MAX5435PEZT-T [MAXIM]

32-Tap, Nonvolatile, I2C, Linear, Digital Potentiometers; 32抽头,非易失, I²C ,线性,数字电位器
MAX5435PEZT-T
型号: MAX5435PEZT-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

32-Tap, Nonvolatile, I2C, Linear, Digital Potentiometers
32抽头,非易失, I²C ,线性,数字电位器

转换器 电位器 数字电位计 电阻器 光电二极管 信息通信管理
文件: 总17页 (文件大小:368K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3511; Rev 1; 12/04  
2
32-Tap, Nonvolatile, I C, Linear, Digital  
Potentiometers  
General Description  
Features  
The MAX5432–MAX5435 nonvolatile, linear-taper, digi-  
tal potentiometers perform the function of a mechanical  
potentiometer, but replace the mechanics with a simple  
2-wire serial interface. Each device performs the same  
function as a discrete potentiometer or a variable resis-  
tor and has 32 tap points.  
Tiny 3mm x 3mm 8-Pin TDFN and 6-Pin Thin  
SOT23 Packages  
Power-On Recall of Wiper Position from  
Nonvolatile Memory  
35ppm/°C End-to-End Resistance Temperature  
Coefficient  
The MAX5432–MAX5435 feature an internal, nonvolatile,  
electrically erasable programmable read-only memory  
(EEPROM) that returns the wiper to its previously stored  
position at power-up. The fast-mode I2C-compatible  
serial interface allows communication at data rates up to  
400kbps, minimizing board space and reducing inter-  
connection complexity. Each device is available with  
one of four factory-preset I2C addresses (see the  
Selector Guide).  
5ppm/°C Ratiometric Temperature Coefficient  
50k/100kResistor Values  
Fast 400kbps I2C-Compatible Serial Interface  
500nA (typ) Static Supply Current  
+2.7V to +5.25V Single-Supply Operation  
32 Tap Positions  
0.15 ꢀSꢁ INꢀ (typ)ꢂ 0.15 ꢀSꢁ DNꢀ (typ)  
Use the MAX5432–MAX5435 in applications requiring  
digitally controlled resistors. Two resistance values are  
available (50kand 100k) in a voltage-divider or vari-  
able resistor configuration. The nominal resistor temper-  
ature coefficient is 35ppm/°C end-to-end, and only  
5ppm/°C ratiometric, making the devices ideal for  
applications requiring a low-temperature-coefficient  
variable resistor such as low-drift, programmable-gain  
amplifier circuit configurations.  
Ordering Information  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
MAX5432LETA  
8 TDFN-EP**  
MAX5432META*  
MAX5433LETA  
8 TDFN-EP**  
8 TDFN-EP**  
MAX5433META*  
MAX5434LEZT-T  
MAX5434MEZT-T*  
MAX5434NEZT-T*  
MAX5434PEZT-T*  
MAX5435LEZT-T  
MAX5435MEZT-T*  
MAX5435NEZT-T*  
MAX5435PEZT-T*  
8 TDFN-EP**  
The MAX5432/MAX5433 are available in a 3mm x 3mm 8-  
pin TDFN package and the MAX5434/MAX5435 are avail-  
able in a 6-pin thin SOT23 package. The MAX5432–  
MAX5435 are specified over the extended (-40°C to  
+85°C) temperature range.  
6 Thin SOT23-6  
6 Thin SOT23-6  
6 Thin SOT23-6  
6 Thin SOT23-6  
6 Thin SOT23-6  
6 Thin SOT23-6  
6 Thin SOT23-6  
6 Thin SOT23-6  
Applications  
Mechanical Potentiometer Replacement  
Low-Drift Programmable-Gain Amplifiers  
Volume Control  
*Future product—contact factory for availability.  
**EP = Exposed pad.  
Liquid-Crystal Display (LCD) Screen Adjustment  
Pin Configurations  
TOP VIEW  
Selector Guide appears at end of data sheet.  
H
SDA  
GND  
SCL  
1
2
3
4
8
7
6
5
W
L
V
1
2
3
6
5
4
L
DD  
GND  
SCL  
W
Purchase of I2C components from Maxim Integrated Products,  
Inc., or one of its sublicensed Associated Companies, conveys  
a license under the Philips I2C Patent Rights to use these com-  
ponents in an I2C system, provided that the system conforms  
to the I2C Standard Specification as defined by Philips.  
A0  
V
SDA  
MAX5432  
MAX5433  
MAX5434  
MAX5435  
DD  
SOT23  
TDFN  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
2
32-Tap, Nonvolatile, I C, Linear, Digital  
Potentiometers  
AꢁSOꢀUTE MAXIMUM RATINGS  
DD  
V
to GND...........................................................-0.3V to +6.0V  
Continuous Power Dissipation (T = +70°C)  
A
SDA, SCL to GND..................................................-0.3V to +6.0V  
6-Pin Thin SOT23 (derate 9.1mW/°C above +70°C)....727mW  
8-Pin TDFN (derate 18.2mW/°C above +70°C) ......1454.5mW  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-60°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
A0, H, L, and W to GND .............................-0.3V to (V  
Maximum Continuous Current into H, L, and W  
+ 0.3V)  
DD  
