MAX5490VB10000+ [MAXIM]

Array/Network Resistor, Divider, 0.5714W, 35ppm/Cel, Surface Mount, SOT-23, ROHS COMPLIANT;
MAX5490VB10000+
型号: MAX5490VB10000+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Array/Network Resistor, Divider, 0.5714W, 35ppm/Cel, Surface Mount, SOT-23, ROHS COMPLIANT

电阻器
文件: 总16页 (文件大小:170K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1206; Rev 0; 3/97  
+2 .5 V t o +5 .5 V, Lo w -P o w e r, S in g le /Du a l,  
8 -Bit Vo lt a g e -Ou t p u t DACs in µMAX P a c k a g e  
849/MX50A  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
+2.5V to +5.5V Single-Supply Operation  
±1LSB (max) TUE  
The MAX548A/MAX549A/MAX550A serial, 8-bit voltage-  
output digital-to-analog converters (DACs) operate from  
a single +2.5V to +5.5V supply. Their ±1LSB TUE spec-  
ification is guaranteed over temperature. Operating cur-  
rent (supply current plus reference current) is typically  
Power-On Reset Clears All Registers to Zero  
Low Operating Current:  
75µA per DAC with V  
= 2.5V. In shutdown, the DAC  
DD  
is disconnected from the reference, reducing current  
drain to less than 1µA. The MAX548A/MAX549A allow  
each DAC to be shut down independently.  
150µA (MAX548A/MAX549A, V  
= +2.5V)  
REF  
75µA (MAX550A, V  
= +2.5V)  
REF  
1µA Shutdown Mode  
The 10MHz, 3-wire serial interface is compatible with  
SPI™/QSPI™ a nd Mic rowire ™ inte rfa c e s ta nd a rd s .  
Double-buffered inputs provide flexibility when updat-  
ing the DACs; the input and DAC registers can be  
updated individually or simultaneously.  
10MHz, 3-Wire Serial Interface Compatible with  
SPI/QSPI and Microwire  
µMAX Package—50% Smaller than 8-Pin SO  
Independent Shutdown of DACs  
The MAX548A is a dual DAC with an asynchronous  
(MAX548A/MAX549A)  
load input; it uses V  
as the reference input. The  
DD  
MAX549A is a dual DAC with an external reference  
input. The MAX550A is a single DAC with an external  
reference input and an asynchronous load input.  
The MAX548A/MAX549A/MAX550A’s low power con-  
sumption and small µMAX and DIP packages make  
these devices ideal for portable and battery-powered  
applications.  
______________Ord e rin g In fo rm a t io n  
PART  
TEMP. RANGE  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
8 Plastic DIP  
8 µMAX  
MAX548ACPA  
MAX548ACUA  
MAX548AC/D  
MAX548AEPA  
MAX548AEUA  
________________________Ap p lic a t io n s  
Battery-Powered Systems  
Dice*  
8 Plastic DIP  
8 µMAX  
VCXO Control  
Comparator-Level Settings  
Ordering Information continued at end of data sheet.  
*Dice are specified at T = +25°C, DC parameters only.  
GaAs Amp Bias Control  
A
Contact factory for availability of 8-pin SO package.  
Digital Gain and Offset Control  
_________________P in Co n fig u ra t io n s  
_____________________S e le c t o r Gu id e  
FEATURE  
MAX548A  
MAX549A  
MAX550A  
TOP VIEW  
Number of DACs  
DAC Reference  
2
2
1
GND  
OUTA  
CS  
1
2
3
4
8
7
6
5
V
DD  
V
DD  
External  
External  
OUTB  
LDAC  
SCLK  
Asynchronous  
Load DAC Input  
MAX548A  
µMAX Package  
DIN  
DIP/µMAX  
SPI and QSPI are trademarks of Motorola Inc.  
Microwire is a trademark of National Semiconductor Corp.  
Pin Configurations continued at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800  
+2 .5 V t o +5 .5 V, Lo w -P o w e r, S in g le /Du a l,  
8 -Bit Vo lt a g e -Ou t p u t DACs in µMAX P a c k a g e  
ABSOLUTE MAXIMUM RATINGS  
Operating Temperature Ranges  
V
DD  
, SCLK, DIN, CS, LDAC, OUT_ to GND ...............-0.3V to 6V  
MAX5_ _AC_ A.....................................................0°C to +70°C  
MAX5_ _AE_ A..................................................-40°C to +85°C  
Storage Temperature Range .............................-65°C to +150°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
REF to GND................................................-0.3V to (V + 0.3V)  
Maximum Current (any pin) .............................................±50mA  
DD  
Continuous Power Dissipation (T = +70°C)  
A
Plastic DIP (derate 9.09mW/°C above +70°C) .............727mW  
µMAX (derate 4.10mW/°C above +70°C) .....................330mW  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = +2.5V to +5.5V, T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
DD  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
STATIC PERFORMANCE  
Resolution  
N
8
Bits  
MAX5_ _AEUA (Note 1)  
±0.9  
±0.9  
±1  
Guaranteed  
monotonic  
Differential Nonlinearity  
Total Unadjusted Error  
DNL  
LSB  
All others  
MAX5_ _AEUA (Note 1)  
All others  
TUE  
LSB  
±1  
Zero-Code Error  
Full-Scale Error  
ZCE  
FSE  
±1  
LSB  
LSB  
±1  
REFERENCE INPUT  
Reference Input  
Voltage Range  
MAX549A/MAX550A for specified  
