MAX5953C [MAXIM]

IEEE 802.3af PD Interface and PWM Controllers with Integrated Power MOSFETs; IEEE 802.3af PD接口和PWM控制器,集成功率MOSFET
MAX5953C
型号: MAX5953C
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

IEEE 802.3af PD Interface and PWM Controllers with Integrated Power MOSFETs
IEEE 802.3af PD接口和PWM控制器,集成功率MOSFET

光电二极管 控制器
文件: 总27页 (文件大小:500K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3945; Rev 1; 7/06  
IEEE 802.3af PD Interface and PWM Controllers  
with Integrated Power MOSFETs  
General Description  
Features  
Powered Device Interface  
The MAX5953A/MAX5953B/MAX5953C/MAX5953D  
integrate a complete power IC solution for Powered  
Devices (PD) in a Power-Over-Ethernet (PoE) system, in  
compliance with the IEEE 802.3af standard. The  
MAX5953A/MAX5953B/MAX5953C/MAX5953D provide  
the PD with a detection signature, a classification sig-  
nature, and an integrated isolation switch with program-  
mable inrush current control. These devices also  
integrate a voltage-mode PWM controller with two  
power MOSFETs connected in a two-switch voltage-  
clamped DC-DC converter configuration.  
Fully Integrated IEEE 802.3af-Compliant PD  
Interface  
PD Detection and Programmable Classification  
Signatures  
Less than 10µA Leakage Current Offset During  
Detection  
Integrated MOSFET for Isolation and Inrush  
Current Limiting  
Gate Output Allows External Control of the  
Internal Isolation MOSFET  
Programmable Inrush Current Control  
Programmable Undervoltage Lockout  
(MAX5953A/MAX5953C)  
An integrated MOSFET provides PD isolation during  
detection and classification. All devices guarantee a  
leakage current offset of less than 10µA during the  
detection phase. A programmable current limit pre-  
vents high inrush current during power-on. The devices  
feature power-mode undervoltage lockout (UVLO) with  
wide hysteresis and long deglitch time to compensate  
for twisted-pair-cable resistive drop and to assure  
glitch-free transition between detection, classification,  
and power-on/-off phases. The MAX5953A/MAX5953C  
have an adjustable UVLO threshold with the default  
value compliant to the 802.3af standard, while the  
MAX5953B/MAX5953D have a lower and fixed UVLO  
threshold compatible with some legacy pre-802.3af  
power-sourcing equipment (PSE) devices.  
DC-DC Converter  
Clamped, Two-Switch Power IC for High  
Efficiency  
Integrated High-Voltage 0.4Power MOSFETs  
Up to 15W Output Power  
Bias Voltage Regulator with Automatic High-  
Voltage Supply Turn-Off  
11V to 76V Wide Input Voltage Range  
Feed-Forward Voltage-Mode Control for Fast  
Input Transient Rejection  
Programmable Undervoltage Lockout  
Overtemperature Shutdown  
Indefinite Short-Circuit Protection with  
Programmable Fault Integration  
Integrated Look-Ahead Signal for Secondary-  
Side Synchronous Rectification  
> 90% Efficiency with Synchronous  
Rectification  
The DC-DC converters are operable in either forward or  
flyback configurations with a wide input voltage range  
from 11V to 76V and up to 15W of output power. The  
voltage-clamped power topology enables full recovery  
of stored magnetizing and leakage inductive energy for  
enhanced efficiency and reliability. When using the  
high-side MOSFET, the controller can be configured as  
a buck converter. A look-ahead signal for driving sec-  
ondary-side synchronous rectifiers can be used to  
increase efficiency. A wide array of protection features  
include UVLO, over-temperature shutdown, and short-  
circuit protection with hiccup current limit for enhanced  
performance and reliability. Operation up to 500kHz  
allows for smaller external magnetics and capacitors.  
Up to 500kHz Switching Frequency  
High-Power (2.22W), 7mm x 7mm Thermally  
Enhanced Lead-Free Thin QFN Package  
Ordering Information  
PART  
PIN-PACKAGE  
48 TQFN  
PKG CODE  
T4877-6  
T4877-6  
T4877-6  
T4877-6  
MAX5953AUTM+  
MAX5953BUTM+  
MAX5953CUTM+  
MAX5953DUTM+  
48 TQFN  
The MAX5953A/MAX5953B/MAX5953C/MAX5953D are  
available in a high-power (2.22W), 7mm x 7mm ther-  
mally enhanced thin QFN package.  
48 TQFN  
48 TQFN  
Operating junction temperature range is 0°C to +125°C.  
+Denotes lead-free package.  
Applications  
IEEE 802.3af Powered  
Devices  
Internet Appliances  
Security Cameras  
Computer Telephony  
IP Phones  
Pin Configuration and Typical Operating Circuit appear at  
end of data sheet.  
