MAX5442BCUB+ [MAXIM]

3V/5V, Serial-Input, Voltage-Output, 16-Bit DACs; 3V / 5V ,串行输入,电压输出, 16位DAC
MAX5442BCUB+
型号: MAX5442BCUB+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

3V/5V, Serial-Input, Voltage-Output, 16-Bit DACs
3V / 5V ,串行输入,电压输出, 16位DAC

转换器 数模转换器 光电二极管 信息通信管理 PC
文件: 总12页 (文件大小:245K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1846; Rev 3; 1/09  
+3V/+5V, Serial-Input,  
Voltage-Output, 16-Bit DACs  
1–MAX54  
General Description  
Features  
o Ultra-Small 3mm x 5mm 8-Pin µMAX Package  
o Low 120µA Supply Current  
o Fast 1µs Settling Time  
The MAX5441–MAX5444 are serial-input, voltage-out-  
put, 16-bit digital-to-analog converters (DACs) in tiny  
®
µMAX packages, 50% smaller than comparable DACs  
in 8-pin SOs. They operate from low +3V (MAX5443/  
MAX5444) or +5V (MAX5441/MAX5442) single sup-  
plies. They provide 16-bit performance ( 2ꢀSꢁ ꢂIꢀ and  
1ꢀSꢁ DIꢀ) over temperature without any adꢃustments.  
Unbuffered DAC outputs result in a low supply current  
of 120µA and a low offset error of 2ꢀSꢁ.  
o 25MHz SPI/QSPI/MICROWIRE-Compatible Serial  
Interface  
o V  
Range Extends to V  
DD  
REF  
o +5V (MAX5441/MAX5442) or +3V  
(MAX5443/MAX5444) Single-Supply Operation  
The DAC output ranges from 0 to V  
. For bipolar  
REF  
o Full 16-Bit Performance Without Adjustments  
operation, matched scaling resistors are provided in  
the MAX5442/MAX5444 for use with an external preci-  
sion op amp (such as the MAX400), generating a  
o Unbuffered Voltage Output Directly Drives  
60kLoads  
o Power-On Reset Circuit Clears DAC Output to  
Code 0 (MAX5441/MAX5443) or Code 32768  
(MAX5442/MAX5444)  
V
REF  
output swing.  
A 16-bit serial word is used to load data into the DAC  
latch. The 25MHz, 3-wire serial interface is compatible  
with SPꢂ/QSPꢂ™/MꢂCROWꢂRE, and can interface directly  
with optocouplers for applications requiring isolation. A  
power-on reset circuit clears the DAC output to code 0  
(MAX5441/MAX5443) or code 32768 (MAX5442  
/MAX5444) when power is initially applied.  
o Schmitt-Trigger Inputs for Direct Optocoupler  
Interface  
o Asynchronous CLR  
Pin Configurations  
A logic low on CLR asynchronously clears the DAC out-  
put to code 0 (MAX5441/MAX5443) or code 32768  
(MAX5442/MAX5444) independent of the serial interface.  
TOP VIEW  
+
+
The MAX5441/MAX5443 are available in 8-pin µMAX  
packages. The MAX5442/MAX5444 are available in 10-  
pin µMAX packages.  
GND  
REF  
CS  
1
2
3
4
5
10  
9
GND  
1
2
3
4
8
7
6
5
REF  
CS  
V
DD  
V
DD  
MAX5441  
MAX5443  
MAX5442  
MAX5444  
SCLK  
DIN  
8
RFB  
INV  
OUT  
CLR  
Applications  
High-Resolution Offset and Gain Adꢃustment  
ꢂndustrial Process Control  
SCLK  
DIN  
7
CLR  
OUT  
6
µMAX-8  
µMAX-10  
Automated Test Equipment  
Data-Acquisition Systems  
Functional Diagrams appear at end of data sheet.  