performance  
V
REF  
2.5  
V
DD  
V
849/MX50A  
MAX549A  
MAX550A  
16.7  
33.3  
330  
150  
165  
75  
Reference Input Resistance  
DAC Code = 55 Hex (Note 2)  
R
k  
REF  
V
= V  
= 5.5V  
= 2.5V  
= 5.5V  
= 2.5V  
550  
250  
275  
125  
DD  
REF  
MAX549A  
MAX550A  
V
DD  
= V  
REF  
Reference Input Current  
DAC Code = 55 Hex (Note 3)  
I
µA  
REF  
V
DD  
= V  
REF  
V
DD  
= V  
REF  
DAC OUTPUT  
MAX548A  
0
0
V
DD  
DAC Output Voltage Swing  
DAC Output Resistance  
V
kΩ  
%
MAX549A/MAX550A  
V
REF  
R
33.3  
±0.2  
OUT  
DAC Output Resistance  
Matching  
R  
/
OUT  
MAX548A/MAX549A  
R
OUT  
DIGITAL INPUTS  
Input High Voltage  
Input Low Voltage  
Input Current  
V
0.7V  
V
V
IH  
DD  
V
IL  
0.3V  
DD  
I
IN  
V
IN  
= 0V or V  
DD  
±1  
10  
µA  
pF  
Input Capacitance (Note 4)  
C
IN  
2
_______________________________________________________________________________________  
+2 .5 V t o +5 .5 V, Lo w -P o w e r, S in g le /Du a l,  
8 -Bit Vo lt a g e -Ou t p u t DACs in µMAX P a c k a g e  
849/MX50A  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +2.5V to +5.5V, T = T  
to T , unless otherwise noted. Typical values are at T = +25°C)  
MAX A  
DD  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DYNAMIC PERFORMANCE  
Digital Feedthrough and  
Crosstalk  
50  
nV-sec  
µs  
CS = high, all digital inputs from 0V to V  
DD  
Voltage-Output Settling Time  
To ±1/2LSB, C = 20pF  
4
L
V
= 2.5V  
= 5.5V  
1.4  
3.1  
4
DD  
Voltage-Output Slew Rate  
C
C
= 20pF  
= 20pF  
V/µs  
µs  
L
L
V
DD  
Wake-Up Time at Power-Up  
POWER SUPPLIES  
Supply Voltage Range  
V
DD  
Outputs unloaded, all inputs = GND or V  
2.5  
5.5  
V
DD  
Outputs unloaded,  
all inputs = GND or  
V
= 5.5V  
= 2.5V  
330  
150  
550  
DD  
Supply Current (MAX548A)  
I
µA  
DD  
V
DD  
250  
10  
V
DD  
(Note 5)  
Supply Current  
(MAX549A/MAX550A)  
Outputs unloaded, all inputs = GND or V  
;
DD  
I
DD  
0.3  
0.3  
µA  
µA  
V
DD  
= 5.5V  
Shutdown Current  
Shutdown mode  
TIMING CHARACTERISTICS  
(V = +2.5V to +5.5V, T = T  
to T , unless otherwise noted. Digital inputs switching from 0V to V .) (Figure 3) (Note 4)  
MAX DD  
DD  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
40  
40  
30  
0
TYP  
MAX  
UNITS  
ns  
SCLK Pulse Width High  
SCLK Pulse Width Low  
t
CH  
t
ns  
CL  
DIN to SCLK High Setup  
t
DS  
ns  
V
= 2.5V  
= 5.5V  
DD  
DIN to SCLK High Hold  
t
ns  
DH  
V
DD  
10  
30  
30  
10  
10  
20  
40  
80  
50  
50  
5
t
t
ns  
ns  
ns  
CS Low to SCLK High Setup  
CS High to SCLK High Setup  
SCLK High to CS Low Hold  
CSS0  
CSS1  
CSH0  
t
t
V
DD  
= 2.5V  
= 5.5V  
ns  
Delay, SCLK High to CS High  
CSH1  
V
DD  
t
ns  
ns  
ns  
ns  
µs  
CS Pulse Width High  
SCLK Period  
CSW  
t
CP  
t
MAX548A/MAX550A only  
MAX548A/MAX550A only  
LDAC Pulse Width Low  
CS High to LDAC Low  
LDAC  
t
CSLD  
V
DD  
High to CS Low  
Note 1: Cold temperature specifications (to -40°C) guaranteed by design using six sigma design limits.  
Note 2: Worst-case input resistance at REF occurs at DAC code 55 hex.  
Note 3: Worst-case reference input current occurs at DAC code 55 hex.  
Note 4: Guaranteed by design. Not production tested.  
Note 5: I measured with DACs loaded with worst-case DAC code 55 hex.  
DD  
_______________________________________________________________________________________  
3
+2 .5 V t o +5 .5 V, Lo w -P o w e r, S in g le /Du a l,  
8 -Bit Vo lt a g e -Ou t p u t DACs in µMAX P a c k a g e  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(V = V  
= 2.5V, R = 1M, C = 15pF, T = +25°C, unless otherwise noted.)  
L L A  
DD  
REF  
OPERATING CURRENT PER DAC  
vs. TEMPERATURE  
SHUTDOWN CURRENT  
vs. TEMPERATURE  
240  
200  
160  
120  
150.2  
149.8  
149.4  
V
= V = 5.0V  
DD REF  
V
= V = 5.0V  
DD REF  
40  
36  
75.4  
75.0  
74.6  
32  
28  
V
= V = 2.5V  
DD REF  
V
= V = 2.5V  
DD REF  
-60  
-20  
20  
TEMPERATURE (°C)  
60  
100  
-60  
-20  
20  
60  
100  
TEMPERATURE (°C)  
MAX549A/MAX550A  
REFERENCE SMALL-SIGNAL  
FREQUENCY RESPONSE  
MAX549A/MAX550A  
REFERENCE AC FEEDTHROUGH  
vs. FREQUENCY  
0
10  
0
V
V
REF  
= 2.5V  
= 100mVp-p SINE WAVE  
DD  
-20  
-40  
-60  
-80  
-10  
-20  
-30  
-40  
849/MX50A  
V
V
REF  
= 5V  
DD  
= 2Vp-p SINE WAVE  
V
REF  
= 1Vp-p SINE WAVE  
DAC CODE = 00 hex  
DAC CODE = FF hex  
10k 100k  
FREQUENCY (Hz)  
-50  
-100  
1k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
DIGITAL FEEDTHROUGH  
SETTLING TIME (FALLING)  
DAC CODE FF hex to 00 hex  
SCLK, 5V/div  
OUT, 1V/div  
CS, 5V/div  
OUT, 50mV/div  
200ns/div  
2µs/div  
4
_______________________________________________________________________________________  
+2 .5 V t o +5 .5 V, Lo w -P o w e r, S in g le /Du a l,  
