MAX5661GCB+ [MAXIM]

Single 16-Bit DAC with Current and Voltage Outputs for Industrial Analog Output Modules; 一个16位DAC,提供电流和电压输出,适用于工业模拟输出模块
MAX5661GCB+
型号: MAX5661GCB+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Single 16-Bit DAC with Current and Voltage Outputs for Industrial Analog Output Modules
一个16位DAC,提供电流和电压输出,适用于工业模拟输出模块

文件: 总40页 (文件大小:4693K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-ꢀ741; Rev 1; 5/ꢀ9  
Single 16-Bit DAC with Current and Voltage  
Outputs for Industrial Analog Output Modules  
MAX561  
General Description  
Features  
10-Bit Programmable Full-Scale Output  
The MAX5661 single 16-bit DAC with precision high-  
voltage amplifiers provides a complete solution for pro-  
grammable current and voltage-output applications.  
The output amplifiers swing to industry-standard levels  
of 1ꢀ0 ꢁvoltage outputꢂ or source from ꢀmA ꢁor from  
4mAꢂ to 2ꢀmA ꢁcurrent outputꢂ. The voltage output  
ꢁOUT0ꢂ drives resistive loads greater than 2kand  
capacitive loads of up to 1.2µF. 0oltage-output force-  
sense connections compensate for series protection  
resistors and field-wiring resistance. Short-circuit pro-  
tection on the voltage output limits output current to  
1ꢀmA ꢁtypꢂ sourcing or -11.5mA ꢁtypꢂ sinking. The cur-  
rent output ꢁOUTIꢂ drives resistive loads up to 37.50  
ꢁmaxꢂ and inductive loads up to 1H.  
Adjustment for Up to ±±25 Oꢀer ꢁange  
Programmable Voltage Output  
Unipolar ꢁange: 0 to +10.±4V ±±25  
Bipolar ꢁange: ±10.±4V ±±25  
Programmable Current Output  
Unipolar Low ꢁange: 0 to ±0.42mA  
Unipolar High ꢁange: 3.97mA to ±0.42mA  
Flexible Analog Supplies (See Table 16)  
±13.4ꢂV to ±12.72V for Voltage Output  
+13.4ꢂV to +40V for Current Output  
Force-Sense Connections (Voltage Output)  
The MAX5661 provides either a current output or a volt-  
age output. Only one output is active at any given time,  
regardless of the configuration. The MAX5661 voltage  
output operates with 13.4ꢃ0 to 15.750 supplies  
for Differential Voltage-Output ꢁemote Sensing  
Voltage-Output Current Limit  
Dropout Detector Senses Out-of-ꢁegulation  
ꢁ0  
, 0  
ꢂ and the current output operates with a  
SS0  
DD0  
Current Output  
single +13.4ꢃ0 to +4ꢀ0 supply ꢁ0  
+5.250 digital supply ꢁ0 ꢂ powers the rest of the inter-  
ꢂ. A +4.750 to  
DDI  
CLR and LDAC Inputs for Asynchronous DAC  
CC  
nal circuitry. A buffered reference input accepts an  
external +4.ꢀ960 reference voltage.  
Updates  
CLR Input ꢁesets Output to Programmed Value or  
Update the DAC outputs using software commands or  
the asynchronous LDAC input. An asynchronous CLR  
input sets the DAC outputs to the value stored in the  
clear register or to zero. The FAULT output asserts  
when the DAC’s current output is an open circuit, the  
DAC’s voltage output is a short circuit, or when the CLR  
input is low.  
Zero Code  
FAULT Output Indicates Open-Circuited Current  
Output, Short-Circuited Voltage Output, or Clear  
State  
Temperature Drift  
Voltage Output: ±0.4ppm FSꢁR/C  
Current Output: ±7.9ppm FSꢁR/C  
The MAX5661 communicates through a 4-wire 1ꢀMHz  
SPI™-/QSPI™-/MICROWIRE™-compatible serial inter-  
face. The DOUT output allows daisy chaining of multi-  
ple devices. The MAX5661 is available in a 1ꢀmm x  
1ꢀmm, 64-pin, LQFP package and operates over the  
-4ꢀ°C to +1ꢀ5°C temperature range.  
Small 64-Pin LQFP Package (10mm x 10mm)  
SPI and QSPI are trademarks of Motorola, Inc.  
Ordering Information  
MICROWIRE is a trademark of National Semiconductor Corp.  
PAꢁT  
TEMP ꢁANGE  
PIN-PACKAGE  
MAX5661GCB+  
-4ꢀ°C to +1ꢀ5°C  
64 LQFP  
Applications  
Industrial Analog Output Modules  
Industrial Instrumentation  
+Denotes a leadꢁPbꢂ-free/RoHS-compliant package.  
Programmable Logic Controls/Distributed  
Control Systems  
Process Control  
Pin Configuration and Typical Operating Circuit appear at  
end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing deliꢀery, and ordering information please contact Maxim Direct at 1-ꢂꢂꢂ-6±9-464±,  
or ꢀisit Maxim’s website at www.maxim-ic.com.  
Single 16-Bit DAC with Current and Voltage  
Outputs for Industrial Analog Output Modules  
OUT0, S0P, S0N, COMP0 to 0  
OUTI, COMPI, OUTI4/0 to AGND..............-ꢀ.30 to ꢁ0  
Maximum Current into Any Pin ....................................... 1ꢀꢀmA  
Continuous Power Dissipation ꢁT = +7ꢀ°Cꢂ  
64-Pin, 1ꢀmm x 1ꢀmm TQFP ꢁderate 25mW/°C  
above +7ꢀ°Cꢂ............................................................ 2ꢀꢀꢀmW  
Junction-to-Ambient Thermal Resistance  
...........-ꢀ.30 to ꢁ0  
DD0  
+ ꢀ.30ꢂ  
+ ꢀ.30ꢂ  
SS0  
DDI  
A
DACGNDS to AGND ............................................-ꢀ.30 to +60  
Digital Inputs ꢁCS, DIN, SCLK, CLR, LDAC,  
in Still Air ꢁθ ...………………………………………….4ꢀ°C/W  
JA  
Junction-to-Case Thermal Resistance ꢁθ ꢂ...................... ꢃ°C/W  
5
JC  
Operating Temperature Range .........................-4ꢀ°C to +1ꢀ5°C  
Junction Temperature......................................................+15ꢀ°C  
Storage Temperature Range.............................-65°C to +15ꢀ°C  
Lead Temperature ꢁsoldering,1ꢀsꢂ ..................................+3ꢀꢀ°C  
CNF_ꢂ to DGND .....................................-ꢀ.30 to ꢁ0  
+ ꢀ.30ꢂ  
CC  
Digital Outputs ꢁDOUT, FAULTꢂ to DGND....................................  
...............................-ꢀ.30 to the lesser of ꢁ0 + ꢀ.30ꢂ or +60  
CC  
REF to AGND............................................................-ꢀ.30 to +60  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTꢁICAL CHAꢁACTEꢁISTICS  
ꢁ0  
= +50, C  
= 22nF, 0  
= 0  
= +150, 0  
= -150, 0  
= +240, 0  
= +4.ꢀ960, 0  
= 0  
= 0  
=
DUTGND  
CC  
COMPI  
DD0  
DDCORE  
SS0  
DDI  
REF  
AGND  
DGND  
0
= ꢀ0, R  
= 47, OUT0 loaded with 2k|| 1ꢀꢀpF to AGND, OUTI loaded with 5ꢀꢀto AGND, T = -4ꢀ°C to +1ꢀ5°C,  
DACGND  
SERIES A  
unless otherwise noted. Typical values are at T = +25°C. See the Typical Operating Circuit.ꢂ ꢁNote 1ꢂ  
A
PAꢁAMETEꢁ  
STATIC PEꢁFOꢁMANCE  
Resolution  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
16  
Bits  
0
ꢀ.2  
6
4
OUT  
I
, 0  
= 4ꢀ0,  
= ꢀ  
DD0  
OUT DDI  
4–2ꢀmA  
0
= 0  
SS0  
ꢀ to 2ꢀmA  
4–2ꢀmA  
1ꢀ  
ꢁNote 2ꢂ  
Integral Nonlinearity  
INL  
LSB  
I
, 0  
= 0  
DD0  
OUT DDI  
2
6
= +150, 0  
ꢁNote 2ꢂ  
= -150  
SS0  
ꢀ to 2ꢀmA  
Differential Nonlinearity  
Zero-Scale 0oltage Error  
DNL  
Guaranteed monotonic ꢁNote 3ꢂ  
-1.ꢀ  
+1.ꢀ  
3
LSB  
m0  
Unipolar  
ꢀ.ꢀ1  
2.ꢀ  
0
OUT0  
ZSE  
Bipolar  
1ꢀ  
T
T
T
T
T
T
T
T
= +25°C  
-45  
-6ꢀ  
-3ꢀ  
-3ꢀ  
3.97  
3.97  
2.ꢀ  
-15  
A
A
A
A
A
A
A
A
ꢀ to 2ꢀmA mode  
4–2ꢀmA mode  
ꢀ to 2ꢀmA mode  
4–2ꢀmA mode  
OUT0  
µA  
= T  
to T  
Zero-Scale Current  
ꢁNote 4ꢂ  
MIN  
MAX  
MAX  
MAX  
MAX  
= +25°C  
= T to T  
3.955  
3.94  
-15  
3.9ꢃ5  
4.ꢀꢀ  
+15  
+3ꢀ  
+15  
+3ꢀ  
mA  
MIN  
= +25°C  
= T to T  
-3ꢀ  
2.ꢀ  
Zero-Scale Current Error  
ꢁNote 4ꢂ  
MIN  
I
µA  
ZSE  
= +25°C  
= T to T  
-15  
3.ꢀ  
-3ꢀ  
7.ꢀ  
MIN  
Unipolar  
Bipolar  
ꢀ.5  
ppm of  
FSR/oC  
0oltage-Offset Error Drift  
TC0  
OS  
ꢀ.2  
±
________________________________________________________________________________________  
Single 16-Bit DAC with Current and Voltage  
Outputs for Industrial Analog Output Modules  
MAX561  
ELECTꢁICAL CHAꢁACTEꢁISTICS (continued)  
ꢁ0  
= +50, C  
= 22nF, 0  
= 0  
= +150, 0  
= -150, 0  
= +240, 0  
= +4.ꢀ960, 0  
= 0  
= 0  
=
DUTGND  
CC  
COMPI  
DD0  
DDCORE  
SS0  
DDI  
REF  
AGND  
DGND  
0
= ꢀ0, R  
= 47, OUT0 loaded with 2k|| 1ꢀꢀpF to AGND, OUTI loaded with 5ꢀꢀto AGND, T = -4ꢀ°C to +1ꢀ5°C,  
DACGND  
SERIES A  
unless otherwise noted. Typical values are at T = +25°C. See the Typical Operating Circuit.ꢂ ꢁNote 1ꢂ  
A
PAꢁAMETEꢁ  
SYMBOL  
TCI  
CONDITIONS  
ꢀ to 2ꢀmA  
MIN  
TYP  
4
MAX  
UNITS  
ppm of  
FSR/oC  
Current-Offset Error Drift  
OUTI  
OUT0  
OUTI  
OUT0  
OUTI  
OS  
4–2ꢀmA  
Unipolar  
Bipolar  
4
2.5  
4.5  
ꢃ.ꢀ  
4ꢀ  
1ꢀ  
2ꢀ  
m0  
µA  
Gain Error  
GE  
T
A
T
A
= +25°C  
7ꢀ  
= T  
to T  
13ꢀ  
MIN  
MAX  
Unipolar  
Bipolar  
ꢀ.4  
ꢀ.4  
-7.9  
-ꢃ.6  
ppm of  
FSR/oC  
Gain-Error Drift  
TCGE  
PSRR  
ꢀ to 2ꢀmA  
4–2ꢀmA  
OUT0, unipolar output, full-scale code,  
from +13.4ꢃ0 to +15.750  
2ꢀ  
2ꢀ  
2ꢀꢀ  
2ꢀꢀ  
5
0
DD0  
µ0/0  
µA/0  
OUT0, bipolar output, zero-scale code,  
from -13.4ꢃ0 to -15.750  
0
SS0  
Power-Supply Rejection Ratio  
OUTI, full-scale code, 0  
from +13.4ꢃ0 to  
DDI  
ꢀ.ꢀ13  
ꢀ.ꢀ17  
+4ꢀ0, 0  
= -15.750, 0  
= +15.750  
DD0  
SS0  
OUTI, full-scale code, 0  
from +13.4ꢃ0 to  
DDI  
5
+4ꢀ0, 0  
= 0  
= ꢀ  
SS0  
DD0  
ꢁEFEꢁENCE INPUT  
Reference Input Current  
Reference Input 0oltage Range  
DYNAMIC PEꢁFOꢁMANCE  
I
ꢀ.ꢀ5ꢀ  
4.ꢀ96  
1
µA  
0
REF  
0
4.ꢀ  
4.2  
REF  
Unipolar output, 0  
= +1ꢀ.4ꢃ0  
23ꢀ  
3ꢀꢀ  
132  
12ꢀ  
OUT0  
Output-0oltage Noise at 1ꢀkHz  
Output-Current Noise at 1ꢀkHz  
e
n0/Hz  
pA/Hz  
0/µs  
n
Bipolar output, 0  
ꢀ to 2ꢀmA range  
4–2ꢀmA range  
=
1ꢀ.4ꢃ0  
OUT0  
i
n
C
= 1ꢀꢀpF, R  
= 2k,  
OUT0  
OUT0  
0oltage-Output Slew Rate  
Current-Output Slew Rate  
ꢀ.1  
step = 2ꢀ0, C  
= ꢀnF  
EXT  
L
= ꢀ, R  
= 5ꢀꢀ, step = 2ꢀmA  
ꢀ.15  
1
mA/µs  
µ0•s  
OUTI  
OUTI  
OUT0  
From code 7FFFh  
to code ꢃꢀꢀꢀh  
Major Code Transition Glitch  
ꢀ to 2ꢀmA  
OUTI  
2.ꢀ  
2.ꢀ  
nA•s  
n0•s  
pA•s  
4–2ꢀmA  
Outputs set to  
zero scale, all  
digital inputs from  
OUT0  
ꢀ.1  
ꢀ.2  
Digital Feedthrough  
ꢀ0 to 0  
and  
CC  
OUTI, R = 5ꢀꢀΩ  
L
back to ꢀ0  
_______________________________________________________________________________________  
3
Single 16-Bit DAC with Current and Voltage  
Outputs for Industrial Analog Output Modules  
ELECTꢁICAL CHAꢁACTEꢁISTICS (continued)  
ꢁ0  
= +50, C  
= 22nF, 0  
= 0  
= +150, 0  
= -150, 0  
= +240, 0  
= +4.ꢀ960, 0  
= 0  
= 0  
=
DUTGND  
CC  
COMPI  
DD0  
DDCORE  
SS0  
DDI  
REF  
AGND  
DGND  
0
= ꢀ0, R  
= 47, OUT0 loaded with 2k|| 1ꢀꢀpF to AGND, OUTI loaded with 5ꢀꢀto AGND, T = -4ꢀ°C to +1ꢀ5°C,  
DACGND  
SERIES A  
unless otherwise noted. Typical values are at T = +25°C. See the Typical Operating Circuit.ꢂ ꢁNote 1ꢂ  
A
PAꢁAMETEꢁ  
SETTLING TIME  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
C
R
= 1nF,  
= 2kΩ  
OUT0  
3
Bipolar output,  
= 3.3nF,  
to ꢀ.1%  
MAX561  
OUT0  
C
ms  
µs  
COMP0  
C
= 1.2µF,  
= 2kΩ  
OUT0  
5.44  
R
OUT0  
Bipolar output,  
= ꢀnF,  
C
= 1ꢀꢀpF,  
= 2kΩ  
OUT0  
C
244  
COMP0  
R
OUT0  
to ꢀ.1%  
0oltage-Output Settling Time  
C
= 1nF,  
= 2kΩ  
OUT0  
1.ꢃ  
Unipolar output,  
= 3.3nF,  
R
OUT0  
C
ms  
µs  
COMP0  
C
= 1.2µF,  
= 2kΩ  
OUT0  
to ꢀ.1%  
3.64  
R
OUT0  
Unipolar output,  
= ꢀnF,  
C
= 1ꢀꢀpF,  
= 2kΩ  
OUT0  
C
13ꢀ  
COMP0  
R
OUT0  
to ꢀ.1%  
R
OUTI  
= 5ꢀꢀΩ  
1.5  
L
L
L
= 1mH  
= 1ꢀmH  
= 1H  
1.66  
1.66  
1.97  
1.43  
1.5ꢃ  
1.5ꢃ  
1.73  
ꢀ to 2ꢀ.45mA  
range to ꢀ.1%  
OUTI  
OUTI  
OUTI  
Current-Output Settling Time  
ms  
R
= 5ꢀꢀΩ  
= 1mH  
= 1ꢀmH  
= 1H  
OUTI  
OUTI  
OUTI  
OUTI  
3.97mA to  
2ꢀ.45mA range  
to ꢀ.1%  
L
L
L
4
________________________________________________________________________________________  
Single 16-Bit DAC with Current and Voltage  
Outputs for Industrial Analog Output Modules  
MAX561  
ELECTꢁICAL CHAꢁACTEꢁISTICS (continued)  
ꢁ0  
= +50, C  
= 22nF, 0  
= 0  
= +150, 0  
= -150, 0  
= +240, 0  
= +4.ꢀ960, 0  
= 0  
= 0  
=
DUTGND  
CC  
COMPI  
DD0  
DDCORE  
SS0  
DDI  
REF  
AGND  
DGND  
0
= ꢀ0, R  
= 47, OUT0 loaded with 2k|| 1ꢀꢀpF to AGND, OUTI loaded with 5ꢀꢀto AGND, T = -4ꢀ°C to +1ꢀ5°C,  
DACGND  
SERIES A  
unless otherwise noted. Typical values are at T = +25°C. See the Typical Operating Circuit.ꢂ ꢁNote 1ꢂ  
A
PAꢁAMETEꢁ  
OUTV OUTPUT  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
OUT0 Linear Output 0oltage  
Range  
0
+
0
-
SS0  
3.ꢀ  
DD0  
3.ꢀ  
0
0
0
Unipolar, 0  
= +13.4ꢃ0, 0 = -13.4ꢃ0  
SS0  
+1ꢀ.4ꢃ  
+1ꢀ.4ꢃ  
Default OUT0 Output 0oltage  
Ranges ꢁꢀ0 to Full Scaleꢂ  
DD0  
0
0
0
OUT  
OUT  
OUT  
Bipolar, 0  
Unipolar  
Bipolar  
= +13.4ꢃ0, 0  
= -13.4ꢃ0  
-1ꢀ.4ꢃ  
DD0  
SS0  
+7.6ꢃ  
7.6ꢃ  
+12.ꢃ  
12.ꢃ  
ꢀ.1  
Minimum OUT0 Output 0oltage  
Range ꢁFS to ADJꢂ  
Unipolar  
Bipolar  
Maximum OUT0 Output 0oltage  
Range ꢁFS to ADJꢂ  
0
DC Output Impedance  
OUT0 off or disabled,  
output leakage current from OUT0 to AGND  
OUT0 Off-State Leakage Current  
2.5  
1ꢀ  
µA  
Sourcing  
7
1ꢀ  
-11.5  
2
13  
OUT0 Short-Circuit Output  
Current  
I
mA  
SC  
Sinking  
-1ꢃ.ꢀ  
-9.ꢀ  
Minimum OUT0 Resistive Load  
R
C
Full-scale code  
kΩ  
µF  
nF  
OUT0  
OUT0  
C
C
= 3.3nF  
= ꢀnF  
1.2  
1
COMP0  
COMP0  
Maximum OUT0 Capacitive Load  
OUTI OUTPUT  
OUTI 0oltage Compliance  
Full-scale output, R  
= 15ꢀꢀꢁNote 5ꢂ  
0
- 2.5  
DDI  
0
OUTI  
ꢀ to 2ꢀmA mode includes FS calibration  
ꢁNote 4ꢂ  
2ꢀ.45  
2ꢀ.45  
OUTI Output Current Range  
mA  