Ordering Information  
PART  
TEMP RANGE  
0°C to +70°C  
-40°C to +85°C  
0°C to +70°C  
-40°C to +85°C  
0°C to +70°C  
-40°C to +85°C  
0°C to +70°C  
-40°C to +85°C  
PIN-PACKAGE  
8 µMAX  
INL (LSB)  
SUPPLY (V)  
MAX5441ACUA+  
MAX5441AEUA+  
MAX5441ꢁCUA+  
MAX5441ꢁEUA+  
MAX5442ACUꢁ+  
MAX5442AEUꢁ+  
MAX5442ꢁCUꢁ+  
MAX5442ꢁEUꢁ+  
2
2
4
4
2
2
4
4
5
5
5
5
5
5
5
5
8 µMAX  
8 µMAX  
8 µMAX  
10 µMAX  
10 µMAX  
10 µMAX  
10 µMAX  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
Note: For leaded version, contact factory.  
Ordering Information continued at end of data sheet.  
µMAX is a registered trademark of Maxim ꢂntegrated Products, ꢂnc.  
QSPꢂ is a trademark of Motorola, ꢂnc.  
MꢂCROWꢂRE is a registered trademark of Iational Semiconductor Corp.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
+3V/+5V, Serial-Input,  
Voltage-Output, 16-Bit DACs  
ABSOLUTE MAXIMUM RATINGS  
V
to GND..............................................................-0.3V to +6V  
Continuous Power Dissipation (T = +70°C)  
A
DD  
CS, SCLK, DIN, CLR to GND ...................................-0.3V to +6V  
REF to GND................................................-0.3V to (V + 0.3V)  
OUT, INV to GND .....................................................-0.3V to V  
8-Pin µMAX (derate 4.5mW/°C above +70°C)...............362mW  
10-Pin µMAX (derate 5.6mW/°C above +70°C) ..............444mW  
Operating Temperature Ranges  
DD  
DD  
RFB to INV...................................................................-6V to +6V  
RFB to GND.................................................................-6V to +6V  
Maximum Current Into Any Pin ...........................................50mA  
MAX544 _ _CU_ ...................................................0°C to +70°C  
MAX544 _ _EU_.................................................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Maximum Die Temperature..............................................+150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
DD  
(V  
= +3V (MAX5443/MAX5444) or +5V (MAX5441/MAX5442), V  
= +2.5V, C = 10pF, GND = 0, R = , T = T  
to T  
,
MAX  
REF  
L
L
A
MIN  
unless otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
STATIC PERFORMANCE—ANALOG SECTION  
1–MAX54  
Resolution  
N
16  
Bits  
Differential Nonlinearity  
DNL  
Guaranteed monotonic  
0.5  
0.5  
0.5  
1
2
4
2
LSB  
MAX544_A  
MAX544_B  
Integral Nonlinearity  
INL  
LSB  
Zero-Code Offset Error  
Zero-Code Tempco  
Gain Error (Note 1)  
ZSE  
LSB  
ppm/°C  
LSB  
ZS  
0.05  
TC  
10  
Gain-Error Tempco  
DAC Output Resistance  
0.1  
6.2  
1
ppm/°C  
kΩ  
R
(Note 2)  
OUT  
R
/R  
FB INV  
Bipolar Resistor Matching  
%
Ratio error  
0.015  
20  
Bipolar Zero Offset Error  
Bipolar Zero Tempco  
LSB  
BZS  
0.5  
ppm/°C  
TC  
+2.7V V  
+4.5V V  
+3.3V (MAX5443/MAX5444)  
+5.5V (MAX5441/MAX5442)  
1
1
DD  
Power-Supply Rejection  
PSR  
LSB  
DD  
REFERENCE INPUT  
Reference Input Range  
V
R
(Note 3)  
2.0  
10  
6
V
V
REF  
DD  
Unipolar mode  
Bipolar mode  
Reference Input Resistance  
(Note 4)  
kΩ  
REF  
DYNAMIC PERFORMANCE—ANALOG SECTION  
Voltage-Output Slew Rate  
Output Settling Time  
DAC Glitch Impulse  
SR  
(Note 5)  
To 1/2LSB of FS  
15  