8 -Bit Vo lt a g e -Ou t p u t DACs in µMAX P a c k a g e  
849/MX50A  
_____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = V  
= 2.5V, R = 1M, C = 15pF, T = +25°C, unless otherwise noted.)  
L L A  
DD  
REF  
SETTLING TIME (RISING)  
OUTPUT GLITCH FILTERING  
DAC CODE 00 hex to FF hex  
CODE = 00 hex  
OUT, 1V/div  
CS, 5V/div  
OUT, 50mV/div, C = 0pF  
L
OUT, 50mV/div, C = 100pF  
L
OUT, 50mV/div, C = 220pF  
L
OUT, 50mV/div, C = 1000pF  
L
CS, 5V/div  
2µs/div  
5µs/div  
______________________________________________________________P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
MAX548A  
MAX549A  
MAX550A  
1
1
1
GND  
OUTA  
OUT  
Ground  
2
2
2
DAC A Output Voltage  
DAC Output Voltage  
Chip-Select Input. A logic low on CS enables serial data to be  
clocked into the input shift register. Programming commands are  
executed at CSs rising edge.  
3
3
3
CS  
Serial-Data Input. Data is clocked into the 16-bit input shift register on  
SCLK’s rising edge.  
4
5
4
5
4
5
DIN  
SCLK  
Serial-Clock Input. Data is clocked in on SCLK’s rising edge.  
Load DAC Input. After CS goes high and if programmed by the  
control word, a falling edge on LDAC updates the DAC latch(es).  
6
6
LDAC  
Connect LDAC to V if unused.  
DD  
7
8
6
7
8
7
OUTB  
REF  
DAC B Output Voltage  
External Reference Voltage Input for DAC(s)  
Positive Power Supply (+2.5V to +5.5V)  
8
V
DD  
_______________________________________________________________________________________  
5
+2 .5 V t o +5 .5 V, Lo w -P o w e r, S in g le /Du a l,  
8 -Bit Vo lt a g e -Ou t p u t DACs in µMAX P a c k a g e  
The magnitude of the expected error is the ratio of the  
DAC output resistance to the DC load resistance at the  
_______________De t a ile d De s c rip t io n  
An a lo g S e c t io n  
The MAX548A/MAX549A/MAX550A are 8-bit, voltage-  
outp ut d ig ita l-to-a na log c onve rte rs (DACs ). The  
MAX548A/MAX549A are dual DACs, and the MAX550A  
is a single DAC. Each DAC consists of an R-2R ladder  
network that converts 8-bit digital inputs into equivalent  
analog output voltages in proportion to the applied ref-  
erence voltage (Figure 1).  
output.  
Typically, an energy pulse is coupled into the DAC out-  
put on CS’s rising edge. Since each DAC output is  
unbuffered, connecting a small capacitor (200pF to  
1000pF) from the output to ground creates a lowpass  
filter that effectively suppresses the pulse for sensitive  
applications (see Typical Operating Characteristics).  
Shutdown Mode  
When the MAX548A/MAX549A/MAX550A are in shut-  
down mode, the R-2R ladder disconnects from the refer-  
ence source. The MAX549A/MAX550A supply current  
does not change, but the REF input current decreases to  
less than 1µA. This allows the externally applied system  
re fe re nc e to re ma in a c tive with minima l p owe r  
c ons ump tion. The MAX548A s up p ly c urre nt a ls o  
decreases to less than 1µA in shutdown mode. When the  
MAX548A/MAX549A/MAX550A exit shutdown mode,  
recovery time is equivalent to the DACs settling time.  
The DACs fe a ture d oub le -b uffe re d inp uts a nd  
unbuffered outputs. The MAX549A/MAX550A require  
an external reference. The MAX548A’s reference inputs  
are internally connected to V . The power-supply  
DD  
range is from +2.5V to +5.5V.  
Reference Input  
The voltage applied at REF (V for the MAX548A) sets  
DD  
the full-scale output for all the DACs and may range  
from +2.5V to V . The REF input resistance is code  
DD  
dependent, with the lowest value occurring with code  
01010101 (55 hex). To minimize INL errors, the refer-  
ence voltage source should have less than 3output  
impedance.  
S e ria l In t e rfa c e  
The serial interface is SPI/QSPI and Microwire compati-  
ble. An active-low chip select (CS) enables the input  
shift register to receive data from the serial input (DIN).  
Data is clocked into the shift register on the rising edge  
of the serial-clock signal (SCLK). The clock frequency  
can be as high as 10MHz.  
DAC Output  
The MAX548A/MAX549A/MAX550A contain DACs with  
unbuffered outputs; each output connects directly to an  
R-2R ladder. Typical output impedance is 33.3k. This  
c onfig ura tion minimize s p owe r c ons ump tion a nd  
reduces offset errors. For highest accuracy, apply high  
resistive loads (1Mand up). Lower resistive loads can  
be driven, but output loading increases full-scale error.  
849/MX50A  
Transmit data MSB first in one 16-bit word or two 8-bit  
bytes. The write cycle can be segmented to allow two  
8-bit-wide transfers when CS remains low. After all 16  
bits are clocked into the input shift register, a rising  
R
R
R
R
R
R
R