Wireless Access Nodes  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
IEEE 802.3af PD Interface and PWM Controllers  
with Integrated Power MOSFETs  
ABSOLUTE MAXIMUM RATINGS  
V+ to V ................................................................-0.3V to +90V  
Maximum Input/Output Current (Continuous)  
OUT to V ....................................................................500mA  
EE  
OUT, PGOOD, PGOOD to V .....................-0.3V to (V+ + 0.3V)  
EE  
EE  
RCLASS, GATE to V ...........................................-0.3V to +12V  
V+, RCLASS to V .........................................................70mA  
UVLO, PGOOD, PGOOD to V .....................................20mA  
EE  
EE  
EE  
UVLO to V ............................................................ -0.3V to +8V  
EE  
PGOOD to OUT........................................... -0.3V to (V+ + 0.3V)  
HVIN, INBIAS, DRNH, XFRMRH,  
XFRMRL to GND.................................................-0.3V to +80V  
BST to GND........................................................... -0.3V to +95V  
BST to XFRMRH .................................................... -0.3V to +12V  
PGND to GND .......................................................-0.3V to +0.3V  
DCUVLO, RAMP, CSS, OPTO, FLTINT, RCFF,  
GATE to V ....................................................................80mA  
REGOUT to GND ............................................................50mA  
DRNH, XFRMRH, XFRMRL, SRC to GND (Average),  
EE  
T = +125°C..................................................................0.9A  
J
PPWM to GND .............................................................. 20mA  
Continuous Power Dissipation* (T = +70°C)  
A
48-Pin TQFN 7mm X 7mm  
RTCT to GND..................................................... -0.3V to +12V  
SRC, CS to GND...................................................... -0.3V to +6V  
REGOUT, DRVIN to GND.......................................-0.3V to +12V  
REGOUT to HVIN .................................................. -80V to +0.3V  
REGOUT to INBIAS ............................................... -80V to +0.3V  
(derate 27.8mW/°C above +70°C).............................2222mW  
θ
................................................................................36°C/W  
JA  
Operating Ambient Temperature Range ................0°C to +85°C  
Operating Junction Temperature Range..............0°C to +125°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-60°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
PPWM to GND....................................-0.3V to (V  
+ 0.3V)  
REGOUT  
*As per JEDEC 51 standard.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = (V+ - V ) = 48V, GATE = PGOOD = PGOOD = unconnected, GND = OUT, HVIN = V+, UVLO = V , T = 0°C to +125°C, unless  
IN  
EE  
EE  
J
otherwise noted. Typical values are at T = +25°C. All voltages are referenced to V , unless otherwise noted.) (Note 1)  
J
EE  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWERED DEVICE (PD) INTERFACE  
DETECTION MODE  
Input Offset Current  
I
V
V
= 1.4V to 10.1V (Note 2)  
10  
µA  
OFFSET  
IN  
IN  
Effective Differential Input  
Resistance (Note 3)  
dR  
= 1.4V, up to 10.1V with 1V step  
550  
k  
CLASSIFICATION MODE  
Classification Current Turn-Off  
Threshold  
V
V
V
rising (Note 4)  
20.8  
21.8  
22.5  
V
TH,CLASS  
IN  
IN  
Class 0, R  
Class 1, R  
Class 2, R  
Class 3, R  
Class 4, R  
= 10kΩ  
= 732Ω  
= 392Ω  
= 255Ω  
= 178Ω  
0
2
RCLASS  
RCLASS  
RCLASS  
RCLASS  
RCLASS  
= 12.6V  
9.17  
17.29  
26.45  
36.6  
11.83  
19.71  
29.55  
41.4  
to 20V,  
R
25.5kΩ  
(Notes 5, 6)  
Classification Current  
I
=
mA  
CLASS  
DISC  
POWER MODE  
Operating Supply Voltage  
V
V
= (V+ - V )  
EE  
67  
1
V
IN  
IN  
Measure at V+, not including R  
GATE = V , HVIN = GND = OUT  
,
DISC  
Operating Supply Current  
I
0.4  
mA  
IN  
EE  
MAX5953A/MAX5953C  
MAX5953B/MAX5953D  
37.4  
34.3  
30  
38.6  
35.4  
40.2  
36.9  
V
IN  
Default Power Turn-On Voltage  
Default Power Turn-Off Voltage  
V
V
V
V
UVLO, ON  
increasing  
V
decreasing, MAX5953A/MAX5953C  
UVLO,OFF  
IN  
2
_______________________________________________________________________________________  
IEEE 802.3af PD Interface and PWM Controllers  
with Integrated Power MOSFETs  
ELECTRICAL CHARACTERISTICS (continued)  
(V = (V+ - V ) = 48V, GATE = PGOOD = PGOOD = unconnected, GND = OUT, HVIN = V+, UVLO = V , T = 0°C to +125°C, unless  
IN  
EE  
EE  
J
otherwise noted. Typical values are at T = +25°C. All voltages are referenced to V , unless otherwise noted.) (Note 1)  
J
EE  
PARAMETER  
SYMBOL  
CONDITIONS  
MAX5953A/MAX5953C  
MAX5953B/MAX5953D  
MIN  
7.1  
4
TYP  
MAX  
UNITS  
Default Power Turn-On/Off  
Hysteresis Voltage  
V
V
HYST,UVLO  
External UVLO Programming  
Range  
V
MAX5953A/MAX5953C only (Note 7)  
12  
67  
V
V
IN,EX  