1
V/µs  
µs  
Major-carry transition  
7
nV-s  
Code = 0000 hex; CS = V  
;
DD  
Digital Feedthrough  
0.2  
nV-s  
SCLK, DIN = 0 to V  
levels  
DD  
2
_______________________________________________________________________________________  
+3V/+5V, Serial-Input,  
Voltage-Output, 16-Bit DACs  
1–MAX54  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +3V (MAX5443/MAX5444) or +5V (MAX5441/MAX5442), V  
= +2.5V, C = 10pF, GND = 0, R = , T = T  
to T  
,
MAX  
DD  
REF  
L
L
A
MIN  
unless otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DYNAMIC PERFORMANCE—REFERENCE SECTION  
Reference -3dB Bandwidth  
Reference Feedthrough  
Signal-to-Noise Ratio  
BW  
Code = FFFF hex  
1
1
MHz  
Code = 0000 hex, V  
= 1V  
at 100kHz  
mV  
P-P  
REF  
P-P  
SNR  
92  
70  
170  
dB  
Code = 0000 hex  
Code = FFFF hex  
Reference Input Capacitance  
C
INREF  
pF  
STATIC PERFORMANCE—DIGITAL INPUTS  
Input High Voltage  
Input Low Voltage  
Input Current  
V
2.4  
V
V
IH  
V
0.8  
1
IL  
I
IN  
µA  
pF  
V
Input Capacitance  
Hysteresis Voltage  
POWER SUPPLY  
C
(Note 6)  
3
10  
IN  
V
0.15  
H
MAX5443/MAX5444  
MAX5441/MAX5442  
2.7  
4.5  
3.6  
5.5  
Positive Supply Range (Note 7)  
Positive Supply Current  
Power Dissipation  
V
V
DD  
I
All digital inputs at V  
or GND  
0.12  
0.36  
0.60  
0.20  
mA  
mW  
DD  
DD  
MAX5443/MAX5444  
MAX5441/MAX5442  
All digital inputs at  
PD  
V
DD  
or GND  
TIMING CHARACTERISTICS  
(V  
= +2.7V to +3.3V (MA5443/MAX5444) , V  
= +4.5V to +5.5V (MAX5441/MAX5442), V  
= +2.5V, GND = 0, CMOS inputs,  
DD  
DD  
REF  
T
A
= T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Figure 1)  
MAX A  
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MHz  
ns  
SCLK Frequency  
f
25  
CLK  
SCLK Pulse Width High  
SCLK Pulse Width Low  
CS Low to SCLK High Setup  
CSHigh to SCLKHigh Setup  
SCLKHigh to CSLow Hold  
SCLKHigh to CSHigh Hold  
DIN to SCLKHigh Setup  
DIN to SCLKHigh Hold  
CLR Pulse Width Low  
t
20  
20  
15  
15  
35  
20  
15  
0
CH  
t
CL  
ns  
t
t
t
ns  
CSS0  
CSS1  
ns  
(Note 6)  
ns  
CSH0  
CSH1  
t
ns  
t
ns  
DS  
t
ns  
DH  
t
20  
ns  
CLW  
V
High to CSLow  
DD  
20  
µs  
(power-up delay)  
Note 1: Gain error tested at V  
= +2.0V, +2.5V, and +3.0V (MAX5443/MAX5444) or V  
= +2.0V, +2.5V, +3.0V, and +5.5V  
REF  
REF  
(MAX5441/ MAX5442).  
Note 2: R tolerance is typically 20%.  
OUT  
Note 3: Min/max range guaranteed by gain-error test. Operation outside min/max limits will result in degraded performance.  
Note 4: Reference input resistance is code-dependent, minimum at 8555hex in unipolar mode, 4555hex in bipolar mode.  
Note 5: Slew-rate value is measured from 10% to 90%.  
Note 6: Guaranteed by design. Not production tested.  
Note 7: Guaranteed by power-supply rejection test and Timing Characteristics.  
_______________________________________________________________________________________  
3
+3V/+5V, Serial-Input,  
Voltage-Output, 16-Bit DACs  
__________________________________________Typical Operating Characteristics  
(V  
= +3V (MAX5443/MAX5444) or +5V (MAX5441/MAX5442), V  
= +2.5V, GND = 0, R = , T = T  
to T  
, unless other-  
MAX  
DD  
REF  
L
A
MIN  
wise noted. Typical values are at T = +25°C.)  