2R  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
REF  
OUT_  
GND  
GND  
LSB  
MSB  
DAC_ REGISTER  
NOTE: SWITCH POSITIONS SHOWN FOR DAC CODE FF HEX.  
Figure 1. DAC Simplified Circuit Diagram  
6
_______________________________________________________________________________________  
+2 .5 V t o +5 .5 V, Lo w -P o w e r, S in g le /Du a l,  
8 -Bit Vo lt a g e -Ou t p u t DACs in µMAX P a c k a g e  
849/MX50A  
Serial-Input Data Format and Control Codes  
The control byte determines which input registers/DAC  
registers are updated (Table 1). The DAC input regis-  
ters are updated on the rising edge of CS. The DAC  
registers can be updated on CSs rising edge or on  
LDACs falling edge after CS goes high. Bit C0 of the  
control byte determines how the DAC registers are  
updated for the MAX548A/MAX550A. The MAX549A  
has no LDAC pin; the DAC registers are always up-  
dated on CSs rising edge (C0 in the control byte has  
no effect).  
edge on CS programs the DAC. The input registers can  
be loaded independently or simultaneously without  
updating the DAC registers. This allows both DAC reg-  
isters to be updated simultaneously with different digital  
values. The DAC outputs reflect the data stored in the  
DAC registers. LDAC can be used to asynchronously  
up d a te the DAC re g is te rs ind e p e nd e ntly of CS  
(MAX548A/MAX550A). With C1 set high, setting C0 in  
the c ontrol word forc e s the DAC re g is te r(s ) to b e  
updated on LDACs falling edge, rather than CSs rising  
edge (Table 1).  
Tables 2, 3, and 4 list the serial-input command format  
for the MAX548A, MAX549A, and MAX550A, respec-  
tively. The 16-bit input word consists of an 8-bit control  
byte and an 8-bit data byte. The control byte is not  
d e c od e d inte rna lly. Eve ry c ontrol b it p e rforms one  
Initialization  
The MAX548A/MAX549A/MAX550A have an internal  
power-on reset. At power-up, all internal registers are  
reset to zero; therefore, an initialization write sequence  
is not necessary.  
Table 1. Control-Byte/Input-Word Bit Definitions  
BIT NAME  
STATE  
OPERATION  
UB1*  
UB2  
UB3  
C2  
X
X
X
0
Unassigned Bit 1  
Unassigned Bit 2  
Unassigned Bit 3  
Power-Up Mode  
Power-Down Mode  
C2  
1
C1  
0
DAC Register Load Operation Disabled  
DAC Register Load Operation Enabled  
DAC Register Updated on CSs Rising Edge  
DAC Register Updated on LDACs Falling Edge (MAX549A = Dont Care)  
Do Not Address DAC B (MAX550A = Dont Care)  
Address DAC B (MAX550A = Dont Care)  
Do Not Address DAC A  
CONTROL BYTE  
C1  
1
C0  
0
C0  
1
A1  
0
A1  
1
A0  
0
A0  
1
Address DAC A  
D7  
DAC Data Bit 7 (MSB)  
D6  
DAC Data Bit 6  
D5  
DAC Data Bit 5  
D4  
DAC Data Bit 4  
DATA  
BYTE  
D3  
DAC Data Bit 3  
D2  
DAC Data Bit 2  
D1  
DAC Data Bit 1  
D0**  
DAC Data Bit 0 (LSB)  
X = Dont care *Clocked in first **Clocked in last  
_______________________________________________________________________________________  
7
+2 .5 V t o +5 .5 V, Lo w -P o w e r, S in g le /Du a l,  
8 -Bit Vo lt a g e -Ou t p u t DACs in µMAX P a c k a g e  
function. Data is clocked in starting with unassigned bit  
1 (UB1), followed by the remaining control bits and the  
DAC data byte. The data bytes LSB (D0) is the last bit  
clocked into the input register (Figure 2).  
• Loads 80 hex (128 decimal) into the DAC input regis-  
ter (DAC A for the MAX548A/MAX549A)  
• Updates the DAC register(s) on CSs rising edge.  
Table 6 shows how to calculate the output voltage  
based on the input code. Figure 3 gives detailed timing  
information.  
Table 5 is an example of a 16-bit input word that per-  
forms the following functions:  
INSTRUCTION  
EXECUTED  
CS  
LDAC  
MAX548A/  
MAX550A  
ONLY  
OPTIONAL  
PAUSE  
1
8
9
16  
SCLK  
DIN  
UB3  
UB1 UB2  
C2 C1 C0 A1 A0  
D7 D6 D5 D4 D3 D2 D1 D0  
Figure 2. Serial-Interface Timing Diagram  
849/MX50A  
t
LDAC  
LDAC  
CS  
t
CSLD  
t
CSW  
t
CSH0  
t
CSS0  
t
CSH1  
t
CH  
SCLK  
DIN  
t
CL  
t
DS  
t
CSS1  
t
DH  
Figure 3. Detailed Serial-Interface Timing Diagram  
_______________________________________________________________________________________  
8
+2 .5 V t o +5 .5 V, Lo w -P o w e r, S in g le /Du a l,  
8 -Bit Vo lt a g e -Ou t p u t DACs in µMAX P a c k a g e  
849/MX50A  
Table 2. MAX548A Serial-Interface Programming Commands  
CONTROL BYTE  
DATA BYTE  
Loaded Last  
D7........D0  
LDAC  
COMMAND  
(Commands executed on CS’s rising edge)  
Loaded First  
UB1 UB2  
UB3 C2 C1 C0 A1 A0  
Pin 6  
UNASSIGNED COMMANDS  
X
X
X
X
X
X
0
1
0
X
X
0
0
0
0
XXXXXXXX  
XXXXXXXX  
X
X
Unassigned command  
Unassigned operation  
X
COMMANDS LOADING INPUT REGISTER(S) ONLY  
Load DAC A input register. DAC B input register  
