantly less for smaller step changes. Assuming a  
single time-constant exponential settling response, a  
full-scale step takes 12 time constants to settle to ꢂithin  
1/2ꢀLS of the final output voltage. The time constant is  
equal to the DAC output resistance multiplied by the  
total output capacitance. The DAC output capacitance  
is typically 10pF. Any additional output capacitance ꢂill  
increase the settling time.  
Bipolar Configuration  
Figure 2b shoꢂs the MAX542 configured for bipolar  
operation ꢂith an external op amp. The op amp is set  
for unity gain ꢂith an offset of -1/2V  
offset binary codes for this circuit.  
. Table 2 lists the  
REF  
Power-Supply Bypassing and  
Ground Management  
For optimum system performance, use PC boards ꢂith  
separate analog and digital ground planes. Wire-ꢂrap  
boards are not recommended. Connect the tꢂo ground  
planes together at the loꢂ-impedance poꢂer-supply  
source. Connect DGID and AGID together at the ꢁC.  
The best ground connection can be achieved by con-  
necting the DAC’s DGID and AGID pins together and  
connecting that point to the system analog ground  
plane. ꢁf the DAC’s DGID is connected to the system  
digital ground, digital noise may get through to the  
DAC’s analog portion.  
The external buffer amplifier’s gain-bandꢂidth product  
is important because it increases the settling time by  
adding another time constant to the output response.  
The effective time constant of tꢂo cascaded systems,  
each ꢂith a single time-constant response, is approxi-  
mately the root square sum of the tꢂo time constants.  
The DAC output’s time constant is 1µs / 12 = 83ns,  
ignoring the effect of additional capacitance. ꢁf the time  
constant of an external amplifier ꢂith 1MHz bandꢂidth  
is 1 / 2π (1MHz) = 159ns, then the effective time con-  
stant of the combined system is:  
Sypass V  
ꢂith a 0.1µF ceramic capacitor connected  
DD  
DD  
betꢂeen V  
and AGID. Mount it ꢂith short leads  
close to the device. Ferrite beads can also be used to  
further isolate the analog and digital poꢂer supplies.  
2
2
83ns + 159ns  
= 180ns  
(
)
(
)
Table 1. Unipolar Code Table  
DAC LATCH CONTENTS  
ANALOG OUTPUT, V  
OUT  
This suggests that the settling time to ꢂithin 1/2ꢀLS of  
the final output voltage, including the external buffer  
amplifier, ꢂill be approximately 12 · 180ns = 2.15µs.  
MSB  
LSB  
1111 1111 1111 1111  
1000 0000 0000 0000  
0000 0000 0000 0001  
0000 0000 0000 0000  
V
REF · (65,535 / 65,536)  
1/  
V
2
V
REF · (32,768 / 65,536) =  
REF · (1 / 65,536)  
0V  
REF  
Digital Inputs and Interface Logic  
V
The digital interface for the 16-bit DAC is based on a  
3-ꢂire standard that is compatible ꢂith LPꢁ, QLPꢁ, and  
MꢁCROWꢁRE interfaces. The three digital inputs (CS,  
DꢁI, and LCꢀK) load the digital input data serially into  
the DAC. LDAC (MAX542) updates the DAC output  
asynchronously.  
Table 2. Bipolar Code Table  
DAC LATCH CONTENTS  
ANALOG OUTPUT, V  
OUT  
MSB  
LSB  
All of the digital inputs include Lchmitt-trigger buffers to  
accept sloꢂ-transition interfaces. This means that opto-  
couplers can interface directly to the MAX541/MAX542  
ꢂithout additional external logic. The digital inputs are  
compatible ꢂith TTꢀ/CMOL-logic levels.  
1111 1111 1111 1111  
1000 0000 0000 0001  
1000 0000 0000 0000  
0111 1111 1111 1111  
0000 0000 0000 0000  
+VREF · (32,767 / 32,768)  
+VREF · (1 / 32,768)  
0V  
-VREF · (1 / 32,768)  
-VREF · (32,768 / 32,768) = -V  
REF  
10 ______________________________________________________________________________________  
+5V, Serial-Input, Voltage-Output, 16-Bit DACs  
Ordering Information (continued)  
Functional Diagrams (continued)  
INL  
(LSB)  
PART  
TEMP. RANGE  
PIN-PACKAGE  
V
DD  
MAX541AEPA  
MAX541SEPA  
MAX541CEPA  
MAX541AELA  
MAX541SELA  
MAX541CELA  
MAX542ACPD  
MAX542SCPD  
MAX542CCPD  
MAX542ACLD  
MAX542SCLD  
MAX542CCLD  
MAX542SC/D  
MAX542AEPD  
MAX542SEPD  
MAX542CEPD  
MAX542AELD  
MAX542SELD  
MAX542CELD  
-40°C to +85°C 8 Plastic DꢁP  
-40°C to +85°C 8 Plastic DꢁP  
-40°C to +85°C 8 Plastic DꢁP  
-40°C to +85°C 8 LO  
1
2
4
1
2
4
1
2
4
1
2
4
2
1
2
4
1
2
4
4
MAX541  
REF  
16-BIT DAC  
OUT  
AGND  
-40°C to +85°C 8 LO  
16-BIT DATA LATCH  
SERIAL INPUT REGISTER  
DGND  
CS  
DIN  
SCLK  
-40°C to +85°C 8 LO  
CONTROL  
LOGIC  
0°C to +70°C 14 Plastic DꢁP  
0°C to +70°C 14 Plastic DꢁP  
0°C to +70°C 14 Plastic DꢁP  
0°C to +70°C 14 LO  
0°C to +70°C 14 LO  
0°C to +70°C 14 LO  
0°C to +70°C Dice*  
-40°C to +85°C 14 Plastic DꢁP  
-40°C to +85°C 14 Plastic DꢁP  
-40°C to +85°C 14 Plastic DꢁP  
-40°C to +85°C 14 LO  
_____________________Chip Information  
TRAILꢁLTOR COUIT: 2209  
-40°C to +85°C 14 LO  
LUSLTRATE COIIECTED TO DGID  
-40°C to +85°C 14 LO  
MAX542CMJD -55°C to +125°C 14 Ceramic LS**  
*Dice are tested at T = +25°C, DC parameters only.  
A
**Contact factory for availability.  
______________________________________________________________________________________ 11  
+5V, Serial-Input, Voltage-Output, 16-Bit DACs  
________________________________________________________Package Information  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 1999 Maxim ꢁntegrated Products  
Printed ULA  
is a registered trademark of Maxim ꢁntegrated Products.  

相关型号:

MAX541AEPA

+5V, Serial-Input, Voltage-Output, 16-Bit DACs
MAXIM

MAX541AESA

+5V, Serial-Input, Voltage-Output, 16-Bit DACs
MAXIM

MAX541BCPA

+5V, Serial-Input, Voltage-Output, 16-Bit DACs
MAXIM

MAX541BCPA+

D/A Converter, 1 Func, Serial Input Loading, 1us Settling Time, PDIP8, 0.300 INCH, LEAD FREE, PLASTIC, MS-001AB, DIP-8
MAXIM

MAX541BCSA

+5V, Serial-Input, Voltage-Output, 16-Bit DACs
MAXIM

MAX541BCSA-T

D/A Converter, 1 Func, Serial Input Loading, 1us Settling Time, PDSO8, 0.150 INCH, SOIC-8
MAXIM

MAX541BEPA

+5V, Serial-Input, Voltage-Output, 16-Bit DACs
MAXIM

MAX541BESA

+5V, Serial-Input, Voltage-Output, 16-Bit DACs
MAXIM

MAX541CCPA

+5V, Serial-Input, Voltage-Output, 16-Bit DACs
MAXIM

MAX541CCSA

+5V, Serial-Input, Voltage-Output, 16-Bit DACs
MAXIM

MAX541CCSA+

D/A Converter, 1 Func, Serial Input Loading, 1us Settling Time, PDSO8, 0.150 INCH, LEAD FREE, SOIC-8
MAXIM

MAX541CCSA+T

D/A Converter, 1 Func, Serial Input Loading, 1us Settling Time, PDSO8, 0.150 INCH, ROHS COMPLIANT, SOIC-8
MAXIM