UVLO External Reference  
Voltage  
V
V
increasing  
UVLO  
2.400  
2.460  
20  
2.522  
REF,UVLO  
UVLO External Reference  
Voltage Hysteresis  
V
Ratio to V  
19.2  
-1.5  
50  
20.9  
+1.5  
440  
%
µA  
mV  
HYST,UVLO  
REF, UVLO  
UVLO Bias Current  
I
V
= 2.460V  
UVLO  
IN,UVLO  
UVLO Input Ground-Sense  
Threshold  
V
(Note 8)  
TH,G,UVLO  
UVLO Input Ground-Sense Glitch  
Rejection  
7
µs  
Power Turn-Off Voltage,  
Undervoltage Lockout Deglitch  
Time  
t
V
, V falling (Note 9)  
IN UVLO  
0.32  
0.5  
ms  
OFF_DLY  
Isolation Switch n-Channel  
MOSFET On-Resistance  
Output current = 300mA, V  
measured between OUT and V  
= 5.6V,  
GATE  
R
0.6  
38  
1.5  
80  
V
ON,ISO  
EE  
Isolation Switch n-Channel  
MOSFET Off-Threshold Voltage  
V
- V , OUT = V+,  
GATE EE  
V
GSTH  
output current < 1µA  
GATE Pulldown Switch  
Resistance  
R
G
Power-off mode, V = +12V  
IN  
GATE Charging Current  
GATE High Voltage  
I
V
= 2V  
4.5  
10  
5.76  
1.23  
70  
16.5  
5.93  
1.31  
µA  
V
GATE  
GATE  
V
I
= 1µA  
5.59  
1.16  
GATE  
GATE  
V
- V decreasing, V = 5.75V  
EE GATE  
V
OUT  
PGOOD Assertion V  
Threshold (Note 10)  
OUT  
V
OUTEN  
Hysteresis  
- V increasing  
mV  
V
V
4.62  
4.76  
80  
4.91  
GATE  
EE  
PGOOD, PGOOD Assertion  
Threshold  
V
GSEN  
V
GATE  
Hysteresis  
= 2mA, V (V+ - 5V) (Note 11)  
OUT  
mV  
PGOOD, PGOOD Output Low  
Voltage  
V
I
0.2  
1
V
OL,PGOOD  
SINK  
PGOOD Leakage Current  
GATE = high, V+ - V  
= 67V (Note 11)  
µA  
µA  
OUT  
GATE = V , PGOOD - V = 67V  
(Note 11)  
EE  
EE  
PGOOD Leakage Current  
1
_______________________________________________________________________________________  
3
IEEE 802.3af PD Interface and PWM Controllers  
with Integrated Power MOSFETs  
ELECTRICAL CHARACTERISTICS (DC-DC Controller)  
(All voltages referenced to GND, unless otherwise noted. V  
= +48V, C  
= 1µF, C  
= 2.2µF, R  
= 25k, C  
=
RTCT  
HVIN  
INBIAS  
REGOUT  
RTCT  
100pF, C  
= 0.22µF, V  
= V = 0V, V  
= V  
= 3V, T = 0°C to +125°C, unless otherwise noted. Typical values are at  
BST  
CSS  
CS  
RAMP  
DCUVLO J  
T = +25°C, unless otherwise noted.) (Note 1)  
J
PARAMETER  
Input Supply Range  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
11  
76  
V
HVIN  
OSCILLATOR (RTCT)  
PWM Frequency  
f
250  
47  
1
kHz  
%
S
Maximum PWM Duty Cycle  
Maximum RTCT Frequency  
RTCT Peak Trip Level  
RTCT Valley Trip Level  
RTCT Input Bias Current  
D
MAX  
f
(Note 12)  
MHz  
V
RTCTMAX  
V
0.51 x V  
REGOUT  
TH,RTCT  
V
1
V
TL,RTCT  
IN,RTCT  
I
1
µA  
RTCT Discharge MOSFET  
R
Sinking 50mA  
35  
50  
85  
DIS,RTCT  
R
DS(ON)  
RTCT Discharge Pulse Width  
ns  
LOOK-AHEAD LOGIC (PPWM)  
PPWM to Output Propagation  
Delay  
t
V
rising to V falling  
XFRMRL  
110  
ns  
PPWM  
PPWM  
PPWM Output High  
PPWM Output Low  
V
Sourcing 2mA  
Sinking 2mA  
7.0  
11.0  
0.2  
V
V
OH,PPWM  
V
OL,PPWM  
PWM COMPARATOR (OPTO, RAMP, RCFF)  
Common-Mode Input Range  
Input Offset Voltage  
V
0
5.5  
+2  
V
CM_PWM  
10  
mV  
µA  
Input Bias Current  
-2  
RAMP to XFRMRL Propagation  
Delay  
From V  
(50mV overdrive) rising to  
RAMP  
rising  
t
100  
ns  
COMPARATOR  
V
XFRMRL  
Minimum OPTO Voltage  
Minimum RCFF Voltage  
REGOUT LDO (REGOUT)  
V
= 0V, OPTO sinking 2mA  
1.47  
2.18  
V
V
CSS  
RCFF sinking 2mA  
INBIAS unconnected,  
8.3  
9.5  
8.75  
10.6  
9.2  
V
= 11V to 76V  
REGOUT Voltage Set Point  
V
HVIN  
V
V
REGOUT  
V
= V  
= 11V to 76V  
HVIN  
11.0  
0.25  
INBIAS  
INBIAS unconnected, V  
= 15V,  
HVIN  
I
= 0 to 30mA  
REGOUT  
REGOUT Load Regulation  
REGOUT Dropout Voltage  
V
= V  
= 0 to 30mA  
= 15V,  
HVIN  
INBIAS  
0.25  
I
REGOUT  
INBIAS unconnected, I  
= 30mA  
1.25  
1.25  
REGOUT  
V
V
V
V
= V  
, I  
= 30mA  
INBIAS  
HVIN REGOUT  
REGOUT Undervoltage  
Lockout Threshold  
REGOUT rising  
REGOUT falling  
6.6  
7.0  
0.7  
7.4  
REGOUT Undervoltage  
Lockout Threshold Hysteresis  
4
_______________________________________________________________________________________  
IEEE 802.3af PD Interface and PWM Controllers  
with Integrated Power MOSFETs  
ELECTRICAL CHARACTERISTICS (DC-DC Controller) (continued)  
(All voltages referenced to GND, unless otherwise noted. V  
= +48V, C  
= 1µF, C  
= 2.2µF, R  
= 25k, C  
=
RTCT  
HVIN  
INBIAS  
REGOUT  
RTCT  
100pF, C  
= 0.22µF, V  
= V = 0V, V  
= V  
= 3V, T = 0°C to +125°C, unless otherwise noted. Typical values are at  
BST  
CSS  
CS  
RAMP  
DCUVLO J  
T = +25°C, unless otherwise noted.) (Note 1)  
J
PARAMETER  
SOFT-START (CSS)  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Soft-Start Current  
I
V
V
= 0V  
CSS  
33  
µA  
CSS  
INTEGRATING FAULT PROTECTION  
FLTINT Source Current  
FLTINT Trip Point  
I
80  
2.7  
µA  
V
FLTINT  
rising  
FLTINT  
FLTINT Hysteresis  
0.75  
V
INTERNAL POWER FETs  
V
V
= V  
= 9V,  
BST  
DRVIN  
On-Resistance  
R
0.4  
15  
80  
0.8  
ON,POWER  