and both DAC registers unchanged.  
X
X
X
X
X
X
X
X
X
0
0
0
0
0
0
X
X
X
0
1
1
1
0
1
8-Bit DAC Data  
8-Bit DAC Data  
8-Bit DAC Data  
X
X
X
Load DAC B input register. DAC A input register  
and both DAC registers unchanged.  
Load both DAC input registers. Both DAC regis-  
ters unchanged.  
COMMANDS UPDATING DAC REGISTER(S)  
Update both DAC registers with current contents  
of their input registers. Both input registers  
unchanged.  
X
X
X
0
1
0
0
0
XXXXXXXX  
X
Load DAC A input register and update both DAC  
registers. DAC B input register unchanged.  
X
X
X
X
X
X
X
X
X
0
0
0
1
1
1
0
0
0
0
1
1
1
0
1
8-Bit DAC Data  
8-Bit DAC Data  
8-Bit DAC Data  
X
X
X
Load DAC B input register and update both DAC  
registers. DAC A input register unchanged.  
Load both DAC input registers and update both  
DAC registers.  
Update both DAC registers with current contents  
of their input registers. Both input registers  
unchanged.  
X
X
X
0
1
1
0
0
XXXXXXXX  
0
Load DAC A input register and update both DAC  
registers. DAC B input register unchanged.  
X
X
X
X
X
X
X
X
X
0
0
0
1
1
1
1
1
1
0
1
1
1
0
1
8-Bit DAC Data  
8-Bit DAC Data  
8-Bit DAC Data  
0
0
0
Load DAC B input register and update both DAC  
registers. DAC A input register unchanged.  
Load both DAC input registers and update both  
DAC registers.  
COMMANDS UTILIZING THE ASYNCHRONOUS LOAD FUNCTION  
After CSs rising edge and on LDACs falling  
edge, update both DAC registers with current  
contents of their input registers. Both input regis-  
ters unchanged.  
X
X
X
0
1
1
0
0
XXXXXXXX  
1
Load DAC A input register. After CSs rising edge  
and on LDACs falling edge, update both DAC  
registers.  
X
X
X
X
X
X
X
X
X
0
0
0
1
1
1
1
1
1
0
1
1
1
0
1
8-Bit DAC Data  
8-Bit DAC Data  
8-Bit DAC Data  
1
1
1
Load DAC B input register. After CSs rising edge  
and on LDACs falling edge, update both DAC  
registers.  
Load both DAC input registers. After CSs rising  
edge and on LDACs falling edge, update both  
DAC registers.  
_______________________________________________________________________________________  
9
+2 .5 V t o +5 .5 V, Lo w -P o w e r, S in g le /Du a l,  
8 -Bit Vo lt a g e -Ou t p u t DACs in µMAX P a c k a g e  
Table 2. MAX548A Serial-Interface Programming Commands (continued)  
COMMANDS FOR POWERING DOWN  
CONTROL BYTE  
DATA BYTE  
Loaded Last  
D7........D0  
LDAC  
COMMAND  
(Commands executed on CS’s rising edge)  
Loaded First  
UB1 UB2  
UB3 C2 C1 C0 A1 A0  
Pin 6  
COMMANDS POWERING DOWN AND LOADING INPUT REGISTER(S) ONLY  
Load DAC A input register and power down DAC  
A. DAC B registers unchanged.  
X
X
X
X
X
X
X
X
X
1
1
1
0
0
0
X
X
X
0
1
1
1
0
1
8-Bit DAC Data  
8-Bit DAC Data  
8-Bit DAC Data  
X
X
X
Load DAC B input register and power down DAC  
B. DAC A registers unchanged.  
Load both DAC input registers and power down  
both DACs. Both DAC registers unchanged  
COMMANDS POWERING DOWN AND UPDATING DAC REGISTER(S)  
Load DAC A input register, power down DAC A,  
and update both DAC registers. DAC B input  
register unchanged.  
X
X
X
1
1
0
0
1
8-Bit DAC Data  
X
Load DAC B input register, power down DAC B,  
and update both DAC registers. DAC A input  
register unchanged.  
X
X
X
X
X
X
X
X
X
1
1
1
1
1
1
0
0
1
1
1
0
0
1
1
8-Bit DAC Data  
8-Bit DAC Data  
8-Bit DAC Data  
X
X
0
Load both DAC input registers, power down both  
DACs, and update both DAC registers.  
Load DAC A input register, power down  
DAC A, and update both DAC registers. DAC B  
input register unchanged.  
849/MX50A  
Load DAC B input register, power down  
DAC B, and update both DAC registers. DAC A  
input register unchanged.  
X
X
X
X
X
X
1
1
1
1
1
1
1
1
0
1
8-Bit DAC Data  
8-Bit DAC Data  
0
0
Load both DAC input registers and power down  
both DACs. Update both DAC registers.  
COMMANDS POWERING DOWN AND UTILIZING THE ASYNCHRONOUS LOAD FUNCTION  
Load DAC A input register and power down DAC  
A. While powered down, on LDACs falling edge,  
update both DAC registers. DAC B input register  
unchanged.  
X
X
X
1
1
1
0
1
8-Bit DAC Data  
1
Load DAC B input register and power down DAC  
B. While powered down, on LDACs falling edge,  
update both DAC registers. DAC A input register  
unchanged.  
X
X
X
X
X
X
1
1
1
1
1
1
1
1
0
1
8-Bit DAC Data  
8-Bit DAC Data  
1
1
Load both DAC input registers and power down  
both DACs. While powered down, on LDACs  
falling edge, update both DAC registers.  
X = Dont care  
10 ______________________________________________________________________________________  
+2 .5 V t o +5 .5 V, Lo w -P o w e r, S in g le /Du a l,  
8 -Bit Vo lt a g e -Ou t p u t DACs in µMAX P a c k a g e  
849/MX50A  
Table 3. MAX549A Serial-Interface Programming Commands  
CONTROL BYTE  
