MAX5478EUD [MAXIM]

Dual, 256-Tap, Nonvolatile, I2C-Interface, Digital Potentiometers; 双路,256抽头,非易失, I²C接口,数字电位器
MAX5478EUD
型号: MAX5478EUD
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Dual, 256-Tap, Nonvolatile, I2C-Interface, Digital Potentiometers
双路,256抽头,非易失, I²C接口,数字电位器

电位器
文件: 总15页 (文件大小:385K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3379; Rev 2; 12/04  
Dual, 256-Tap, Nonvolatile, I2C-Interface,  
Digital Potentiometers  
General Description  
Features  
The MAX5477/MAX5478/MAX5479 nonvolatile, dual,  
linear-taper, digital potentiometers perform the function  
of a mechanical potentiometer, but replace the  
mechanics with a simple 2-wire digital interface. Each  
device performs the same function as a discrete poten-  
tiometer or variable resistor and has 256 tap points.  
Power-On Recall of Wiper Position from  
Nonvolatile Memory  
EEPROM Write Protection  
Tiny 3mm x 3mm x 0.8mm Thin QFN Package  
35ppm/°C End-to-End Resistance Temperature  
Coefficient  
The devices feature an internal, nonvolatile EEPROM  
used to store the wiper position for initialization during  
power-up. A write-protect feature prevents accidental  
overwrites of the EEPROM. The fast-mode I2C-compati-  
ble serial interface allows communication at data rates  
up to 400kbps, minimizing board space and reducing  
interconnection complexity in many applications. Three  
address inputs allow a total of eight unique address  
combinations.  
5ppm/°C Ratiometric Temperature Coefficient  
Fast 400kbps I2C -Compatible Serial Interface  
1µA (max) Static Supply Current  
Single-Supply Operation: +2.7V to +5.25V  
256 Tap Positions per Potentiometer  
0.5 ꢀSꢁ ꢂNꢀ in Voltage-ꢂivider Mode  
1 ꢀSꢁ INꢀ in Voltage-ꢂivider Mode  
The MAX5477/MAX5478/MAX5479 provide three nomi-  
nal resistance values: 10k(MAX5477), 50kΩ  
(MAX5478), or 100k(MAX5479). The nominal resistor  
temperature coefficient is 35ppm/°C end-to-end and  
5ppm/°C ratiometric. The low temperature coefficient  
makes the devices ideal for applications requiring a low-  
temperature-coefficient variable resistor, such as low-  
drift, programmable gain-amplifier circuit configurations.  
Functional Diagram  
HA  
V
DD  
8-BIT  
SHIFT  
REGISTER  
256  
POSITION  
DECODER  
8
8
8
256  
256  
16-BIT  
LATCH  
GND  
WA  
POR  
The MAX5477/MAX5478/MAX5479 are available in 16-  
pin 3mm x 3mm x 0.8mm thin QFN and 14-pin 4.4mm x  
5mm TSSOP packages. These devices operate over  
the extended -40°C to +85°C temperature range.  
LA  
16-BIT  
NV  
MEMORY  
SDA  
SCL  
WP  
HB  
I2C  
INTERFACE  
256  
POSITION  
DECODER  
WB  
LB  
MAX5477  
MAX5478  
MAX5479  
A0  
A1  
A2  
Applications  
Mechanical Potentiometer Replacement  
Low-Drift Programmable-Gain Amplifiers  
Volume Control  
2
Purchase of I C components from Maxim Integrated  
Products, Inc. or one of its sublicensed Associated  
2
Companies, conveys a license under the Philips I C Patent  
2
Liquid-Crystal Display (LCD) Contrast Control  
Rights to use these components in an I C system, provided  
2
that the system conforms to the I C Standard Specification as  
defined by Philips.  
Ordering Information/Selector Guide  
ENꢂ-TO-ENꢂ  
RESISTANCE (k)  
TOP  
MARK  
PART  
TEMP RANGE  
PIN-PACKAGE  
PACKAGE COꢂE  
MAX5477ETE*  
MAX5477EUD*  
MAX5478ETE*  
MAX5478EUD  
MAX5479ETE*  
MAX5479EUD  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
16 Thin QFN  
14 TSSOP  
10  
ABO  
T1633F-3  
10  
16 Thin QFN  
14 TSSOP  
50  
ABP  
T1633F-3  
50  
16 Thin QFN  
14 TSSOP  
100  
100  
ABQ  
T1633F-3  
*Future product—contact factory for availability.  
Pin Configurations appear at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
2
Dual, 256-Tap, Nonvolatile, I C-Interface,  
Digital Potentiometers  
AꢁSOꢀUTE MAXIMUM RATINGS  
SDA, SCL, V  
to GND.........................................-0.3V to +6.0V  
Continuous Power Dissipation (T = +70°C)  
A
DD  
All Other Pins to GND.................................-0.3V to (V  
Maximum Continuous Current into H_, L_, and W_  
MAX5477...................................................................... 5.0mA  
MAX5478...................................................................... 1.3mA  
MAX5479...................................................................... 0.6mA  
+ 0.3V)  
16-Pin Thin QFN (derate 17.5mW/°C above +70°C) 1399mW  
14-Pin TSSOP (derate 9.1mW/°C above +70°C) .........727mW  
Operating Temperature Range ...........................-40°C to +85°C  
Maximum Junction Temperature .....................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
DD  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
EꢀECTRICAꢀ CHARACTERISTICS  
(V  