= V  
= 0V, I = 50mA  
DS  
XFRMRH  
SRC  
Off-State Leakage Current  
-5  
+10  
µA  
nC  
Total Gate Charge Per Power  
FET  
HIGH-SIDE DRIVER  
Driver delay until FET V reaches 0.9 x  
(V  
GS  
Low to High Latency  
t
t
ns  
LH-HS  
HL-HS  
- V  
) and is fully on  
BST  
XFRMRH  
Driver delay until FET V reaches 0.1 x  
(V  
GS  
High to Low Latency  
40  
8
ns  
V
- V  
) and is fully off  
BST  
XFRMRH  
Output Drive Voltage  
V
BST to XFRMRH with high side on  
BST  
LOW-SIDE DRIVER  
Driver delay until FET V reaches 0.9 x  
GS  
Low to High Latency  
High to Low Latency  
t
t
80  
40  
ns  
ns  
LH-LS  
HL-LS  
V
and is fully on  
DRVIN  
Driver delay until FET V reaches 0.1 x  
GS  
V
and is fully off  
DRVIN  
CURRENT-LIMIT COMPARATOR (CS)  
Current-Limit Threshold  
Voltage  
V
140  
-2  
156  
160  
172  
+2  
mV  
µA  
ns  
ILIM  
BILIM  
dILIM  
Current-Limit Input Bias  
Current  
I
t
0 < V < 0.3V  
CS  
From V rising (10mV overdrive) to  
CS  
Propagation Delay to XFRMRL  
V
rising  
XFRMRL  
BOOST VOLTAGE CIRCUIT (See Figure 9, QB)  
Driver Output Delay  
t
200  
300  
30  
ns  
ns  
PPWMD  
One-Shot Pulse Width  
t
PWQB  
QB R  
Sinking 20mA  
60  
DSON  
THERMAL SHUTDOWN  
Shutdown Temperature  
Thermal Hysteresis  
T
Temperature rising  
+160  
20  
°C  
°C  
SH  
T
H
_______________________________________________________________________________________  
5
IEEE 802.3af PD Interface and PWM Controllers  
with Integrated Power MOSFETs  
ELECTRICAL CHARACTERISTICS (DC-DC Controller) (continued)  
(All voltages referenced to GND, unless otherwise noted. V  
= +48V, C  
= 1µF, C  
= 2.2µF, R  
= 25k, C  
=
RTCT  
HVIN  
INBIAS  
REGOUT  
RTCT  
100pF, C  
= 0.22µF, V  
= V = 0V, V  
= V  
= 3V, T = 0°C to +125°C, unless otherwise noted. Typical values are at  
BST  
CSS  
CS  
RAMP  
DCUVLO J  
T = +25°C, unless otherwise noted.) (Note 1)  
J
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
1.14  
-100  
TYP  
MAX  
1.38  
UNITS  
UNDERVOLTAGE LOCKOUT (DCUVLO)  
Threshold Voltage  
Hysteresis  
V
V
V
V
rising  
1.26  
140  
V
REF,DCUVLO  
DCUVLO  
DCUVLO  
mV  
nA  
HYS,DCUVLO  
Input Bias Current  
SUPPLY CURRENT  
I
= 3V  
+100  
IN,DCUVLO  
From V  
= 11V to 76V,  
= 11V  
INBIAS  
HVIN  
0.7  
1.5  
6.4  
V
= 0V, V  
CSS  
Supply Current  
mA  
mA  
From V  
= 11V to 76V,  
INBIAS  
4.4  
7
V
= 0V, V  
= 76V  
HVIN  
CSS  
From V  
= 76V, V  
= 4V  
OPIO  
HVIN  
Standby Supply Current  
V
= 0V  
1
DCUVLO  
Note 1: Limits at 0°C are guaranteed by design, unless otherwise noted.  
Note 2: The input offset current is illustrated in Figure 1.  
Note 3: Effective differential input resistance is defined as the differential resistance between V+ and V without any external  
EE  
resistance.  
Note 4: Classification current is turned off whenever the IC is in power mode.  
Note 5: See Table 2 in the Classification Mode section. R  
and R  
must be 1%, 100ppm or better. I  
includes the IC  
CLASS  
DISC  
RCLASS  
bias current and the current drawn by R  
.
DISC  
Note 6: See the Thermal Dissipation section.  
Note 7: When UVLO is connected to the midpoint of an external resistor-divider with a series resistance of 25.5k( 1%), the turn-  
on threshold set point for the power mode is defined by the external resistor-divider. Make sure the voltage on UVLO does  
not exceed its maximum rating of 8V when V is at the maximum voltage.  
IN  
Note 8: When V  
is below V  
, the MAX5953A/MAX5953C set the turn-on voltage threshold internally (V  
).  
UVLO  
TH,G,UVLO  
UVLO,ON  
Note 9: An input voltage or V  
glitch below their respective thresholds shorter than or equal to t  
does not cause the  
UVLO  
OFF_DLY  
MAX5953A/MAX5953B/MAX5953C/MAX5953D to exit power-on mode (as long as the input voltage remains above an  
operable voltage level of 12V).  
Note 10: Guaranteed by design, not tested in production for MAX5953B/MAX5953D.  
Note 11: PGOOD references to OUT while PGOOD references to V  
.
EE  
1
Note 12: Output switching frequency is / oscillator frequency.  
2
I
IN  
(V  
(I  
- V  
)
1V  
INi + 1  
INi  
dR ≅  
i
=
- I  
)
(I  
- I  
)
INi + 1 INi  
INi + 1 INi  
V
INi  
I
I  
-
OFFSET INi  
dR  
i
I
INi + 1  
dR  
i
I
INi  
I
OFFSET  
V
1V  
V
INi + 1  
V
IN  
INi  
Figure 1. Effective Differential Input Resistance/Offset Current  
6
_______________________________________________________________________________________  
IEEE 802.3af PD Interface and PWM Controllers  
with Integrated Power MOSFETs  
Typical Operating Characteristics  
(V = (V+ - V ) = 48V, GATE = PGOOD = unconnected, GND connected to OUT, HVIN connected to V+, UVLO = V , C  
= 1µF,  
IN  
EE  
EE INBIAS  
C
= 2.2µF, R  
= 25k, C  
= 100pF, C = 0.22µF, T = 0°C to +125°C, unless otherwise noted. Typical values are  
BST J  
REGOUT  
RTCT  
RTCT  
at T = +25°C. All voltages are referenced to V , unless otherwise noted.)  