DATA BYTE  
Loaded Last  
D7........D0  
COMMAND  
(Commands executed on CS’s rising edge)  
Loaded First  
UB1 UB2  
UB3 C2 C1 C0 A1 A0  
UNASSIGNED COMMAND  
X
X
X
X
0
X
0
0
XXXXXXXX  
Unassigned command  
COMMANDS LOADING INPUT REGISTER(S) ONLY  
X
X
X
X
X
X
0
0
0
0
X
X
0
1
1
0
8-Bit DAC Data  
8-Bit DAC Data  
Load DAC A input register. DAC registers unchanged.  
Load DAC B input register. DAC registers unchanged.  
Load both DAC input registers. DAC registers  
unchanged.  
X
X
X
0
0
X
1
1
8-Bit DAC Data  
COMMANDS UPDATING DAC REGISTER(S)  
Update both DAC registers with current contents of their  
input registers. Both input registers unchanged.  
X
X
X
X
X
X
X
X
X
X
X
X
X
0
1
1
1
1
X
X
X
X
0
0
1
1
0
1
0
1
XXXXXXXX  
8-Bit DAC Data  
8-Bit DAC Data  
8-Bit DAC Data  
Load DAC A input register and update both DAC  
registers. DAC B input register unchanged.  
Load DAC B input register and update both DAC  
registers. DAC A input register unchanged.  
0
Load both DAC input registers and update both DAC  
registers.  
0
COMMANDS POWERING DOWN AND LOADING INPUT REGISTER(S) ONLY  
Load DAC A input register and power down DAC A.  
DAC B input register and both DAC registers unchanged.  
X
X
X
X
X
X
X
X
X
1
1
1
0
0
0
X
X
X
0
1
1
1
0
1
8-Bit DAC Data  
8-Bit DAC Data  
8-Bit DAC Data  
Load DAC B input register and power down DAC B.  
DAC A input register and both DAC registers unchanged.  
Load both DAC input registers and power down both  
DACs. Both DAC registers unchanged.  
COMMANDS POWERING DOWN AND UPDATING DAC REGISTER(S)  
Load DAC A input register, power down DAC A, and  
update both DAC registers. DAC B input register  
unchanged.  
X
X
X
1
1
X
0
1
8-Bit DAC Data  
Load DAC B input register, power down DAC B, and  
update both DAC registers. DAC A input register  
unchanged.  
X
X
X
X
X
X
1
1
1
1
X
X
1
1
0
1
8-Bit DAC Data  
8-Bit DAC Data  
Load both DAC input registers, power down both DACs,  
and update both DAC registers.  
X = Dont care  
______________________________________________________________________________________ 11  
+2 .5 V t o +5 .5 V, Lo w -P o w e r, S in g le /Du a l,  
8 -Bit Vo lt a g e -Ou t p u t DACs in µMAX P a c k a g e  
Table 4. MAX550A Serial-Interface Programming Commands  
CONTROL BYTE  
DATA BYTE  
Loaded Last  
D7........D0  
LDAC  
COMMAND  
(Commands executed on CS’s rising edge)  
Loaded First  
UB1  
UB2  
UB3 C2 C1 C0 A1 A0  
Pin 6  
UNASSIGNED COMMANDS  
X
X
X
X
X
X
0
1
0
X
X
X
X
0
0
XXXXXXXX  
XXXXXXXX  
X
X
Unassigned command  
Unassigned operation  
X
COMMANDS LOADING INPUT REGISTER ONLY  
X
X
X
0
0
X
X
1
8-Bit DAC Data  
X
Load DAC input register. DAC register unchanged.  
COMMANDS LOADING DAC REGISTER  
Update DAC register with current contents of  
input register. Input register unchanged.  
X
X
X
X
X
X
X
X
X
X
X
X
0
0
0
0
1
1
1
1
0
0
1
1
X
X
X
X
0
1
0
1
XXXXXXXX  
8-Bit DAC Data  
XXXXXXXX  
X
X
0
Load DAC input register and update DAC register.  
Update DAC register with current contents of  
input register. Input register unchanged.  
8-Bit DAC Data  
0
Load DAC input register and update DAC register.  
COMMANDS UTILIZING THE ASYNCHRONOUS LOAD FUNCTION  
After CSs rising edge and on LDACs falling  
edge, update DAC register with current contents  
of input register. Input register unchanged.  
X
X
X
0
1
1
X
0
XXXXXXXX  
1
1
Load DAC input register. After CSs rising edge  
and on LDACs falling edge, update DAC register.  
X
X
X
0
1
1
X
1
8-Bit DAC Data  
COMMAND POWERING DOWN AND LOADING INPUT REGISTER ONLY  
X
X
X
1
0
X
X
1
8-Bit DAC Data  
X
Load DAC input register and power down DAC.  
849/MX50A  
COMMANDS POWERING DOWN AND UPDATING DAC REGISTER  
Load DAC input register, power down DAC, and  
update DAC register.  
X
X
X
X
X
X
1
1
1
1
0
1
X
X
1
1
8-Bit DAC Data  
8-Bit DAC Data  
X
0
Load DAC input register, power down DAC, and  
update DAC register.  
COMMAND POWERING DOWN AND UTILIZING THE ASYNCHRONOUS LOAD FUNCTION  
Load DAC input register and power down DAC.  
While powered down, on LDACs falling edge,  
update DAC register.  
X
X
X
1
1
1
X
1
8-Bit DAC Data  
1
X = Dont care  
Table 5. Example Input Word  
CONTROL BYTE  
DATA BYTE  
Loaded Last  
Loaded First  
UB1  
X
UB2  
X
UB3  
X
C2  
0
C1  
1
C0  
0
A1  
0
A0  
1
D7  
1
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
X = Dont care  
12 ______________________________________________________________________________________  
+2 .5 V t o +5 .5 V, Lo w -P o w e r, S in g le /Du a l,  
8 -Bit Vo lt a g e -Ou t p u t DACs in µMAX P a c k a g e  
849/MX50A  
Microprocessor Interfacing  
The MAX548A/MAX549A/MAX550A serial interface is  
SPI/QSPI and Microwire compatible. For SPI/QSPI, clear  
the CPOL and CPHA bits (CPOL = 0 and CPHA = 0).  