= +2.7V to +5.25V, H_ = V , L_ = GND, T = -40°C to +85°C, unless otherwise noted. Typical values are at V  
= +5V, T =  
DD A  
DD  
DD  
A
+25°C.) (Note 1)  
PARAMETER  
SYMꢁOꢀ  
CONꢂITIONS  
MIN  
TYP  
MAX  
UNITS  
ꢂC PERFORMANCE (VOꢀTAGE-ꢂIVIꢂER MOꢂE)  
Resolution  
256  
Taps  
LSB  
LSB  
LSB  
Integral Nonlinearity  
Differential Nonlinearity  
Dual Code Matching  
INL  
(Note 2)  
(Note 2)  
1
0.5  
1
DNL  
R0 and R1 set to same code (all codes)  
End-to-End Resistance  
Temperature Coefficient  
TC  
35  
5
ppm/°C  
ppm/°C  
R
Ratiometric Resistance  
Temperature Coefficient  
MAX5477  
MAX5478  
MAX5479  
MAX5477  
MAX5478  
MAX5479  
-3  
-0.6  
-0.3  
3
Full-Scale Error  
Zero-Scale Error  
LSB  
LSB  
0.6  
0.3  
ꢂC PERFORMANCE (VARIAꢁꢀE-RESISTOR MOꢂE)  
V
V
= 3V  
= 5V  
3
DD  
DD  
Integral Nonlinearity (Note 3)  
Differential Nonlinearity (Note 3)  
Dual Code Matching  
INL  
LSB  
LSB  
LSB  
1.5  
V
= 3V, MAX5477, guaranteed  
DD  
1
monotonic  
DNL  
V
V
V
= 3V, MAX5478  
= 3V, MAX5479  
= 5V  
1
1
1
DD  
DD  
DD  
R0 and R1 set to same code  
(all codes), V = 3V or 5V  
3
DD  
ꢂC PERFORMANCE (RESISTOR CHARACTERISTICS)  
Wiper Resistance  
Wiper Capacitance  
R
W
C
W
(Note 4)  
325  
10  
675  
pF  
MAX5477  
MAX5478  
MAX5479  
7.5  
37.5  
75  
10  
12.5  
62.5  
125  
End-to-End Resistance  
R
50  
kΩ  
HL  
100  
2
_______________________________________________________________________________________  
Dual, 256-Tap, Nonvolatile, I2C-Interface,  
Digital Potentiometers  
EꢀECTRICAꢀ CHARACTERISTICS (continued)  
(V  
= +2.7V to +5.25V, H_ = V , L_ = GND, T = -40°C to +85°C, unless otherwise noted. Typical values are at V  
= +5V, T =  
DD A  
DD  
DD  
A
+25°C.) (Note 1)  
PARAMETER  
SYMꢁOꢀ  
CONꢂITIONS  
MIN  
TYP  
MAX  
UNITS  
ꢂIGITAꢀ INPUTS  
V
V
= 3.4V to 5.25V  
2.4  
DD  
DD  
Input High Voltage (Note 5)  
V
V
IH  
< 3.4V  
0.7 x V  
DD  
Input Low Voltage  
V
(Note 5)  
= 3mA  
0.8  
0.4  
V
IL  
Output Low Voltage  
WP Pullup Resistance  
Input Leakage Current  
Input Capacitance  
V
I
V
OL  
SINK  
I
255  
kΩ  
µA  
pF  
WP  
I
1
LEAK  
5
ꢂYNAMIC CHARACTERISTICS  
HA = 1kHz (0 to V ), LA = GND,  
DD  
LB = GND, measure WB  
Crosstalk  
-80  
dB  
kHz  
%
MAX5478  
100  
50  
3dB Bandwidth (Note 6)  
MAX5479  
Total Harmonic Distortion Plus  
Noise  
H_ = 1V  
, f = 1kHz, L_ = GND,  
RMS  
THD+N  
0.003  
measure W_  
NONVOꢀATIꢀE MEMORY REꢀIAꢁIꢀITY  
Data Retention  
T
A
T
A
T
A
= +85°C  
= +25°C  
= +85°C  
50  
Years  
200,000  
50,000  
Endurance  
Stores  
POWER SUPPꢀY  
Power-Supply Voltage  
V
2.70  
5.25  
400  
V
DD  
Writing to EEPROM, digital inputs at  
GND or V (Note 7)  
250  
DD  
Supply Current  
I
µA  
DD  
WP = GND  
15  
20.6  
1
Normal operation, digital  
inputs at GND or V  
DD  
WP = V  
0.5  
DD  
TIMING CHARACTERISTICS  
(V  
= +2.7V to +5.25V, H_ = V , L_ = GND, T = -40°C to +85°C, unless otherwise noted. Typical values are at V  
= +5V,  
DD  
DD  
DD  
A
T
A
= +25°C. See Figure 1.) (Notes 8 and 9)  
PARAMETER  
SYMꢁOꢀ  
CONꢂITIONS  
MIN  
TYP  
MAX  
UNITS  
ANAꢀOG SECTION  
MAX5478  
MAX5479  
500  
Wiper Settling Time (Note 10)  
t
ns  
WS  
1000  
ꢂIGITAꢀ SECTION  
SCL Clock Frequency  
f
400  
kHz  
µs  
SCL  
Setup Time for START Condition  
Hold Time for START Condition  
t
0.6  
0.6  
SU:STA  
HD:STA  
t
µs  
_______________________________________________________________________________________  
3
2
Dual, 256-Tap, Nonvolatile, I C-Interface,  
Digital Potentiometers  
TIMING CHARACTERISTICS (continued)  
(V  
= +2.7V to +5.25V, H_ = V , L_ = GND, T = -40°C to +85°C, unless otherwise noted. Typical values are at V  
= +5V,  
DD  
DD  
A
DD  
T
A
= +25°C. See Figure 1.) (Notes 8 and 9)  
PARAMETER  
SYMꢁOꢀ  
CONꢂITIONS  
MIN  
0.6  
1.3  
100  
0
TYP  
MAX  
UNITS  
µs  
SCL High Time  
t
HIGH  
SCL Low Time  
t
µs  
LOW  
Data Setup Time  
t
ns  
SU:DAT  
HD:DAT  
Data Hold Time  
t
0.9  
300  
300  
µs  
SDA, SCL Rise Time  
SDA, SCL Fall Time  
Setup Time for STOP Condition  
t
ns  
R
t
ns  
F
t
0.6  
1.3  
µs  
SU:STO  
Bus Free Time Between STOP  
and START Condition  
t
Minimum power-up rate = 0.2V/µs  
µs  
ns  
BUF  
Pulse Width of Spike Suppressed  
t
SP  
50  
400  
12  
Capacitive Load for Each Bus  
Line  
C
(Note 11)  
(Note 12)  
pF  
ms  
B
Write NV Register Busy Time  
Note 1: All devices are production tested at T = +25°C and are guaranteed by design and characterization for -40°C < T < +85°C.  
A
A
Note 2: The DNL and INL are measured with the potentiometer configured as a voltage-divider with H_ = V  
wiper terminal is unloaded and measured with a high-input-impedance voltmeter.  
and L_ = GND. The  
DD  
Note 3: The DNL and INL are measured with the potentiometer configured as a variable resistor. H_ is unconnected and L_ =  