J
EE  
CLASSIFICATION CURRENT  
vs. INPUT VOLTAGE  
EFFECTIVE DIFFERENTIAL INPUT  
RESISTANCE vs. INPUT CURRENT  
DETECTION CURRENT  
vs. INPUT VOLTAGE  
50  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
R
= 25.5k  
DISC  
45  
40  
35  
30  
25  
20  
15  
10  
5
CLASS 4  
CLASS 3  
I
+ I  
IN RDISC  
CLASS 2  
CLASS 1  
CLASS 0  
0
0
5
10  
15  
20  
25  
30  
0
0
0
2
4
6
8
10  
0
2
4
6
8
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT OFFSET CURRENT  
vs. INPUT VOLTAGE  
PGOOD OUTPUT LOW VOLTAGE  
vs. CURRENT  
NORMALIZED UVLO  
vs. TEMPERATURE  
0
250  
200  
150  
100  
50  
1.010  
1.008  
1.006  
1.004  
1.002  
1.000  
0.998  
0.996  
0.994  
0.992  
0.990  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
-3.5  
-4.0  
0
0
2
4
6
8
10  
5
10  
(mA)  
15  
20  
0
25  
50  
75  
100  
125  
INPUT VOLTAGE (V)  
I
TEMPERATURE (°C)  
SINK  
DCUVLO THRESHOLD  
vs. TEMPERATURE  
OUT LEAKAGE CURRENT  
vs. TEMPERATURE  
INRUSH CURRENT CONTROL  
(V = 48V)  
IN  
MAX5953A/B/C/D toc08  
1000  
100  
10  
1.2825  
1.2800  
1.2775  
1.2750  
1.2725  
V
= 48V  
DCUVLO RISING  
OUT  
V
GATE  
5V/div  
0V  
V
TO  
OUT  
V
EE  
0V  
50V/div  
I
INRUSH  
100mA/div  
1
0A  
0V  
PGOOD  
50V/div  
0.1  
0
25  
50  
75  
100  
125  
4ms/div  
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
7
IEEE 802.3af PD Interface and PWM Controllers  
with Integrated Power MOSFETs  
Typical Operating Characteristics (continued)  
(V = (V+ - V ) = 48V, GATE = PGOOD = unconnected, GND connected to OUT, HVIN connected to V+, UVLO = V , C  
= 1µF,  
IN  
EE  
EE INBIAS  
C
= 2.2µF, R  
= 25k, C  
= 100pF, C = 0.22µF, T = 0°C to +125°C, unless otherwise noted. Typical values are  
BST J  
REGOUT  
RTCT  
RTCT  
at T = +25°C. All voltages are referenced to V , unless otherwise noted.)  
J
EE  
HVIN AND INBIAS INPUT CURRENT  
vs. TEMPERATURE  
HVIN STANDBY CURRENT  
vs. TEMPERATURE  
HVIN INPUT CURRENT  
vs. TEMPERATURE  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
385  
350  
315  
280  
245  
210  
175  
140  
105  
70  
4.8  
4.7  
4.6  
4.5  
4.4  
4.3  
4.2  
4.1  
4.0  
V
= V  
= 76V  
INBIAS  
HVIN  
INBIAS FLOATING  
= 76V  
REGOUT = DRVIN  
V
HVIN  
f
V
HVIN  
DCUVLO  
= 0V  
I
INBIAS  
I
HVIN  
35  
0
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
REGOUT VOLTAGE  
vs. LOAD CURRENT  
REGOUT VOLTAGE  
vs. INPUT VOLTAGE  
REGOUT VOLTAGE  
vs. TEMPERATURE  
8.85  
8.84  
8.83  
8.82  
8.81  
8.80  
8.79  
8.78  
8.77  
8.76  
8.75  
8.90  
8.88  
8.86  
8.84  
8.82  
8.80  
8.78  
8.76  
8.74  
8.72  
8.70  
8.85  
8.80  
8.75  
8.70  
8.65  
V = 15V  
HVIN  
INBIAS FLOATING  
V
= 48V  
HVIN  
INBIAS FLOATING  
GND = V  
GND = V  
INBIAS FLOATING  
EE  
EE  
11  
24  
37  
50  
(V)  
63  
76  
0
25  
50  
75  
100  
125  
0
5
10  
15  
20  
25  
30  
V
TEMPERATURE (°C)  
I
(mA)  
REGOUT  
HIN  
REGOUT VOLTAGE  
vs. LOAD CURRENT  
REGOUT VOLTAGE  
vs. INPUT VOLTAGE  
REGOUT VOLTAGE  
vs. TEMPERATURE  
10.75  
10.70  
10.65  
10.60  
10.55  
10.50  
10.70  
10.68  
10.66  
10.64  
10.62  
10.60  
10.75  
10.74  
10.73  
10.72  
10.71  
10.70  
10.69  
10.68  
10.67  
10.66  
10.65  
V
= V  
EE  
= 15V  
INBIAS  
HVIN = INBIAS  
V
= V  
= 48V  
INBIAS  
HVIN  
HVIN  
GND = V  
GND = V  
EE  
0
5
10  
15  
20  
25  
30  
11  
24  
37  
50  
(V)  
63  
76  
0
25  
50  
75  
100  
125  
I
(mA)  
V
TEMPERATURE (°C)  
REGOUT  
HIN  
8
_______________________________________________________________________________________  
IEEE 802.3af PD Interface and PWM Controllers  
with Integrated Power MOSFETs  
Typical Operating Characteristics (continued)  
(V = (V+ - V ) = 48V, GATE = PGOOD = unconnected, GND connected to OUT, HVIN connected to V+, UVLO = V , C  
= 1µF,  
IN  
EE  
EE INBIAS  
C
= 2.2µF, R  
= 25k, C  
= 100pF, C = 0.22µF, T = 0°C to +125°C, unless otherwise noted. Typical values are  
BST J  
REGOUT  
RTCT  
RTCT  
at T = +25°C. All voltages are referenced to V , unless otherwise noted.)  