A
SUPPLY CURRENT  
vs. REFERENCE VOLTAGE  
SUPPLY CURRENT  
vs. REFERENCE VOLTAGE  
SUPPLY CURRENT vs. TEMPERATURE  
0.12  
0.11  
0.10  
0.09  
0.08  
0.07  
0.06  
0.05  
0.12  
0.11  
0.150  
0.125  
0.100  
0.075  
0.050  
0.025  
0
V
DD  
= +5V  
0.10  
V
DD  
= +3V  
0.09  
0.08  
0.07  
0.06  
0.05  
V
DD  
= +5V  
V
= +3V  
DD  
0
-40  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
REFERENCE VOLTAGE (V)  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
-40  
-40  
-40  
-15  
10  
35  
60  
85  
85  
85  
1–MAX54  
REFERENCE VOLTAGE (V)  
TEMPERATURE (°C)  
DIFFERENTIAL NONLINEARITY  
vs. TEMPERATURE  
ZERO-CODE OFFSET ERROR  
vs. TEMPERATURE  
INTEGRAL NONLINEARITY  
vs. TEMPERATURE  
0.8  
0.6  
0.4  
0.2  
0
0.2  
0.1  
0.4  
0.3  
0.2  
0.1  
0
+DNL  
+INL  
0
-0.1  
-0.2  
-0.3  
-0.4  
-INL  
-DNL  
-0.1  
-0.2  
-0.2  
-0.4  
-15  
10  
TEMPERATURE (°C)  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
-15  
10  
35  
60  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
GAIN ERROR  
vs. TEMPERATURE  
DIFFERENTIAL NONLINEARITY  
INTEGRAL NONLINEARITY vs. CODE  
0.125  
0.100  
0.075  
0.050  
0.025  
0
0.25  
0.20  
0.15  
0.10  
0.05  
0
0
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
-0.30  
-0.025  
-0.050  
-0.075  
-0.05  
-0.10  
-0.15  
-0.100  
-0.125  
-0.20  
-0.25  
-15  
10  
35  
60  
35k  
35k  
0
5k 15k 25k  
45k 55k 66k  
5k 15k 25k  
45k 55k 66k  
TEMPERATURE (°C)  
CODE  
CODE  
4
_______________________________________________________________________________________  
+3V/+5V, Serial-Input,  
Voltage-Output, 16-Bit DACs  
1–MAX54  
Typical Operating Characteristics (continued)  
(V  
= +3V (MAX5443/MAX5444) or +5V (MAX5441/MAX5442), V  
= +2.5V, GND = 0, R = , T = T  
to T  
, unless other-  
MAX  
DD  
REF  
L
A
MIN  
wise noted. Typical values are at T = +25°C.)  
A
FULL-SCALE STEP RESPONSE  
(FALLING)  
FULL-SCALE STEP RESPONSE  
(RISING)  
REFERENCE CURRENT  
vs. DIGITAL INPUT CODE  
140  
MAX5441/44 toc11  
120  
100  
80  
60  
40  
20  
0
CS  
2V/div  
CS  
2V/div  
A
OUT  
A
OUT  
1V/div  
1V/div  
C = 20pF  
L
C = 20pF  
L
400ns/div  
0
10000 20000 30000 40000 50000 60000 70000  
CODE  
400ns/div  
MAJOR-CARRY GLITCH  
MAJOR-CARRY GLITCH  
(FALLING)  
(RISING)  
CS  
1V/div  
CS  
1V/div  
A
OUT  
20mV/div  
A
OUT  
20mV/div  
C = 20pF  
L
C = 20pF  
L
200ns/div  
200ns/div  
INTEGRAL NONLINEARITY  
vs. REFERENCE VOLTAGE  
UNIPOLAR POWER-ON GLITCH  
(REF = V  
DIGITAL FEEDTHROUGH  
)
DD  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
V
DD  
2V/div  
D
IN  
2V/div  
V
OUT  
10mV/div  
A
OUT  
10mV/div  
C = 112pF  
L
50ns/div  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
50ms/div  
REFERENCE VOLTAGE (V)  
_______________________________________________________________________________________  
5
+3V/+5V, Serial-Input,  
Voltage-Output, 16-Bit DACs  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX5441  
MAX5443  
MAX5442  
MAX5444  
1
2
3
4
1
2
3
4
REF  
CS  
Voltage Reference Input  
Chip-Select Input  
SCLK  
DIN  
Serial Clock Input. Duty cycle must be between 40% and 60%.  