GND. For V = +5V, the wiper is driven with 400µA (MAX5477), 80µA (MAX5478), or 40µA (MAX5479). For V = +3V,  
DD  
DD  
the wiper is driven with 200µA (MAX5477), 40µA (MAX5478), or 20µA (MAX5479).  
Note 4: The wiper resistance is measured using the source currents given in Note 3.  
Note 5: The devices draw current in excess of the specified supply current when the digital inputs are driven with voltages between  
(V - 0.5V) and (GND + 0.5V). See Supply Current vs. Digital Input Voltage in the Typical Operating Characteristics.  
DD  
Note 6: Wiper at midscale with a 10pF load (DC measurement). L_ = GND, an AC source is applied to H_, and the W_ output is  
measured. A 3dB bandwidth occurs when the AC W_/H_ value is 3dB lower than the DC W_/H_ value.  
Note 7: The programming current exists only during power-up and EEPROM writes.  
Note 8: The SCL clock period includes rise and fall times (t = t ). All digital input signals are specified with t = t = 2ns and  
R
F
R
F
timed from a voltage level of (V + V ) / 2.  
IL  
IH  
Note 9: Digital timing is guaranteed by design and characterization, and is not production tested.  
Note 10: This is measured from the STOP pulse to the time it takes the output to reach 50% of the output step size (divider mode). It  
is measured with a maximum external capacitive load of 10pF.  
Note 11: An appropriate bus pullup resistance must be selected depending on board capacitance. Refer to the I2C-bus specifica-  
tion document linked to this web address: www.semiconductors.philips.com/acrobat/literature/9398/39340011.pdf  
Note 12: The idle time begins from the initiation of the STOP pulse.  
4
_______________________________________________________________________________________  
Dual, 256-Tap, Nonvolatile, I2C-Interface,  
Digital Potentiometers  
Typical Operating Characteristics  
(V  
= +5V, H_ = V , L_ = GND, T = +25°C, unless otherwise noted.)  
DD A  
DD  
WIPER RESISTANCE  
vs. INPUT CODE  
SUPPLY CURRENT  
vs. TEMPERATURE  
TAP-TO-TAP SWITCHING TRANSIENT  
MAX5477/78/79 toc03  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
SDA  
2V/div  
V
= 5V  
DD  
W_  
20mV/div  
MAX5478  
C = 10pF  
V
= 3V  
L
DD  
H_ = V  
DD  
FROM TAP 00 TO TAP 04  
0
0
32 64 96 128 160 192 224 256  
INPUT CODE  
-40  
-15  
10  
35  
60  
85  
1µs/div  
TEMPERATURE (°C)  
WIPER TRANSIENT AT POWER-ON  
TAP-TO-TAP SWITCHING TRANSIENT  
WIPER TRANSIENT AT POWER-ON  
MAX5477/78/79 toc05  
MAX5477/78/79 toc04  
MAX5477/78/79 toc06  
SDA  
2V/div  
V
V
DD  
DD  
2V/div  
2V/div  
W_  
20mV/div  
W_  
W_  
1V/div  
MAX5479  
1V/div  
C
= 10pF  
W_  
MAX5478  
TAP = 128  
MAX5479  
TAP = 128  
H_ = V  
DD  
FROM TAP 00 TO TAP 04  
4µs/div  
400ns/div  
2µs/div  
INTEGRAL NONLINEARITY  
vs. CODE (VRM MODE)  
INTEGRAL NONLINEARITY  
vs. CODE (VDM MODE)  
DIFFERENTIAL NONLINEARITY  
vs. CODE (VDM MODE)  
0.3  
0.2  
0.1  
0
0.3  
0.3  
0.2  
0.1  
0
MAX5478  
MAX5478  
MAX5478  
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.1  
-0.2  
-0.3  
-0.1  
-0.2  
-0.3  
0
32 64 96 128 160 192 224 256  
CODE  
0
32 64 96 128 160 192 224 256  
CODE  
0
32 64 96 128 160 192 224 256  
CODE  
_______________________________________________________________________________________  
5
Dual, 256-Tap, Nonvolatile, I2C-Interface,  
Digital Potentiometers  
Typical Operating Characteristics (continued)  
(V  
= +5V, H_ = V , L_ = GND, T = +25°C, unless otherwise noted.)  
DD A  
DD  
DIFFERENTIAL NONLINEARITY  
vs. CODE (VRM MODE)  
INTEGRAL NONLINEARITY  
vs. CODE (VDM MODE)  
DIFFERENTIAL NONLINEARITY  
vs. CODE (VDM MODE)  
0.20  
0.16  
0.12  
0.08  
0.04  
0
0.10  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
MAX5479  
MAX5479  
MAX5478  
0.08  
0.06  
0.04  
0.02  
0
-0.02  
-0.04  
-0.08  
-0.12  
-0.16  
-0.20  
-0.02  
-0.04  
-0.06  
-0.08  
-0.10  
-0.12  
-0.14  
-0.04  
-0.06  
-0.08  
-0.10  
0
32 64 96 128 160 192 224 256  
CODE  
0
32 64 96 128 160 192 224 256  
CODE  
0
32 64 96 128 160 192 224 256  
CODE  
INTEGRAL NONLINEARITY  
vs. CODE (VRM MODE)  
DIFFERENTIAL NONLINEARITY  
vs. CODE (VRM MODE)  
0.20  
0.16  
0.12  
0.08  
0.04  
0
0.20  
0.16  
0.12  
0.08  
0.04  
0
MAX5479  
MAX5479  
-0.04  
-0.08  
-0.12  
-0.16  
-0.20  
-0.04  
-0.08  
-0.12  
-0.16  
-0.20  
0
0
32 64 96 128 160 192 224 256  
CODE  
32 64 96 128 160 192 224 256  
CODE  
CROSSTALK vs. FREQUENCY (MAX5479)  
CROSSTALK vs. FREQUENCY (MAX5478)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
C
= 10pF  
W_  
C
= 10pF  
W_  
TAP = 0  
TAP = 128  
0.1  
1
10  
100  
1000 10,000  
0.01  
0.1  
1
10  
100  
1000  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
6
_______________________________________________________________________________________  
Dual, 256-Tap, Nonvolatile, I2C-Interface,  