J
EE  
SOFT-START CURRENT  
vs. TEMPERATURE  
OPERATING FREQUENCY  
vs. TEMPERATURE  
REGOUT UVLO VOLTAGE  
vs. TEMPERATURE  
34.0  
33.5  
33.0  
32.5  
32.0  
31.5  
31.0  
7.4  
600  
550  
500  
450  
400  
350  
300  
250  
200  
RISING  
R
= 12kΩ  
RTCT  
7.2  
7.0  
6.8  
6.6  
6.4  
6.2  
6.0  
C
= 100pF  
RTCT  
FALLING  
R
= 24.3kΩ  
RTCT  
C
= 100pF  
RTCT  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
PPWM TO XFRMRL SKEW  
vs. TEMPERATURE  
CURRENT-LIMIT COMPARATOR  
THRESHOLD vs. TEMPERATURE  
MINIMUM RCFF AND OPTO LEVELS  
vs. TEMPERATURE  
2.75  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
0.160  
0.159  
0.158  
0.157  
0.156  
0.155  
0.154  
0.153  
0.152  
0.151  
0.150  
HVIN RISING  
RCFF  
OPTO  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FLTINT SHUTDOWN VOLTAGE  
vs. TEMPERATURE  
FLTINT CURRENT  
vs. TEMPERATURE  
POWER MOSFETS R  
DS(ON)  
vs. TEMPERATURE  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
RISING  
FALLING  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
9
IEEE 802.3af PD Interface and PWM Controllers  
with Integrated Power MOSFETs  
Pin Description  
PIN  
NAME  
N.C.  
V+  
FUNCTION  
1, 2, 3, 5, 7, 12, 13, 14, 17,  
19, 35, 38, 46, 47, 48  
No Connection. Not internally connected. Make no electrical connection to these pins.  
4
Positive Input Power. Referenced to V  
.
EE  
Undervoltage Lockout Programming Input for PD Interface. UVLO is referenced to V  
.
EE  
When UVLO is above its threshold, the device enters the power mode. Connect UVLO to  
to use the default undervoltage lockout threshold. Connect UVLO to the center of an  
external resistor-divider between V+ and V to define a threshold externally. The series  
EE  
V
EE  
6
UVLO  
(MAX5953A/MAX5953C)  
resistance value of the external resistors must add to 25.5k( 1%) and replaces the  
detection resistor. To keep the device in undervoltage lockout, drive UVLO between  
V
and V  
.
REF,UVLO  
TH,G,UVLO  
6
N.C.  
No Connection. Not internally connected. Make no electrical connection to this pin.  
Classification Setting for PD Interface. RCLASS is referenced to V . Add a resistor from  
(MAX5953B/MAX5953D)  
EE  
8
RCLASS  
RCLASS to V to set a PD class (see Tables 1 and 2).  
EE  
Gate of Internal Isolation n-Channel Power MOSFET. GATE is referenced to V . GATE  
EE  
sources 10µA when the device enters power mode. Connect an external 100V ceramic  
9
GATE  
capacitor from GATE to OUT to program the inrush current. Drive GATE to V to turn off  
EE  
the internal MOSFET. The detection and classification functions operate normally when  
GATE is driven to V  
.
EE  
10, 11  
15, 16  
V
Negative Input Power. Source of the integrated isolation n-channel power MOSFET.  
EE  
Output Voltage. OUT is referenced to V . OUT is connected to the drain of the integrated  
EE  
isolation n-channel power MOSFET. Connect OUT to GND.  
OUT  
Active-High, Open-Drain Power-Good Indicator Output for PD Interface. PGOOD is  
referenced to OUT. PGOOD goes high impedance when V  
is within 1.2V of V and  
EE  
OUT  
18  
PGOOD when V  
is 5V above V . Otherwise, PGOOD is internally pulled to OUT (given that  
EE  
GATE  
(MAX5953A/MAX5953B)  
V
is at least 5V below V+). PGOOD can be connected directly to CSS or DCUVLO to  
OUT  
enable/disable the DC-DC converter.  
Active-Low, Open-Drain Power-Good Indicator Output for PD Interface. PGOOD is  
18  
referenced to V . PGOOD is pulled to V when V  
is within 1.2V of V and when  
EE  
PGOOD  
EE  
EE  
OUT  
(MAX5953C/MAX5953D)  
V
is 5V above V . Otherwise, PGOOD goes high impedance.  
EE  
GATE  
Current-Sense Input for PWM Controller. CS is referenced to PGND. The current-limit  
threshold is internally set to 156mV relative to PGND. The device has an internal noise filter.  
If necessary, connect an external RC filter from CS to PGND for additional filtering.  
20  
21  
CS  
PWM Pulse Output. Referenced to GND. PPWM leads the internal power MOSFET pulse by  
approximately 100ns.  
PPWM  
22  
23  
GND  
Signal Ground of PWM Controller. Connect GND to PGND.  
PGND  
Power Ground of the DC-DC Converter Power Stage. Connect PGND to GND.  
Soft-Start Timing Capacitor Connection for PWM Controller. CSS is referenced to GND.  
Connect a 0.01µF or greater ceramic capacitor from CSS to GND. Connect to PGOOD to  
automatically enable the PWM controller from the PD interface.  