4–2ꢀmA mode includes FS calibration  
OUTI = full scale  
3.97  
DC Output Impedance  
45  
ꢀ.1  
1.3  
MΩ  
µA  
0
OUTI off or disabled,  
OUTI Off-State Leakage Current  
1ꢀ  
ꢀ0 < 0  
< 0  
DDI  
OUTI  
Current-Mode Dropout Detection  
0
0
- 0  
, FAULT does not assert  
DDI  
SS0  
OUTI  
FEEDBACK SENSE BUFFEꢁ INPUTS  
Input Current  
+ 1.70 < S0P, S0N < 0  
- 1.70  
ꢀ.ꢀ5  
1
µA  
0
DD0  
0
0
DD0  
- 1.7  
SS0  
+ 1.7  
Input 0oltage Range  
S0P, S0N  
DIGITAL INPUTS  
Input High 0oltage  
Input Low 0oltage  
Input Capacitance  
Input Leakage Current  
DIGITAL OUTPUTS  
Output High 0oltage  
0
0
0
= 4.750 to 5.250  
= 4.750 to 5.250  
2.4  
0
0
IH  
CC  
CC  
0
ꢀ.ꢃ  
+1  
IL  
IN  
IN  
C
1ꢀ  
pF  
µA  
I
0
= ꢀ0 or 0  
-1  
IN  
CC  
0
I
= 4ꢀꢀµA, except FAULT  
0 - ꢀ.5  
CC  
0
0
OH  
SOURCE  
I
= 1.6mA  
ꢀ.4  
1
SINK  
SINK  
Output Low 0oltage  
0
0
= 4.750  
CC  
OL  
I
= 1ꢀmA  
_______________________________________________________________________________________  
2
Single 16-Bit DAC with Current and Voltage  
Outputs for Industrial Analog Output Modules  
ELECTꢁICAL CHAꢁACTEꢁISTICS (continued)  
ꢁ0  
= +50, C  
= 22nF, 0  
= 0  
= +150, 0  
= -150, 0  
= +240, 0  
= +4.ꢀ960, 0  
= 0  
= 0  
=
DUTGND  
CC  
COMPI  
DD0  
DDCORE  
SS0  
DDI  
REF  
AGND  
DGND  
0
= ꢀ0, R  
= 47, OUT0 loaded with 2k|| 1ꢀꢀpF to AGND, OUTI loaded with 5ꢀꢀto AGND, T = -4ꢀ°C to +1ꢀ5°C,  
DACGND  
SERIES A  
unless otherwise noted. Typical values are at T = +25°C. See the Typical Operating Circuit.ꢂ ꢁNote 1ꢂ  
A
PAꢁAMETEꢁ  
SYMBOL  
CONDITIONS  
MIN  
TYP  
ꢀ.1  
MAX  
UNITS  
µA  
Output High Leakage Current  
Three-State Output Leakage Current  
POWEꢁ SUPPLIES (see Table 16)  
FAULT only  
2
2
DOUT only  
ꢀ.1  
µA  
MAX561  
0
Supply Range  
0
+4.75  
+5.25  
0
0
CC  
CC  
Only OUT0 powered  
+13.4ꢃ  
+15.75  
0
Supply Range  
0
Only OUTI powered  
AGND  
AGND  
DD0  
SS0  
DDI  
DD0  
Both OUT0 and OUTI powered  
Only OUT0 powered  
+13.4ꢃ  
-15.75  
+15.75  
-13.4ꢃ  
0
0
0
Supply Range  
Supply Range  
0
Only OUTI powered  
0
0
0
SS0  
Both OUT0 and OUTI powered  
Only OUT0 powered  
-15.75  
-13.4ꢃ  
0
DD0  
0
Only OUTI powered  
+13.4ꢃ  
+4ꢀ.ꢀꢀ  
+4ꢀ  
DDI  
Both OUT0 and OUTI powered  
Only OUT0 powered  
0
DD0  
0
DD0  
Supply Range  
0
Only OUTI powered  
0
DDI  
DDCORE  
DDCORE  
Both OUT0 and OUTI powered  
0
DD0  
I
I
+
+
0DD0  
4.5  
6.5  
0DDI  
OUT0 powered, 0  
= 0  
= 0  
DDI DDCORE  
DD0  
I
I
0DDCORE  
Analog and Digital Supply  
Currents ꢁOUT0 Activeꢂ  
= +15.750, 0  
OUT0 unloaded, all ditgital inputs at 0 or  
CC  
DGND  
= -15.750, 0  
= +5.250,  
CC  
SS0  
mA  
mA  
mA  
I
-5  
-2.5  
-1.6  
ꢀ.ꢀ3  
0SS0  
I
-3.ꢀ  
AGND  
I
ꢀ.2  
5.5  
0CC  
I
I
+
+
0DD0  
2.ꢃ  
0DDI  
Analog and Digital Supply  
Currents ꢁOUTI Activeꢂ, ꢀ to  
2ꢀmA Mode  
OUTI powered, 0  
= 0  
= AGND,  
SS0  
DD0  
0DDCORE  
0
= 0  
= +120 to +4ꢀ0, 0  
CC  
=
DDI  
DDCORE  
I
-1.ꢀ  
-4.ꢀ  
-ꢀ.ꢀ3  
-2.1  
0SS0  
+5.250, zero code  
I
AGND  
I
ꢀ.ꢀ3  
ꢀ.2  
9.5  
0CC  
I
I
+
+
0DD0  
6.ꢃ  
0DDI  
Analog and Digital Supply  
Currents ꢁOUTI Activeꢂ, 4–2ꢀmA  
Mode  
OUTI powered, 0  
= 0  
= AGND,  
SS0  
DD0  
I
I
0DDCORE  
0
= 0  
= +120 to +4ꢀ0, 0  
=
DDI  
DDCORE  
CC  
I
-1.ꢀ  
-4.ꢀ  
-ꢀ.ꢀ3  
-2.1  
0SS0  
+5.250, zero code  
I
AGND  
I
ꢀ.ꢀ3  
ꢀ.2  
6
0CC  
I
+
0DD0  
4.2  
Both OUT0 and OUTI powered, 0  
=
DD0  
0DDCORE  
0
= +15.750, 0  
= -15.750, 0  
=
DDCORE  
SS0  
DDI  
I
-4.ꢀ  
-4.ꢀ  
2.6  
-2.ꢀ  
ꢀ.ꢀ3  
1.3  
0SS0  
Analog and Digital Supply  
Currents ꢁEither OUT0 or OUTI  
Activeꢂ  
+4ꢀ0, 0 = +5.250, OUT0 unloaded at zero  
CC  
I
mA  
AGND  
code, all ditgital inputs at 0  
or DGND  
CC  
I
ꢀ.2  
2
0CC  
I
ꢀ to 2ꢀmA at zero code  
4–2ꢀmA at zero code  
0DDI  
0DDI  
I
5.3  
6.5  
6
________________________________________________________________________________________  
Single 16-Bit DAC with Current and Voltage  
Outputs for Industrial Analog Output Modules  
MAX561  
TIMING CHAꢁACTEꢁISTICS  
ꢁ0  
= +50, C  
= 22nF, 0  
= 0  
= +150, 0  
= -150, 0  
= +240, 0  
= +4.ꢀ960, AGND = DGND = DUTGND =  
CC  
COMPI  
DD0  
DDCORE  
SS0  
DDI  
REF  
DACGND = ꢀ0, R  
= 47, OUT0 loaded with 2k|| 1ꢀꢀpF to AGND, OUTI loaded with 5ꢀꢀto AGND, T = -4ꢀ°C to +1ꢀ5°C,  
SERIES  
A
unless otherwise noted. Typical values are at T = +25°C. See Figure 1.ꢂ ꢁNotes 1, 6ꢂ  
A
PAꢁAMETEꢁ  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SCLK Rise or Fall to CS Fall  
Setup Time  
t
45  
ns  
CSO  
CS Fall to SCLK Rise or Fall  
Setup Time  
t
4ꢀ  
ns  
CSS  
SCLK Pulse-Width High  
SCLK Pulse-Width Low  
DIN to SCLK High Setup Time  
DIN to SCLK High Hold Time  
SCLK Period  
t
45  
45  
ns  
ns  
ns  
ns  
ns  
ns  
CH  
t
CL  
DS  
DH  
t
4ꢀ  
t
t
1ꢀꢀ  
1ꢀꢀ  
CP  
CS Pulse-Width High  
t
CSW  
CS High to SCLK High or Low  
Setup Time  
t
45  
45  
ns  
ns  
ns  
CS1  
CSH  
SCLK High to CS Hold Time  
t
SCLK Fall to DOUT 0alid  
Propagation Delay  
t
C
C
= 1ꢀꢀpF  
1ꢀꢀ  
1ꢀꢀ  
DO  
DOUT  
DOUT  
CS Transitions to DOUT  
Enable/Disable Delay  
t
= 1ꢀꢀpF  
ns  
ns  
D0  
SCLK Fall or Rise to CS Rise  
Time  
t
15  
SCS  
LDAC Pulse-Width Low  
t
4ꢀ  
ꢃꢀ  
ns  
ns  
LDL  
CS Rise to LDAC Rise Time  
t
CSLD  
Note 1: Devices are 1ꢀꢀ% production tested at T = +25°C and +1ꢀ5°C. Operation to -4ꢀ°C is guaranteed by design.  
A
Note ±: I  
Note 3: I  
INL 1ꢀꢀ% production tested from ꢀ to 2ꢀmA only.  
OUT  
OUT  
DNL guaranteed by 0  
DNL.  
OUT  
Note 4: ꢀ to 2ꢀmA zero-scale current extrapolated by interpolation from full scale and code 192. See the Measuring Zero-Code  
Current ꢁꢀ to 2ꢀmA Modeꢂ section.  
Note 2: OUTI voltage compliance measured at 0  
= +33.220.  
DDI  
Note 6: When updating the DAC registers, allow 5µs before sending the next command.  
_______________________________________________________________________________________  
7
Single 16-Bit DAC with Current and Voltage  
Outputs for Industrial Analog Output Modules  
CS  
t
CSO  
t
t
CSW  
CSH  
t
t
CH  
CL  
t
CP  
MAX561  
t
t
SCS  
CSS  
SCLK  
DIN  
t
DH  
t
DS  
t
CS1  
t
DO  
t
t
DV  
DV  
DOUT  
LDAC  
t
LDL  
t
CSLD  
Figure 1. Serial-Interface Timing Diagram  
Typical Operating Characteristics  
Typical Operating Circuit, 0  
= +50, C  
= 22nF, 0  
= 0  
= +150, 0  
= -150, 0  
= +240, 0  
= +4.ꢀ960,  
REF  
CC  
COMPI  
DD0  
DDCORE  
SS0  
DDI  
0
= 0  
= ꢀ0, R  
= 47, OUT0 loaded with 2k|| 1ꢀꢀpF to AGND, OUTI loaded with 5ꢀꢀto AGND, T = +25°C.ꢂ  
SERIES A  
AGND  
DGND  
INL vs. DIGITAL INPUT CODE  
INL vs. DIGITAL INPUT CODE  
INL vs. DIGITAL INPUT CODE  
1.0  
0.8  
1.0  
0.8  
5
4
BIPOLAR VOLTAGE OUTPUT  
UNIPOLAR VOLTAGE OUTPUT  
0.6  
0.6  
3
0.4  
0.4  
0.2  
0.2  
2
0
0
1
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
-1  
-2  
0 TO 20mA CURRENT OUTPUT  
0
16,384  
32,768  
49,152  
65,536  
0
16,384  
32,768  
49,152  
65,536  
0
16,384  
32,768  
49,152  
65,536  
DIGITAL INPUT CODE  
DIGITAL INPUT CODE  
DIGITAL INPUT CODE  
________________________________________________________________________________________  
Single 16-Bit DAC with Current and Voltage  
Outputs for Industrial Analog Output Modules  
MAX561  
Typical Operating Characteristics (continued)  
Typical Operating Circuit, 0  
= +50, C  
= 22nF, 0  
= 0  
= +150, 0  
= -150, 0  
= +240, 0  
= +4.ꢀ960,  
REF  
CC  
COMPI  
DD0  
DDCORE  
SS0  
DDI  
0
= 0  
= ꢀ0, R  
= 47, OUT0 loaded with 2k|| 1ꢀꢀpF to AGND, OUTI loaded with 5ꢀꢀto AGND, T = +25°C.ꢂ  
SERIES A  
AGND  
DGND  
INL vs. DIGITAL INPUT CODE  
INL vs. DIGITAL INPUT CODE  
INL vs. DIGITAL INPUT CODE  
3
10  
5
4
9
8
2
1
0
7
3
6
5
2
4
1
3
2
-1  
-2  
-3  
0
1
0 TO 20mA CURRENT OUTPUT  
4–20mA CURRENT OUTPUT  
V
V
= V  
= +40V  
V
V
= V  
= +40V  
0
DDI  
DDCORE  
DDI  
DDCORE  
-1  
-2  
= V = 0V  
= V = 0V  
DDV  
SSV  
DDV  
SSV  
-1  
-2  
4–20mA CURRENT OUTPUT  
0
16,384  
32,768  
49,152  
65,536  
0
16,384  
32,768  
49,152  
65,536  
0
16,384  
32,768  
49,152  
65,536  
DIGITAL INPUT CODE  
DIGITAL INPUT CODE  
DIGITAL INPUT CODE  
INL vs. TEMPERATURE  
INL vs. TEMPERATURE  
DNL vs. DIGITAL INPUT CODE  
0.5  
0.4  
0.4  
0.3  
0.5  
0.4  
0.3  
0.2  
0.1  
ALL MODES  
MAX INL  
0.3  
0.2  
0.1  
0.2  
MAX INL  
0.1  
0
0
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
MIN INL  
-0.1  
-0.2  
-0.3  
-0.4  
MIN INL  
BIPOLAR VOLTAGE OUTPUT  
UNIPOLAR VOLTAGE OUTPUT  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
0
16,384  
32,768  
49,152  
65,536  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
DIGITAL INPUT CODE  
INL vs. TEMPERATURE  
INL vs. TEMPERATURE  
INL vs. TEMPERATURE  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0 to 20mA CURRENT OUTPUT  
= V = +40V  
0 TO 20mA CURRENT OUTPUT  
4–20mA CURRENT OUTPUT  
V
DDI  
DDCORE  
V
DDV  
= V = 0V  
SSV  
4.0  
3.5  
MAX INL  
MAX INL  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
MAX INL  
MIN INL  
MIN INL  
0
-0.5  
-1.0  
MIN INL  
-0.5  
-1.0  
-0.5  
-1.0  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
9
Single 16-Bit DAC with Current and Voltage  
Outputs for Industrial Analog Output Modules  
Typical Operating Characteristics (continued)  
Typical Operating Circuit, 0  
= +50, C  
= 22nF, 0  
= 0  
= +150, 0  
= -150, 0  
= +240, 0  
= +4.ꢀ960,  
REF  
CC  
COMPI  
DD0  
DDCORE  
SS0  
DDI  
0
= 0  
= ꢀ0, R  
= 47, OUT0 loaded with 2k|| 1ꢀꢀpF to AGND, OUTI loaded with 5ꢀꢀto AGND, T = +25°C.ꢂ  
AGND  
DGND  
SERIES  
A
ZERO-SCALE ERROR  
vs. TEMPERATURE  
INL vs. TEMPERATURE  
DNL vs. TEMPERATURE  
0.4  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3
2
4–20mA CURRENT OUTPUT  
= V = +40V  
ALL MODES  
V
0.3  
0.2  
0.1  
0
DDI  
DDCORE  
MAX561  
V
DDV  
= V = 0V  
SSV  
CURRENT OUTPUT = 0 TO 20mA  
1
0
MAX DNL  
MIN DNL  
MAX INL  
-1  
-2  
-3  
-4  
-5  
-0.1  
-0.2  
UNIPOLAR VOLTAGE OUTPUT  
BIPOLAR VOLTAGE OUTPUT  
MIN INL  
-0.3  
-0.4  
-0.5  
-1.0  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
CURRENT-OUTPUT FULL-SCALE CURRENT  
vs. TEMPERATURE  
VOLTAGE-OUTPUT FULL-SCALE VOLTAGE  
vs. TEMPERATURE  
SUPPLY CURRENT vs. TEMPERATURE  
(UNIPOLAR VOLTAGE OUTPUT)  
20.60  
20.55  
20.50  
20.45  
20.40  
20.35  
20.30  
10.4850  
4.0  
CURRENT OUTPUT = 0 TO 20mA  
3.6  
3.2  
2.8  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0
UNIPOLAR VOLTAGE OUTPUT  
10.4825  
10.4800  
10.4775  
10.4750  
I
I
I
VDDCORE  
VSSV  
VDDV  
BIPOLAR VOLTAGE OUTPUT  
I
VDDI  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SUPPLY CURRENT vs. TEMPERATURE  
(BIPOLAR VOLTAGE OUTPUT)  
SUPPLY CURRENT vs. TEMPERATURE  
(0 TO 20mA CURRENT OUTPUT)  
SUPPLY CURRENT vs. TEMPERATURE  
(4–20mA CURRENT OUTPUT)  
4.0  
3.6  
3.2  
2.8  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0
4.0  
3.6  
3.2  
2.8  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0
5.5  
5.0  
I
I
I
VDDCORE  
VSSV  
VDDV  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
I
VDDI  
I
I
I
VDDCORE  
VSSV  
VDDV  
I
VSSV  
I
I
VDDV  
VDDCORE  
I
= 4mA  
OUTI  
L
I
I
VDDI  
VDDI  
R = 500  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
10 _______________________________________________________________________________________  
Single 16-Bit DAC with Current and Voltage  
Outputs for Industrial Analog Output Modules  
MAX561  
Typical Operating Characteristics (continued)  
Typical Operating Circuit, 0  
= +50, C  
= 22nF, 0  
= 0  
= +150, 0  
= -150, 0  
= +240, 0  
= +4.ꢀ960,  
REF  
CC  
COMPI  
DD0  
DDCORE  
SS0  
DDI  
0
= 0  
= ꢀ0, R  
= 47, OUT0 loaded with 2k|| 1ꢀꢀpF to AGND, OUTI loaded with 5ꢀꢀto AGND, T = +25°C.ꢂ  
SERIES A  
AGND  
DGND  
SUPPLY CURRENT vs. TEMPERATURE  
(0 TO 20mA CURRENT OUTPUT)  
SUPPLY CURRENT vs. TEMPERATURE  
(4–20mA CURRENT OUTPUT)  
DIGITAL SUPPLY CURRENT  
vs. TEMPERATURE  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
18  
4.0  
3.6  
3.2  
2.8  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0
6.0  
5.5  
5.0  
4.5  
4.0  
I
VDDCORE  
I
VDDCORE  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
I
I
VDDI  
VDDI  
I
V
= 0mA  
= V  
I
V
= 4mA  
= V  
OUTI  
V
= +5.25V  
OUTI  
CC  
= +40V  
25  
= +40V  
25  
DDI  
DDCORE  
ALL INPUTS CONNECTED TO V  
DDI  
DDCORE  
CC  
-50 -25  
0
50  
75 100 125  
-50 -25  
0
50  
75 100 125  
-50 -25  
0
25  
50  
75  
100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
UNIPOLAR VOLTAGE-OUTPUT  
SETTLING TIME (C = 0nF)  
UNIPOLAR VOLTAGE-OUTPUT,  
UNIPOLAR VOLTAGE-OUTPUT,  
ZS-TO-FS TRANSITION vs. C (C  
ZS-TO-FS TRANSITION vs. C (C  
= 3.3nF)  
= 0nF)  
COMP  
MAX5661 toc20  
COMP  
L
COMP  
L
MAX5661 toc21  
MAX5661 toc22  
CS  
5V/div  
CS  
5V/div  
CS  
5V/div  
C = 100pF  
L
C = 100pF  
L
C = 100nF  
L
OUTV  
2V/div  
C = 0.47µF  
L
C = 0.47µF  
L
OUTV  
100mV/div  
OUTV  
2V/div  