CPOL = 0 sets the clock idle state to zero, and CPHA =  
0 changes data at SCLK’s falling edge. This is the  
Microwire default condition. If a serial port is not avail-  
able on your microprocessor, three bits of a parallel port  
can be used to emulate a serial port by bit manipulation.  
Operate the serial clock only when necessary, to mini-  
mize digital feedthrough at the DAC registers.  
Careful PC board layout minimizes crosstalk in DAC regis-  
ters, the reference, and the digital inputs. Separate analog  
traces by running ground traces between them. Make sure  
that high-frequency digital lines are not routed parallel to  
analog lines.  
AC Co n s id e ra t io n s  
Digital Feedthrough  
High-speed data at any of the digital input pins can  
couple through a DACs internal stray package capaci-  
tance and cause noise (digital feedthrough) at the DAC  
output, even though LDAC and/or CS are held high  
(see Typical Operating Characteristics). Test digital  
feedthrough by holding LDAC and/or CS high and tog-  
gling the digital inputs from all 1s to all 0s.  
__________Ap p lic a t io n s In fo rm a t io n  
P o w e r-S u p p ly  
a n d Gro u n d Co n s id e ra t io n s  
Connect GND to the highest quality ground available.  
Analog Feedthrough  
Due to internal stray capacitance, higher frequency analog  
input signals at REF can couple to the output, even when  
the input digital code is all 0s. This condition is shown in  
the MAX549A/MAX550A Reference AC Feedthrough vs.  
Frequency graph in the Typical Operating Characteristics.  
Test analog feedthrough by setting all DAC outputs to 0V  
and sweeping REF.  
Bypass V  
with a 0.1µF to 0.22µF capacitor to GND.  
DD  
The reference input can be used without bypassing.  
However, for optimum line/load-transient response and  
noise performance, bypass the reference input with a  
0.1µF to 4.7µF capacitor to GND.  
Table 6. Analog Output vs. Code  
DAC CONTENTS  
ANALOG OUTPUT (V)  
D0  
D7  
1
D6  
1
D5  
1
D4  
1
D3  
1
D2  
1
D1  
1
1
1
0
1
1
0
+V (255 / 256)  
REF  
1
0
0
0
0
0
0
+V (129 / 256)  
REF  
1
0
0
0
0
0
0
+V (128 / 256) = +V  
/ 2  
REF  
REF  
0
1
1
1
1
1
1
+V (127 / 256)  
REF  
0
0
0
0
0
0
0
+V (1 / 256)  
REF  
0
0
0
0
0
0
0
0
Note: 1LSB = V  
x 2-8 = V (1 / 256); ANALOG OUTPUT = +V (I / 256), where I = Integer Value of Digital Input.  
REF REF  
REF  
_____________________________________________P in Co n fig u ra t io n s (c o n t in u e d )  
TOP VIEW  
GND  
OUTA  
CS  
1
2
3
4
8
7
6
5
V
GND  
OUT  
CS  
1
2
3
4
8
7
6
5
V
DD  
DD  
REF  
REF  
MAX549A  
MAX550A  
OUTB  
SCLK  
LDAC  
SCLK  
DIN  
DIN  
DIP/µMAX  
DIP/µMAX  
______________________________________________________________________________________ 13  
+2 .5 V t o +5 .5 V, Lo w -P o w e r, S in g le /Du a l,  
8 -Bit Vo lt a g e -Ou t p u t DACs in µMAX P a c k a g e  
_________________________________________________________Fu n c t io n a l Dia g ra m  
V
DD  
8
8
8
DAC A  
INPUT  
REGISTER  
OUTA  
REF  
DAC A  
REGISTER  
DAC A  
R-2R LADDER  
DIN  
SCLK  
CS  
INPUT  
SHIFT  
V
DD  
MAX549A/  
MAX550A  
ONLY  
MAX548A  
ONLY  
REGISTER  
AND  
LDAC  
8
8
8
DAC B  
INPUT  
REGISTER  
OUTB  
DAC B  
REGISTER  
DAC B  
R-2R LADDER  
MAX548A/  
MAX550A  
ONLY  
CONTROL  
MAX548A/  
MAX549A  
ONLY  
MAX548A  
MAX549A  
MAX550A  
GND  
849/MX50A  
___________________Ch ip In fo rm a t io n  
_Ord e rin g In fo rm a t io n (c o n t in u e d )  
PART  
TEMP. RANGE  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
8 Plastic DIP  
8 µMAX  
TRANSISTOR COUNT: 1562  
MAX549ACPA  
MAX549ACUA  
MAX549AC/D  
MAX549AEPA  
MAX549AEUA  
MAX550ACPA  
MAX550ACUA  
MAX550AC/D  
MAX550AEPA  
MAX550AEUA  
Dice*  
8 Plastic DIP  
8 µMAX  
8 Plastic DIP  
8 µMAX  
Dice*  
8 Plastic DIP  
8 µMAX  
*Dice are specified at T = +25°C, DC parameters only.  
A
14 ______________________________________________________________________________________  
+2 .5 V t o +5 .5 V, Lo w -P o w e r, S in g le /Du a l,  
8 -Bit Vo lt a g e -Ou t p u t DACs in µMAX P a c k a g e  
849/MX50A  
________________________________________________________P a c k a g e In fo rm a t io n  
______________________________________________________________________________________ 15  
+2 .5 V t o +5 .5 V, Lo w -P o w e r, S in g le /Du a l,  
8 -Bit Vo lt a g e -Ou t p u t DACs in µMAX P a c k a g e  
___________________________________________P a c k a g e In fo rm a t io n (c o n t in u e d )  
849/MX50A  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
16 __________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 (4 0 8 ) 7 3 7 -7 6 0 0  
© 1997 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX5490VB10000+T