24  
CSS  
10 ______________________________________________________________________________________  
IEEE 802.3af PD Interface and PWM Controllers  
with Integrated Power MOSFETs  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
PWM Comparator Inverting Input. OPTO is referenced to GND. Connect the collector of the  
optotransistor to OPTO and a pullup resistor to REGOUT.  
25  
OPTO  
Source Connection of Low-Side Power MOSFET in the Two-Switch Power Stage of the DC-  
DC Converter. Connect SRC to PGND with a low-value resistor for current limiting.  
26, 27  
28, 29  
30  
SRC  
Low-Side Connection for the Isolation Transformer. Drain terminal of low-side power  
MOSFET in the two-switch power stage of the DC-DC converter.  
XFRMRL  
DRVIN  
Supply Input for the Gate-Driver of Internal Power MOSFETs. DRVIN is referenced to  
PGND. Bypass DRVIN with at least 0.1µF to PGND. Connect DRVIN to REGOUT.  
High-Side Connection for the Isolation Transformer. Source connection of high-side power  
MOSFET in the two-switch power stage of the DC-DC converter.  
31, 32  
XFRMRH  
Drain Connection of High-Side MOSFET in the Two-Switch Power Stage of the DC-DC  
Converter. Connect DRNH to the most positive rail of the input supply. Bypass DRNH  
appropriately to handle the heavy switching current through the transformer.  
33, 34  
36  
DRNH  
BST  
Boost Input for the DC-DC Converter. BST is the boost connection point for the high-side  
MOSFET driver. Connect a minimum 0.1µF capacitor from BST to XFRMRH with short and  
wide PC board traces.  
DC-DC Converter Undervoltage Lockout Input. DCUVLO is referenced to GND. Connect a  
resistor-divider from HVIN to DCUVLO to GND to set the UVLO threshold.  
37  
39  
40  
DCUVLO  
HVIN  
DC-DC Converter Positive Input Power Supply. HVIN is referenced to GND. Connect HVIN  
to V+.  
Input from the Rectified Bias Winding to the DC-DC Converter. INBIAS is referenced to  
GND. INBIAS is the input to the internal linear voltage regulator (REGOUT).  
INBIAS  
Internal Regulator Output. REGOUT is used for the DC-DC converter gate driver. REGOUT  
is referenced to GND. V  
voltage above the DCUVLO threshold. Bypass REGOUT to GND with a minimum 2.2µF  
ceramic capacitor.  
is always present as long as HVIN is powered with a  
REGOUT  
41  
42  
REGOUT  
RTCT  
Oscillator Frequency Set Input for the PWM Controller. RTCT is referenced to GND.  
Connect a resistor from RTCT to REGOUT and a ceramic capacitor from RTCT to GND to  
set the oscillator frequency.  
Fault Integration Input for PWM Controller. FLTINT is referenced to GND. During persistent  
current-limit faults, a capacitor connected to FLTINT is charged with an internal 80µA  
43  
FLTINT current source. Switching is terminated when V  
reaches 2.7V. An external resistor  
FLTINT  
connected in parallel discharges the capacitor. Switching resumes when V  
to 1.9V.  
drops  
FLTINT  
Feed-Forward Input for PWM Controller. RCFF is referenced to GND. To generate the PWM  
ramp, connect a resistor from RCFF to HVIN and a capacitor from RCFF to GND.  
44  
45  
RCFF  
RAMP  
Ramp Sense Input for PWM Controller. Connect RAMP to RCFF.  
Exposed Paddle. EP is internally unconnected and must be connected to V externally.  
EE  
To improve power dissipation, solder the exposed paddle to a copper pad on the PC  
board.  
EP  
______________________________________________________________________________________ 11  
IEEE 802.3af PD Interface and PWM Controllers  
with Integrated Power MOSFETs  
Typical Application Circuit  
POWER-OVER  
SIGNAL PAIRS  
V
REG  
Rx  
3
6
1
PHY  
2
-48V  
RTN  
RJ-45  
SGND  
+
-
+
-
Tx  
4
5
7
8
-48V  
POWER-OVER  
SPAIR PAIRS  
Figure 2. RJ-45 Connector, PoE Magnetic, and Input Diode Bridges  
12 ______________________________________________________________________________________  
IEEE 802.3af PD Interface and PWM Controllers  
with Integrated Power MOSFETs  
Figure 3. Typical Application Circuit  
______________________________________________________________________________________ 13  
IEEE 802.3af PD Interface and PWM Controllers  
with Integrated Power MOSFETs  
Figure 4. For higher power applications, the MAX5953A/MAX5953B/MAX5953C/MAX5953D can be used in a two-switch forward  
converter configuration  
14 ______________________________________________________________________________________  
IEEE 802.3af PD Interface and PWM Controllers  
with Integrated Power MOSFETs  
Operating Modes  
Detailed Description  
Depending on the input voltage (V = V - V ), the PD  
IN  
+
EE  
PD Interface  
The MAX5953A/MAX5953B/MAX5953C/MAX5953D  
include complete interface function for a PD to comply  
with the IEEE 802.3af standard in a PoE system. They  
provide the PD with a detection signature, a classifica-  
tion signature, and an integrated isolation switch with  
programmable inrush current control. An integrated  
MOSFET provides PD isolation during detection and  
classification. All devices guarantee a leakage current  
offset of less than 10µA during the detection phase. A  
programmable current limit prevents high inrush cur-  
rent during power-on. The device features power-mode  
UVLO with wide hysteresis and long deglitch time to  
compensate for twisted-pair-cable resistive drop and to  
assure glitch-free transition between detection, classifi-  
cation, and power-on/-off phases. The MAX5953A/  
MAX5953C have an adjustable UVLO threshold with  
the default value compliant to the 802.3af standard,  
while the MAX5953B/MAX5953D have a lower and  
fixed UVLO threshold compatible with some legacy  
pre-802.3af PSE.  
front-end section of the MAX5953A/MAX5953B/  
MAX5953C/MAX5953D operate in three different modes:  
PD detection signature, PD classification, and PD power.  