Digital Potentiometers  
Typical Operating Characteristics (continued)  
(V  
= +5V, H_ = V , L_ = GND, T = +25°C, unless otherwise noted.)  
DD  
DD  
A
MIDSCALE WIPER RESPONSE  
vs. FREQUENCY (MAX5478)  
MIDSCALE WIPER RESPONSE  
vs. FREQUENCY (MAX5479)  
2
1
2
1
C
= 10pF  
W_  
0
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-1  
-2  
-3  
-4  
-5  
C
= 10pF  
W_  
C
= 50pF  
W_  
C
= 50pF  
10  
W_  
0.1  
1
10  
FREQUENCY (kHz)  
100  
1000  
0.1  
1
100  
1000  
FREQUENCY (kHz)  
THD+N vs. FREQUENCY  
(MAX5479)  
THD+N vs. FREQUENCY  
(MAX5478)  
10  
1
10  
1
MIDSCALE  
MIDSCALE  
0.1  
0.1  
0.01  
0.001  
0.0001  
0.01  
0.001  
0.0001  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
SUPPLY CURRENT  
vs. DIGITAL INPUT VOLTAGE  
END-TO-END RESISTANCE % CHANGE  
vs. TEMPERATURE (MAX5478)  
END-TO-END RESISTANCE % CHANGE  
vs. TEMPERATURE (MAX5479)  
0.5  
0.5  
600  
WP = GND  
550  
500  
0.4  
0.3  
0.4  
0.3  
450  
400  
350  
300  
0.2  
0.2  
0.1  
0.1  
V
= 5V  
CC  
0
0
250  
200  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
V
= 3V  
CC  
150  
100  
50  
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
DIGITAL INPUT VOLTAGE (V)  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
7
Dual, 256-Tap, Nonvolatile, I2C-Interface,  
Digital Potentiometers  
Pin Description  
PIN  
THIN QFN  
NAME  
FUNCTION  
TSSOP  
1
2
3
4
5
6
15  
14  
13  
12  
11  
10  
HA  
WA  
LA  
Potentiometer A High Terminal  
Potentiometer A Wiper Terminal  
Potentiometer A Low Terminal  
Potentiometer B High Terminal  
Potentiometer B Wiper Terminal  
Potentiometer B Low Terminal  
HB  
WB  
LB  
Write-Protect Input. Connect to GND to allow changes to the wiper position and the data stored  
in the EEPROM. Connect to V or leave open to enable the write protection of the EEPROM.  
7
9
WP  
DD  
8
7
6
5
4
3
2
GND Ground  
9
A2  
A1  
Address Input 2. Connect to V  
or GND (see Table 1).  
or GND (see Table 1).  
or GND (see Table 1).  
DD  
DD  
DD  
10  
11  
12  
13  
Address Input 1. Connect to V  
Address Input 0. Connect to V  
I2C Serial Data  
A0  
SDA  
SCL  
I2C Clock Input  
Power-Supply Input. Connect a +2.7V to +5.25V power supply to V  
with a 0.1µF capacitor installed as close to the device as possible.  
and bypass V  
to GND  
DD  
DD  
14  
1
V
DD  
8, 16  
EP  
N.C.  
EP  
No Connection. Do not connect.  
Exposed Paddle. Do not connect.  
SDA  
SCL  
t
BUF  
t
SU:DAT  
t
SU:STA  
t
t
SU:STO  
HD:DAT  
t
LOW  
t
HD:STA  
t
HIGH  
t
HD:STA  
t
R
t
F
STOP  
CONDITION  
(P)  
START  
CONDITION  
(S)  
START  
CONDITION  
(S)  
REPEATED START  
CONDITION  
(SR)  
ACKNOWLEDGE  
(A)  
PARAMETERS ARE MEASURED FROM 30% TO 70%.  
2
Figure 1. I C Serial-Interface Timing Diagram  
The MAX5477/MAX5478/MAX5479 provide access to  
the high, low, and wiper terminals for a standard volt-  
age-divider configuration. Connect H_, L_, and W_ in  
any desired configuration as long as their voltages  
Detailed Description  
The MAX5477/MAX5478/MAX5479 contain two resistor  
arrays with 255 elements in each array. The MAX5477  
has a total end-to-end resistance of 10k, the  
MAX5478 has an end-to-end resistance of 50k, and  
the MAX5479 has an end-to-end resistance of 100k.  
remain between GND and V  
.
DD  
8
_______________________________________________________________________________________  
Dual, 256-Tap, Nonvolatile, I2C-Interface,  
Digital Potentiometers  
A simple 2-wire I2C-compatible serial interface moves  
the wiper among the 256 tap points (Figure 2). A non-  
H_  
volatile memory stores the wiper position and recalls  
the stored wiper position upon power-up. The non-  
volatile memory is guaranteed for 50 years for wiper  
data retention and up to 200,000 wiper store cycles.  
S
S
S
256  
255  
254  
R
R
255  
Analog Circuitry  
The MAX5477/MAX5478/MAX5479 consist of two resistor  
arrays with 255 resistive elements; 256 tap points are  
accessible to the wipers, along the resistor string  
between H_ and L_. The wiper tap point is selected by  
programming the potentiometer through the I2C inter-  
face. An address byte, a command byte, and 8 data bits  
program the wiper position for each potentiometer. The  
H_ and L_ terminals of the MAX5477/MAX5478/  
MAX5479 are similar to the two end terminals of a  
mechanical potentiometer. The MAX5477/MAX5478/  
MAX5479 feature power-on reset circuitry that loads the  
wiper position from the nonvolatile memory at power-up.  
254  
R
W
256-POSITION  
DECODER  
W_  
S
3
S
2
S
1
WIPER  
CODE 02h  
R
R
2
1
Digital Interface  
The MAX5477/MAX5478/MAX5479 feature an internal,  
nonvolatile EEPROM that stores the wiper state for ini-  