C = 1µF  
L
C = 1µF  
L
C = 1.8µF  
L
C = 1.8µF  
L
C = 100pF  
L
C = 100nF  
L
R = 2kΩ  
ZS-TO-FS TRANSITION  
L
R = 2kΩ  
L
R = 2kΩ  
L
400µs/div  
400µs/div  
100μs/div  
UNIPOLAR VOLTAGE-OUTPUT  
SETTLING TIME (C = 0nF)  
UNIPOLAR VOLTAGE-OUTPUT  
SETTLING TIME (C = 3.3nF)  
UNIPOLAR VOLTAGE-OUTPUT,  
FS-TO-ZS TRANSITION (C = 0nF)  
COMP  
COMP  
COMP  
MAX5661 toc25  
MAX5661 toc24  
MAX5661 toc23  
R = 2kΩ  
L
CS  
5V/div  
CS  
5V/div  
CS  
5V/div  
OUTV  
OUTV  
100mV/div  
100mV/div  
C = 100nF  
L
OUTV  
2V/div  
C = 100pF  
L
C = 0.47μF  
L
C = 1μF  
L
C = 1μF  
L
C = 1μF  
R = 2kΩ  
L
L
C = 1.8μF  
L
R = 2kΩ  
L
ZS-TO-FS TRANSITION  
ZS-TO-FS TRANSITION  
400μs/div  
400μs/div  
400μs/div  
______________________________________________________________________________________ 11  
Single 16-Bit DAC with Current and Voltage  
Outputs for Industrial Analog Output Modules  
Typical Operating Characteristics (continued)  
Typical Operating Circuit, 0  
= +50, C  
= 22nF, 0  
= 0  
= +150, 0  
= -150, 0  
= +240, 0  
= +4.ꢀ960,  
REF  
CC  
COMPI  
DD0  
DDCORE  
SS0  
DDI  
0
= 0  
= ꢀ0, R  
= 47, OUT0 loaded with 2k|| 1ꢀꢀpF to AGND, OUTI loaded with 5ꢀꢀto AGND, T = +25°C.ꢂ  
SERIES A  
AGND  
DGND  
UNIPOLAR VOLTAGE-OUTPUT,  
FS-TO-ZS TRANSITION (C = 3.3nF)  
UNIPOLAR VOLTAGE-OUTPUT  
SETTLING TIME (C = 3.3nF)  
UNIPOLAR VOLTAGE-OUTPUT  
SETTLING TIME (C = 0nF)  
COMP  
COMP  
COMP  
MAX5661 toc28  
MAX5661 toc26  
MAX5661 toc27  
CS  
CS  
CS  
MAX561  
5V/div  
5V/div  
5V/div  
C = 100pF  
L
C = 100pF  
L
C = 1μF  
L
R = 2k  
L
OUTV  
2V/div  
OUTV  
100mV/div  
C = 100pF  
L
OUTV  
100mV/div  
C = 0.47µF  
L
C = 100nF  
L
C = 1µF  
L
R = 2kΩ  
R = 2kΩ  
FS-TO-ZS  
L
L
C = 1.8µF  
L
FS-TO-ZS  
TRANSITION  
TRANSITION  
400μs/div  
400µs/div  
100μs/div  
UNIPOLAR VOLTAGE-OUTPUT  
SETTLING TIME (C = 0nF)  
BIPOLAR VOLTAGE-OUTPUT,  
ZS-TO-FS TRANSITION (C = 0nF)  
BIPOLAR VOLTAGE-OUTPUT,  
ZS-TO-FS TRANSITION (C  
= 3.3nF)  
COMP  
COMP  
COMP  
MAX5661 toc29  
MAX5661 toc30  
MAX5661 toc31  
CS  
CS  
CS  
5V/div  
5V/div  
5V/div  
C = 1μF  
C = 100nF  
C = 100pF  
L
L
L
OUTV  
5V/div  
OUTV  
5V/div  
R = 2kΩ  
L
C = 0.47µF  
L
C = 0.47µF  
L
FS-TO-ZS TRANSITION  
C = 1µF  
L
C = 1µF  
L
OUTV  
100mV/div  
C = 1.8µF  
L
C = 1.8µF  
L
R = 2kΩ  
L
R = 2kΩ  
L
400μs/div  
1.0ms/div  
1.0ms/div  
BIPOLAR VOLTAGE-OUTPUT  
BIPOLAR VOLTAGE-OUTPUT  
SETTLING TIME (C = 0nF)  
BIPOLAR VOLTAGE-OUTPUT  
SETTLING TIME (C = 0nF)  
SETTLING TIME (C  
= 3.3nF)  
COMP  
COMP  
COMP  
MAX5661 toc33  
MAX5661 toc32  
MAX5661 toc34  
CS  
CS  
CS  
5V/div  
5V/div  
5V/div  
C = 100pF  
L
OUTV  
OUTV  
100mV/div  
100mV/div  
C = 100pF  
L
OUTV  
100mV/div  
C = 100nF  
L
C = 1μF  
L
C = 1μF  
L
R = 2kΩ  
ZS-TO-FS TRANSITION  
L
R = 2kΩ  
L
R = 2kΩ  
L
ZS-TO-FS TRANSITION  
1.0ms/div  
1.0ms/div  
100μs/div  
1± _______________________________________________________________________________________  
Single 16-Bit DAC with Current and Voltage  
Outputs for Industrial Analog Output Modules  
MAX561  
Typical Operating Characteristics (continued)  
Typical Operating Circuit, 0  
= +50, C  
= 22nF, 0  
= 0  
= +150, 0  
= -150, 0  
= +240, 0  
= +4.ꢀ960,  
REF  
CC  
COMPI  
DD0  
DDCORE  
SS0  
DDI  
0
= 0  
= ꢀ0, R  
= 47, OUT0 loaded with 2k|| 1ꢀꢀpF to AGND, OUTI loaded with 5ꢀꢀto AGND, T = +25°C.ꢂ  
AGND  
DGND  
SERIES  
A
BIPOLAR VOLTAGE-OUTPUT  
BIPOLAR VOLTAGE-OUTPUT,  
BIPOLAR VOLTAGE-OUTPUT,  
FS-TO-ZS TRANSITION (C = 0nF)  
SETTLING TIME (C  
= 0nF)  
FS-TO-ZS TRANSITION (C  
= 3.3nF)  
COMP  
COMP  
COMP  
MAX5661 toc35  
MAX5661 toc37  
MAX5661 toc36  
CS  
CS  
CS  
5V/div  
5V/div  
5V/div  
C = 100pF  
L
C = 100pF  
L
C = 100pF  
L
C = 100nF  
L
OUTV  
5V/div  
OUTV  
5V/div  
C = 0.47µF  
C = 0.47μF  
L
L
C = 1μF  
L
C = 1µF  
L
OUTV  
100mV/div  
C = 1.8μF  
L
C = 1.8µF  
L
R = 2kΩ  
FS-TO-ZS TRANSITION  
L
R = 2kΩ  
L
R = 2kΩ  
L
1.0ms/div  
1.0ms/div  
100μs/div  
BIPOLAR VOLTAGE-OUTPUT  
SETTLING TIME (C = 0nF)  
BIPOLAR VOLTAGE-OUTPUT  
SETTLING TIME (C = 3.3nF)  
0 TO 20mA CURRENT-OUTPUT,  
ZS-TO-FS TRANSITION vs. INDUCTIVE LOAD  
COMP  
COMP  
MAX5661 toc39  
MAX5661 toc38  
MAX5661 toc40  
CS  
5V/div  
CS  
5V/div  
CS  
5V/div  
OUTI  
4mA/div  
L = 1H  
L
C = 1μF  
L
R = 2kΩ  
FS-TO-ZS TRANSITION  
L
C = 100pF  
L
L = 0mH, L = 100mH  
L
L
C = 1μF  
L
OUTV  
OUTV  
100mV/div  
100mV/div  
R = 2kΩ  
L
FS-TO-ZS TRANSITION  
1.0ms/div  
1.0ms/div  
400µs/div  
0 TO 20mA CURRENT-OUTPUT,  
ZS-TO-FS SETTLING TIME  
0 TO 20mA CURRENT-OUTPUT,  
FS-TO-ZS TRANSITION vs. INDUCTIVE LOAD  
0 TO 20mA CURRENT-OUTPUT,  
FS-TO-ZS SETTLING TIME  
MAX5661 toc42b  
MAX5661 toc41  
MAX5661 toc42a  
CS  
CS  
CS  
5V/div  
5V/div  
5V/div  
OUTI  
4mA/div  
OUTI  
200µA/div  
L = 0mH  
L
OUTV  
200µA/div  
L = 100mH  
L
L = 0mH, L = 100mH  
L
L
L = 0mH  
L
L = 1H  
L
L = 1H  
L
L = 100mH  
L
L = 1H  
L
400µs/div  
2ms/div  
2ms/div  
______________________________________________________________________________________ 13  
Single 16-Bit DAC with Current and Voltage  
Outputs for Industrial Analog Output Modules  
Typical Operating Characteristics (continued)  
Typical Operating Circuit, 0  
= +50, C  
= 22nF, 0  
= 0  
= +150, 0  
= -150, 0  
= +240, 0  
= +4.ꢀ960,  
REF  
CC  
COMPI  
DD0  
DDCORE  
SS0  
DDI  
0
= 0  
= ꢀ0, R  
= 47, OUT0 loaded with 2k|| 1ꢀꢀpF to AGND, OUTI loaded with 5ꢀꢀto AGND, T = +25°C.ꢂ  
SERIES A  
AGND  
DGND  
0 TO 20mA CURRENT-OUTPUT,  
ZS-TO-FS TRANSITION vs. INDUCTIVE LOAD  
0 TO 20mA CURRENT-OUTPUT,  
ZS-TO-FS SETTLING TIME  
0 TO 20mA CURRENT-OUTPUT,  
FS-TO-ZS TRANSITION vs. INDUCTIVE LOAD  
MAX5661 toc43a  
MAX5661 toc43b  
MAX5661 toc43c  
CS  
CS  
CS  
MAX561  
5V/div  
5V/div  
5V/div  
V
V
= V  
= +40V  
DDI  
DDCORE  
SSV  
L = 1H  
L
L = 0mH, 100mH  
L
= V = 0V  
DDV  
L = 1H  
L
OUTI  
4mA/div  
OUTI  
200µA/div  
OUTI  
4mA/div  
L = 1H  
L
L = 100mH  
L
L = 0mH, L = 100mH  
L
L
L = 0mH  
L
V
V
= V  
= +40V  
V
V
= V  
= +40V  
DDI  
DDCORE  
SSV  
DDI  
DDCORE  
SSV  
= V = 0V  
= V = 0V  
DDV  
DDV  
400µs/div  
400µs/div  
2ms/div  
OUTV OUTPUT VOLTAGE  
vs. LOAD CURRENT (SINKING)  
0 TO 20mA CURRENT-OUTPUT,  
FS-TO-ZS SETTLING TIME  
OUTV OUTPUT VOLTAGE  
vs. LOAD CURRENT (SOURCING)  
MAX5661 toc43d  
100  
80  
60  
40  
20  
0
10.484  
10.482  
10.480  
10.478  
10.476  
10.474  
10.472  
UNIPOLAR OUTV MODE  
CS  
5V/div  
L = 0mH  
L
L = 100mH  
L
BIPOLAR OUTV MODE  
OUTI  
200µA/div  
L = 1H  
L
V
V
= V  
DDCORE  
= +40V  
DDI  
= V = 0V  
SSV  
UNIPOLAR OUTV MODE  
DDV  
-20  
2ms/div  
-12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1  
SINK CURRENT (mA)  
0
1
2
3
4
5
6
7
8
9 10  
11  
0
SOURCE CURRENT (mA)  
OUTI OUTPUT CURRENT  
vs. OUTPUT VOLTAGE  
OUTI OUTPUT CURRENT  
vs. OUTPUT VOLTAGE  
UNIPOLAR VOLTAGE-OUTPUT, POSITIVE MAJOR  
CARRY TRANSITION GLITCH (C  
= 3.3nF)  
COMP  
MAX5661 toc48  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
CS  
5V/div  
OUTV  
1mV/div  
V
= V = +24V  
DDI  
V
= V = +40V  
DDCORE DDI  
DDCORE  
0
0
100µs/div  
0
5
10  
15  
20  
25  
0
5
10 15 20 25 30 35 40 45  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
14 _______________________________________________________________________________________  
Single 16-Bit DAC with Current and Voltage  
Outputs for Industrial Analog Output Modules  
MAX561  
Typical Operating Characteristics (continued)  
Typical Operating Circuit, 0  
= +50, C  
= 22nF, 0  
= 0  
= +150, 0  
= -150, 0  
= +240, 0  
= +4.ꢀ960,  
REF  
CC  
COMPI  
DD0  
DDCORE  
SS0  
DDI  
0
= 0  
= ꢀ0, R  
= 47, OUT0 loaded with 2k|| 1ꢀꢀpF to AGND, OUTI loaded with 5ꢀꢀto AGND, T = +25°C.ꢂ  
SERIES A  
AGND  
DGND  
UNIPOLAR VOLTAGE-OUTPUT, NEGATIVE MAJOR  
BIPOLAR VOLTAGE-OUTPUT, POSITIVE MAJOR  
BIPOLAR VOLTAGE-OUTPUT, NEGATIVE MAJOR  
CARRY TRANSITION GLITCH (C  
= 3.3nF)  
CARRY TRANSITION GLITCH (C  
= 3.3nF)  
CARRY TRANSITION GLITCH (C  
= 3.3nF)  
COMP  
MAX5661 toc51  
COMP  
COMP  
MAX5661 toc49  
MAX5661 toc50  
CS  
5V/div  
CS  
5V/div  
CS  
5V/div  
OUTV  
1mV/div  
OUTV  
1mV/div  
OUTV  
1mV/div  
100µs/div  
100µs/div  
100µs/div  
UNIPOLAR VOLTAGE-OUTPUT, NEGATIVE MAJOR  
BIPOLAR VOLTAGE-OUTPUT, POSITIVE MAJOR  
UNIPOLAR VOLTAGE-OUTPUT, POSITIVE MAJOR  
CARRY TRANSITION GLITCH (C  
= 0nF)  
CARRY TRANSITION GLITCH (C  
= 0nF)  
COMP  
MAX5661 toc54  
CARRY TRANSITION GLITCH (C  
= 0nF)  
COMP  
COMP  
MAX5661 toc53  
MAX5661 toc52  
CS  
5V/div  
CS  
5V/div  
CS  
5V/div  
OUTV  
50mV/div  
OUTV  
50mV/div  
OUTV  
50mV/div  
4µs/div  
4µs/div  
4µs/div  
BIPOLAR VOLTAGE-OUTPUT, NEGATIVE MAJOR  
0 TO 20mA CURRENT-OUTPUT, POSITIVE  
0 TO 20mA CURRENT-OUTPUT, NEGATIVE  
CARRY TRANSITION GLITCH (C  
= 0nF)  
MAJOR CARRY TRANSITION GLITCH  
MAJOR CARRY TRANSITION GLITCH  
COMP  
MAX5661 toc55  
MAX5661 toc56  
MAX5661 toc57  
CS  
CS  
CS  
5V/div  
5V/div  
5V/div  
OUTV  
50mV/div  
OUTI  
2µA/div  
OUTI  
2µA/div  
4µs/div  
100µs/div  
100µs/div  
______________________________________________________________________________________ 12  
Single 16-Bit DAC with Current and Voltage  
Outputs for Industrial Analog Output Modules  
Typical Operating Characteristics (continued)  
Typical Operating Circuit, 0  
= +50, C  
= 22nF, 0  
= 0  
= +150, 0  
= -150, 0  
= +240, 0  
= +4.ꢀ960,  
REF  
CC  
COMPI  
DD0  
DDCORE  
SS0  
DDI  
0
= 0  
= ꢀ0, R  
= 47, OUT0 loaded with 2k|| 1ꢀꢀpF to AGND, OUTI loaded with 5ꢀꢀto AGND, T = +25°C.ꢂ  
SERIES A  
AGND  
DGND  
4–20mA CURRENT-OUTPUT, POSITIVE  
4–20mA CURRENT-OUTPUT, NEGATIVE  
V
SUPPLY CURRENT  
CC  
MAJOR CARRY TRANSITION GLITCH  
MAJOR CARRY TRANSITION GLITCH  
vs. DIGITAL INPUT VOLTAGE  
MAX5661 toc58  
MAX5661 toc59  
10,000  
1000  
100  
V
= 5.25V  
CC  
CS  
5V/div  
CS  
5V/div  
MAX561  
OUTI  
2µA/div  
OUTI  
2µA/div  
10  
100µs/div  
100µs/div  
0
1
2
3
4
5
6
DIGITAL INPUT VOLTAGE (V)  
UNIPOLAR VOLTAGE-OUTPUT  
DIGITAL FEEDTHROUGH  
BIPOLAR VOLTAGE-OUTPUT  
DIGITAL FEEDTHROUGH  
MAX5661 toc61  
MAX5661 toc62  
CS = V  
CS = V  
CC  
CC  
DIN = SCLK  
f = 1MHz  
DIN = SCLK  
f = 1MHz  
DIN, SCLK  
5V/div  
DIN, SCLK  
5V/div  
OUTV  
2mV/div  
OUTV  
1mV/div  
200ns/div  
200ns/div  
CURRENT-OUTPUT  
DIGITAL FEEDTHROUGH  
FULL-SCALE CURRENT vs. FULL-SCALE  
OUTPUT CURRENT TRIM CODE  
MAX5661 toc63  
27  
26  
25  
24  
23  
22  
21  
CS = V  
DIN = SCLK  
f = 1MHz  
CC  
DIN, SCLK  
5V/div  
20  
19  
18  
17  
16  
15  
OUTI  
2µA/div  
14  
200ns/div  
0
256  
512  
768  
1024  
CODE  
16 _______________________________________________________________________________________  
Single 16-Bit DAC with Current and Voltage  
Outputs for Industrial Analog Output Modules  
MAX561  
Typical Operating Characteristics (continued)  
Typical Operating Circuit, 0  
= +50, C  
= 22nF, 0  
= 0  
= +150, 0  
= -150, 0  
= +240, 0  
= +4.ꢀ960,  
REF  
CC  
COMPI  
DD0  
DDCORE  
SS0  
DDI  
0
= 0  
= ꢀ0, R  
= 47, OUT0 loaded with 2k|| 1ꢀꢀpF to AGND, OUTI loaded with 5ꢀꢀto AGND, T = +25°C.ꢂ  
SERIES A  
AGND  
DGND  
NEGATIVE FULL-SCALE VOLTAGE  
vs. FULL-SCALE OUTPUT TRIM CODE  
POSITIVE FULL-SCALE VOLTAGE  
vs. FULL-SCALE OUTPUT TRIM CODE  
-6  
-7  
-8  
-9  
14  
13  
12  
11  
-10  
-11  
-12  
-13  
-14  
10  
9
8
7
UNIPOLAR OR BIPOLAR MODE  
6
0
256  
512  
768  
1024  
0
256  
512  
768  
1024  
CODE  
CODE  
Pin Description  
PIN  
NAME  
N.C.  
FUNCTION  
1, 3, 5, 7, ꢃ,  
1ꢀ, 15–2ꢀ,  
29–34, 36, 3ꢃ,  
42, 44, 46–52,  
5ꢃ, 61–64  
No Connection. Not internally connected.  
2
OUTI  
DAC Current-Source Output. OUTI sources either from ꢀ to 2ꢀmA or from 4–2ꢀmA.  
DAC Current-Output Positive Supply. Connect 0 to a power supply between +13.4ꢃ0 and  
DDI  
4
0
+4ꢀ0 to power the DAC current-output ꢁOUTIꢂ buffer. Bypass 0 with a ꢀ.1µF capacitor to  
DDI  
DDI  
AGND, as close as possible to the device.  
OUTI Noise-Limiting Capacitor Connection. Connect a 22nF capacitor from COMPI to 0  
reduce transient noise at OUTI.  
to  
DDI  
6
9
COMPI  
Current-Output Range Selection Input. Connect OUTI4/0 to AGND to select the ꢀ to 2ꢀmA OUTI  
current-output range. Connect OUTI4/0 to 0 to select the 4–2ꢀmA OUTI current-output range.  
DDI  
OUTI4/0  
The OUTI current range can also be set by software. When using software to set the OUTI current  
range, connect OUTI4/0 to AGND.  
Buffered 0oltage Reference Input. Connect an external +4.ꢀ960 voltage reference to REF. Bypass  
REF with a ꢀ.1µF capacitor to DACGND, as close as possible to the device. Use a 1kresistor in  
series to the reference input for optimum performance.  
11  
REF  
DAC Analog Ground. Connect DACGND, DACGNDS, DUTGND, and DUTGNDS together on a  
low-noise ground plane with a star connection.  
12  
13  
14  