Serial Data Input  
Clear Input. Logic low asynchronously clears the DAC to code 0 (MAX5441/MAX5443)  
or code 32768 (MAX5442/MAX5444).  
5
6
5
6
7
CLR  
OUT  
INV  
DAC Output Voltage  
Junction of Internal Scaling Resistors. Connect to external op amp’s inverting input in  
bipolar mode.  
7
8
9
RFB  
Feedback Resistor. Connect to external op amp’s output in bipolar mode.  
Supply Voltage. Use +3V for MAX5443/MAX5444 and +5V for MAX5441/MAX5442.  
Ground  
V
DD  
1–MAX54  
8
10  
GND  
t
CSH1  
CS  
t
CSHO  
t
CSS1  
t
t
t
CL  
CSSO  
CH  
SCLK  
DIN  
t
DH  
t
DS  
D15  
D14  
D0  
Figure 1. Timing Diagram  
6
_______________________________________________________________________________________  
+3V/+5V, Serial-Input,  
Voltage-Output, 16-Bit DACs  
1–MAX54  
+2.5V  
MAX6166  
+3V/+5V  
1µF  
0.1µF  
0.1µF  
V
REF  
DD  
MC68XXXX  
UNIPOLAR  
OUT  
CS  
PCS0  
MOSI  
MAX495  
EXTERNAL OP AMP  
MAX5441  
MAX5442  
MAX5443  
MAX5444  
OUT  
DIN  
SCLK  
CLR  
SCLK  
IC1  
(GND)  
GND  
Figure 2a. Typical Operating Circuit—Unipolar Output  
+2.5V  
MAX6166  
+3V/+5V  
1µF  
0.1µF  
0.1µF  
+5V  
RFB  
MC68XXXX  
V
DD  
R
INV  
PCS0  
MOSI  
SCLK  
IC1  
CS  
R
INV  
FB  
BIPOLAR  
OUT  
EXTERNAL OP AMP  
MAX400  
DIN  
OUT  
SCLK  
CLR  
MAX5442  
MAX5444  
-5V  
(GND)  
GND  
Figure 2b. Typical Operating Circuit—Bipolar Output  
The MAX5441–MAX5444 are composed of two  
matched DAC sections, with a 12-bit inverted R-2R  
DAC forming the 12 LSBs and the four MSBs derived  
from 15 identically matched resistors. This architecture  
allows the lowest glitch energy to be transferred to the  
DAC output on major-carry transitions. It also lowers the  
DAC output impedance by a factor of eight compared  
Detailed Description  
The MAX5441–MAX5444 voltage-output, 16-bit digital-  
to-analog converters (DACs) offer full 16-bit perfor-  
mance with less than 2LSB integral linearity error and  
less than 1LSB differential linearity error, thus ensuring  
monotonic performance. Serial data transfer minimizes  
the number of package pins required.  
_______________________________________________________________________________________  
7
+3V/+5V, Serial-Input,  
Voltage-Output, 16-Bit DACs  
to a standard R-2R ladder, allowing unbuffered opera-  
tion in medium-load applications.  
MAX5442/MAX5444 to code 32768 when V  
is first  
DD  
applied. This ensures that unwanted DAC output volt-  
ages will not occur immediately following a system  
power-up, such as after a loss of power.  
The MAX5442/MAX5444 provide matched bipolar offset  
resistors, which connect to an external op amp for bipo-  
lar output swings (Figure 2b).  