tialization during power-up. The shift register decodes  
the command and address bytes, routing the data to  
the proper memory registers. Data written to a volatile  
memory register immediately updates the wiper posi-  
tion, or writes data to a nonvolatile register for storage  
(see Table 2).  
L_  
Figure 2. Potentiometer Configuration  
The volatile register retains data as long as the device  
is powered. Removing power clears the volatile regis-  
ter. The nonvolatile register retains data even after  
power is removed. Upon power-up, the power-on reset  
circuitry controls the transfer of data from the non-  
volatile register to the volatile register.  
SDA  
S
P
SCL  
START  
CONDITION  
STOP  
CONDITION  
A write-protect feature prevents accidental overwriting  
of the EEPROM. Connect WP to V  
or leave open to  
DD  
prevent any EEPROM write cycles. The wiper register  
only updates with the value in the EEPROM when WP =  
Figure 3. Start and Stop Conditions  
SDA  
0
1
0
1
A2  
A1  
A0  
NOP/W  
ACK  
START  
MSB  
LSB  
SCL  
Figure 4. Slave Address  
_______________________________________________________________________________________  
9
Dual, 256-Tap, Nonvolatile, I2C-Interface,  
Digital Potentiometers  
interface, or if the master in a single-master system has  
an open-drain SCL output. SCL and SDA should not  
Table 1. Slave Addresses  
AꢂꢂRESS INPUTS  
exceed V  
in a mixed-voltage system, despite the  
DD  
SꢀAVE AꢂꢂRESS  
open-drain drivers.  
A2  
A1  
A0  
Each transmission consists of a START (S) condition  
(Figure 3) sent by a master, followed by the  
MAX5477/MAX5478/MAX5479 7-bit slave address plus  
the NOP/W bit (Figure 4), 1 command byte and 1 data  
byte, and finally a STOP (P) condition (Figure 3).  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
0101000  
0101001  
0101010  
0101011  
0101100  
0101101  
0101110  
0101111  
V
DD  
V
V
GND  
DD  
DD  
V
DD  
V
V
V
V
GND  
GND  
GND  
DD  
DD  
DD  
DD  
Start and Stop Conditions  
Both SCL and SDA remain high when the interface is  
not busy. A master controller signals the beginning of a  
transmission with a START condition by transitioning  
SDA from high to low while SCL is high. The master  
controller issues a STOP condition by transitioning the  
SDA from low to high while SCL is high, when it finishes  
communicating with the slave. The bus is then free for  
another transmission (Figure 3).  
V
DD  
V
V
GND  
DD  
DD  
V
DD  
V
. Connect WP to GND to allow write commands to  
DD  
the EEPROM and to update the wiper position from  
either the value in the EEPROM or directly from the I2C  
interface. Connecting WP to GND increases the supply  
current by 19.6µA (max).  
Bit Transfer  
One data bit is transferred during each clock pulse.  
The data on the SDA line must remain stable while SCL  
is high (Figure 5).  
Serial Addressing  
The MAX5477/MAX5478/MAX5479 operate as slave  
devices that send and receive data through an I2C-/  
SMBus™-compatible 2-wire serial interface. The inter-  
face uses a serial data access (SDA) line and a serial  
clock line (SCL) to achieve bidirectional communication  
between master(s) and slave(s). A master, typically a  
microcontroller, initiates all data transfers to the  
MAX5477/MAX5478/MAX5479, and generates the SCL  
clock that synchronizes the data transfer (Figure 1).  
Acknowledge  
The acknowledge bit is a clocked 9th bit that the recipient  
uses to handshake receipt of each byte of data (Figure  
6). Thus, each byte transferred effectively requires 9 bits.  
The master controller generates the 9th clock pulse, and  
the recipient pulls down SDA during the acknowledge  
clock pulse, so the SDA line remains stable low during  
the high period of the clock pulse.  
The MAX5477/MAX5478/MAX5479 SDA line operates  
as both an input and an open-drain output. The SDA  
line requires a pullup resistor, typically 4.7k. The  
MAX5477/MAX5478/MAX5479 SCL line operates only  
as an input. The SCL line requires a pullup resistor (typ-  
ically 4.7k) if there are multiple masters on the 2-wire  
Slave Address  
The MAX5477/MAX5478/MAX5479 have a 7-bit-long  
slave address (Figure 4). The 8th bit following the 7-bit  
CLOCK PULSE FOR  
ACKNOWLEDGMENT  
START  
SDA  
CONDITION  
SCL  
1
2
8
9
NOT ACKNOWLEDGE  
SCL  
SDA  
DATA STABLE, CHANGE OF  
DATA VALID  
DATA ALLOWED  
ACKNOWLEDGE  
Figure 5. Bit Transfer  
Figure 6. Acknowledge  
SMBus is a trademark of Intel Corporation.  
10 ______________________________________________________________________________________  
Dual, 256-Tap, Nonvolatile, I2C-Interface,  
Digital Potentiometers  
COMMAND BYTE IS STORED ON RECEIPT OF STOP CONDITION  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