MAX5432/MAX5434..................................................... 1.3mA  
MAX5433/MAX5435..................................................... 0.6mA  
Input/Output Latchup Immunity........................................ 50mA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
EꢀECTRICAꢀ CHARACTERISTICS  
(V  
= +2.7V to +5.25V, V = V , V = GND, T = -40°C to +85°C, unless otherwise noted. Typical values are at V  
= +5V, T =  
DD A  
DD  
H
DD  
L
A
+25°C.) (Note 1)  
PARAMETER  
SYMꢁOꢀ  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DC PERFORMANCE  
Resolution  
32  
37.5  
75  
Taps  
MAX5432/MAX5434  
50  
62.5  
125  
End-to-End Resistance  
R
kΩ  
H-L  
MAX5433/MAX5435  
100  
End-to-End Resistance  
Temperature Coefficient  
TC  
35  
5
ppm/°C  
ppm/°C  
R
Ratiometric Resistance  
Temperature Coefficient  
V
V
V
V
= 5V  
= 3V  
= 5V  
= 3V  
0.15  
0.15  
0.15  
0.15  
0.5  
0.5  
0.5  
0.5  
DD  
DD  
DD  
DD  
Variable resistor (Note 2)  
Integral Nonlinearity  
INL  
LSB  
Voltage-divider,  
MAX5432/MAX5433 (Note 3)  
V
V
V
V
= 5V  
= 3V  
= 5V  
= 3V  
0.15  
0.15  
0.15  
0.15  
0.5  
0.5  
DD  
DD  
DD  
DD  
Variable resistor (Note 2)  
Differential Nonlinearity  
DNL  
LSB  
LSB  
0.5  
Voltage-divider,  
MAX5432/MAX5433 (Note 3)  
0.5  
MAX5432, 50kΩ  
-0.5  
-0.5  
+0.5  
+0.5  
1200  
Full-Scale Error (Note 4)  
Zero-Scale Error (Note 5)  
MAX5433, 100kΩ  
MAX5432, 50kΩ  
LSB  
MAX5433, 100kΩ  
MAX5432/MAX5433 (Note 6)  
Wiper Resistance  
R
610  
W
DIGITAꢀ INPUTS  
0.7 x  
Input High Voltage  
Input Low Voltage  
V
(Note 7)  
(Note 7)  
V
V
IH  
V
DD  
0.3 x  
V
IL  
V
DD  
Input Leakage Current  
Input Capacitance  
I
1
µA  
pF  
LEAK  
5
2
_______________________________________________________________________________________  
2
32-Tap, Nonvolatile, I C, Linear, Digital  
Potentiometers  
EꢀECTRICAꢀ CHARACTERISTICS (continued)  
(V  
= +2.7V to +5.25V, V = V , V = GND, T = -40°C to +85°C, unless otherwise noted. Typical values are at V  
= +5V, T =  
DD A  
DD  
H
DD  
L
A
+25°C.) (Note 1)  
PARAMETER  
SYMꢁOꢀ  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DYNAMIC CHARACTERISTICS  
MAX5432/MAX5434  
500  
250  
0.5  
-3dB Bandwidth (Note 8)  
kHz  
µs  
MAX5433/MAX5435  
MAX5432/MAX5434  
MAX5433/MAX5435  
Wiper Settling Time (Note 9)  
1.0  
NONVOꢀATIꢀE MEMORY REꢀIAꢁIꢀITY  
Data Retention  
T
A
T
A
T
A
= +85°C  
= +25°C  
= +85°C  
50  
Years  
200,000  
50,000  
Endurance  
Stores  
POWER SUPPꢀY  
Power-Supply Voltage  
Standby Current  
V
2.70  
5.25  
2
V
DD  
I
Digital inputs = V or GND, T = +25°C  
0.5  
µA  
DD  
DD  
A
During nonvolatile write; digital inputs =  
or GND (Note 10)  
Programming Current  
200  
900  
µA  
V
DD  
TIMING CHARACTERISTICS  
(V  
= +2.7V to +5.25V, V = V , V = GND, T = -40°C to +85°C, unless otherwise noted. Typical values are at V  
= +5V, T  
=
DD  
H
DD  
L
A
DD  
A
+25°C.) (Figures 1 and 2) (Note 11)  
PARAMETER  
SCL Clock Frequency  
Setup Time for START Condition  
Hold Time for START Condition  
CLK High Time  
SYMꢁOꢀ  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
kHz  
µs  
f
400  
SCL  
t
0.6  
0.6  
0.6  
1.3  
100  
0
SU-STA  
HD-STA  
t
µs  
t
µs  
HIGH  
CLK Low Time  
t
µs  
LOW  
Data Setup Time  
t
ns  
SU-DAT  
HD-DAT  
Data Hold Time  
t
0.9  
300  
300  
µs  
SDA, SCL Rise Time  
SDA, SCL Fall Time  
t
ns  
R
t
ns  
F
Setup Time for STOP Condition  
t
0.6  
1.3  
µs  
SU-STO  
Bus Free Time Between STOP  
and START Condition  
t
µs  
ns  
pF  
BUF  
Pulse Width of Spike Suppressed  
t
50  
SP  
Capacitive Load for Each Bus  
Line  
C
(Note 12)  
400  
B
Idle time required after a nonvolatile  
memory write (Note 13)  
Nonvolatile Store Time  
12  
ms  
Note 1: All devices are production tested at T = +25°C and are guaranteed by design and characterization for -40°C < T < +85°C.  
A
A
_______________________________________________________________________________________  
3
2
32-Tap, Nonvolatile, I C, Linear, Digital  
Potentiometers  
TIMING CHARACTERISTICS (continued)  
(V  
= +2.7V to +5.25V, V = V , V = GND, T = -40°C to +85°C, unless otherwise noted. Typical values are at V  
= +5V, T =  
DD A  
DD  
H
DD  
L
A
+25°C.) (Figures 1 and 2) (Note 1)  
Note 2: The DNL and INL are measured with the potentiometer configured as a variable resistor. For the 3-terminal potentiometers  
(MAX5432/MAX5433), H is unconnected and L = GND. At V = 5V, W is driven with a source current of 80µA for the 50k  