Applications Information  
Digital Interface  
The MAX5441–MAX5444 digital interface is a standard  
3-wire connection compatible with SPI/QSPI/  
MICROWIRE interfaces. The chip-select input (CS)  
frames the serial data loading at the data-input pin  
(DIN). Immediately following CS’s high-to-low transition,  
the data is shifted synchronously and latched into the  
input register on the rising edge of the serial clock input  
(SCLK). After 16 data bits have been loaded into the  
serial input register, it transfers its contents to the DAC  
latch on CS’s low-to-high transition (Figure 3). Note that  
if CS is not kept low during the entire 16 SCLK cycles,  
data will be corrupted. In this case, reload the DAC  
latch with a new 16-bit word.  
Reference and Ground Inputs  
The MAX5441–MAX5444 operate with external voltage  
references from 2V to V , and maintain 16-bit perfor-  
DD  
mance if certain guidelines are followed when selecting  
and applying the reference. Ideally, the reference’s  
temperature coefficient should be less than  
0.1ppm/°C to maintain 16-bit accuracy to within 1LSB  
over the -40°C to +85°C extended temperature range.  
Since this converter is designed as an inverted R-2R volt-  
age-mode DAC, the input resistance seen by the voltage  
reference is code-dependent. In unipolar mode, the  
worst-case input-resistance variation is from 11.5k(at  
code 8555hex) to 200k(at code 0000hex). The maxi-  
mum change in load current for a 2.5V reference is 2.5V /  
11.5k = 217µA; therefore, the required load regulation  
is 7ppm/mA for a maximum error of 0.1LSB. This implies  
a reference output impedance of less than 18m. In  
addition, the impedance of the signal path from the volt-  
age reference to the reference input must be kept low  
because it contributes directly to the load-regulation  
error.  
1–MAX54  
Clearing the DAC  
A 20ns (min) logic-low pulse on CLR asynchronously  
clears the DAC buffer to code 0 in the MAX5441/  
MAX5443 and to code 32768 in the MAX5442/ MAX5444.  
External Reference  
The MAX5441–MAX5444 operate with external voltage  
references from 2V to V . The reference voltage  
DD  
The requirement for a low-impedance voltage reference  
is met with capacitor bypassing at the reference inputs  
and ground. A 0.1µF ceramic capacitor with short leads  
between REF and GND provides high-frequency  
bypassing. A surface-mount ceramic chip capacitor is  
preferred because it has the lowest inductance. An  
determines the DAC’s full-scale output voltage.  
Power-On Reset  
The power-on reset circuit sets the output of the  
MAX5441/MAX5443 to code 0 and the output of the  
CS  
DAC  
UPDATED  
SCLK  
SUB-BITS  
DIN  
D15 D14 D13 D12 D11 D10 D9 D8  
MSB  
D7 D6 D5 D4 D3 D2 D1 D0  
LSB  
Figure 3. MAX5441–MAX5444 3-Wire Interface Timing Diagram  
8
_______________________________________________________________________________________  
+3V/+5V, Serial-Input,  
Voltage-Output, 16-Bit DACs  
1–MAX54  
additional 1µF between REF and GND provides low-fre-  
add less than 1/2LSB of zero-scale error. The external  
amplifier’s input resistance forms a resistive divider with  
the DAC output resistance, which results in a gain error.  
To contribute less than 1/2LSB of gain error, the input  
resistance typically must be greater than:  
quency bypassing. A low-ESR tantalum, film, or organic  
semiconductor capacitor works well. Leaded capaci-  
tors are acceptable because impedance is not as criti-  
cal at lower frequencies. The circuit can benefit from  
even larger bypassing capacitors, depending on the  
stability of the external reference with capacitive loading.  
17  
6.25kΩ × 2 = 819MΩ  
Unbuffered Operation  
Unbuffered operation reduces power consumption as  
well as offset error contributed by the external output  
buffer. The R-2R DAC output is available directly at  
The settling time is affected by the buffer input capaci-  
tance, the DAC’s output capacitance, and PC board  
capacitance. The typical DAC output voltage settling  
time is 1µs for a full-scale step. Settling time can be sig-  
nificantly less for smaller step changes. Assuming a  
single time-constant exponential settling response, a  
full-scale step takes 12 time constants to settle to within  
1/2LSB of the final output voltage. The time constant is  
equal to the DAC output resistance multiplied by the  
total output capacitance. The DAC output capacitance  
is typically 10pF. Any additional output capacitance will  
increase the settling time.  