ACKNOWLEDGE FROM  
MAX5477/MAX5478/MAX5479  
S
SLAVE ADDRESS  
0
A
COMMAND BYTE  
A
P
ACKNOWLEDGE FROM  
MAX5477/MAX5478/MAX5479  
NOP/W  
Figure 7. Command Byte Received  
ACKNOWLEDGE FROM  
MAX5477/MAX5478/MAX5479  
ACKNOWLEDGE FROM  
MAX5477/MAX5478/MAX5479  
HOW CONTROL BYTE AND DATA BYTE MAP INTO  
MAX5477/MAX5478/MAX5479 REGISTERS  
D15 D14 D13 D12 D11 D10 D9 D8  
D7 D6 D5 D4 D3 D2 D1 D0  
ACKNOWLEDGE FROM  
MAX5477/MAX5478/MAX5479  
A
P
S
SLAVE ADDRESS  
0
A
COMMAND BYTE  
A
DATA BYTE  
1 BYTE  
NOP/W  
Figure 8. Command and Single Data Byte Received  
NVREG: The data byte writes to the nonvolatile memory  
register. The wiper position is unchanged.  
slave address is the NOP/W bit. Set the NOP/W bit low for  
a write command and high for a no-operation command.  
NVREGxVREG: Data transfers from the nonvolatile  
memory register to the volatile memory register (wiper  
position updates).  
The MAX5477/MAX5478/MAX5479 provide three  
address inputs (A0, A1, and A2), allowing up to eight  
devices to share a common bus (Table 1). The first 4  
bits (MSBs) of the MAX5477/MAX5478/MAX5479 slave  
addresses are always 0101. A2, A1, and A0 set the next  
3 bits in the slave address. Connect each address input  
VREGxNVREG: Data transfers from the volatile memory  
register into the nonvolatile memory register.  
Nonvolatile Memory  
The internal EEPROM consists of a 16-bit nonvolatile  
register that retains the value written to it prior to power  
down. The nonvolatile register is programmed with the  
midscale value at the factory. The nonvolatile memory  
is guaranteed for 50 years for wiper position retention  
and up to 200,000 wiper write cycles. A write-protect  
feature prevents accidental overwriting of the EEPROM.  
to V  
or GND to set these 3 bits. Each device must  
DD  
have a unique address to share a common bus.  
Message Format for Writing  
Write to the MAX5477/MAX5478/MAX5479 by transmit-  
ting the device’s slave address with NOP/W (8th bit) set  
to zero, followed by at least 1 byte of information  
(Figure 7). The 1st byte of information is the command  
byte. The bytes received after the command byte are  
the data bytes. The 1st data byte goes into the internal  
register of the MAX5477/MAX5478/MAX5479 as select-  
ed by the command byte (Figure 8).  
Connect WP to V  
or leave open to enable the write-  
DD  
protect feature. The wiper position only updates with  
the value in the EEPROM when WP = V . Connect WP  
DD  
to GND to allow EEPROM write cycles and to update  
the wiper position from nonvolatile memory or directly  
from the I2C serial interface.  
Command Byte  
Use the command byte to select the source and desti-  
nation of the wiper data (nonvolatile or volatile memory  
registers) and swap data between nonvolatile and  
volatile memory registers (see Table 2).  
Power-Up  
Upon power-up, the MAX5477/MAX5478/MAX5479  
load the data stored in the nonvolatile memory register  
into the volatile memory register, updating the wiper  
position with the data stored in the nonvolatile memory  
register. This initialization period takes 10µs.  
Command Descriptions  
VREG: The data byte writes to the volatile memory reg-  
ister and the wiper position updates with the data in the  
volatile memory register.  
______________________________________________________________________________________ 11  
Dual, 256-Tap, Nonvolatile, I2C-Interface,  
Digital Potentiometers  
Table 2. Command ꢁyte Summary  
AꢂꢂRESS ꢁYTE  
COMMANꢂ ꢁYTE  
ꢂATA ꢁYTE  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27  
NOTES  
SCL CYCLE START  
STOP  
(P)  
ACK  
(A)  
ACK  
(A)  
ACK  
(A)  
NUMBER  
(S)  
A6 A5 A4 A3 A2 A1 A0  
TX NV V R3 R2 R1 R0  
D7 D6 D5 D4 D3 D2 D1 D0  
VREG  
NVREG  
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
A2 A1 A0  
A2 A1 A0  
A2 A1 A0  
A2 A1 A0  
A2 A1 A0  
A2 A1 A0  
A2 A1 A0  
A2 A1 A0  
A2 A1 A0  
A2 A1 A0  
A2 A1 A0  
A2 A1 A0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
1
1
0
0
1
1
0
0
1
1
0
1
0
0
1
1
0
0
1
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
WIPER A  
ONLY  
NVREGxVREG  
VREGxNVREG  
VREG  
NVREG  
WIPER B  
ONLY  
NVREGxVREG  
VREGxNVREG  
VREG  
NVREG  
WIPERS  
A AND B  
NVREGxVREG  
VREGxNVREG  
ing and gain to the resistor-divider network made by  
the potentiometer (Figure 9) or by a fixed resistor and a  
variable resistor (see Figure 10).  
Standby  
The MAX5477/MAX5478/MAX5479 feature a low-power  
standby mode. When the device is not being pro-  
grammed, it enters into standby mode and supply cur-  
rent drops to 500nA (typ).  
Programmable Filter  
Figure 11 shows the MAX5477/MAX5478/MAX5479 in a  
1st-order programmable application filter. Adjust the  