DD  
configuration, and 40µA for the 100kconfiguration. At V  
configuration, and 20µA for the 100kconfiguration.  
= 3V, W is driven with a source current of 40µA for the 50kΩ  
DD  
Note 3: The DNL and INL are measured with the potentiometer configured as a voltage-divider with H = V  
and L = GND  
DD  
(MAX5432/MAX5433 only). The wiper terminal is unloaded and measured with an ideal voltmeter.  
V
-V  
H
W
.
V
H
Note 4: Full-scale error is defined as  
Note 5: Zero-scale error is defined as  
31  
V
-V  
L
W
.
V
H
31  
Note 6: The wiper resistance is the worst value measured by injecting the currents given in Note 2 into W with L = GND.  
= (V - V ) / I .  
R
W
W
H
W
Note 7: The device draws current in excess of the specified supply current when the digital inputs are driven with voltages between  
(V - 0.5V) and (GND + 0.5V). See the Supply Current vs. Digital Input Voltage graph in the Typical Operating Characteristics.  
DD  
Note 8: Wiper is at midscale with a 10pF capacitive load. Potentiometer set to midscale, L = GND, an AC source is applied to H,  
and the output is measured as 3dB lower than the DC W/H value in dB.  
Note 9: This is measured from the STOP pulse to the time it takes the output to reach 50% of the output step size (divider mode). It  
is measured with a maximum external capacitive load of 10pF.  
Note 10:The programming current exists only during NV writes (12ms typ).  
Note 11:Digital timing is guaranteed by design and characterization, and is not production tested.  
Note 12:An appropriate bus pullup resistance must be selected depending on board capacitance. Refer to the I2C-bus specifica-  
tion document linked to this web address: www.semiconductors.philips.com/acrobat/literature/9398/39340011.pdf  
Note 13:The idle time begins from the initiation of the stop pulse.  
Typical Operating Characteristics  
(V  
DD  
= +5V, T = +25°C, unless otherwise noted.)  
A
STANDBY SUPPLY CURRENT  
vs. TEMPERATURE  
SUPPLY CURRENT  
vs. DIGITAL INPUT VOLTAGE  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
1000  
100  
10  
1.5  
1.0  
DIGITAL INPUTS = GND OR V  
DD  
DIGITAL INPUTS = GND OR V  
DD  
V
= 5V  
DD  
1.2  
0.8  
0.6  
0.4  
0.2  
0
0.9  
0.6  
0.3  
0
V
= 5V  
DD  
V
= 3V  
DD  
V
= 3V  
DD  
1
0.1  
4
-40  
-15  
10  
35  
60  
85  
0
1
2
3
5
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
TEMPERATURE (°C)  
DIGITAL INPUT VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
4
_______________________________________________________________________________________  
2
32-Tap, Nonvolatile, I C, Linear, Digital  
Potentiometers  
Typical Operating Characteristics (continued)  
(V  
DD  
= +5V, T = +25°C, unless otherwise noted.)  
A
TAP-TO-TAP SWITCHING TRANSIENT  
END-TO-END RESISTANCE % CHANGE  
vs. TEMPERATURE  
END-TO-END RESISTANCE % CHANGE  
vs. TEMPERATURE  
(0 TO MIDSCALE, C = 10pF)  
L
MAX5432–35 toc06  
1.0  
0.5  
0
1.0  
0.5  
0
50kΩ  
100kΩ  
SDA  
2V/div  
V
W
1V/div  
-0.5  
-1.0  
-0.5  
-1.0  
50kΩ  
-40  
-15  
10  
35  
60  
85  
1µs/div  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TAP-TO-TAP SWITCHING TRANSIENT  
(0 TO MIDSCALE, C = 10pF)  
MIDSCALE WIPER TRANSIENT  
WIPER TRANSIENT AT POWER-ON  
AT POWER-ON  
L
MAX5432–35 toc08  
MAX5432–35 toc09  
MAX5432–35 toc07  
V
DD  
SDA  
2V/div  
2V/div  
V
DD  
2V/div  
V
V
W
V
W
W
1V/div  
1V/div  
1V/div  
50kΩ  
100kΩ  
100kΩ  
10µs/div  
10µs/div  
1µs/div  
MIDSCALE WIPER RESPONSE  
vs. FREQUENCY  
MIDSCALE WIPER RESPONSE  
vs. FREQUENCY (MAX5433)  
WIPER RESISTANCE vs. TAP POSITION  
(MAX5432)  
(MAX5432)  
0
-3  
700  
600  
500  
400  
300  
200  
100  
0
0
-3  
V
DD  
= 3V  
C
W
= 10pF  
C
W
= 10pF  
-6  
-6  
-9  
-9  
C
W
= 33pF  
C
W
= 33pF  
-12  
-15  
-18  
-12  
-15  
-18  
0.1  
1
10  
FREQUENCY (kHz)  
100  
1000  
0
4
8
12 16 20 24 28 31  
TAP POSITION  
0.1  
1
10  
FREQUENCY (kHz)  
100  
1000  
_______________________________________________________________________________________  
5
2
32-Tap, Nonvolatile, I C, Linear, Digital  
Potentiometers  
Typical Operating Characteristics (continued)  
(V  
DD  
= +5V, T = +25°C, unless otherwise noted.)  
A
WIPER RESISTANCE vs. TAP POSITION  
WIPER RESISTANCE vs. TAP POSITION  
WIPER RESISTANCE vs. TAP POSITION  
(MAX5432)  
(MAX5433)  
(MAX5433)  
700  
700  
600  
500  
400  
300  
200  
100  
0
700  
V = 5V  
DD  
V
DD  
= 3V  
V
= 5V  
DD  
600  
500  
400  
300  
200  
100  
0
600  
500  
400  
300  
200  
100  
0
0
4
8
12 16 20 24 28 31  
TAP POSITION  
0
4
8
12 16 20 24 28 31  
TAP POSITION  
0
4
8
12 16 20 24 28 31  
TAP POSITION  
RESISTANCE DNL vs. TAP POSITION  
RESISTANCE INL vs. TAP POSITION  
W-TO-L RESISTANCE vs. TAP POSITION  
0.5  
0.5  
0.4  
120  
110  
100  
VARIABLE-RESISTOR MODE  
MAX5432/MAX5434  
VARIABLE-RESISTOR MODE  
MAX5432/MAX5434  
0.4  
0.3  
0.3  
90  
80  
70  
0.2  
0.2  
0.1  
0.1  
100kΩ  
0
0
60  
50  
40  
30  
20  
10  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
50kΩ  
0
4
8
12 16 20 24 28 31  
TAP POSITION  
0
4
8
12 16 20 24 28 31  
TAP POSITION  
0
4
8
12 16 20 24 28 31  
TAP POSITION  
6
_______________________________________________________________________________________  
2
32-Tap, Nonvolatile, I C, Linear, Digital  
Potentiometers  
Typical Operating Characteristics (continued)  
(V  
DD  
= +5V, T = +25°C, unless otherwise noted.)  
A
RESISTANCE DNL vs. TAP POSITION  
RESISTANCE INL vs. TAP POSITION  
RESISTANCE DNL vs. TAP POSITION  
0.5  
0.5  
0.4  
0.5  
0.4  
VARIABLE-RESISTOR MODE  
MAX5433/MAX5435  
VOLTAGE-DIVIDER MODE  
MAX5432  
VOLTAGE-DIVIDER MODE  
MAX5432  
0.4  
0.3  
0.3  
0.3  
0.2  
0.2  
0.2  
0.1  
0.1  
0.1  
0
0
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
4
8
12 16 20 24 28 31  
TAP POSITION  
0
4
8
12 16 20 24 28 31  
TAP POSITION  
0
4
8
12 16 20 24 28 31  
TAP POSITION  
RESISTANCE INL vs. TAP POSITION  
RESISTANCE DNL vs. TAP POSITION  
RESISTANCE INL vs. TAP POSITION  
0.5  
0.4  
0.5  
0.4  
0.5  
0.4  
VOLTAGE-DIVIDER MODE  
MAX5433  
VOLTAGE-DIVIDER MODE  
MAX5433  
VARIABLE-RESISTOR MODE  
MAX5433/MAX5435  
0.3  
0.3  
0.3  
0.2  
0.2  
0.2  
0.1  
0.1  
0.1  
0
0
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
4
8
12 16 20 24 28 31  
TAP POSITION  
0
4
8
12 16 20 24 28 31  
TAP POSITION  
0
4
8
12 16 20 24 28 31  
TAP POSITION  
_______________________________________________________________________________________  
7
2
32-Tap, Nonvolatile, I C, Linear, Digital  
Potentiometers  
Pin Description  
PIN  
THIN SOT23  
NAME  
FUNCTION  
TDFN  
1
2
4
H
High Terminal  
2
SDA  
GND  
SCL  
I C-Compatible Interface Data Input  
3
2
Ground  
2
4
3
I C-Compatible Interface Clock Input  
5
1
V
Power-Supply Input. Bypass with a 0.1µF capacitor from V  
2
to GND.  
DD  
DD  
6
6
A0  
Address Input. Sets the I C address. Connect to V  
Low Terminal  
or GND. Do not leave A0 floating.  
DD  
7
L
8
5
W
Wiper Terminal  
EP  
EP  
Exposed Pad. Internally connected to GND.  
power-on reset circuitry and internal oscillator control  
the transfer of data from the nonvolatile register to the  
volatile register.  
Detailed Description  
The MAX5432–MAX5435 contain a resistor array with  
31 resistive elements. The MAX5432/MAX5434 provide  
a total end-to-end resistance of 50k, and the  
MAX5433/MAX5435 provide an end-to-end resistance  
of 100k.  
Serial Addressing  
The MAX5432–MAX5435 operate as a slave that sends  
and receives data through an I2C- and SMBus™-com-  
patible 2-wire interface. The interface uses a serial data  
access (SDA) line and a serial clock line (SCL) to  
achieve bidirectional communication between  
master(s) and slave(s). A master, typically a microcon-  
troller, initiates all data transfers to and from the  
MAX5432–MAX5435, and generates the SCL clock that  
synchronizes the data transfer (Figure 1).  
The MAX5432/MAX5433 allow access to the high, low,  
and wiper terminals for a standard voltage-divider con-  
figuration. Connect H, L, and W in any desired configu-  
ration as long as their voltages fall between GND and  
. The MAX5434/MAX5435 are variable resistors  
with H internally connected to the wiper.  
A simple 2-wire I2C-compatible serial interface moves  
the wiper among the 32 tap points. Eight data bits, an  
address byte, and a control byte program the wiper  
position. A nonvolatile memory stores and recalls the  
wiper position in the nonvolatile memory upon power-up.  
The nonvolatile memory is guaranteed for 200,000 wiper  
store cycles and 50 years for wiper data retention.  
V
DD  
SDA operates as both an input and an open-drain out-  
put. SDA requires a pullup resistor, typically 4.7k.  
SCL only operates as an input. SCL requires a pullup  
resistor (4.7ktyp) if there are multiple masters on the  