OUT, allowing 16-bit performance from +V  
to GND  
REF  
without degradation at zero-scale. The DAC’s output  
impedance is also low enough to drive medium loads  
(R > 60k) without degradation of INL or DNL; only  
L
the gain error is increased by externally loading the  
DAC output.  
External Output Buffer Amplifier  
The requirements on the external output buffer amplifier  
change whether the DAC is used in the unipolar or bipo-  
lar mode of operation. In unipolar mode, the output  
amplifier is used in a voltage-follower connection. In  
bipolar mode (MAX5442/MAX5444 only), the amplifier  
operates with the internal scaling resistors (Figure 2b). In  
each mode, the DAC’s output resistance is constant and  
is independent of input code; however, the output ampli-  
fier’s input impedance should still be as high as possible  
to minimize gain errors. The DAC’s output capacitance is  
also independent of input code, thus simplifying stability  
requirements on the external amplifier.  
The external buffer amplifier’s gain-bandwidth product  
is important because it increases the settling time by  
adding another time constant to the output response.  
The effective time constant of two cascaded systems,  
each with a single time-constant response, is approxi-  
mately the root square sum of the two time constants.  
The DAC output’s time constant is 1µs / 12 = 83ns,  
ignoring the effect of additional capacitance. If the time  
constant of an external amplifier with 1MHz bandwidth  
is 1 / 2π (1MHz) = 159ns, then the effective time con-  
stant of the combined system is:  
In bipolar mode, a precision amplifier operating with  
dual power supplies (such as the MAX400) provides  
2
2
83ns + 159ns  
=180ns  
(
)
(
)
the  
V
output range. In single-supply applications,  
REF  
precision amplifiers with input common-mode ranges  
including GND are available; however, their output  
swings do not normally include the negative rail (GND)  
without significant degradation of performance. A sin-  
gle-supply op amp, such as the MAX495, is suitable if  
the application does not use codes near zero.  
This suggests that the settling time to within 1/2LSB of  
the final output voltage, including the external buffer  
amplifier, will be approximately 12 180ns = 2.15µs.  
Digital Inputs and Interface Logic  
The digital interface for the 16-bit DAC is based on a  
3-wire standard that is compatible with SPI, QSPI, and  
MICROWIRE interfaces. The three digital inputs (CS,  
DIN, and SCLK) load the digital input data serially into  
the DAC.  
Since the LSBs for a 16-bit DAC are extremely small  
(38.15µV for V  
= 2.5V), pay close attention to the  
REF  
external amplifier’s input specification. The input offset  
voltage can degrade the zero-scale error and might  
require an output offset trim to maintain full accuracy if  
the offset voltage is greater than 1/2LSB. Similarly, the  
input bias current multiplied by the DAC output resis-  
tance (typically 6.25k) contributes to the zero-scale  
error. Temperature effects also must be taken into con-  
sideration. Over the -40°C to +85°C extended tempera-  
ture range, the offset voltage temperature coefficient  
(referenced to +25°C) must be less than 0.24µV/°C to  
A 20ns (min) logic-low pulse on CLR clears the data in  
the DAC buffer.  
All of the digital inputs include Schmitt-trigger buffers to  
accept slow-transition interfaces. This means that opto-  
couplers can interface directly to the MAX5441–  
MAX5444 without additional external logic. The digital  
inputs are compatible with TTL/CMOS-logic levels.  
_______________________________________________________________________________________  
9
+3V/+5V, Serial-Input,  
Voltage-Output, 16-Bit DACs  
Unipolar Configuration  
Table 1. Unipolar Code Table  
Figure 2a shows the MAX5441–MAX5444 configured for  
unipolar operation with an external op amp. The op amp  
is set for unity gain, and Table 1 lists the codes for this  
circuit. The bipolar MAX5442/MAX5444 can also be  
used in unipolar configuration by connecting RFB and  
INV to REF. This allows the DAC to power-up to mid-  
scale.  