Applications Information  
gain of the filter with R , and set the cutoff frequency  
2
The MAX5477/MAX5478/MAX5479 are ideal for circuits  
requiring digitally controlled adjustable resistance,  
such as LCD contrast control (where voltage biasing  
adjusts the display contrast), or for programmable fil-  
ters with adjustable gain and/or cutoff frequency.  
with R . Use the following equations to calculate the  
3
gain (A) and the -3dB cutoff frequency (f ):  
C
R
1
A = 1 +  
R
2
Positive LCD Bias Control  
Figures 9 and 10 show an application where the  
MAX5477/MAX5478/MAX5479 provide an adjustable,  
positive LCD bias voltage. The op amp provides buffer-  
1
f
=
C
2π × R × C  
3
5V  
5V  
H_  
30V  
30V  
W_  
MAX5477  
MAX5478  
MAX5479  
V
OUT  
H_  
V
OUT  
MAX480  
MAX480  
L_  
MAX5477  
MAX5478  
MAX5479  
W_  
L_  
Figure 10. Positive LCD Bias Control Using a Variable Resistor  
12 ______________________________________________________________________________________  
Figure 9. Positive LCD Bias Control Using a Voltage-Divider  
Dual, 256-Tap, Nonvolatile, I2C-Interface,  
Digital Potentiometers  
5V  
WA  
V+  
1/2 MAX5477  
WA  
LA  
V
IN  
HA  
R
3
HA  
LA  
C
V
OUT  
MAX410  
7
3
2
1
8
MAX5477  
MAX5478  
MAX5479  
V-  
6
MAX410  
R
1
4
R = R x D / 256  
WHERE R = END-TO-END RESISTANCE  
AND = D DECIMAL VALUE OF WIPER CODE  
2
HL  
HB  
R , R = R x D / 256  
2
3
HL  
R1  
HL  
WHERE R = END-TO-END RESISTANCE  
AND D = DECIMAL VALUE OF WIPER CODE  
HL  
HB  
WB  
R
2
1/2 MAX5477  
R2  
WB  
LB  
LB  
Figure 11. Programmable Filter  
Figure 12. Offset Voltage Adjustment Circuit  
5V  
10k  
V
V
V
= 1.23V x  
= 1.23V x  
= 1.23V x  
FOR THE MAX5477  
FOR THE MAX5478  
FOR THE MAX5479  
IN  
IN  
OUT_  
OUT_  
OUT_  
R
V
OUT  
ADJ  
OUT  
V
OUT1  
OUT2  
50kΩ  
R
HB  
LB  
HA  
MAX6160  
MAX6160  
100kΩ  
R
WA  
WB  
1/2 MAX5477  
1/2 MAX5478  
1/2 MAX5479  
1/2 MAX5477  
1/2 MAX5478  
1/2 MAX5479  
ADJ  
WHERE R = R x D / 256  
HL  
AND D = DECIMAL VALUE OF WIPER CODE  
R
R
GND  
GND  
LA  
Figure 13. Adjustable Voltage Reference  
Offset Voltage and Gain Adjustment  
Connect the high and low terminals of one potentiome-  
ter of a MAX5477 between the NULL inputs of a  
MAX410 and the wiper to the op amp’s positive supply  
to nullify the offset voltage over the operating tempera-  
ture range. Install the other potentiometer in the feed-  
back path to adjust the gain of the MAX410 (Figure 12).  
Pin Configurations  
TOP VIEW  
N.C. HA  
WA  
14  
LA  
13  
16  
15  
HA  
WA  
LA  
1
2
3
4
5
6
7
14 V  
DD  
Adjustable Voltage Reference  
Figure 13 shows the MAX5477/MAX5478/MAX5479  
used as the feedback resistors in multiple adjustable  
voltage reference applications. Independently adjust  
the output voltages of the MAX6160 parts from 1.23V to  
V
DD  
HB  
WB  
LB  
1
2
3
4
12  
11  
10  
9
13 SCL  
12 SDA  
11 A0  
SCL  
SDA  
A0  
MAX5477  
MAX5478  
MAX5479  
MAX5477  
MAX5478  
MAX5479  
HB  
WB  
LB  
10 A1  
WP  
V
- 0.2V by changing the wiper positions of the  
9
8
A2  
IN  
MAX5477/MAX5478/MAX5479.  
5
6
7
8
WP  
GND  
A1  
A2 GND  
N.C.  
Chip Information  
TRANSISTOR COUNT: 12,651  
THIN QFN  
TSSOP  
(4.4mm x 5mm)  
(3mm x 3mm)  
PROCESS: BiCMOS  
______________________________________________________________________________________ 13  
Dual, 256-Tap, Nonvolatile, I2C-Interface,  
Digital Potentiometers  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
D2  
b
0.10 M  
C
A
B
D
D2/2  
D/2  
E/2  
E2/2  
(NE - 1)  
X e  
C
E
E2  
L
L
k
e
C
L
(ND - 1)  
X e  
C
L
C
L
0.10  
C
0.08 C  
A
A2  
A1  
L
L
e
e
PACKAGE OUTLINE  
12, 16L, THIN QFN, 3x3x0.8mm  
1
E
21-0136  
2
EXPOSED PAD VARIATIONS  
DOWN  
BONDS  
ALLOWED  
NOTES:  
1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.  
3. N IS THE TOTAL NUMBER OF TERMINALS.  
4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO  
JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED  
WITHIN THE ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR  
MARKED FEATURE.  
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.20 mm AND 0.25 mm  
FROM TERMINAL TIP.  
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.  
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.  
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.  
9. DRAWING CONFORMS TO JEDEC MO220 REVISION C.  
PACKAGE OUTLINE  
12, 16L, THIN QFN, 3x3x0.8mm  
2
E
21-0136  
2
14 ______________________________________________________________________________________  
Dual, 256-Tap, Nonvolatile, I2C-Interface,  
Digital Potentiometers  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
15 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2004 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX5478EUD-T