Array/Network Resistor, Divider, 0.5714W, 35ppm/Cel, Surface Mount, SOT-23, ROHS COMPLIANT
MAXIM

MAX5490VC10000+

暂无描述
MAXIM

MAX5490VC10000+T

Array/Network Resistor, Divider, 0.5714W, 35ppm/Cel, Surface Mount, SOT-23, ROHS COMPLIANT
MAXIM

MAX5490VC10000-T

100k зPrecision-Matched Resistor-Divider in SOT23
MAXIM

MAX5490XC25000+T

Array/Network Resistor, Divider, 0.5714W, 35ppm/Cel, Surface Mount, SOT-23, ROHS COMPLIANT
MAXIM

MAX5490_05

100k ?Precision-Matched Resistor-Divider in SOT23
MAXIM

MAX5491

Precision-Matched Resistor-Divider in SOT23
MAXIM

MAX5491LA01000+T

Array/Network Resistor, Divider, SOT-23, 3 PIN
MAXIM

MAX5491LA01000-T

Precision-Matched Resistor-Divider in SOT23
MAXIM

MAX5491LB01000+

Array/Network Resistor, Divider, ROHS COMPLIANT, TO-236AB, SOT-23, 3 PIN
MAXIM

MAX5491LB01000+T

Array/Network Resistor, Divider, SOT-23, 3 PIN
MAXIM

MAX5491LB01000-T

Precision-Matched Resistor-Divider in SOT23
MAXIM