21  
DACGND  
DACGNDS  
CNF1  
DAC Analog Sense Ground. Connect DACGND, DACGNDS, DUTGND, and DUTGNDS together  
on a low-noise ground plane with a star connection.  
0oltage/Current Configuration Input. CNF1 and CNFꢀ control the OUT0 and OUTI outputs. See  
Tables 13 and 14.  
0oltage/Current Configuration Input. CNFꢀ and CNF1 control the OUT0 and OUTI outputs. See  
Tables 13 and 14.  
CNFꢀ  
______________________________________________________________________________________ 17  
Single 16-Bit DAC with Current and Voltage  
Outputs for Industrial Analog Output Modules  
Pin Description (continued)  
PIN  
22  
NAME  
DIN  
FUNCTION  
Serial-Data Input. Data is clocked into the serial interface on the rising edge of SCLK.  
Serial-Clock Input  
23  
SCLK  
Active-Low Chip-Select Input. Drive CS low to enable the serial interface. Drive CS high to disable  
the serial interface. DOUT is high impedance when CS is high.  
24  
25  
26  
CS  
DGND  
Digital Ground  
MAX561  
Digital Power Supply. Connect 0  
to a power supply between +4.750 and +5.250. Bypass 0  
CC  
CC  
0
CC  
with a ꢀ.1µF capacitor to DGND, as close as possible to the device.  
Active-Low Asynchronous Load DAC Input. Drive LDAC low to transfer the contents of the input  
27  
2ꢃ  
LDAC  
register to the DAC register to immediately update the output. Connect LDAC to 0 if unused.  
CC  
Active-Low Open-Drain Fault Output. FAULT asserts low for an OUTI open-circuit condition, an  
OUT0 short-circuit condition, or when the CLR input is low ꢁsee Table 12 and Figure 9ꢂ. Ignore the  
FAULT pin function in single supply mode.  
FAULT  
Serial Data Output. Data transitions at DOUT on SCLK’s falling edge. DOUT is high impedance  
when CS is high. Use DOUT to read the shift register contents or for daisy chaining multiple  
MAX5661 devices.  
35  
37  
DOUT  
Active-Low Clear Input. Drive CLR low to set the DAC code to the value stored in the clear  
register, to ꢀ0 in voltage mode, or ꢀmA/4mA depending on the output current mode. Program the  
contents of the clear register through the serial interface. Enable and disable the CLR input  
through the control register’s CLREN bit ꢁsee Table 4ꢂ.  
CLR  
DAC Core Positive Supply. Connect 0  
with a ꢀ.1µF capacitor to AGND, as close as possible to the device.  
to 0  
or 0  
ꢁsee Table 16ꢂ. Bypass 0  
DD0 DDCORE  
DDCORE  
DDI  
39  
4ꢀ  
41  
0
DDCORE  
DUT Analog Sense Ground. Connect DACGND, DACGNDS, DUTGND, and DUTGNDS together  
on a low-noise ground plane with a star connection.  
DUTGNDS  
DUTGND  
DUT Analog Ground. Connect DACGND, DACGNDS, DUTGND, and DUTGNDS together on a  
low-noise ground plane with a star connection.  
OUT0 Amplifier Compensation Feedback Node. Connect a 3.3nF capacitor from OUT0 to COMP0  
when OUT0 drives capacitive loads of up to 1.2µF. Leave COMP0 open for faster response time.  
43  
45  
COMP0  
AGND  
S0P  
Analog Ground  
Remote Ground Sense Input. Connect S0P to the bottom terminal of R  
. See the Typical  
OUT0  
53  
Operating Circuit.  
54, 59  
55  
I.C.  
Internal Connection. Leave unconnected.  
DAC 0oltage-Output Negative Power Supply. Always connect 0  
to a power supply between -13.4ꢃ0  
SS0  
0
SS0  
and -15.750. Bypass 0  
with a ꢀ.1µF capacitor to AGND, as close as possible to the device.  
SS0  
DAC Unipolar/Bipolar 0oltage Output. OUT0 provides ꢀ to +1ꢀ.4ꢃ0 in unipolar mode and -1ꢀ.4ꢃ0  
to +1ꢀ.4ꢃ0 in bipolar mode.  
56  
OUT0  
DAC 0oltage-Output Positive Power Supply. Connect 0  
to a power supply between +13.4ꢃ0  
DD0  
57  
6ꢀ  
0
DD0  
and +15.750. Bypass 0  
with a ꢀ.1µF capacitor to AGND, as close as possible to the device.  
DD0  
S0N  
Remote 0oltage Sense Input. Connect to the top terminal of R  
. See the Typical Operating Circuit.  
OUT0  
1ꢂ _______________________________________________________________________________________  
Single 16-Bit DAC with Current and Voltage  
Outputs for Industrial Analog Output Modules  
MAX561  
microcontroller ꢁµCꢂꢂ runs in master mode to generate  
Detailed Description  
the serial-clock signal. Set the SCLK frequency to  
The MAX5661 single 16-bit DAC with precision high-volt-  
1ꢀMHz or less, and set the clock polarity ꢁCPOLꢂ and  
age amplifiers provides a complete solution for program-  
phase ꢁCPHAꢂ in the µC control registers to the same  
mable current and voltage-output applications. The  
value. The MAX5661 operates with SCLK idling high or  
programmable output amplifiers swing to industry-stan-  
low, and thus operates with CPOL = CPHA = ꢀ ꢁsee  
dard voltage levels of 1ꢀ0 or current levels from ꢀmA  
Figure 2ꢂ or CPOL = CPHA = 1 ꢁsee Figure 3ꢂ. Force  
ꢁor from 4mAꢂ to 2ꢀmA. The OUT0 voltage output drives  
CS low to input data at DIN on the rising edge of SCLK.  
resistive loads greater than 2kand capacitive loads up  
Output data at DOUT updates on the falling edge of  
to 1.2µF. Force and sense connections on the voltage  
SCLK ꢁsee Figure 1ꢂ.  
output compensate for series protection resistors and  
A high-to-low transition on CS initiates the 24-bit data  
input cycle. Once CS is low, write an ꢃ-bit command  
byte ꢁMSB firstꢂ at DIN to send data to the appropriate  
internal register ꢁsee Tables 1, 2, and 3ꢂ. C7 is the MSB  
of the command byte and Cꢀ is the LSB. Following the  
command byte, write 2 data bytes containing bits  
D15–Dꢀ. D15 is the MSB of the 2 data bytes and Dꢀ is  
the LSB ꢁsee Figure 4 and the Register Descriptions sec-  
tionꢂ. Data loads into the shift register 1 bit at a time.  
field wiring resistance. Short-circuit protection on the  
voltage output limits output current. The OUTI current  
output drives resistive loads from ꢀand higher, up to a  
compliance voltage of ꢁ0  
- 2.50ꢂ. The OUTI current  
DDI  
output also drives inductive loads up to 1H.  
The MAX5661 provides a current output or a voltage  
output, with only one output active at any given time.  
The MAX5661 operates with 13.4ꢃ0 to 15.750 dual  
supplies ꢁ0  
, 0  
ꢂ for the voltage output and a  
SS0  
DD0  
Write the data as one continuous 24-bit stream, always  
keeping CS low throughout the entire 24-bit word. The  
MAX5661 stores the 24 most recent bits received,  
including bits from previous transmissionꢁsꢂ. Ensure  
SCLK has 24 rising and falling edges between CS  
falling low to CS returning high. Data loads into the shift  
register on the rising edge of SCLK. Once CS returns  
high, data transfers from the shift register into the  
appropriate internal register.  
+13.4ꢃ0 to +4ꢀ0 single supply ꢁ0  
ꢂ for the current  
DDI  
output ꢁsee Table 16ꢂ. The +4.750 to +5.250 digital sup-  
ply ꢁ0 ꢂ powers the digital circuitry and 0 pow-  
CC  
DDCORE  
ers the rest of the internal analog circuitry. A buffered  
reference input accepts a +4.ꢀ960 reference voltage.  
The LDAC and CLR inputs asynchronously update the  
DAC outputs. CLR sets the DAC code to the value  
stored in the clear register ꢁsoftware clearꢂ, or to zero  
scale ꢁhardware clearꢂ. The FAULT output asserts for  
an open-circuit current output, a short-circuit voltage  
output, or a clear state condition when CLR is low. The  
power-on reset circuitry guarantees the outputs remain  
off at power-up and all register bits are set to zero to  
ensure a glitchless power-up sequence.  
When reading data, write an ꢃ-bit command byte and  
16 data bits at DIN. On the following 24-bit sequence,  
read out the shift register’s contents ꢁcommand byte  
and the 16 data bitsꢂ at DOUT ꢁsee Figure 5ꢂ. Data tran-  
sitions at DOUT on the falling edge of SCLK. While  
reading data at DOUT on the second 24-bit sequence,  
load another command byte and 2 data bytes at DIN or  
write a no-operation command. DOUT three-states  
when CS is high. The DAC outputs update on the rising  
edge of CS after writing to the DAC register or by  
pulling LDAC low.  
A 1ꢀMHz SPI-/QSPI-/MICROWIRE-compatible serial  
interface programs the DAC outputs and configures the  
device. The DOUT output allows shift-register reads or  
daisy chaining of several devices. The double-buffered  
interface includes an input register and a DAC register.  
Use software commands or the asynchronous LDAC  
input to transfer the input register contents to the DAC  
register and update the DAC outputs.  
Daisy chain multiple devices by connecting the first  
DOUT to the second DIN, and so forth. Daisy chaining  
allows communication with multiple MAX5661 devices  
using single CS and SCLK signals. See the Daisy  
Chaining Multiple MAX5661 Devices section.  
4-Wire SPI-Compatible Serial Interface  
The MAX5661 communicates through a serial interface  
compatible with SPI, QSPI, and MICROWIRE devices.  
For SPI, ensure that the SPI bus master ꢁtypically a  
______________________________________________________________________________________ 19  
Single 16-Bit DAC with Current and Voltage  
Outputs for Industrial Analog Output Modules  
CS  
SCLK  
MAX561  
DIN  
C7  
c7  
C6  
C5  
C4  
D3  
D2  
D1  
D0  
DOUT  
c6  
c5  
c4  
d3  
d2  
d1  
d0  
C7  
BITS WITH CAPITAL LETTERS REPRESENT DATA BEING WRITTEN TO THE SHIFT REGISTER.  
BITS WITH LOWERCASE LETTERS REPRESENT DATA IN THE SHIFT REGISTER FROM THE PREVIOUS 24-BIT CYCLE.  
Figure 2. MICROWIRE- or SPI-Interface Timing Diagram ꢁCPOL = CPHA = ꢀꢂ  
CS  
SCLK  
DIN  
C7  
C6  
C5  
C4  
D3  
D2  
D1  
D0  
DOUT  
p
c7  
c6  
c5  
c4  
d3  
d2  
d1  
d0  
p IS DATA LEFT FROM THE PREVIOUS INSTRUCTION CYCLE.  
BITS WITH CAPITAL LETTERS REPRESENT DATA BEING WRITTEN TO THE SHIFT REGISTER.  
BITS WITH LOWERCASE LETTERS REPRESENT DATA IN THE SHIFT REGISTER FROM THE PREVIOUS 24-BIT CYCLE.  
Figure 3. SPI-Interface Timing Diagram ꢁCPOL = CPHA = 1ꢂ  
±0 _______________________________________________________________________________________  
Single 16-Bit DAC with Current and Voltage  
Outputs for Industrial Analog Output Modules  
MAX561  
Table 1. Input Command Bits  
±4-BIT SEꢁIAL INPUT WOꢁD  
COMMAND BYTE  
DATA BITS  
MSB  
LSB  
C7 C6 C5 C4 C3 C2 C1 Cꢀ D15 D14 D13 D12 D11 D1ꢀ D9 Dꢃ D7 D6 D5 D4 D3 D2 D1 Dꢀ  
Table ±. ꢁegister Description  
COMMAND BITS  
OPEꢁATION  
C7  
X
C6  
X
C2  
X
C4  
X
C3  
C±  
C1  
C0  
No operation. Transfer shift register’s data to DOUT.  
Write control register.  
X
X
X
X
1
X
X
X
X
1
Read control register.  
X
X
X
X
1
1
Load input register. DAC register unchanged.  
Load DAC and input register.  
X
X
X
X
1
Load DAC register. Transfer input register data to DAC  
register. DAC outputs update on CS’s rising edge.  
X
X
X
X
1
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
1
1
1
1
1
1
1
1
1
1
1
1
Write clear register.  
Read input register.  
Read DAC register.  
Read clear register.  
No operation. Transfer shift register’s data to DOUT.  
X = Don’t care. All other commands are reserved for factory use. Do not use.  
ꢁegister Descriptions  
The MAX5661 communicates between its internal regis-  
ters and the external bus lines through the 4-wire  
SPI-/QSPI-/MICROWIRE-compatible serial interface.  
Table 1 details the command bits ꢁC7–Cꢀꢂ and the data  
bits ꢁD15–Dꢀꢂ of the serial input word. Tables 2 and 3  
detail the command byte and the subsequent register  
accessed. Tables 4–ꢃ detail the various read/write  
internal registers and their power-on reset states. When  
updating the DAC register, allow 2µs before sending  
the next command.  
mode, and set the current-output range. The control  
register also initializes the clear and fault modes. Set  
the command byte to ꢀxꢀ1 to write to the control regis-  
ter. Set the command byte to ꢀxꢀ2 to read from the  
control register. Write or read data bits D15–D5. D4–Dꢀ  
are don’t-care bits for a write operation. D4, D3, and D2  
are read-only bits. D1 and Dꢀ are don’t-care bits for a  
read operation ꢁsee Table 4ꢂ.  
Set the OUT0ON bit ꢁD15ꢂ to 1 to enable the OUT0  
DAC voltage output. Set the OUTION bit ꢁD14ꢂ to 1 to  
enable the OUTI DAC current output. Always set bit  
D13 to ꢀ. Set the B/U bit ꢁD12ꢂ to determine whether the  
OUT0 output operates in bipolar mode ꢁB/U = ꢀꢂ or  
unipolar mode ꢁB/U = 1ꢂ.  
Control ꢁegister (ꢁeadRWrite)  
Write to the control register to enable the current or volt-  
age output, set the voltage output for unipolar or bipolar  
______________________________________________________________________________________ ±1  
Single 16-Bit DAC with Current and Voltage  
Outputs for Industrial Analog Output Modules  
Table 3. ꢁegister Bit Descriptions  
COMMAND BYTE  
1STDATA BYTE  
2NDDATA BYTE  
OPERATION  
DESCRIPTION  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
D15 D14 D13 D12 D11 D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Data in shift register  
before CS driven high and  
command executed  
X
X
X
X
0
0
0
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
No operation.  
Transfer shift-  
register data  
to DOUT.  
Data in shift register  
after CS driven high and  
command executed  
Same as line above. Shift-register data not changed by this operation.  
Data in shift register  
before CS driven high and  
command executed  
X
X
X
X
X
X
X
X
1
0
0
1
1
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
MAX561  
No operation.  
Transfer shift-  
register data  
to DOUT.  
Data in shift register  
after CS driven high and  
command executed  
Same as line above. Shift-register data not changed by this operation.  
Data in shift register  
before CS driven high and  
command executed  
X
X
X
X
X
X
0
0
0
0
1
1
1
0
1
0
X
X
Write control  
register  
Data in shift register  
after CS driven high and  
command executed  
Same as line above. Shift-register data not changed by this operation.  
Data in shift register  
before CS driven high and  
command executed  
X
X
X
0
X
X
X
X
X
X
X
X
X
X
X
X
Read control  
register  
Data in shift register  
after CS driven high and  
command executed  
Same as line above.  
Data in shift register  
before CS driven high and  
command executed  
X
X
0
MSB <-- 16-Bit DAC Data --> LSB  
Load input  
register from shift  
register. DAC  
Data in shift register  
after CS driven high and  
command executed  
register unchanged.  
Same as line above. Shift-register data not changed by this operation.  
Data in shift register  
before CS driven high and  
command executed  
MSB <-- 16-Bit DAC Data --> LSB  
X
X
X
X
X
X
X
X
0
0
1
1
0
0
0
1
Load input  
register and DAC  
register from shift  
register.  
Data in shift register  
after CS driven high and  
command executed  
Same as line above. Shift-register data not changed by this operation.  
Data in shift register  
before CS driven high and  
command executed  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Load DAC register  
from input  
Data in shift register  
after CS driven high and  
command executed  
register  
Same as line above. Shift-register data not changed by this operation.  
Data in shift register  
before CS driven high and  
command executed  
X
X
X
X
X
X
X
X
0
0
1
1
1
1
0
1
MSB <-- 16-Bit Clear-Register Data --> LSB  
Write clear  
register  
Data in shift register  
after CS driven high and  
command executed  
Same as line above. Shift-register data not changed by this operation.  
Data in shift register  
before CS driven high and  
command executed  
X
X
X
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Read input register  
Data in shift register  
after CS driven high and  
command executed  
Same as line above.  
MSB <-- 16-Bit Input-Register Data --> LSB  
Data in shift register  
before CS driven high and  
command executed  
X
X
X
X
X
X
X
X
1
0
0
0
0
0
1
0
1
0
X
X
X
X
X
Read DAC  
register  
Data in shift register  
after CS driven high and  
command executed  
Same as line above.  
MSB <-- 16-Bit DAC-Register Data --> LSB  
Data in shift register  
before CS driven high and  
command executed  
X
X
1
X
X
X
X
X
Read clear  
register  
Data in shift register  
after CS driven high and  
command executed  
Same as line above.  
MSB <-- 16-Bit DAC Clear Register Data --> LSB  
Data in shift register  
before CS driven high and  
command executed  
X
X
1
X
X
X
X
X
X
X
X
X
X
X
X
X
Write full-scale  
output trim  
register  
Data in shift register  
after CS driven high and  
command executed  
Same as line above.  
X
±± _______________________________________________________________________________________  
Single 16-Bit DAC with Current and Voltage  
Outputs for Industrial Analog Output Modules  
MAX561  
DIN CLOCKED IN ON THE  
SCLK RISING EDGE  
WRITE COMMAND EXECUTED  
CS  
SCLK  
DIN  
C7  
C6  
C5  
C4  
C0  
D15  
D14  
D13  
D0  
Figure 4. Write Timing  
READ COMMAND EXECUTED  
CS  
SCLK  
DIN  
C7  
C6  
C5  
C4  
C0  
D15  
D14  
D13  
D0  
DOUT  
DOUT READY  
CS  
SCLK  
DIN  
X
X
X
X
X
X
X
X
X
DOUT  
C7  
C6  
C5  
C4  
C0  
D15  
D14  
D13  
D0  
DOUT TRANSITIONS ON THE FALLING SCLK EDGE  
X = DON'T CARE.  
Figure 5. Read Timing  
functionality. Set the CLRFLAGEN bit ꢁD5ꢂ high to acti-  
vate the FAULT output when the MAX5661 is in the  
clear state.  
Set the OUTI4/0EN bit ꢁD11ꢂ low to enable the OUTI4/0  
hardware input. Set the I4TO2ꢀBIT bit ꢁD1ꢀꢂ high to  
select the current-output range through the software.  
Set the CLREN bit ꢁD9ꢂ low to enable the CLR hardware  
input. Set the CLRMODE bit ꢁDꢃꢂ high to force the out-  
put to the value in the clear register or the zero state  
when the CLR hardware input is pulled low. Set the  
RCLR bit ꢁD7ꢂ high to remain in the clear state. Set the  
FAULTEN bit ꢁD6ꢂ high to enable the FAULT output  
Bits D4, D3, and D2 are read-only bits. The FAULT0 bit  
ꢁD4ꢂ is set to 1 when OUT0 is short circuited. The  
FAULTI bit ꢁD3ꢂ is set to 1 when OUTI is open circuited.  
The CLEARST bit ꢁD2ꢂ is set to 1 when the MAX5661 is  
in the clear state.  
______________________________________________________________________________________ ±3  
Single 16-Bit DAC with Current and Voltage  
Outputs for Industrial Analog Output Modules  
Table 4. Control ꢁegister (ꢁeadRWrite)  
DATA  
BIT  
ꢁESET  
STATE  
BIT NAME  
FUNCTION  
OUT0ON  
OUTION  
D15  
D14  
D13  
DAC OUT0 output enable bit. Set to 1 to enable the OUT0 output.  
DAC OUTI output enable bit. Set to 1 to enable the OUTI output.  
Reserved. Always set to ꢀ.  
0oltage-output unipolar/bipolar mode select bit. Set to ꢀ ꢁdefault power-up stateꢂ to select the  
bipolar output range ꢁ 1ꢀ.4ꢃ0ꢂ. Set to 1 to select the unipolar output range ꢁꢀ to +1ꢀ.4ꢃ0ꢂ.  
MAX561  
B/U  
D12  
OUTI4/0 enable bit. Set to ꢀ ꢁdefault power-up stateꢂ to enable the OUTI4/0 hardware input. Set  
to 1 to disable the OUTI4/0 hardware input, thereby controlling the current-output range  
through software commands.  
OUTI4/0EN  
D11  
OUTI current range bit. Set to ꢀ to set the OUTI current range from ꢀ to 2ꢀmA. Set to 1 to set  
the OUTI current range from 4–2ꢀmA.  
I4TO2ꢀBIT  
D1ꢀ  
D9  
Clear enable bit. Set to ꢀ to enable the external CLR input. Set to 1 to disable the external CLR  
input.  
CLREN  
Clear mode bit. Set to 1 and drive the external CLR input low to force the DAC output to the  
value stored in the clear register. Set to ꢀ and drive the external CLR input low to force the DAC  
output to ꢀ0 in voltage mode or ꢀmA/4mA depending on output-current mode.  
CLRMODE  
RCLR  
Dꢃ  
D7  
Remain in clear bit. Set to 1 to remain in the clear state. The RCLR bit determines the steps  
required to exit the clear state. See the CLR Input section.  
Fault output enable. Set to 1 to enable the FAULT output functionality. Set to ꢀ to disable the  
FAULT output functionality. In single supply mode, set to ꢀ to disable the FAULT pin function.  
FAULTEN  
D6  
D5  
CLRFLAGEN  
Clear flag enable. Set to 1 to enable the FAU LT output to report when the device is in the clear state.  
Output voltage fault bit ꢁread onlyꢂ. The FAULT0 bit is set to 1 when FAULT triggers due to an  
OUT0 short-circuit condition. The FAULT0 bit is a don’t-care bit for control-register write  
commands. In single supply mode, FAULT0 = 1 must be ignored.  
FAULT0  
FAULTI  
D4  
D3  
Output-current fault bit ꢁread onlyꢂ. The FAULTI bit is set to 1 when FAULT triggers due to an  
OUTI open-circuit condition. The FAULTI bit is a don’t-care bit for the control register write  
commands. In single supply mode, monitor the FAULTI bit for any FAULTI condition.  
Clear state bit ꢁread onlyꢂ. The CLEARST bit is set to 1 when CLR is low and CLREN = ꢀ. The CLRST  
bit is a don’t-care bit for control register write commands.  
CLEARST  
X
D2  
D1, Dꢀ  
Not used.  
±4 _______________________________________________________________________________________  
Single 16-Bit DAC with Current and Voltage  
Outputs for Industrial Analog Output Modules  
MAX561  
Input ꢁegister (ꢁeadRWrite)  
Write to the input register to store the DAC code.  
Transfer the value written to the input register to the  
DAC register by pulling the LDAC input low or by writ-  
ing to the load DAC register ꢁꢀxꢀ5ꢂ. Set the command  
byte to ꢀxꢀ3 to write to the input register. Set the com-  
mand byte to ꢀxꢀ7 to read from the input register. Bits  
D15–Dꢀ contain the straight binary data ꢁsee Table 5ꢂ.  
put. Set the command byte to ꢀxꢀ5 to write to the load  
DAC register. Bits D15–Dꢀ are don’t-care bits.  
Clear ꢁegister (ꢁeadRWrite)  
Write to the clear register to set the DAC output value  
when the CLR hardware input is pulled low ꢁforcing the  
MAX5661 into the clear stateꢂ. Set the command byte to  
ꢀxꢀ6 to write to the clear register. Set the command  
byte to ꢀxꢀ9 to read the clear register. Bits D15–Dꢀ  
contain the straight binary data ꢁsee Table 7ꢂ.  
DAC ꢁegister (ꢁeadRWrite)  
Write to the DAC register to update the OUT0 and OUTI  
outputs after CS returns high. Set the command byte to  
ꢀxꢀ4 to write to the DAC register. Set the command  
byte to ꢀxꢀꢃ to read from the DAC register. Bits  
D15–Dꢀ contain the straight binary data ꢁsee Table 6ꢂ.  
No Operation  
Set the command byte to ꢀxꢀF or ꢀxꢀꢀ to perform a no-  
operation command. After writing the command byte  
and 2 data bytes ꢁ16 don’t-care bitsꢂ, read out the shift  
register’s contents on the following 24-bit cycle.  
Load DAC ꢁegister (Write)  
Write to the load DAC register to transfer the input reg-  
ister data to the DAC register and update the DAC out-  
Table 2. Input ꢁegister (ꢁeadRWrite)  
BIT NAME  
DATA BIT  
ꢁESET STATE  
FUNCTION  
ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ  
ꢁunipolar/currentꢂ  
1ꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ  
ꢁbipolarꢂ  
IN15–INꢀ  
D15–Dꢀ  
IN15 is the MSB and INꢀ is the LSB. Data format is straight binary.  
Table 6. DAC ꢁegister (ꢁeadRWrite)  
BIT NAME  
DATA BIT  
ꢁESET STATE  
FUNCTION  
ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ  
ꢁunipolar/currentꢂ  
ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ  
ꢁbipolarꢂ  
DAC15 is the MSB and DACꢀ is the LSB. Data format is straight  
binary.  
DAC15–DACꢀ  
D15–Dꢀ  
Table 7. Clear ꢁegister (ꢁeadRWrite)  
BIT NAME  
DATA BIT  
ꢁESET STATE  
FUNCTION  
ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ  
ꢁunipolar/currentꢂ  
1ꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ  
ꢁbipolarꢂ  
CLR15 is the MSB and CLRꢀ is the LSB. Data format is straight  
binary.  
CLR15–CLRꢀ  
D15–Dꢀ  
Table ꢂ. Full-Scale Output Trim ꢁegister (Write)  
BIT NAME  
DATA BIT  
ꢁESET STATE  
FUNCTION  
FS_EN +  
FS_BIT9–  
FS_BITꢀ  
FS_EN ꢁD15ꢂ enables the full-scale output adjustment feature. D9  
is the MSB and Dꢀ is the LSB. D9 is straight binary, Dꢃ–Dꢀ are  
inverted binary.  
D9–Dꢀ  
ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ  
______________________________________________________________________________________ ±2  
Single 16-Bit DAC with Current and Voltage  
Outputs for Industrial Analog Output Modules  
Full-Scale Output  
Current Trim Register (Write)  
Write to the full-scale output trim register to adjust the  
output voltage or current 25%. Set command bits to  
ꢀxꢀ6 to write to the output trim register. Bit 15 enables  
the output trim register. Bits D9–Dꢀ program the 1ꢀ-bit  
trim DAC ꢁTable ꢃꢂ.  
MAX561  
Table 9. N to D: Full-Scale Output Trim ꢁegister Bits Map  
N9  
Nꢂ  
N7  
N6  
N2  
N4  
N3  
N±  
N1  
N0  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Table 10. Full-Scale Output Variation ꢀs.  
N and B  
BITS (B) TO NUMERICAL (N)  
TRANSFER FUNCTION  
MAX5661 fig06  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
DECIMAL  
VALUE (N)  
BIT DECIMAL  
VALUE (B)  
+25%  
5 CHANGE  
511  
255  
-25  
-12.5  
-  
+12.5%  
0%  
256  
511  
512  
767  
1ꢀ23  
1ꢀ23  
76ꢃ  
512  
+  
+12.5  
+25  
-12.5%  
-25%  
0
100 200 300 400 500 600 700 800 9001000 1100  
BITS (B)  
Figure 6. Transfer Function of Bits ꢁBꢂ to Numerical ꢁNꢂ  
Representation  
±6 _______________________________________________________________________________________  
Single 16-Bit DAC with Current and Voltage  
Outputs for Industrial Analog Output Modules  
MAX561  
LDAC  
SOFTWARE  
LOAD DAC  
CONTROL  
REGISTER  
FULL-SCALE  
OUTPUT ADJUST  
FULL-SCALE  
ADJUST  
CS  
REGISTER  
INPUT  
REGISTER  
SCLK  
SHIFT  
REGISTER  
OUTI  
DAC  
REGISTER  
TO OUTPUT  
CIRCUITRY  
DAC  
DIN  
OUTV  
2-TO-1  
MUX  
DOUT  
CLEAR  
REGISTER  
MAX5661  
Figure 7. Functional Diagram  
Reference Input  
Connect an external voltage reference in the +40 to  
+4.20 range through a 1kseries resistor to  
the buffered REF input. Use a high-accuracy, low-  
noise +4.ꢀ960 voltage reference such as the  
MAX6126AASA41 ꢁ3ppm/°C temperature drift and  
ꢀ.ꢀ2% initial accuracyꢂ for best 16-bit static accuracy.  
REF does not accept AC signals. See Table 17 for a list-  
ing of +4.ꢀ960 references.  
t
LDL  
LDAC  
± 2 LSB  
LDAC Input  
The MAX5661 features an active-low load DAC ꢁLDACꢂ  
logic input that allows asynchronous updates to the  
t
DELAY  
OUT_  
DAC outputs. Drive LDAC high to 0  
during normal  
CC  
operation while controlling the MAX5661 using only the  
serial interface. Drive LDAC low to update the DAC out-  
put with the input register data. Hold LDAC low to make  
the input register transparent and immediately update  
the DAC output with the input register data. Figure ꢃ  
shows the LDAC timing with respect to OUT_.  
Figure ꢃ. LDAC Timing  
______________________________________________________________________________________ ±7  
Single 16-Bit DAC with Current and Voltage  
Outputs for Industrial Analog Output Modules  
With the RCLR bit set to ꢀ, exit the clear state one of  
three ways:  
1ꢂ Set the CLREN bit high.  
CLR Input  
The active-low external CLR input asynchronously sets  
the DAC code to the value in the clear register ꢁsoftware  
clearꢂ or to the zero state ꢁhardware clearꢂ, depending  
on the control register’s CLRMODE bit setting ꢁsee  
Tables 4 and 11ꢂ. Set the CLRMODE bit to 1 and drive  
external CLR low to force the output to the value stored  
in the clear register. Set the CLRMODE bit to ꢀ and  
drive the external CLR input low to force the output to  
the zero state. The zero state value is ꢀmA in ꢀ to 2ꢀmA  
current mode, 3.97mA in 4–2ꢀmA current mode, or ꢀ0  
in voltage mode ꢁunipolar or bipolarꢂ.  
2ꢂ Pull the external CLR input high.  
3ꢂ Initiate a power-on reset ꢁPORꢂ.  
FAULT Output  
The open-drain active-low FAULT output asserts low for  
a current-output open circuit or dropout condition, for a  
voltage-output short circuit, or when the MAX5661 is in  
the clear state ꢁsee the CLR Input sectionꢂ.  
MAX561  
Enable and disable the FAULT output with the control  
register’s FAULTEN and CLRFLAGEN bits ꢁsee Tables  
4, 12, and Figure 9ꢂ. Set the FAULTEN bit to 1 to enable  
the FAULT output to report fault conditions on OUT0  
and OUTI. Set FAULTEN to ꢀ to disable the FAULT out-  
put for fault conditions on OUT0 and OUTI. Set the  
CLRFLAGEN bit to 1 to enable the FAULT output  
to report when the device is in the clear state. Set  
CLRFLAGEN to ꢀ to disable a hardware indication  
of the clear state. The FAULT output asserts low if  
CLRFLAGEN = 1 and CLEARST = 1.  
Disable the external CLR input functionality by setting  
the control register’s CLREN bit to 1. Set the CLREN bit  
to ꢀ to enable the external CLR input functionality.  
After setting the CLREN bit to ꢀ, force the external CLR  
input low to set the MAX5661 into the clear state. The  
control register’s read-only CLEARST bit is set to 1 while  
in the clear state. The RCLR ꢁremain in clearꢂ bit deter-  
mines the steps required to exit the clear state.  
With the RCLR bit set to 1, exit the clear state in one of  
three ways:  
1ꢂ Pull the external CLR input high and then write to  
the DAC register ꢁꢀxꢀ4ꢂ or the load DAC register  
ꢁꢀxꢀ5ꢂ or force LDAC low.  
Read the control register to determine the source of  
a FAULT output condition. The FAULT0 read-only bit  
is set to 1 when the voltage output ꢁOUT0ꢂ is short-  
circuited. The FAULTI bit is set to 1 when the current  
output ꢁOUTIꢂ is open circuited or in a dropout condition  
2ꢂ Pull the external CLR input high and set the RCLR  
bit low.  
ꢁ0  
- 0  
at 1.30 typꢂ. The FAULT output asserts  
OUTI  
DDI  
low if FAULTEN is set to 1 and either the FAULT0 bit or  
FAULTI bit is set to 1.  
3ꢂ Initiate a power-on reset ꢁPORꢂ to reset the RCLR bit  
to ꢀ.  
Table 11. Hardware-Clear and Software-Clear Truth Table  
CLEAꢁST BIT  
(ꢁEAD)  
CLꢁMODE BIT  
(ꢁEADRWꢁITE)  
HAꢁDWAꢁE CLEAꢁ  
SOFTWAꢁE CLEAꢁ  
ꢀ ꢁnot in clear stateꢂ  
1 ꢁin clear stateꢂ  
1 ꢁin clear stateꢂ  
X
1
X
X
DAC code set to zero state*  
DAC code set by clear register data  
X = Don’t care.  
*Zero state is ꢀ0 in unipolar voltage mode, -1ꢀ.4ꢃ0 in bipolar voltage mode, and ꢀmA/4mA depending on output-current mode.  
±ꢂ _______________________________________________________________________________________  
Single 16-Bit DAC with Current and Voltage  
Outputs for Industrial Analog Output Modules  
MAX561  
FAULT_AT_  
OUTPUT  
INTERNAL  
FAULT SIGNAL  
FAULTEN BIT  
X
0
1
0
X
1
0
0
1
INTERNAL FAULT SIGNAL  
FAULTEN BIT  
FAULT  
OUTPUT  
FAULT_AT_OUTPUT  
(INTERNALLY  
GENERATED,  
INTERNAL  
FAULT SIGNAL  
CLEAR_  
FLAG  
FAULT  
OUTPUT  
FAULTI BIT  
FAULTV BIT  
1
X
0
X
0
0
1
CANNOT BE READ)  
1
0
FAULT_AT_  
OUTPUT  
FAULTV BIT  
FAULTI BIT  
1
X
0
X
1
0
1
1
0
CLEAR_FLAG  
(INTERNALLY GENERATED,  
CANNOT BE READ)  
CLRFLAGEN  
CLEAR_  
FLAG  
CLRFLAGEN  
BIT  
CLEARST  
BIT  
CLEARST BIT  
0
X
1
X
0
1
0
0
1
X = DON'T CARE.  
Figure 9. FAULT Output Logic Diagram  
Table 1±. FAULT Output Truth Table  
OUTV SHOꢁT  
CIꢁCUITED  
OUTI OPEN CIꢁCUITED  
Oꢁ IN DꢁOPOUT  
CLEAꢁST  
BIT  
FAULTEN BIT  
CLꢁFLAGEN BIT  
FAULT OUTPUT  
No  
No  
X
No  
No  
X
X
1
X
X
X
X
X
X
1
1
X
1
X
X
X
High  
High  
Low  
High  
Low  
High  
Low  
X
X
No  
X
Yes  
X
Yes  
No  
X = Don’t care. Only one output ꢁOUT0 or OUTIꢂ is active at a time.  
______________________________________________________________________________________ ±9  
Single 16-Bit DAC with Current and Voltage  
Outputs for Industrial Analog Output Modules  
The 0  
digital supply powers the CNF1, CNFꢀ, and  
Output Configurations  
The CNFꢀ, CNF1, and OUTI4/0 hardware inputs deter-  
mine whether the hardware or software controls the  
MAX5661 DAC outputs ꢁsee Table 13ꢂ. The CNFꢀ and  
CNF1 inputs enable and disable the DAC outputs or  
allow software control of the outputs ꢁsee Table 14ꢂ.  
The OUTI4/0 input sets the current range of the OUTI  
output. Hardware inputs take precedence over the soft-  
ware commands.  
CC  
OUTI4/0 inputs. If 0  
= ꢀ0, the DAC outputs enter the  
CC  
zero state and all register bits are set to ꢀ. The zero  
state of the voltage output ꢁOUT0ꢂ is ꢀ0. The zero state  
of the current output ꢁOUTIꢂ is ꢀmA when OUTI4/0 =  
AGND or 4mA when OUTI4/0 = 0  
.
DDI  
MAX561  
Table 13. Output Configuration  
CONTꢁOL  
SIGNAL  
HAꢁDWAꢁE  
INPUTRSOFTWAꢁE BIT  
DESCꢁIPTION  
DETAILS  
CNF1, CNFꢀ:  
ꢀꢀ = both outputs disabled  
ꢀ1 = OUTI active, set to ꢀ to 2ꢀmA range  
1ꢀ = OUT0 active, set to bipolar mode  
11 = outputs controlled by serial interface  
CNF1  
CNFꢀ  
Hardware input  
Hardware input  
Enables/disables the DAC  
OUT0 and OUTI outputs.  
Set the OUTI4/0EN bit to ꢀ ꢁdefault power-up stateꢂ to enable  
the OUTI4/0 hardware input. Connect the OUTI4/0 hardware  
input to AGND to set the OUTI current range to ꢀ to 2ꢀmA.  
OUTI4/0  
Hardware input  
Sets the OUTI current range.  
Connect the OUTI4/0 hardware input to 0  
to set the OUTI  
DDI  
current range to 4–2ꢀmA. Set the OUTI4/0EN bit to 1 to  
disable the OUT14/0 hardware input. Connect OUTI4/0 to  
AGND when controlling the current output through software.  
Set the OUTI4/0EN bit to ꢀ ꢁdefault power-up stateꢂ to  
enable the OUTI4/0 hardware input. Set to 1 to disable the  
OUTI4/0 hardware input.  
Enables and disables the  
OUTI4/0EN  
Software bit  
Software bit  
OUTI4/0 input.  
When the CNF1 and CNFꢀ hardware inputs are high, the  
OUTION and OUT0ON bits control the DAC output OUTI  
and OUT0 settings.  
OUT0ON, OUTION:  
ꢀꢀ = both outputs powered down  
ꢀ1 = OUTI active  
OUT0ON  
Enables and disables the  
DAC OUT0 and OUTI  
outputs.  
OUTION  
Software bit  
1ꢀ = OUT0 active  
11 = both outputs powered down  
Sets the voltage output to  
unipolar mode or bipolar  
mode.  
Set B/U to ꢀ to set the OUT0 output to bipolar mode  
ꢁ 1ꢀ.4ꢃ0ꢂ. Set B/U to 1 to set the OUT0 output to unipolar  
mode ꢁꢀ to +1ꢀ.4ꢃ0ꢂ.  
B/U  
Software bit  
Software bit  
Set I4TO2ꢀBIT to ꢀ to set the OUTI current range from ꢀ to  
2ꢀmA. Set I4TO2ꢀBIT to 1 to set the OUTI current range  
from 4–2ꢀmA.  
Sets the OUTI current range  
through software.  
I4TO2ꢀBIT  
30 _______________________________________________________________________________________  
Single 16-Bit DAC with Current and Voltage  
Outputs for Industrial Analog Output Modules  
MAX561  
CNF0RCNF1 Hardware Inputs  
The CNFꢀ and CNF1 inputs enable the DAC’s voltage  
ꢁOUT0ꢂ or current ꢁOUTIꢂ outputs. Drive CNFꢀ and  
CNF1 low to disable both the OUT0 and OUTI outputs.  
Drive CNFꢀ high and CNF1 low to enable the OUTI out-  
put. Drive CNFꢀ low and CNF1 high to enable the  
OUT0 output. Drive CNFꢀ and CNF1 high to control the  
OUT0 and OUTI outputs through the serial interface.  
Table 14 summarizes the output behavior when pro-  
grammed by the CNFꢀ/CNF1 hardware inputs.  
OUTV Voltage-Output Configuration  
Drive CNFꢀ low and CNF1 high to enable the OUT0  
output through the hardware ꢁsee Table 14ꢂ.  
Alternatively, drive CNFꢀ and CNF1 high to control  
OUT0 with the serial interface. With CNF1 and CNFꢀ  
high, the control register’s OUT0ON bit enables the  
OUT0 output. Set OUT0ON to 1 to enable the OUT0  
output. Set OUT0ON to ꢀ ꢁdefault power-up stateꢂ to  
disable the OUT0 output.  
The OUT0 output derives power from 0  
, 0  
, and  
DD0 SS0  
ꢁ+13.4ꢃ0 to  
DD0  
0
. Connect 0  
to 0  
DDCORE  
DDCORE  
OUTI Current-Output Configuration  
Drive CNFꢀ high and CNF1 low to enable the OUTI out-  
put through the hardware. Alternatively, drive CNFꢀ and  
CNF1 high to control OUTI with the serial interface. With  
CNF1 and CNFꢀ high, the control register’s  
OUTION bit enables the OUTI output. Set OUTION to 1  
to enable the OUTI output. Set OUTION to ꢀ ꢁdefault  
power-up stateꢂ to disable the OUTI output.  
+15.750ꢂ when using the OUT0 output. Always connect  
a negative supply to 0  
Table 16ꢂ.  
ꢁ-13.4ꢃ0 to -15.750ꢂ ꢁsee  
SS0  
The control register’s B/U bit sets OUT0 for bipolar or  
unipolar mode. Set B/U to ꢀ ꢁdefault power-up stateꢂ to  
select the bipolar output range ꢁ 1ꢀ.4ꢃ0ꢂ. Set B/U to 1  
to select the unipolar output range ꢁꢀ to +1ꢀ.4ꢃ0ꢂ.  
The OUTI current output derives power from 0  
and  
DDI  
Output Transfer Functions  
The DAC output voltage/current is a function of the vari-  
ous hardware control inputs and digital inputs in the  
control register ꢁsee Table 13ꢂ. The transfer functions  
below assume that the outputs are on, and a reference  
voltage of +4.ꢀ960 is applied to the reference input. For  
the voltage output, the sense input is at the same  
potential as the DAC output ꢁOUT0 = S0P and AGND =  
S0Nꢂ. Table 15a details the bipolar output voltage  
transfer function. Table 15b details the unipolar output  
voltage transfer function. Table 15c details the ꢀ to  
2ꢀmA current-range transfer function. Table 15d details  
the 4mA to 2ꢀmA current-range transfer function.  
0
0
ꢁ+13.4ꢃ0 to +4ꢀ0ꢂ. Connect 0  
to  
DDCORE  
DDCORE  
when using the OUTI output.  
DDI  
The control register’s OUTI4/0EN bit ꢁsee Tables 4 and  
13ꢂ determines whether the OUTI4/0 hardware input or  
the control register’s I4TO2ꢀBIT bit controls the OUTI  
current range. Set the OUTI4/0EN bit to ꢀ ꢁdefault  
power-up stateꢂ to control the current range through the  
OUTI4/0 hardware input. Connect the OUTI4/0 hard-  
ware input to AGND to select the ꢀ to 2ꢀmA mode.  
Connect the OUTI4/0 hardware input to 0  
to select  
DDI  
the 4–2ꢀmA mode.  
Set the OUTI4/0EN bit to 1 to allow software control of  
the OUTI current range through the I4TO2ꢀBIT bit ꢁsee  
Table 13ꢂ. Set I4TO2ꢀBIT to ꢀ to select the ꢀ to 2ꢀmA  
mode. Set I4TO2ꢀBIT to 1 to select the 4–2ꢀmA mode.  
Table 14. CNF1RCNF0 Hardware Settings  
CNF1  
DGND  
DGND  
CNF0  
OUTV, OUTI SETTING  
DGND  
Both DAC outputs disabled.  
OUTI enabled. OUT0 disabled.  
OUT0 enabled. OUTI disabled.  
0
CC  
0
0
DGND  
CC  
CC  
0
DAC outputs controlled by the serial interface.  
CC  
______________________________________________________________________________________ 31  
Single 16-Bit DAC with Current and Voltage  
Outputs for Industrial Analog Output Modules  
Table 12a. Bipolar Voltage Output  
DAC CODE (DECIMAL VALUE)  
OUTPUT VOLTAGE (V)  
1ꢀ.479ꢃ4  
1ꢀ.234ꢃ5  
1ꢀ.23453  
1ꢀ.23421  
5.1175ꢃ5  
5.117266  
5.116946  
1.ꢀ23773  
1.ꢀ23453  
1.ꢀ23133  
ꢀ.ꢀꢀꢀ32  
ꢁANGE  
65535  
64769  
6476ꢃ  
64767  
4ꢃ769  
4ꢃ76ꢃ  
4ꢃ767  
35969  
3596ꢃ  
35967  
32769  
3276ꢃ  
32767  
29569  
2956ꢃ  
29567  
16769  
1676ꢃ  
16767  
769  
Overrange  
Overrange  
Nominal range  
Nominal range  
Nominal range  
Nominal range  
Nominal range  
Nominal range  
Nominal range  
Nominal range  
Nominal range  
Nominal range  
Nominal range  
Nominal range  
Nominal range  
Nominal range  
Nominal range  
Nominal range  
Nominal range  
Nominal range  
Nominal range  
Underrange  
MAX561  
-ꢀ.ꢀꢀꢀ32  
-1.ꢀ2313  
-1.ꢀ2345  
-1.ꢀ2377  
-5.11695  
-5.11727  
-5.11759  
-1ꢀ.2342  
-1ꢀ.2345  
-1ꢀ.2349  
-1ꢀ.4ꢃꢀ2  
76ꢃ  
767  
Underrange  
Table 12b. Unipolar Voltage Output  
DAC CODE (DECIMAL VALUE)  
OUTPUT VOLTAGE (V)  
1ꢀ.4ꢃ  
ꢁANGE  
65535  
64ꢀꢀ1  
64ꢀꢀꢀ  
32ꢀꢀ1  
32ꢀꢀꢀ  
31999  
64ꢀ1  
64ꢀꢀ  
6399  
1
Overrange  
1ꢀ.23469  
1ꢀ.23453  
5.117425  
5.117266  
5.1171ꢀ6  
1.ꢀ23613  
1.ꢀ23453  
1.ꢀ23293  
ꢀ.ꢀꢀꢀ16  
Overrange  
Nominal range  
Nominal range  
Nominal range  
Nominal range  
Nominal range  
Nominal range  
Nominal range  
Nominal range  
Nominal range  
3± _______________________________________________________________________________________  
Single 16-Bit DAC with Current and Voltage  
Outputs for Industrial Analog Output Modules  
MAX561  
Table 12c. 0 to ±0mA Current Output  
EXTENSION OF OUTPUT  
CUꢁꢁENT LINEAꢁ ꢁANGE  
(mA)  
ACTUAL OUTPUT CUꢁꢁENT  
DAC CODE (DECIMAL)  
ꢁANGE  
(mA)  
65535  
64ꢀꢀ1  
64ꢀꢀꢀ  
63999  
32ꢀꢀ1  
32ꢀꢀꢀ  
31999  
12ꢃꢀ1  
12ꢃꢀꢀ  
12799  
97  
2ꢀ.4496ꢃꢃ  
19.97ꢀ313  
19.97ꢀꢀꢀꢀ  
19.9696ꢃꢃ  
9.97ꢀ313  
9.97ꢀꢀꢀꢀ  
9.9696ꢃꢃ  
3.97ꢀ313  
3.97ꢀꢀꢀꢀ  
3.9696ꢃꢃ  
ꢀ.ꢀꢀꢀ313  
ꢀ.ꢀꢀꢀꢀꢀꢀ  
ꢀ.ꢀꢀꢀꢀꢀꢀ  
ꢀ.ꢀꢀꢀꢀꢀꢀ  
ꢀ.ꢀꢀꢀꢀꢀꢀ  
ꢀ.ꢀꢀꢀꢀꢀꢀ  
ꢀ.ꢀꢀꢀꢀꢀꢀ  
ꢀ.ꢀꢀꢀꢀꢀꢀ  
Overrange  
Overrange  
2ꢀ.4496ꢃꢃ  
19.97ꢀ313  
19.97ꢀꢀꢀꢀ  
19.9696ꢃꢃ  
9.97ꢀ313  
9.97ꢀꢀꢀꢀ  
9.9696ꢃꢃ  
3.97ꢀ313  
3.97ꢀꢀꢀꢀ  
3.9696ꢃꢃ  
ꢀ.ꢀꢀꢀ313  
ꢀ.ꢀꢀꢀꢀꢀꢀ  
-ꢀ.ꢀꢀꢀ313  
-ꢀ.ꢀꢀ5ꢀꢀꢀ  
-ꢀ.ꢀ1125ꢀ  
-ꢀ.ꢀ175ꢀꢀ  
-ꢀ.ꢀ2ꢀ625  
-ꢀ.ꢀ3ꢀꢀꢀꢀ  
Nominal range  
Nominal range  
Nominal range  
Nominal range  
Nominal range  
Nominal range  
Nominal range  
Nominal range  
Nominal range  
Nominal range  
Underrange  
96  
95  
ꢃꢀ  
Underrange  
6ꢀ  
Underrange  
4ꢀ  
Underrange  
3ꢀ  
Underrange  
Underrange  
Table 12d. 4–±0mA Current Output  
DAC CODE (DECIMAL)  
OUTPUT CUꢁꢁENT (mA)  
ꢁANGE  
65535  
64ꢀꢀꢀ  
63634  
6ꢀꢀꢀꢀ  
5ꢀꢀꢀꢀ  
4ꢀꢀꢀꢀ  
3ꢀꢀꢀꢀ  
2ꢀꢀꢀꢀ  
16ꢀꢀꢀ  
5ꢀꢀꢀ  
5ꢀꢀ  
2ꢀ.4496ꢃꢃ  
2ꢀ.ꢀ6369ꢀ  
19.971655  
19.ꢀ57ꢃ35  
16.543196  
14.ꢀ2ꢃ556  
11.513917  
ꢃ.99927ꢃ  
7.993423  
5.22732ꢀ  
4.ꢀ95732  
4.ꢀ29ꢃ4ꢃ  
4.ꢀ2ꢀ293  
3.97ꢀꢀꢀꢀ  
3.97ꢀꢀꢀꢀ  
3.97ꢀꢀꢀꢀ  
3.97ꢀꢀꢀꢀ  
3.97ꢀꢀꢀꢀ  
Overrange  
Overrange  
Nominal range  
Nominal range  
Nominal range  
Nominal range  
Nominal range  
Nominal range  
Nominal range  
Nominal range  
Nominal range  
Nominal range  
Underrange  
Underrange  
Underrange  
Underrange  
Underrange  
Underrange  
23ꢃ  
2ꢀꢀ  
1ꢀꢀ  
ꢃꢀ  
6ꢀ  
3ꢀ  
______________________________________________________________________________________ 33  
Single 16-Bit DAC with Current and Voltage  
Outputs for Industrial Analog Output Modules  
Measuring Zero-Code Current  
(0 to 20mA Mode)  
Daisy Chaining Multiple MAX5661 Devices  
In standard SPI-/QSPI-/MICROWIRE-compatible sys-  
tems, a microcontroller ꢁµCꢂ communicates with its  
slave devices through a 3- or 4-wire serial interface.  
The typical interface includes a chip select signal ꢁCSꢂ,  
a serial clock ꢁSCLKꢂ, a data input signal ꢁDINꢂ, and  
sometimes a data signal output ꢁDOUTꢂ. In this system,  
the µC allots an independent chip-select signal to each  
slave device so that they can be addressed individually  
ꢁsee Figure 1ꢀꢂ. Only the slaves with their CS inputs  
asserted low acknowledge and respond to the activity  
on the serial clock and data lines. This is simple to  
implement when there are very few slave devices in the  
system. An alternative programming method is daisy  
chaining. Daisy chaining, in serial-interface applica-  
tions, is a method of propagating commands through  
multiple devices connected in series ꢁsee Figure 11ꢂ.  
Daisy chaining reduces CS and DIN line routing, and  
saves board space when using the MAX5661.  
After setting the MAX5661 for ꢀ to 2ꢀmA current-range  
mode, determine the LSB size as follows:  
1ꢂ Measure I  
at full scale ꢁFSꢂ.  
OUT  
2ꢂ Measure I  
at code 192.  
OUT  
3ꢂ Measure I  
at code 193:  
OUT  
MAX561  
I
at FS I  
at 192  
OUT  
OUT  
I
LSB =  
16  
ꢁ2 1192  
If I  
ꢁcode 193ꢂ - I  
ꢁcode 192ꢂ is inside the linear region of the I  
fer curve.  
ꢁcode 192ꢂ > ꢀ.5 I , I  
LSB OUT  
OUT  
OUT  
trans-  
OUT  
Obtain the straight-line equation from I  
ꢁFSꢂ and  
OUT  
I
ꢁ192ꢂ and substituting code ꢀ for I  
ꢁzero scaleꢂ  
OUT  
in the equation:  
OUT  
Daisy chain multiple MAX5661 devices by connecting  
the DOUT of one device to the DIN of the next. Connect  
the SCLK of all devices to a common clock and connect  
the CS from all devices to a common chip-select line.  
Data shifts out of DOUT 24.5 clock cycles after it is shift-  
ed into DIN on the falling edge of SCLK. Hold CS low  
until each slave in the chain receives its 24-bit word ꢁꢃ  
command bits and 16 data bitsꢂ. In this configuration,  
the µC only needs three signals ꢁCS, SCLK, and DINꢂ to  
control all the slaves in the network. The SPI-/QSPI-  
/MICROWIRE-compatible serial interface normally works  
at up to 1ꢀMHz, but must be slowed to 6MHz if daisy  
chaining. DOUT is high impedance when CS is high.  
atFS I at192  
OUT  
I
OUT  
II  
OUT  
at192ꢂ =  
x ꢁcode 192ꢂ  
65535 192  
I
at ZS = ꢁI  
OUT  
at192 I  
OUT  
at FSꢂ x ꢀ.ꢀꢀ293ꢃ3 +I  
at192  
OUT  
OUT  
The expected current is -3ꢀµA ꢁtypꢂ.  
Applications Information  
Power-Supply Sequencing and Bypassing  
After connecting all ground inputs, apply the analog  
supply voltages 0  
first followed by the most positive  
SS0  
supply, the second most positive supply, etc. Before  
applying power, connect the 0 supply to either  
, as shown in Table 16, depending on  
whether the current output or voltage output is used. Do  
DDCORE  
DD0 SS0 DDI  
ꢁTable 16ꢂ. Ensure that there are no unconnected  
power-supply connections when powering the  
DDCORE  
Figure 1ꢀ details a method of controlling multiple  
MAX5661 devices using separate CS lines. This  
method allows writes to and reads from each device  
without shifting data through the other device’s shift  
register. Figure 1ꢀ shows the FAULT outputs shorted  
together. This configuration requires a read from each  
device to determine which one has the fault condition  
and saves an optocoupler in isolated applications. It is  
not necessary to short the FAULT outputs together.  
0
or 0  
DD0  
DDI  
not apply 0  
separate from the main supply  
ꢂ in the preferred configuration  
ꢁ0  
/0  
or 0  
MAX5661. If 0  
cannot be powered first, connect a  
Schottky diode between 0  
SS0  
and AGND.  
SS0  
Table 16. Application Modes and Supply-Voltage Limits  
APPLICATION MODE  
0oltage from OUT0  
V
V
V
V
DDCOꢁE  
DDV  
SSV  
DDI  
+13.4ꢃ0 to +15.750  
-13.4ꢃ0 to -15.750  
0
0
DD0  
DD0  
Current from OUTI  
ꢁSingle Supplyꢂ  
AGND  
AGND  
+13.4ꢃ0 to +4ꢀ0  
to +4ꢀ0  
0
DDI  
0oltage from OUT0 and Current  
from OUTI*  
+13.4ꢃ0 to +15.750  
-13.4ꢃ0 to -15.750  
0
0
DD0  
DD0  
*On-the-fly switching. Only one output is active at a time.  
34 _______________________________________________________________________________________  
Single 16-Bit DAC with Current and Voltage  
Outputs for Industrial Analog Output Modules  
MAX561  
Figure 11 shows a method of daisy chaining multiple  
MAX5661 devices using a single CS and SCLK line with  
the FAULT outputs shorted together. Connect DOUT  
from IC1 to DIN of IC2, and DOUT from IC2 to DIN of  
IC3. Hold CS low for three 24-bit write cycles to load  
data into all three devices. Due to the latency of read-  
ing and writing to the different devices, using separate  
lines for each FAULT output does not save time.  
MAX5661  
IC1  
CS1  
DIN  
CS  
DIN  
SCLK  
LDAC  
CLR  
SCLK  
LDAC  
CLR  
FAULT  
DOUT  
MAX5661  
IC2  
CS2  
CS  
DIN  
SCLK  
LDAC  
CLR  
FAULT  
DOUT  
DOUT  
FAULT  
Figure 1ꢀ. Address Two MAX5661 Devices Through Separate CS Lines  
Driving Inductive Loads from I  
OUT  
When driving inductive loads > 275µH with the current  
output ꢁI ꢂ, connect a 1nF capacitor between 0  
OUT  
DDI  
and I  
for optimal performance.  
OUT  
______________________________________________________________________________________ 32  
Single 16-Bit DAC with Current and Voltage  
Outputs for Industrial Analog Output Modules  
MAX5661  
IC1  
CS  
DIN  
CS  
DIN  
SCLK  
LDAC  
CLR  
SCLK  
LDAC  
CLR  
MAX561  
FAULT  
DOUT  
MAX5661  
IC2  
CS  
DIN  
SCLK  
LDAC  
CLR  
FAULT  
DOUT  
MAX5661  
IC3  
CS  
DIN  
SCLK  
LDAC  
CLR  
FAULT  
DOUT  
DOUT  
FAULT  
Figure 11. Address Three MAX5661 Devices Through Separate CS Lines  
36 _______________________________________________________________________________________  
Single 16-Bit DAC with Current and Voltage  
Outputs for Industrial Analog Output Modules  
MAX561  
Table 17. +4.096V ꢁeference Selector Guide  
INITIAL  
ACCUꢁACY  
(5)  
SUPPLY VOLTAGE  
ꢁANGE (V)  
TEMPEꢁATUꢁE  
DꢁIFT (ppmR°C max)  
PAꢁT  
FEATUꢁES  
MAX6341  
MAX6241  
+ꢃ to +36  
+ꢃ to +36  
1
3
ꢀ.ꢀ2  
ꢀ.ꢀ2  
Ultra-low drift, 2.4µ0  
output noise  
P-P  
Low drift, 2.4µ0  
output noise  
P-P  
High-precision reference with temperature  
sensor  
MAX6174  
+4.3 to +4ꢀ  
3
ꢀ.ꢀ6  
MAX6133_41  
MAX6126_41  
MAX6ꢀ43_41  
MAX6143_41  
MAX6ꢀ33_41  
MAX6ꢀ41  
+4.3 to +12.6  
+4.3 to +12.6  
+6 to +4ꢀ  
3
ꢀ.ꢀ4  
ꢀ.ꢀ2  
ꢀ.ꢀ5  
ꢀ.1  
Ultra-low drift, µMAX®  
3
Ultra-low noise, µMAX  
3
High voltage, low drift  
+6 to +4ꢀ  
High precision  
+4.3 to +12.6  
+4.3 to +12.6  
+4.3 to +12.6  
+ꢃ to +4ꢀ  
1ꢀ  
2ꢀ  
2ꢀ  
2ꢀ  
25  
3ꢀ  
3ꢀ  
ꢀ.ꢀ4  
ꢀ.2  
1ꢀmA output current, ultra-low drift, SOT23  
Low power, low drift, low dropout  
5mA current output, precision SOT23  
-4ꢀ°C to +125°C, 15mA output  
SOT23 with shutdown  
MAX6ꢀ64  
ꢀ.2  
MAX622ꢀ  
ꢀ.1  
MAX6ꢀ37_41  
MAX6ꢀ34_41  
MAX6ꢀ29  
+4.3 to +5.5  
+4.3 to +5.5  
+4.3 to +12.6  
ꢀ.2  
ꢀ.2  
Low supply current in SC7ꢀ  
Ultra-low supply current, SOT23  
ꢀ.15  
Chip Information  
PROCESS: BiCMOS  
Pin Configuration  
TOP VIEW  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
N.C.  
OUTI  
N.C.  
1
2
3
4
5
6
7
8
9
48 N.C.  
+
47 N.C.  
46 N.C.  
V
45 AGND  
44 N.C.  
DDI  
N.C.  
COMPI  
N.C.  
43 COMPV  
42 N.C.  
N.C.  
41 DUTGND  
40 DUTGNDS  
MAX5661  
OUTI4/0  
N.C. 10  
REF 11  
39 V  
DDCORE  
38 N.C.  
37 CLR  
36 N.C.  
35 DOUT  
34 N.C.  
33 N.C.  
DACGND 12  
DACGNDS 13  
CNF1 14  
N.C. 15  
N.C. 16  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
LQFP  
µMAX is a registered trademark of Maxim Integrated Products, Inc.  
______________________________________________________________________________________ 37  
Single 16-Bit DAC with Current and Voltage  
Outputs for Industrial Analog Output Modules  
Typical Operating Circuit  
V
OR V  
DDI  
+13.48V TO +15.75V  
-13.48V TO -15.75V  
DDV  
+4.75V TO +5.25V  
+13.48V TO +40V  
V
V
V
V
SSV  
CC  
DDCORE  
DDV  
DOUT  
DIN  
MAX561  
UNIPOLAR CURRENT BLOCK  
(SOURCE ONLY)  
SERIAL  
INTERFACE*  
SCLK  
V
DDI  
CS  
DETAIL OF  
OPTIONAL  
SURGE PROTECTION  
22nF  
CLR  
MICROCONTROLLER  
V
DDV  
LDAC  
COMPI  
OUTI4/0  
CNF0  
16-BIT  
DAC  
V
DDI  
V
SSV  
CNF1  
R
I
DAC  
FAULT  
OUTI  
AGND  
FULL-SCALE  
OUTPUT  
ADJUST  
VOLTAGE-  
TO-CURRENT  
CONVERTER  
L
*
OUTI  
+5V  
R
1k  
REFERENCE  
BUFFER  
REF  
+4.096V  
REFERENCE  
UNIPOLAR OR BIPOLAR  
VOLTAGE BLOCK  
R
OPTIONAL  
SURGE  
PROTECTION  
SVN  
R
R
2.5R  
COMPV  
OUTV  
C
V
COMPV  
DDV  
3.3nF**  
OPTIONAL  
SURGE  
PROTECTION  
V
SSV  
MAX5661  
OPTIONAL  
SURGE  
PROTECTION  
SVP  
R
R
DAC  
DACGNDS  
DACGND  
DUTGND  
DUTGNDS  
* SEE THE DAC FUNCTIONAL DIAGRAM IN FIGURE 7.  
DGND  
AGND  
** REQUIRED TO DRIVE C  
< 1nF.  
OUTV  
3ꢂ _______________________________________________________________________________________  
Single 16-Bit DAC with Current and Voltage  
Outputs for Industrial Analog Output Modules  
MAX561  
Package Information  
For the latest package outline information and land patterns, go to www.maxim-ic.comRpackages.  
PACKAGE TYPE  
PACKAGE CODE  
DOCUMENT NO.  
±1-00ꢂ3  
64 LQFP  
C64-ꢃ  
______________________________________________________________________________________ 39  
Single 16-Bit DAC with Current and Voltage  
Outputs for Industrial Analog Output Modules  
Revision History  
ꢁEVISION  
NUMBEꢁ  
ꢁEVISION  
DATE  
PAGES  
CHANGED  
DESCꢁIPTION  
1
ꢃ/ꢀꢃ  
5/ꢀ9  
Initial release  
Clarified how the part operates in single supply mode  
1ꢃ, 24  
MAX561  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
40 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2ꢀꢀ9 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX5679ETJ+

Analog Circuit, BICMOS, PQCC32,
MAXIM

MAX5700

Ultra-Small, Dual-Channel, 8-/10-/12-Bit Buffered Output DACs with Internal Reference and SPI Interface
MAXIM

MAX5700ATB+T

Ultra-Small, Dual-Channel, 8-/10-/12-Bit Buffered Output DACs with Internal Reference and SPI Interface
MAXIM

MAX5700AUB+

Ultra-Small, Dual-Channel, 8-/10-/12-Bit Buffered Output DACs with Internal Reference and SPI Interface
MAXIM

MAX5701

Ultra-Small, Dual-Channel, 8-/10-/12-Bit Buffered Output DACs with Internal Reference and SPI Interface
MAXIM

MAX5701ATB+T

Ultra-Small, Dual-Channel, 8-/10-/12-Bit Buffered Output DACs with Internal Reference and SPI Interface
MAXIM

MAX5701AUB+

Ultra-Small, Dual-Channel, 8-/10-/12-Bit Buffered Output DACs with Internal Reference and SPI Interface
MAXIM

MAX5702

Ultra-Small, Dual-Channel, 8-/10-/12-Bit Buffered Output DACs with Internal Reference and SPI Interface
MAXIM

MAX5702AAUB+

Ultra-Small, Dual-Channel, 8-/10-/12-Bit Buffered Output DACs with Internal Reference and SPI Interface
MAXIM

MAX5702BATB+T

Ultra-Small, Dual-Channel, 8-/10-/12-Bit Buffered Output DACs with Internal Reference and SPI Interface
MAXIM

MAX5702BAUB+

Ultra-Small, Dual-Channel, 8-/10-/12-Bit Buffered Output DACs with Internal Reference and SPI Interface
MAXIM

MAX5703

Ultra-Small, Single-Channel, 8-/10-/12-Bit Buffered Output Voltage DACs with Internal Reference and SPI Interface
MAXIM