Digital Potentiometer, 1 Func, 50000ohm, 2-wire Serial Control Interface, 256 Positions, BICMOS, PDSO14, 4.40 X 5 MM, MO-153AB-1, TSSOP-14
MAXIM

MAX5479

Dual, 256-Tap, Nonvolatile, I2C-Interface, Digital Potentiometers
MAXIM

MAX5479ETE

Dual, 256-Tap, Nonvolatile, I2C-Interface, Digital Potentiometers
MAXIM

MAX5479ETE#G16

Digital Potentiometer, 1 Func, 100000ohm, 2-wire Serial Control Interface, 256 Positions, BICMOS, 3 X 3 MM, 0.80 MM HEIGHT, MO-220WEED-2, TQFN-16
MAXIM

MAX5479ETE+

Digital Potentiometer, 1 Func, 100000ohm, 2-wire Serial Control Interface, 256 Positions, BICMOS, 3 X 3 MM, 0.80 MM HEIGHT, LEAD FREE, MO-220WEED-2, TQFN-16
MAXIM

MAX5479EUD

Dual, 256-Tap, Nonvolatile, I2C-Interface, Digital Potentiometers
MAXIM

MAX5479EUD-T

Digital Potentiometer, 1 Func, 100000ohm, 2-wire Serial Control Interface, 256 Positions, BICMOS, PDSO14, 4.40 X 5 MM, MO-153AB-1, TSSOP-14
MAXIM

MAX547ACMH

Octal, 13-Bit Voltage-Output DAC with Parallel Interface
MAXIM

MAX547ACMH+

D/A Converter, 1 Func, Parallel, Word Input Loading, 5us Settling Time, PQFP44, 10 X 10 MM, 2 MM HEIGHT, ROHS COMPLIANT, MQFP-44
MAXIM

MAX547ACMH+D

D/A Converter, 1 Func, Parallel, Word Input Loading, 5us Settling Time, PQFP44, FP-44
MAXIM

MAX547ACMH+T

D/A Converter, 1 Func, Parallel, Word Input Loading, 5us Settling Time, PQFP44, 10 X 10 MM, 2 MM HEIGHT, ROHS COMPLIANT, MQFP-44
MAXIM

MAX547ACMH-T

D/A Converter, 1 Func, Parallel, Word Input Loading, 5us Settling Time, PQFP44, 10 X 10 MM, 2 MM HEIGHT, MQFP-44
MAXIM