2-wire interface, or if the master in a single-master sys-  
tem has an open-drain SCL output.  
Each transmission consists of a START (S) condition  
(Figure 3) sent by a master, followed by the  
MAX5432–MAX5435 7-bit slave address plus the 8th bit  
(Figure 4), 1 command byte (Figure 7) and 1 data byte,  
and finally a STOP (P) condition (Figure 3).  
Digital Interface  
The MAX5432–MAX5435 feature an internal, nonvolatile  
EEPROM that returns the wiper to its previously stored  
position at power-up. The shift register decodes the  
control and address bits, routing the data to the proper  
memory registers. Write data to the volatile memory  
register to immediately update the wiper position, or  
write data to the nonvolatile register for storage. Writing  
to the nonvolatile register takes a minimum of 12ms.  
Start and Stop Conditions  
Both SCL and SDA remain high when the interface is  
not busy. A master signals the beginning of a transmis-  
sion with a START (S) condition by transitioning SDA  
from high to low while SCL is high. When the master  
has finished communicating with the slave, it issues a  
STOP (P) condition by transitioning the SDA from low to  
The volatile register retains data as long as the device  
is enabled and powered. Removing power clears the  
volatile register. The nonvolatile register retains data  
even after power is removed. Upon power-up, the  
SMBus is a trademark of Intel Corporation.  
8
_______________________________________________________________________  
2
32-Tap, Nonvolatile, I C, Linear, Digital  
Potentiometers  
t
t
F
R
SDA  
SCL  
t
BUF  
t
t
HD-DAT  
SU-DAT  
t
HD-STA  
t
t
SU-STA  
SU-STO  
t
LOW  
t
HIGH  
t
HD-STA  
t
R
t
F
S
Sr  
A
P
S
PARAMETERS ARE MEASURED FROM 30% TO 70%.  
Figure 1. I2C Serial-Interface Timing Diagram  
high while SCL is high. The bus is then free for another  
transmission (Figure 3).  
Table 1a. Address Codes  
(MAX5432/MAX5433 Only)  
Bit Transfer  
One data bit is transferred during each clock pulse.  
The data on the SDA line must remain stable while SCL  
is high (Figure 5).  
ADDRESS ꢁYTE  
PART  
SUFFIX  
A6 A5 A4 A3 A2 A1 A0  
NOP/W  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
0
0
0
1
0
1
NOP/W  
NOP/W  
NOP/W  
NOP/W  
Acknowledge  
The acknowledge bit is a clocked 9th bit that the recip-  
ient uses to handshake receipt of each byte of data  
(Figure 6). Each byte transferred effectively requires 9  
bits. The master generates the 9th clock pulse, and the  
recipient pulls down SDA during the acknowledge  
clock pulse, so the SDA line is stable low during the  
high period of the clock pulse. When the master trans-  
mits to the MAX5432–MAX5435, the devices generate  
the acknowledge bit because the MAX5432–MAX5435  
are the recipients.  
M
M
Table 1b. Address Codes  
(MAX5434/MAX5435 Only)  
ADDRESS ꢁYTE  
PART  
SUFFIX  
A6 A5 A4 A3 A2 A1 A0  
NOP/W  
Slave Address  
The MAX5432–MAX5435 have a 7-bit-long slave  
address (Figure 4). The 8th bit following the 7-bit slave  
address is the NOP/W bit. Set the NOP/W bit low for a  
write command and high for a no-operation command.  
M
N
P
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
1
0
1
0
0
1
1
0
0
0
0
NOP/W  
NOP/W  
NOP/W  
NOP/W  
Table 1a shows four possible slave addresses for the  
MAX5432/MAX5433 and Table 1b shows four possible  
slave addresses for the MAX5434/MAX5435. The first 4  
bits (MSBs) of the slave addresses are always 0101.  
Bits A2 and A1 are factory programmed for the  
MAX5432/MAX5433 (Table 1a). Connect the A0 input  
Message Format for Writing  
A write to the MAX5432–MAX5435 consists of the trans-  
mission of the device’s slave address with the 8th bit set  
to zero, followed by at least 1 byte of information. The  
1st byte of information is the command byte. The bytes  
received after the command byte are the data bytes.  
The 1st data byte goes into the internal register of the  
MAX5432–MAX5435 as selected by the command byte  
(Figure 8).  
(MAX5432/MAX5433 only) to either GND or V  
to  
DD  
select one of two I2C device addresses. Each device  
must have a unique address to share the bus. A maxi-  
mum of four MAX5432/MAX5433 devices can share the  
same bus. Bits A2, A1, and A0 are factory programmed  
for the MAX5434/MAX5435 (Table 1b).  
__________________________________________________________________________  
2
32-Tap, Nonvolatile, I C, Linear, Digital  
Potentiometers  
V
DD  
I
= 3mA  
OL  
SDA  
SCL  
V
SDA  
OUT  
400pF  
S
P
START  
STOP  
CONDITION  
CONDITION  
I
= 0mA  
OH  
Figure 2. Load Circuit  
Figure 3. Start and Stop Conditions  
SDA  
SCL  
0
1
0
1
0*  
0*  
NOP/W  
ACK  
A0  
MSB  
LSB  
*SEE THE Selector Guide FOR OTHER ADDRESS OPTIONS.  
Figure 4. Slave Address  
Command Byte  
Command Descriptions  
Use the command byte to select the destination of the  
wiper data (nonvolatile or volatile memory registers)  
and swap data between nonvolatile and volatile memo-  
ry registers (see Table 2).  
VREG: The data byte writes to the volatile memory reg-  
ister and the wiper position updates with the data in the  
volatile memory register.  
NVREG: The data byte writes to the nonvolatile memory  
register. The wiper position is unchanged.  
Data Byte  
The MAX5432–MAX5435 use the first 5 bits (MSBs,  
D7–D3) of the data byte to set the position of the wiper.  
The last 3 bits (D2, D1, and D0) are don’t care bits (see  
Table 2).  
NVREGxVREG: Data transfers from the nonvolatile  
memory register to the volatile memory register (wiper  
position updates).  
VREGxNVREG: Data transfers from the volatile memory  
register into the nonvolatile memory register.  
Table 2. Command ꢁyte Summary  
REGISTER  
ADDRESS ꢁYTE  
COMMAND ꢁTYE  
DATA ꢁYTE  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27  
N
O
P/  
W
SCL CYCLE  
NUMBER  
A
C
K
A
C
K
A
C
K
A6 A5 A4 A3 A2 A1 A0  
C7 C6 C5 C4 C3 C2 C1 C0  
D7 D6 D5 D4 D3 D2 D1 D0  
VREG  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
A2 A1 A0  
A2 A1 A0  
A2 A1 A0  
A2 A1 A0  
0
0
0
0
0
0
0
0
0
0
1
1
0
1
1
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
D7 D6 D5 D4 D3  
D7 D6 D5 D4 D3  
D7 D6 D5 D4 D3  
D7 D6 D5 D4 D3  
X
X
X
X
X
X
X
X
X
X
X
X
NVREG  
NVREGxVREG  
VREGxNVREG  
X = Don’t care.  
10 ______________________________________________________________________  
2
32-Tap, Nonvolatile, I C, Linear, Digital  
Potentiometers  
CLOCK PULSE FOR  
ACKNOWLEDGMENT  
START  
SDA  
SCL  
CONDITION  
SCL  
1
2
8
9
NOT ACKNOWLEDGE  
SDA  
DATA STABLE, CHANGE OF  
DATA VALID DATA ALLOWED  
ACKNOWLEDGE  
Figure 6. Acknowledge  
Figure 5. Bit Transfer  
COMMAND BYTE IS STORED ON  
RECEIPT OF STOP CONDITION  
D9  
D14  
D13  
D11 D10  
D8  
D15  
D12  
ACKNOWLEDGE FROM  
MAX5432–MAX5435  
SLAVE  
ADDRESS  
A
A
S
0
P
COMMAND BYTE  
ACKNOWLEDGE FROM  
MAX5432–MAX5435  
NOP/W  
Figure 7. Command Byte Received  
ACKNOWLEDGE FROM  
MAX5432–MAX5435  
ACKNOWLEDGE FROM  
MAX5432–MAX5435  
HOW COMMAND BYTE AND DATA BYTE MAP  
INTO MAX5432–MAX5435's REGISTERS  
ACKNOWLEDGE FROM  
D11 D10  
D8  
D6 D5 D4 D3  
X
X
X
D9  
D15 D14 D13  
D7  
D12  
MAX5432–MAX5435  
A
A
SLAVE ADDRESS  
S
0
DATA BYTE  
P
COMMAND BYTE  
A
1
NOP/W  
BYTE  
Figure 8. Command and Single Data Byte Received  
with the data stored in the nonvolatile memory register.  
This initialization period takes 20µs.  
Nonvolatile Memory  
The internal EEPROM consists of a 5-bit nonvolatile  
register that retains the value written to it before the  
device is powered down. The nonvolatile register is  
programmed with the zeros at the factory. Wait a mini-  
mum of 12ms after writing to NVREG before sending  
another command.  
Standby  
The MAX5432–MAX5435 feature a low-power standby  
mode. When the device is not being programmed, it  
goes into standby mode and current consumption is  
typically 0.5µA.  
Power-Up  
Upon power-up, the MAX5432–MAX5435 load the data  
stored in the nonvolatile memory register into the  
volatile memory register, updating the wiper position  
______________________________________________________________________________________ 11  
2
32-Tap, Nonvolatile, I C, Linear, Digital  
Potentiometers  
5V  
5V  
H
30V  
30V  
W
MAX5432  
MAX5433  
V
OUT  
V
OUT  
H
L
MAX5432–  
MAX5435  
W
L
Figure 10. Positive LCD Bias Control Using a Variable Resistor  
Figure 9. Positive LCD Bias Control Using a Voltage-Divider  
W
+5V  
L
V
IN  
V
IN  
H
R3  
C
V
OUT  
V REF  
0
OUT  
ADJ  
H
L
R
R
1
MAX6160  
R1  
W
MAX5432  
MAX5433  
2
GND  
H
MAX5432–  
MAX5435  
R2  
W
50kΩ  
2
V = 1.23V  
FOR THE MAX5432  
FOR THE MAX5433  
0
R (k)  
L
100kΩ  
V = 1.23V  
0
R (k)  
2
Figure 12. Adjustable Voltage Reference  
Figure 11. Programmable Filter  
R2, and the cutoff frequency is adjusted by R3. Use the  
following equations to calculate the gain (G) and the  
Applications Information  
Use the MAX5432–MAX5435 in applications requiring  
digitally controlled adjustable resistance, such as LCD  
contrast control (where voltage biasing adjusts the dis-  
play contrast), or for programmable filters with  
adjustable gain and/or cutoff frequency.  
3dB cutoff frequency (f ).  
C
R1  
R2  
G = 1 +  
1
f
=
C
2π × R3 × C  
Positive LCD Bias Control  
Figures 9 and 10 show an application where the volt-  
age-divider or variable resistor is used to make an  
adjustable, positive LCD bias voltage. The op-amp pro-  
vides buffering and gain to the resistor-divider network  
made by the potentiometer (Figure 9) or to a fixed  
resistor and a variable resistor (Figure 10).  
Adjustable Voltage Reference  
Figure 12 shows the MAX5432/MAX5433 used as the  
feedback resistors in an adjustable voltage reference  
application. Independently adjust the output voltages of  
the MAX6160 from 1.23V to (V - 0.2V) by changing  
IN  
the wiper position of the MAX5432/MAX5433.  
Programmable Filter  
Figure 11 shows the configuration for a 1st-order pro-  
grammable filter. The gain of the filter is adjusted by  
12 ______________________________________________________________________________________  
2
32-Tap, Nonvolatile, I C, Linear, Digital  
Potentiometers  
MAX5432/MAX5433 Functional Diagram  
H
V
32-  
POSITION  
DECODER  
DD  
5-BIT  
SHIFT  
REGISTER  
5-BIT  
LATCH  
5
32  
5
W
L
GND  
POR  
SDA  
2
I C  
INTERFACE  
5-BIT  
NV  
MEMORY  
SCL  
A0  
MAX5432  
MAX5433  
MAX5434/MAX5435 Functional Diagram  
V
32-  
POSITION  
DECODER  
DD  
5-BIT  
SHIFT  
REGISTER  
5-BIT  
LATCH  
5
32  
5
W
L
GND  
POR  
SDA  
SCL  
2
I C  
INTERFACE  
5-BIT  
NV  
MEMORY  
MAX5434  
MAX5435  
______________________________________________________________________________________ 13  
2
32-Tap, Nonvolatile, I C, Linear, Digital  
Potentiometers  
Selector Guide  
Chip Information  
TRANSISTOR COUNT: 7817  
PART  
TOP MARK  
ANG  
I2C ADDRESS  
R (k)  
50  
PROCESS: BiCMOS  
MAX5432LETA  
MAX5432META  
MAX5433LETA  
MAX5433META  
MAX5434LEZT  
MAX5434MEZT  
MAX5434NEZT  
MAX5434PEZT  
MAX5435LEZT  
MAX5435MEZT  
MAX5435NEZT  
MAX5435PEZT  
010100A  
010110A  
010100A  
010110A  
0
0
0
0
ANI  
50  
ANF  
100  
100  
ANH  
AABX  
AABY  
AABS  
AABU  
AABW  
AABV  
AABZ  
AABT  
0101000  
0101100  
0101010  
0101110  
0101000  
0101100  
0101010  
0101110  
50  
50  
50  
50  
100  
100  
100  
100  
14 ______________________________________________________________________________________  
2
32-Tap, Nonvolatile, I C, Linear, Digital  
Potentiometers  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
D
N
PIN 1  
INDEX  
AREA  
E
E2  
DETAIL A  
C
L
C
L
A
L
L
e
e
PACKAGE OUTLINE, 6,8,10 & 14L,  
TDFN, EXPOSED PAD, 3x3x0.80 mm  
1
-DRAWING NOT TO SCALE-  
21-0137  
G
2
COMMON DIMENSIONS  
SYMBOL  
MIN.  
0.70  
2.90  
2.90  
0.00  
0.20  
MAX.  
0.80  
3.10  
3.10  
0.05  
0.40  
A
D
E
A1  
L
k
0.25 MIN.  
0.20 REF.  
A2  
PACKAGE VARIATIONS  
DOWNBONDS  
ALLOWED  
N
6
D2  
E2  
e
JEDEC SPEC  
b
PKG. CODE  
T633-1  
[(N/2)-1] x e  
1.90 REF  
1.90 REF  
1.95 REF  
1.50±0.10  
1.50±0.10  
1.50±0.10  
1.50±0.10  
1.50±0.10  
1.50±0.10  
1.70±0.10  
1.70±0.10  
2.30±0.10  
2.30±0.10  
2.30±0.10  
2.30±0.10  
2.30±0.10  
2.30±0.10  
2.30±0.10  
2.30±0.10  
0.95 BSC  
0.95 BSC  
0.65 BSC  
0.65 BSC  
0.65 BSC  
0.50 BSC  
0.40 BSC  
0.40 BSC  
MO229 / WEEA  
MO229 / WEEA  
MO229 / WEEC  
MO229 / WEEC  
MO229 / WEEC  
MO229 / WEED-3  
- - - -  
0.40±0.05  
0.40±0.05  
0.30±0.05  
0.30±0.05  
0.30±0.05  
0.25±0.05  
0.20±0.05  
0.20±0.05  
NO  
NO  
T633-2  
6
T833-1  
8
NO  
T833-2  
8
1.95 REF  
1.95 REF  
2.00 REF  
2.40 REF  
2.40 REF  
NO  
T833-3  
8
YES  
NO  
T1033-1  
T1433-1  
T1433-2  
10  
14  
14  
YES  
NO  
- - - -  
PACKAGE OUTLINE, 6,8,10 & 14L,  
TDFN, EXPOSED PAD, 3x3x0.80 mm  
2
-DRAWING NOT TO SCALE-  
21-0137  
G
2
______________________________________________________________________________________ 15  
2
32-Tap, Nonvolatile, I C, Linear, Digital  
Potentiometers  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
16 ______________________________________________________________________________________  
2
32-Tap, Nonvolatile, I C, Linear, Digital  
Potentiometers  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 17  
© 2004 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX5436

±.15V.128-Tap.Low-Drift Digital Potentiometers
MAXIM

MAX5436EUB

±15V, 128-Tap, Low-Drift Digital Potentiometers
MAXIM

MAX5436EUB+

暂无描述
MAXIM

MAX5436EUB+T

Digital Potentiometer, 1 Func, 50000ohm, 3-wire Serial Control Interface, 128 Positions, BICMOS, PDSO10, MICRO, MO-187C-BA, SOP-10
MAXIM

MAX5436EUB-T

Digital Potentiometer, 1 Func, 50000ohm, 3-wire Serial Control Interface, 128 Positions, BICMOS, PDSO10, MO-187CBA, MICRO, SOP-10
MAXIM

MAX5437

±.15V.128-Tap.Low-Drift Digital Potentiometers
MAXIM

MAX5437EUD

±15V, 128-Tap, Low-Drift Digital Potentiometers
MAXIM

MAX5437EUD-T

Digital Potentiometer, 1 Func, 50000ohm, 3-wire Serial Control Interface, 128 Positions, BICMOS, PDSO14, 4.40 MM, MO-153AB-1, TSSOP-14
MAXIM

MAX5438

±.15V.128-Tap.Low-Drift Digital Potentiometers
MAXIM

MAX5438EUB

±15V, 128-Tap, Low-Drift Digital Potentiometers
MAXIM

MAX5438EUB-T

Digital Potentiometer, 1 Func, 100000ohm, 3-wire Serial Control Interface, 128 Positions, BICMOS, PDSO10, MO-187CBA, MICRO, SOP-10
MAXIM

MAX5439

±.15V.128-Tap.Low-Drift Digital Potentiometers
MAXIM