DAC LATCH CONTENTS  
MSB LSB  
ANALOG OUTPUT, V  
OUT  
1111 1111 1111 1111  
1000 0000 0000 0000  
0000 0000 0000 0001  
0000 0000 0000 0000  
V
(65,535 / 65,536)  
(32,768 / 65,536) =  
(1 / 65,536)  
REF  
1/  
V
REF  
2
V
REF  
V
0
REF  
Bipolar Configuration  
Figure 2b shows the MAX5442/MAX5444 configured for  
bipolar operation with an external op amp. The op amp  
Table 2. Bipolar Code Table  
is set for unity gain with an offset of -1/2V  
lists the offset binary codes for this circuit.  
. Table 2  
REF  
DAC LATCH CONTENTS  
ANALOG OUTPUT, V  
OUT  
MSB  
LSB  
Power-Supply Bypassing and  
Ground Management  
1111 1111 1111 1111  
1000 0000 0000 0001  
1000 0000 0000 0000  
0111 1111 1111 1111  
0000 0000 0000 0000  
+V  
+V  
0
(32,767 / 32,768)  
(1 / 32,768)  
REF  
REF  
Bypass V  
with a 0.1µF ceramic capacitor connected  
DD  
DD  
between V  
and GND. Mount the capacitor with short  
leads close to the device (less than 0.25 inches).  
-V  
-V  
(1 / 32,768)  
X
REF  
REF  
(32,768 / 32,768) = -V  
REF  
10 ______________________________________________________________________________________  
+3V/+5V, Serial-Input,  
Voltage-Output, 16-Bit DACs  
1–MAX54  
Functional Diagrams  
V
V
DD  
DD  
RFB  
MAX5441  
MAX5443  
MAX5442  
MAX5444  
INV  
REF  
CS  
REF  
CS  
OUT  
OUT  
16-BIT DAC  
16-BIT DAC  
16-BIT DATA LATCH  
16-BIT DATA LATCH  
SCLK  
DIN  
SCLK  
DIN  
CONTROL  
LOGIC  
CONTROL  
LOGIC  
SERIAL INPUT REGISTER  
SERIAL INPUT REGISTER  
CLR  
CLR  
GND  
GND  
Ordering Information (continued)  
PART  
TEMP RANGE  
0°C to +70°C  
-40°C to +85°C  
0°C to +70°C  
-40°C to +85°C  
0°C to +70°C  
-40°C to +85°C  
0°C to +70°C  
-40°C to +85°C  
PIN-PACKAGE  
8 µMAX  
INL (LSB)  
SUPPLY (V)  
MAX5443ACUA+  
MAX5443AEUA+  
MAX5443BCUA+  
MAX5443BEUA+  
MAX5444ACUB+  
MAX5444AEUB+  
MAX5444BCUB+  
MAX5444BEUB+  
2
2
4
4
2
2
4
4
3
3
3
3
3
3
3
3
8 µMAX  
8 µMAX  
8 µMAX  
10 µMAX  
10 µMAX  
10 µMAX  
10 µMAX  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
Note: For leaded version, contact factory.  
_____________________Chip Information  
PROCESS: BiCMOS  
Package Information  
For the latest package outline information and land patterns  
(footprints), go to www.maxim-ic.com/packages. Note that a  
“+”, “#”, or “-” in the package code indicates RoHS status only.  
Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
LAND  
PATTERN NO.  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE NO.  
90-0092  
90-0330  
8 µMAX  
U8+1  
21-0036  
21-0061  
10 µMAX  
U10+2  
______________________________________________________________________________________ 11  
+3V/+5V, Serial-Input,  
Voltage-Output, 16-Bit DACs  
Revision History  
REVISION REVISION  
DESCRIPTION  
PAGES  
CHANGED  
NUMBER  
DATE  
0
2
3
10/00  
10/07  
1/09  
Initial release  
6
Changed timing diagram  
Added lead-free notation in Ordering Information.  
1, 11  
1–MAX54  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2009 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY