MAX547BEQH+TD [MAXIM]

D/A Converter, 1 Func, Parallel, Word Input Loading, 5us Settling Time, PQCC44, PLASTIC, ROHS COMPLIANT, LCC-44;
MAX547BEQH+TD
型号: MAX547BEQH+TD
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

D/A Converter, 1 Func, Parallel, Word Input Loading, 5us Settling Time, PQCC44, PLASTIC, ROHS COMPLIANT, LCC-44

文件: 总16页 (文件大小:231K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0257; Rev 3; 12/95  
Oc t a l, 1 3 -Bit Vo lt a g e -Ou t p u t DAC  
w it h P a ra lle l In t e rfa c e  
MAX547  
_________________Ge n e ra l De s c rip t io n  
_____________________________Fe a t u re s  
The MAX547 contains eight 13-bit, voltage-output digital-to-  
analog converters (DACs). On-chip precision output ampli-  
fiers provide the voltage outputs. The MAX547 operates  
from a ±5V supply. Bipolar output voltages with up to ±4.5V  
voltage swing can be achieved with no external compo-  
nents. The MAX547 has four separate reference inputs;  
each is connected to two DACs, providing different full-  
scale output voltages for every DAC pair.  
Full 13-Bit Performance without Adjustments  
8 DACs in One Package  
Buffered Voltage Outputs  
Calibrated Linearity  
Guaranteed Monotonic to 13 Bits  
±5V Supply Operation  
Unipolar or Bipolar Outputs Swing to ±4.5V  
Fast Output Settling (5µs to ±12LSB)  
Double-Buffered Digital Inputs  
The MAX547 features double-buffered interface logic with a  
13-bit parallel data bus. Each DAC has an input latch and a  
DAC latch. Data in the DAC latch sets the output voltage. The  
eight input latches are addressed with three address lines.  
Asynchronous Load Inputs Load Pairs of DAC Latches  
–  
Data is loaded to the input latch with a single write instruction.  
–  
Asynchronous CLR Input Resets DACs to Analog  
An asynchronous load (LD_) input transfers data from the  
–  
Ground  
input latch to the DAC latch. The four LD_ inputs each control  
Power-On Reset Circuit Resets DACs to Analog Ground  
Microprocessor and TTL/CMOS Compatible  
two DACs, and all DAC latches can be updated simultane-  
ously by asserting all LD_ pins. An asynchronous clear (CLR)  
–  
–  
input resets the output of all eight DACs to AGND_. Asserting  
–  
________________Ord e rin g In fo rm a t io n  
CLR resets both the DAC and the input latch to bipolar zero  
(1000hex). On power-up, reset circuitry performs the same  
–  
INL  
(LSBs)  
function as CLR. All logic inputs are TTL/CMOS compatible.  
PART  
TEMP. RANGE  
PIN-PACKAGE  
The MAX547 is available in 44-pin plastic quad flat pack  
and 44-pin PLCC packages.  
________________________Ap p lic a t io n s  
MAX547ACQH  
MAX547BCQH  
MAX547ACMH  
MAX547BCMH  
MAX547BC/D  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
44 PLCC  
44 PLCC  
±2  
±4  
±2  
±4  
±4  
44 Plastic FP  
44 Plastic FP  
Dice*  
Automatic Test Equipment  
Minimum Component-Count Analog Systems  
Digital Offset/Gain Adjustment  
Arbitrary Function Generators  
Industrial Process Controls  
Ordering Information continued at end of data sheet.  
*Contact factory for dice specifications.  
Avionics Equipment  
_______________________________________________________________P in Co n fig u ra t io n s  
TOP VIEW  
43  
42 41 40  
6
5
4
3
2
1
44  
VOUTB  
VOUTA  
1
2
3
4
5
6
7
8
9
VOUTG  
VOUTH  
33  
32  
31  
30  
29  
28  
VOUTB  
VOUTA  
7
8
39 VOUTG  
38 VOUTH  
V
DD  
V
DD  
V
DD  
9
37  
V
DD  
REFAB  
AGNDAB  
LDAB  
REFGH  
AGNDGH  
GND  
LDGH  
LDEF  
D0  
10  
36 REFGH  
REFAB  
AGNDAB 11  
LDAB 12  
LDCD 13  
CS 14  
35  
34  
33  
32  
31  
30  
29  
AGNDGH  
GND  
LDGH  
LDEF  
D0  
MAX547  
MAX547  
27  
26  
25  
24  
LDCD  
CS  
WR  
A2  
10  
11  
D1  
WR 15  
23  
A1  
D2  
A2 16  
D1  
A1 17  
D2  
18 19 20 21 22 23 24 25 26 27 28  
PLASTIC FP  
PLCC  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800  
Oc t a l, 1 3 -Bit Vo lt a g e -Ou t p u t  
DAC w it h P a ra lle l In t e rfa c e  
ABSOLUTE MAXIMUM RATINGS  
DD  
V
to GND ..............................................................-0.3V to +6V  
to GND...............................................................-6V to +0.3V  
Continuous Power Dissipation (T = +70°C)  
A
V
PLCC (derate 13.33mW/°C above +70°C)...................1067mW  
Plastic FP (derate 11.11mW/°C above +70°C )..............889mW  
Operating Temperature Ranges  
SS  
Digital Input Voltage to GND ......................-0.3V to (V + 0.3V)  
REF_ ..........................................(AGND_ - 0.3V) to (V + 0.3V)  
DD  
DD  
MAX547 C H.........................................................0°C to +70°C  
AGND_ .............................................(V - 0.3V) to (V + 0.3V)  
SS  
DD  
– –  
MAX547 E H......................................................-40°C to +85°C  
– –  
VOUT_ ........................................................................V to V  
DD  
SS  
Storage Temperature Range .............................-65°C to +150°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
Maximum Current into REF_ Pin .......................................±10mA  
Maximum Current into Any Other Signal Pin ....................±50mA  
MAX547  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress rat-  
ings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of  
the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = +5V, V = -5V, REF_ = 4.096V, AGND_ = GND = 0V, R = 10k, C = 50pF, T = T  
to T  
, unless otherwise noted.  
DD  
SS  
L
L
A
MIN  
MAX  
Typical values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
STATIC PERFORMANCE—ANALOG SECTION  
Resolution  
N
13  
Bits  
MAX547A  
MAX547B  
±0.5  
±0.5  
±2  
±4  
Relative Accuracy  
INL  
DNL  
LSB  
Differential Nonlinearity  
Bipolar Zero-Code Error  
Gain Error  
Guaranteed monotonic  
±1  
LSB  
LSB  
LSB  
±5  
±20  
±1  
±8  
Gain/V (Note 1)  
±0.0025  
±0.0025  
DD  
Power-Supply Rejection Ratio  
Load Regulation  
PSRR  
%/%  
LSB  
Gain/V (Note 1)  
SS  
R = to 10kΩ  
0.3  
L
REFERENCE INPUT (Note 2)  
Reference Input Range  
REF  
(Notes 2, 3)  
V
AGND  
5
V
DD  
Reference Input Resistance  
RREF  
Each REF pin (Note 3)  
kΩ  
ANALOG OUTPUT  
Maximum Output Voltage  
Minimum Output Voltage  
V
V
V
- 0.5  
DD  
V
SS  
+ 0.5  
DYNAMIC PERFORMANCE—ANALOG SECTION  
Voltage-Output Slew Rate  
3
5
5
5
V/µs  
µs  
1
±
Output Settling Time  
Digital Feedthrough  
Digital Crosstalk  
To  
LSB of full scale (Note 4)  
2
nV-s  
nV-s  
DIGITAL INPUTS (V = 5V ±5%)  
DD  
Input Voltage High  
Input Voltage Low  
Input Current  
V
2.4  
V
V
IH  
V
IL  
0.8  
1.0  
10  
I
IN  
V
= 0V or V  
DD  
µA  
pF  
IN  
Input Capacitance  
C
(Note 5)  
IN  
2
_______________________________________________________________________________________  
Oc t a l, 1 3 -Bit Vo lt a g e -Ou t p u t  
DAC w it h P a ra lle l In t e rfa c e  
MAX547  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +5V, V = -5V, REF_ = 4.096V, AGND_ = GND = 0V, R = 10k, C = 50pF, T = T  
to T  
, unless otherwise noted.  
DD  
SS  
L
L
A
MIN  
MAX  
Typical values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER SUPPLIES  
Positive Supply Range  
Negative Supply Range  
Positive Supply Current  
Negative Supply Current  
V
(Note 6)  
(Note 6)  
4.75  
5.25  
-4.75  
44  
V
V
DD  
V
-5.25  
SS  
I
T
= T  
= T  
to T  
14  
11  
mA  
mA  
A
MIN  
MIN  
MAX  
DD  
I
T
to T  
40  
A
MAX  
SS  
Note 1: PSRR is tested by changing the respective supply voltage by ±5%.  
Note 2: For best performance, REF_ should be greater than AGND_ + 2V and less than V - 0.6V. The device operates with  
DD  
reference inputs outside this range, but performance may degrade. For further information on the reference, see the  
Reference and Analog-Ground Inputs section in the Detailed Description.  
Note 3: Reference input resistance is code dependent. See Reference and Analog-Ground Inputs section in the Detailed  
Description.  
Note 4: Typical settling time with 1000pF capacitive load is 10µs.  
Note 5: Guaranteed by design. Not production tested.  
Note 6: Guaranteed by supply-rejection test.  
TIMING CHARACTERISTICS  
(V = +5V, V = -5V, REF_ = 4.096V, AGND_ = GND = 0V, T = T  
to T  
, unless otherwise noted.)  
DD  
SS  
A
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
50  
50  
50  
100  
0
TYP  
MAX  
UNITS  
ns  
–  
t
1
t
2
t
3
t
4
t
5
t
6
t
7
t
8
t
9
CS Pulse Width Low  
–  
ns  
WR Pulse Width Low  
–  
ns  
LD Pulse Width Low  
–  
ns  
CLR Pulse Width Low  
–  
–  
ns  
CS Low to WR Low  
–  
–  
ns  
0
CS High to WR High  
–  
ns  
Data Valid to WR Setup  
50  
0
–  
ns  
Data Valid to WR Hold  
–  
ns  
Address Valid to WR Setup  
10  
0
–  
t
ns  
10  
Address Valid to WR Hold  
_______________________________________________________________________________________  
3
Oc t a l, 1 3 -Bit Vo lt a g e -Ou t p u t  
DAC w it h P a ra lle l In t e rfa c e  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(V = 5V, V = -5V, REF_ = 4.096V, AGND_ = GND = 0V, T = +25°C, unless otherwise noted.)  
DD  
SS  
A
RELATIVE ACCURACY vs.  
REFERENCE VOLTAGE  
SUPPLY CURRENT  
vs. TEMPERATURE  
RELATIVE ACCURACY  
vs. DIGITAL INPUT CODE  
0.5  
20  
15  
10  
5
3
2
0.4  
0.3  
0.2  
0.1  
0
I
DD  
MAX547  
1
0
0
-5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
I
SS  
-10  
-1  
-2  
-15  
-20  
5
-60 -40 -20  
0
20 40 60 80 100 120 140  
0
1
2
3
4
REFERENCE VOLTAGE (V)  
TEMPERATURE (°C)  
DIGITAL INPUT CODE (DECIMAL)  
TOTAL HARMONIC DISTORTION  
+ NOISE AT DAC OUTPUT  
vs. REFERENCE FREQUENCY  
TOTAL HARMONIC DISTORTION  
+ NOISE AT DAC OUTPUT  
vs. REFERENCE FREQUENCY  
SETTLING TIME  
vs. LOAD CAPACITANCE  
0.100  
0.090  
0.080  
0.070  
0.060  
0.050  
0.040  
0.030  
0.020  
0.010  
0
0.100  
0.090  
0.080  
0.070  
0.060  
0.050  
0.040  
0.030  
0.020  
0.010  
0
1000  
100  
REF = 4V  
INPUT CODE = ALL 1s  
REF = 2V  
INPUT CODE = ALL 1s  
p-p  
p-p  
10  
1
1
10  
100  
1000  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
FREQUENCY (kHz)  
LOAD CAPACITANCE (nF)  
FREQUENCY (kHz)  
REFERENCE INPUT SMALL-SIGNAL  
FREQUENCY RESPONSE  
REFERENCE INPUT LARGE-SIGNAL  
FREQUENCY RESPONSE  
REFERENCE FEEDTHROUGH  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
2
0
6
0
-2  
SINE WAVE AT REF  
SINE WAVE AT REF_  
2V ±2V  
CODE ALL 1s  
-6  
-12  
-18  
-24  
-30  
-36  
2V ±100mV  
CODE ALL 1s  
-6  
-10  
-14  
-18  
-22  
SINE WAVE AT REF_  
2V ±2V  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000 10,000  
0.1  
1
10  
100  
1000 10,000  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
4
_______________________________________________________________________________________  
Oc t a l, 1 3 -Bit Vo lt a g e -Ou t p u t  
DAC w it h P a ra lle l In t e rfa c e  
MAX547  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = 5V, V = -5V, REF_ = 4.096V, AGND_ = GND = 0V, T = +25°C, unless otherwise noted.)  
DD  
SS  
A
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY  
FULL-SCALE ERROR  
vs. LOAD RESISTANCE  
0
2.0  
1.5  
-10  
-20  
-30  
-40  
-50  
-60  
V
DD  
= V = 5V ±200mV  
SS  
NEGATIVE  
FULL-SCALE  
NO LOAD  
1.0  
0.5  
0
V
V
DD  
SS  
REF_ = 4.096V  
-0.5  
-1.0  
-1.5  
-2.0  
POSITIVE  
FULL-SCALE  
-70  
-80  
0.01  
0.1  
1
10  
100  
1000  
100  
1
10  
1000  
FREQUENCY (kHz)  
LOAD RESISTANCE (kΩ)  
NEGATIVE SETTLING TIME TO FULL-SCALE STEP  
(ALL BITS ON TO ALL BITS OFF)  
POSITIVE SETTLING TIME TO FULL-SCALE STEP  
(ALL BITS OFF TO ALL BITS ON)  
DIGITAL  
INPUTS  
(5V/div)  
DIGITAL  
INPUTS  
(5V/div)  
OUTPUT  
OUTPUT  
(1mV/div)  
(1mV/div)  
2µs/div  
2µs/div  
REF = 4.096V, C = 100pF, R = 5kΩ  
REF = 4.096V, C = 100pF, R = 5kΩ  
L L  
L
L
DYNAMIC RESPONSE  
(ALL BITS OFF, ON, OFF)  
DIGITAL FEEDTHROUGH  
(GLITCH IMPULSE)  
+5V  
0V  
DIGITAL  
INPUTS  
(5V/div)  
10mV  
0V  
-10mV  
OUTPUT  
(2V/div)  
200ns/div  
2µs/div  
TOP: DIGITAL TRANSITION ON ALL DATA BITS  
BOTTOM: DAC OUTPUT WITH WR HIGH 10mV/div  
REF = 4.096V, C = 100pF, R = 5kΩ  
L
L
_______________________________________________________________________________________  
5
Oc t a l, 1 3 -Bit Vo lt a g e -Ou t p u t  
DAC w it h P a ra lle l In t e rfa c e  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = 5V, V = -5V, REF_ = 4.096V, AGND_ = GND = 0V, T = +25°C, unless otherwise noted.)  
DD  
SS  
A
ADJACENT-CHANNEL CROSSTALK  
ADJACENT-CHANNEL CROSSTALK  
A:  
A
5V/div  
5V/div  
MAX547  
B
B:  
5mV/div  
5mV/div  
500ns/div  
REF = 4.096V, C = 50pF, R = 10kΩ  
500ns/div  
L
L
REF = 4.096V, C = 50pF, R = 10kΩ  
L
L
A: DIGITAL INPUTS, DAC A, DATA BITS from ALL Os to OAAAhex  
B: OUTPUT, DAC B  
A: DIGITAL INPUTS, DAC A, DATA BITS from OAAAhex to ALL Os  
B: OUTPUT, DAC B  
______________________________________________________________P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
FLAT  
PACK  
PLCC  
Clear Input (active low). Driving this asynchronous input low sets the content of all latches to  
1000hex. All DAC outputs are reset to AGND_.  
–  
CLR  
1
39  
2
3
40  
41  
AGNDCD  
REFCD  
Analog Ground for DAC C and DAC D  
Reference Voltage Input for DAC C and DAC D. Bypass to AGNDCD with a 0.1µF to 1µF capacitor.  
Negative Power Supply, -5V (2 pins). Connect both pins to the supply voltage. Bypass each pin  
to the system analog ground with a 0.1µF to 1µF capacitor.  
4, 42  
42, 36  
V
SS  
5
6
7
8
43  
44  
1
VOUTD  
VOUTC  
VOUTB  
VOUTA  
DAC D Output Voltage  
DAC C Output Voltage  
DAC B Output Voltage  
DAC A Output Voltage  
2
Positive Power Supply, 5V (2 pins). Connect both pins to the supply voltage. Bypass each pin to  
the system analog ground with a 0.1µF to 1µF capacitor.  
9, 37  
3, 31  
V
DD  
10  
11  
4
5
REFAB  
Reference Voltage Input for DAC A and DAC B. Bypass to AGNDAB with a 0.1µF to 1µF capacitor.  
Analog Ground for DAC A and DAC B  
AGNDAB  
Load Input (active low). Driving this asynchronous input low transfers the contents of input latches  
A and B to the respective DAC latches.  
——–  
LDAB  
12  
13  
6
7
Load Input (active low). Driving this asynchronous input low transfers the contents of input latches  
C and D to the respective DAC latches.  
——–  
LDCD  
–  
CS  
14  
15  
8
9
Chip Select (active low)  
–  
–  
–  
WR  
Write Input (active low). WR, along with CS, loads data into the DAC input latch selected by A0–A2.  
6
_______________________________________________________________________________________  
Oc t a l, 1 3 -Bit Vo lt a g e -Ou t p u t  
DAC w it h P a ra lle l In t e rfa c e  
MAX547  
_________________________________________________P in De s c rip t io n (c o n t in u e d )  
PIN  
NAME  
FUNCTION  
FLAT  
PACK  
PLCC  
16  
17  
10  
11  
A2  
A1  
Address Bit 2  
Address Bit 1  
Address Bit 0  
Data Bits 12–0  
18  
12  
A0  
19–31  
13–25  
D12–D0  
—–  
LDEF  
Load Input (active low). Driving this asynchronous input low transfers the contents of input latches  
E and F to the respective DAC latches.  
32  
33  
26  
27  
——–  
LDGH  
Load Input (active low). Driving this asynchronous input low transfers the contents of input latches  
G and H to the respective DAC latches.  
34  
35  
36  
38  
39  
40  
41  
43  
44  
28  
29  
30  
32  
33  
34  
35  
37  
38  
GND  
AGNDGH  
REFGH  
VOUTH  
VOUTG  
VOUTF  
VOUTE  
REFEF  
Digital Ground  
Analog Ground for DAC G and DAC H  
Reference Voltage Input for DAC G and DAC H. Bypass to AGNDGH with a 0.1µF to 1µF capacitor.  
DAC H Output Voltage  
DAC G Output Voltage  
DAC F Output Voltage  
DAC E Output Voltage  
Reference Voltage Input for DAC E and DAC F. Bypass to AGNDEF with a 0.1µF to 1µF capaci-  
Analog Ground for DAC E and DAC F  
AGNDEF  
_______________De t a ile d De s c rip t io n  
An a lo g S e c t io n  
The MAX547 c onta ins e ig ht 13-b it, volta g e -outp ut  
DACs. These DACs are “inverted” R-2R ladder net-  
works that convert 13-bit digital inputs into equivalent  
analog output voltages, in proportion to the applied ref-  
erence voltages. The MAX547 has one reference input  
(REF_) and one analog-ground input (AGND_) for each  
pair of DACs. The four REF_ inputs allow different full-  
scale output voltages for each DAC pair, and the four  
AGND_ inputs allow different offset voltages for each  
DAC pair.  
R
R
OUT  
R
R
R
V
DAC  
2R 2R  
D0  
2R  
D10  
2R  
D11  
2R  
D12  
REF  
The DAC ladder outputs are buffered with op amps that  
operate with a gain of two. The inverting node of the  
a mp lifie r is c onne c te d to the re s p e c tive re fe re nc e  
input, resulting in bipolar output voltages from -REF_ to  
4095/4096 REF_. Figure 1 shows the simplified DAC  
circuit.  
AGND  
Figure 1. DAC Simplified Circuit Diagram  
_______________________________________________________________________________________  
7
Oc t a l, 1 3 -Bit Vo lt a g e -Ou t p u t  
DAC w it h P a ra lle l In t e rfa c e  
Reference and Analog-Ground Inputs  
Table 1. MAX547 DAC Addressing  
The REF_ inputs can range between AGND_ and VDD  
.
A2  
A1  
A0  
FUNCTION  
However, the DAC outputs will operate to VDD - 0.6V  
and VSS + 0.6V, due to the output amplifiers voltage-  
swing limitations. The AGND_ inputs can be offset by  
any voltage within the supply rails. The offset-voltage  
potential must be lower than the reference-voltage  
potential. For more information, refer to the Digital Code  
and Analog Output Voltage section in the Applications  
Information.  
0
0
0
DAC A input latch  
0
0
1
DAC B input latch  
DAC C input latch  
DAC D input latch  
DAC E input latch  
DAC F input latch  
DAC G input latch  
DAC H input latch  
0
1
0
0
1
1
MAX547  
1
0
0
1
0
1
The input impedance of the REF_ inputs is code depen-  
dent. It is at its lowest value (5kmin) when the input  
code of the referring DAC pair is 0 1010 1010 1010  
(0AAAhex). Its maximum value, typically 50k, occurs  
when the code is 0000hex. When all reference inputs are  
driven from the same source, the minimum load imped-  
ance is 1.25k. Since the input impedance at REF_ is  
code dependent, load regulation of the reference used is  
imp orta nt. For more informa tion, s e e Re fe re nc e  
Selection in the Applications Information section.  
1
1
0
1
1
1
TO INPUT LATCH OF DAC H  
TO INPUT LATCH OF DAC G  
TO INPUT LATCH OF DAC F  
TO INPUT LATCH OF DAC E  
TO INPUT LATCH OF DAC D  
TO INPUT LATCH OF DAC C  
TO INPUT LATCH OF DAC B  
TO INPUT LATCH OF DAC A  
A2  
A1  
A0  
The input capacitance at REF_ is also code dependent,  
and typically varies from 125pF to 300pF. Its minimum  
value occurs when the code of the referring DAC pair is  
set to all 0s. It is at its maximum value with all 1s on both  
DACs.  
Output Buffer Amplifiers  
The MAX547s voltage outputs are internally buffered  
by precision gain-of-two amplifiers with a typical slew  
rate of 3V/µs. With a full-scale transition at its output,  
the typical settling time to ±12LSB is 5µs when loaded  
with 10kin parallel with 50pF, or 6µs when loaded  
with 10kin parallel with 100pF.  
CS  
WR  
LDGH  
TO DAC LATCHES OF DAC G AND DAC H  
TO DAC LATCHES OF DAC E AND DAC G  
TO DAC LATCHES OF DAC C AND DAC D  
LDEF  
LDCD  
LDAB  
CLR  
Dig it a l In p u t s a n d In t e rfa c e Lo g ic  
TO DAC LATCHES OF DAC C AND DAC B  
TO ALL INPUT AND DAC LATCHES  
All digital inputs are compatible with both TTL and  
CMOS logic. The MAX547 interfaces with microproces-  
sors using a data bus at least 13 bits wide. The inter-  
face is double buffered, allowing simultaneous update  
of all DACs. There are two latches for each DAC (see  
Functional Diagram): an input latch that receives data  
from the data bus, and a DAC latch that receives data  
from the input latch. Address lines A0, A1, and A2  
select which DACs input latch receives data from the  
data bus, as shown in Table 1. Transfer data from the  
input latches to the DAC latches by asserting the asyn-  
c hronous LD_ s ig na l. Ea c h DACs a na log outp ut  
reflects the data held in its DAC latch. All control inputs  
are level triggered.  
Figure 2. Input Control Logic  
the DAC latch is transparent when LD_ is low. The  
address lines (A0, A1, A2) must be valid throughout the  
time CS and WR are low (Figure 3). Otherwise, the data  
can be inadvertently written to the wrong DAC. Data is  
latched within the input latch when either CS or WR is  
high. Taking LD_ high latches data into the DAC latches.  
If LD_ is brought low when WR and CS are low, it must  
be held low for t3 or longer after WR and CS are high  
(Figure 3).  
Data can be latched or transferred directly to the DAC.  
CS and WR control the input latch and LD_ transfers  
information from the input latch to the DAC latch. The  
input latch is transparent when CS and WR are low, and  
Pulling the asynchronous CLR input low sets all DAC  
outputs to a nominal 0V, regardless of the state of CS,  
WR, and LD_. Taking CLR high latches 1000hex into  
all input latches and DAC latches.  
8
_______________________________________________________________________________________  
Oc t a l, 1 3 -Bit Vo lt a g e -Ou t p u t  
DAC w it h P a ra lle l In t e rfa c e  
MAX547  
__________Ap p lic a t io n s In fo rm a t io n  
Table 2. Interface Truth Table  
 –  
–—–  
CS  
CLR LD  
WR  
FUNCTION  
Mu lt ip lyin g Op e ra t io n  
1
1
1
1
1
1
1
0
1
1
0
0
Both latches transparent  
Both latches latched  
Both latches latched  
Input latch transparent  
Input latch latched  
The MAX547 can be used for multiplying applications.  
Its reference accepts both DC and AC signals. The volt-  
age at each REF_ input sets the full-scale output voltage  
for its respective DACs. Since the reference inputs  
accept only positive voltages, multiplying operation is  
limited to two quadrants. Do not bypass the reference  
inputs when applying AC signals to them. Refer to the  
graphs in the Typical Operating Characteristics for  
dynamic performance of the DACs and output buffers.  
1
X
1
X
0
X
X
X
0
0
1
X
1
X
X
Input latch latched  
X
DAC latch transparent  
All input and DAC latches at  
Dig it a l Co d e a n d An a lo g Ou t p u t Vo lt a g e  
0
X
X
X
1000hex, outputs at AGND  
The MAX547 uses offset binary coding. A 13-bit twos-  
complement code can be converted to a 13-bit offset  
binary code by adding 212 = 4096.  
Bipolar Output Voltage Range (AGND_ = 0V)  
For symmetrical bipolar operation, tie AGND_ to the  
system ground. Table 3 shows the relationship between  
digital code and output voltage. The following para -  
graphs give a detailed explanation of this mode.  
t
1
CS  
t
5
t
6
The DAC ladder output voltage (VDAC) is multiplied by  
2 and level shifted by the reference voltage, which is  
internally connected to the output amplifiers (Figure 1).  
Since the feedback resistors are the same size, the  
amplifiers output voltage is 2 times the voltage at its  
noninverting input, minus the reference voltage.  
t
2
WR  
t
9
t
10  
VOUT = 2(V  
) REF  
DAC  
A0A2  
where VDAC is the voltage at the amplifiers noninvert-  
ing input (DAC ladder output voltage), and REF_ is the  
voltage applied to the reference input of the DAC.  
t
7
t
8
With AGND_ connected to the system ground, the DAC  
ladder output voltage is:  
D0D12  
D
n
D
V
=
(REF ) =  
(REF )  
DAC  
13  
t
3
2
2
t
3
where D is the numeric value of the DACs binary input  
code and n is the DACs resolution (13 bits). Replace  
VDAC in the equation and calculate the output voltage.  
LD  
D
NOTES:  
1. ALL INPUT RISE AND FALL TIMES MEASURED FROM 10% TO 90% OF  
+5V. t = t = 5ns.  
VOUT_ = 2  
REF REF  
– –  
(
)
13  
2
r
f
D
D
= REF  
–1 = REF  
–1  
2. MEASUREMENT REFERENCE LEVEL IS  
(V + V )/2.  
INH INL  
12  
4096  
2
3. IF LD IS ACTIVATED WHILE WR IS LOW THEN LD MUST STAY LOW  
D ranges from 0 (20) to 8191 (213 - 1).  
FOR t OR LONGER AFTER WR GOES HIGH.  
3
1
1LSB = REF  
4096  
Figure 3. Write-Cycle Timing  
_______________________________________________________________________________________  
9
Oc t a l, 1 3 -Bit Vo lt a g e -Ou t p u t  
DAC w it h P a ra lle l In t e rfa c e  
Table 4. MAX547 Positive Unipolar Code Table  
Table 3. MAX547 Bipolar Code Table  
_
REF  
2
(AGND_ =  
)
(AGND_ = 0V)  
INPUT  
OUTPUT  
INPUT  
OUTPUT  
4095  
8191  
1 1111 1111 1111  
+REF_ ———  
1 1111 1111 1111  
+REF_ ———  
(
)
)
(
)
4096  
8192  
1 0000 0000 0000  
0 0000 0000 0000  
+REF /2  
1
1 0000 0000 0001  
1 0000 0000 0000  
0 1111 1111 1111  
+REF_ ———  
MAX547  
(
4096  
0V  
0V  
Customizing the Output Voltage Range  
The AGND_ inputs can be offset by any voltage within the  
supply rails if the voltage at the referring REF_ input is  
higher than the voltage at the AGND_ input. Select the  
reference voltage and the voltage at AGND_ so the  
resulting output voltages do not come within ±0.6V of the  
supply rails. Figure 4s circuit shows one way to add posi-  
tive offset to AGND_; make sure that the op amp used  
has sufficient current-sink capability to take up the  
remaining AGND_ current:  
1
-REF_ ———  
(
)
4096  
4095  
0 0000 0000 0001  
0 0000 0000 0000  
-REF_ ———  
(
)
4096  
-REF_  
+5V  
1µF  
1µF  
REF_ AGND_  
I
AGND_ =  
V
DD  
V
DD  
5kΩ  
REFAB  
Another way is to digitally offset AGND_ by connecting  
the output of one DAC to one or more AGND_ inputs. Do  
not connect a DAC output to its own AGND_ input.  
1µF  
VOUTA  
VOUTB  
R1  
R2  
DAC A  
DAC B  
Table 5 summarizes the relationship between the refer-  
ence and AGND_ potentials and the output voltage in  
the different modes of operation.  
AGNDAB  
REF  
P o w e r-S u p p ly S e q u e n c in g  
The sequence in which the supply voltages come up is  
not critical. However, we recommend that on power-up,  
VSS comes up first, VDD next, followed by the reference  
voltages. If you use other sequences, limit the current  
into any reference pin to 10mA. Also, make sure that  
VSS is never more than 300mV above ground. If there is  
a ris k tha t this c a n oc c ur a t p owe r-up , c onne c t a  
Schottky diode between VSS and GND, as shown in  
Figure 5. We recommend that you not power up the  
logic input pins before establishing the supply volt-  
ages. If this is not possible and the digital lines can  
drive more than 10mA, you should place current-limit-  
ing resistors (e.g., 470) in series with the logic pins.  
MAX547  
V
V
SS  
SS  
1µF  
1µF  
-5V  
DIGITAL INPUTS NOT SHOWN.  
NOT ALL DACS SHOWN.  
Figure 4. Offsetting AGND  
Positive Unipolar Output Voltage Range  
(AGND_ = REF_/2)  
For positive unipolar output operation, set AGND_ to  
(REF_/2). For example, if you use Figure 4s circuit with,  
a 4.096V reference and offset AGND_ by 2.048V with  
matched resistors (R1 = R2) and an op amp, it results in  
a 0V to 4.0955V (nomina l) unip ola r outp ut volta g e ,  
where 1LSB = 500µV. In general, the maximum current  
flowing out of any AGND_ pin is given by:  
Re fe re n c e S e le c t io n  
If you want a ±2.5V full-scale output voltage swing, you  
can use the MAX873 reference. It operates from a sin-  
gle 5V supply and is specified to drive up to 10mA.  
Therefore, it can drive all four reference inputs simulta-  
neously. Because the maximum load impedance can  
vary from 1.25kto 12.5k(four reference inputs in  
parallel), the reference load current ranges from 2mA to  
0.2mA (1.8mA maximum load step). The MAX873s  
REF_ AGND_  
I
AGND_ =  
5kΩ  
10 ______________________________________________________________________________________  
Oc t a l, 1 3 -Bit Vo lt a g e -Ou t p u t  
DAC w it h P a ra lle l In t e rfa c e  
MAX547  
Table 5. Reference, AGND and Output Relationships  
POSITIVE UNIPOLAR  
OPERATION  
(AGND_ = REF_/2)  
BIPOLAR OPERATION  
(AGND_ = 0V)  
PARAMETER  
CUSTOM OPERATION  
Bipolar Zero Level, or  
Unipolar Mid-scale,  
(Code = 1000000000000)  
_
REF  
2
———  
AGND_ (=0V)  
AGND  
AGND  
=
(
)
Differential Reference Voltage  
REF  
REF /2  
REF - AGND  
(V  
)
DR  
Negative Full-scale Output  
(Code = All 0s)  
-REF  
0V  
AGND - V  
DR  
Positive Full-Scale Output  
(Code = All 1s)  
4095  
8191  
4095  
———  
——— REF_  
——— REF_  
V
DR  
AGND _ +  
(
4096 ) (  
)
(
8192 ) (  
)
( 4096 ) ( )  
_
_
REF  
REF  
8192  
VDR  
———  
———  
———  
LSB Weight  
(
)
4096  
4096  
VOUT as a Function of  
Digital Code (D, 0 to 8191)  
D
D
D
——— - 1 REF_  
——— REF_  
—--—- - 1  
(
V
DR  
AGND _ +  
(
) (  
)
(
8192 ) (  
)
) ( )  
4096  
4096  
load regulation is specified to 20ppm/mA max over  
temperature, resulting in a maximum error of 36ppm  
(90µV). This corresponds to a maximum error caused  
b y re fe re nc e loa d re g ula tion of only 0.147LSB  
[0.147LSB = 90µV/(5V/8192)LSB] over temperature.  
V
SS  
V
SS  
If you want a ±4.096V full-scale output swing (1LSB =  
1mV), you can use the calibrated, low-drift, low-dropout  
MAX676. Operating from a 5V supply, it is fully speci-  
fied to drive two REF_ inputs with less than 60.4µV error  
(0.0604LSB) over temperature, caused by the maxi-  
mum load step.  
MAX547  
GND  
1N5817  
Re fe re n c e Bu ffe rin g  
Another way to obtain high accuracy is to buffer a refer-  
ence with an op amp. When driving all reference inputs  
simultaneously, keep the closed-loop output imped-  
ance of the op amp below 0.03to ensure an error of  
le s s tha n 0.1LSB. The op a mp mus t a ls o d rive the  
capacitive load (typically 500pF to 1200pF).  
SYSTEM GND  
Figure 5. Optional Schottky Diode between V and GND  
SS  
Each reference input can also be buffered separately  
by using the circuit in Figure 6. A reference load step  
caused by a digital transition only affects the DAC pair  
where the code transition occurs. It also allows the use  
of re fe re nc e s with little d rive c a p a b ility. Ke e p the  
closed-loop output impedance of each op amp below  
0.12, to ensure an error of less than 0.1LSB. Figure 6  
shows the op amps inverting input directly connected  
to the MAX547s reference terminal. This eliminates the  
influence of board lead resistance by sensing the volt-  
age with a low-current path sense line directly at the  
reference input.  
Ad d ing fe e d b a c k re s is tors to ind ivid ua l re fe re nc e  
buffer amplifiers enables different reference voltages to  
be generated from a single reference.  
______________________________________________________________________________________ 11  
Oc t a l, 1 3 -Bit Vo lt a g e -Ou t p u t  
DAC w it h P a ra lle l In t e rfa c e  
_Ord e rin g In fo rm a t io n (c o n t in u e d )  
INL  
(LSBs)  
PART  
TEMP. RANGE  
PIN-PACKAGE  
REFAB  
REFCD  
MAX547AEQH -40°C to +85°C 44 PLCC  
MAX547BEQH -40°C to +85°C 44 PLCC  
MAX547AEMH -40°C to +85°C 44 Plastic FP  
MAX547BEMH -40°C to +85°C 44 Plastic FP  
±2  
±4  
±2  
±4  
MAX547  
MAX547  
REFEF  
+
-
REFGH  
MAX494  
Figure 6. Reference Buffering  
P o w e r-S u p p ly Byp a s s in g a n d  
Gro u n d Ma n a g e m e n t  
For optimum performance, use a multilayer PC board  
with an unbroken analog ground. For normal opera -  
tion, when all AGND_ pins are at the same potential,  
connect the four AGND_ pins directly to the ground  
plane or connect them together in a “starconfigura-  
tion. The center of this star point is a good location to  
connect the digital system ground with the analog  
ground.  
If you are using a single common reference voltage,  
you can connect the reference inputs together using a  
starconfiguration. If you are using DC reference volt-  
ages, bypass each reference input with a 0.1µF to 1µF  
capacitor to AGND_.  
12 ______________________________________________________________________________________  
Oc t a l, 1 3 -Bit Vo lt a g e -Ou t p u t  
DAC w it h P a ra lle l In t e rfa c e  
MAX547  
_________________________________________________________Fu n c t io n a l Dia g ra m  
V
DD  
REFAB REFCD REFEF REFGH  
9, 37  
10  
3
43  
36  
8
VOUTA  
INPUT  
LATCH A  
DAC  
LATCH A  
DAC A  
DAC B  
DAC C  
DAC D  
DAC E  
DAC F  
DAC G  
DAC H  
11  
AGNDAB  
7
VOUTB  
INPUT  
LATCH B  
DAC  
LATCH B  
6
2
VOUTC  
INPUT  
LATCH C  
DAC  
LATCH C  
AGNDCD  
5
VOUTD  
INPUT  
LATCH D  
DAC  
LATCH D  
D12–D0  
DATA BUS  
41  
44  
VOUTE  
INPUT  
LATCH E  
DAC  
LATCH E  
AGNDEF  
40  
VOUTF  
INPUT  
LATCH F  
DAC  
LATCH F  
39  
35  
VOUTG  
INPUT  
LATCH G  
DAC  
LATCH G  
AGNDGH  
38  
VOUTH  
INPUT  
LATCH H  
DAC  
LATCH H  
14  
15  
CS  
WR  
CONTROL  
LOGIC  
MAX547  
34  
4, 42  
16, 18  
A0A2  
12, 13  
32, 33  
1
V
SS  
GND  
LDAB  
LDCD  
LDEF  
LDGH  
CLR  
Pin numbers shown for PLCC package.  
______________________________________________________________________________________ 13  
Oc t a l, 1 3 -Bit Vo lt a g e -Ou t p u t  
DAC w it h P a ra lle l In t e rfa c e  
____________________________________________________________Ch ip To p o g ra p h y  
VOUTB  
VOUTA  
VOUTG  
VOUTH  
MAX547  
V
DD  
V
DD  
REFGH  
REFAB  
AGNDAB  
AGNDGH  
0. 242"  
(6. 147mm)  
GND  
LDAB  
LDCD  
CS  
LDGH  
LDEF  
D0  
WR  
A2  
D1  
D2  
A1  
0. 199"  
(5. 055mm)  
TRANSISTOR COUNT: 8987  
SUBSTRATE CONNECTED TO V  
DD  
14 ______________________________________________________________________________________  
Oc t a l, 1 3 -Bit Vo lt a g e -Ou t p u t  
DAC w it h P a ra lle l In t e rfa c e  
MAX547  
________________________________________________________P a c k a g e In fo rm a t io n  
INCHES  
MILLIMETERS  
DIM  
MIN  
0.165  
MAX  
0.180  
0.110  
0.156  
MIN  
4.19  
2.54  
3.68  
0.51  
0.33  
0.66  
0.23  
17.40  
16.51  
14.99  
MAX  
4.57  
2.79  
3.96  
A2  
A
A1 0.100  
A2 0.145  
A3 0.020  
C
B
0.013  
0.021  
0.032  
0.011  
0.695  
0.655  
0.630  
0.53  
0.81  
0.28  
17.65  
16.64  
16.00  
B1 0.026  
e
C
D
0.009  
0.685  
D1 0.650  
D2 0.590  
D1  
D
D2  
B1  
D3  
e
0.500 REF  
0.050 REF  
12.70 REF  
B
1.27 REF  
21-350A  
A3  
D3  
D1  
D
44-PIN PLASTIC  
LEADED CHIP  
CARRIER  
A1  
A
PACKAGE  
______________________________________________________________________________________ 15  
Oc t a l, 1 3 -Bit Vo lt a g e -Ou t p u t  
DAC w it h P a ra lle l In t e rfa c e  
MAX547  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
16 __________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 (4 0 8 ) 7 3 7 -7 6 0 0  
© 1995 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX547BEQH-D

暂无描述
MAXIM

MAX547BEQH-TD

D/A Converter, 1 Func, Parallel, Word Input Loading, 5us Settling Time, PQCC44, PLASTIC, LCC-44
MAXIM

MAX548

+2.5V to +5.5V, Low-Power, Single/Dual, 8-Bit Voltage-Output DACs in レMAX Package
MAXIM

MAX548-MAX550

+2.5V to +5.5V, Low-Power, Single/Dual, 8-Bit Voltage-Output DACs in レMAX Package
MAXIM

MAX5480

8-Bit Parallel DAC in QSOP-16 Package
MAXIM

MAX5480ACEE

8-Bit Parallel DAC in QSOP-16 Package
MAXIM

MAX5480ACEE+

D/A Converter, 1 Func, Parallel, 8 Bits Input Loading, PDSO16, QSOP-16
MAXIM

MAX5480ACEE+T

D/A Converter, 1 Func, Parallel, 8 Bits Input Loading, PDSO16, QSOP-16
MAXIM

MAX5480ACEE-T

D/A Converter, 1 Func, Parallel, 8 Bits Input Loading, PDSO16, QSOP-16
MAXIM

MAX5480AEEE

8-Bit Parallel DAC in QSOP-16 Package
MAXIM

MAX5480AEEE+T

D/A Converter, 1 Func, Parallel, 8 Bits Input Loading, PDSO16, QSOP-16
MAXIM

MAX5480AEEE-T

D/A Converter, 1 Func, Parallel, 8 Bits Input Loading, PDSO16, QSOP-16
MAXIM