All voltage thresholds are designed to operate with or  
without the optional diode bridge while still complying  
with the IEEE 802.3af standard (see Figure 2).  
Detection Mode (1.4V V 10.1V)  
IN  
In detection mode, the power source equipment (PSE)  
applies two voltages on V in the range of 1.4V to 10.1V  
IN  
(1V step minimum), and records the corresponding cur-  
rent measurements at those two points. The PSE then  
computes V/I to ensure the presence of the 25.5kΩ  
signature resistor. In this mode, most interface circuitry  
of the MAX5953A/MAX5953B/MAX5953C/MAX5953D is  
off and the offset current is less than 10µA.  
Classification Mode (12.6V V 20V)  
IN  
In the classification mode, the PSE classifies the PD  
based on the power consumption required by the PD.  
This allows the PSE to efficiently manage power distrib-  
ution. The IEEE 802.3af standard defines five different  
classes as shown in Table 1. An external resistor  
Table 1. PD Power Classification/  
(R  
) connected from RCLASS to V  
sets the  
EE  
RCLASS  
classification current.  
R
Selection  
RCLASS  
The PSE determines the class of a PD by applying a  
voltage at the PD input and measuring the current  
sourced out of the PSE. When the PSE applies a volt-  
age between 12.6V and 20V, the IC exhibits a current  
characteristic with values indicated in Table 2. The PSE  
uses the classification current information to classify  
the power requirement of the PD. The classification cur-  
rent includes the current drawn by the 25.5kdetec-  
tion signature resistor and the supply current of the IC  
so the total current drawn by the PD is within the IEEE  
802.3af standard figures. The classification current is  
turned off whenever the device is in power mode.  
R
MAXIMUM POWER  
USED BY PD (W)  
RCLASS  
()  
CLASS  
USAGE  
0
1
2
3
Default  
Optional  
Optional  
Optional  
10k  
732  
392  
255  
0.44 to 12.95  
0.44 to 3.84  
3.84 to 6.49  
6.49 to 12.95  
Not  
Allowed  
4
178  
Reserved*  
*Class 4 reserved for future use.  
Table 2. Setting Classification Current  
IEEE 802.3af PD CLASSIFICATION  
CURRENT SPECIFICATION (mA)  
CLASS CURRENT SEEN AT V (mA)  
IN  
R
RCLASS  
()  
CLASS  
V * (V)  
IN  
MIN  
0
MAX  
MIN  
0
MAX  
4
0
1
2
3
4
10k  
732  
392  
255  
178  
12.6 to 20  
12.6 to 20  
12.6 to 20  
12.6 to 20  
12.6 to 20  
2.00  
9.17  
17.29  
26.45  
36.60  
11.83  
19.71  
29.55  
41.40  
9
12  
20  
30  
44  
17  
26  
36  
*V is measured across the MAX5953A/MAX5953B/MAX5953C/MAX5953D input pins (V+ - V ), which do not include the diode  
IN  
EE  
bridge voltage drop.  
______________________________________________________________________________________ 15  
IEEE 802.3af PD Interface and PWM Controllers  
with Integrated Power MOSFETs  
Power Mode  
C
During power mode, when V rises above the undervolt-  
IN  
UVLO,ON  
OUT  
I
= I ×  
G
INRUSH  
age lockout threshold (V  
), the IC gradually turns  
C
GATE  
on the internal n-channel MOSFET Q1 (see Figure 8).  
The IC charges the gate of Q1 with a constant current  
source (10µA, typ). The drain-to-gate capacitance of Q1  
limits the voltage rise rate at the drain of the MOSFET,  
thereby limiting the inrush current. To further reduce the  
inrush current, add external drain-to-gate capacitance  
(see the Inrush Current Limit section). When the drain of  
Q1 is within 1.2V of its source voltage and its gate-to-  
source voltage is above 5V, the MAX5953A/MAX5953B  
assert the PGOOD output (MAX5953C/MAX5953D assert  
the PGOOD output). The IC has a wide UVLO hysteresis  
and turn-off deglitch time to compensate for the high  
impedance of the twisted-pair cable.  
The recommended typical inrush current for a PoE  
application is 100mA.  
PGOOD/PGOOD Output  
PGOOD is an open-drain, active-high logic output.  
PGOOD goes high impedance when V  
is within  
OUT  
1.2V of V  
and when GATE is 5V above V  
.
EE  
EE  
Otherwise, PGOOD is pulled to V  
(given that V  
OUT  
OUT  
is at least 5V below V+). Connect PGOOD directly to  
CSS to enable/disable the DC-DC converter. PGOOD is  
an open-drain, active-low logic output. PGOOD is  
pulled to V  
when V  
is within 1.2V of V  
EE  
and  
EE  
EE  
OUT  
when GATE is 5V above V . Otherwise, PGOOD goes  
Undervoltage Lockout for PD Interface  
high impedance. Connect a 100kpullup resistor from  
PGOOD to V+ if needed.  
The IC operates up to a 67V supply voltage with a default  
UVLO turn-on (V  
) set at 38.6V (MAX5953A/  
UVLO,ON  
Thermal Dissipation  
Thermal shutdown limits total power dissipation in the  
IC. If the junction temperature exceeds +160°C, ther-  
mal shutdown is enabled to turn off the MAX5953A/  
MAX5953B/MAX5953C/MAX5953D, allowing the IC to  
cool. The IC turns on after the junction temperature  
cools by 20°C.  
MAX5953C) or 35.4V (MAX5953B/MAX5953D) and a  
UVLO turn-off (V ) set at 30V. The MAX5953A/  
UVLO,OFF  
MAX5953C have an adjustable UVLO threshold using a  
resistor-divider connected to UVLO (see Figure 3). When  
the input voltage goes below the UVLO threshold for  
more than t , the MOSFET turns off.  
OFF_DLY  
To adjust the UVLO threshold, connect an external  
resistor-divider from V+ to UVLO to V . Use the follow-  
EE  
ing equations to calculate R1 and R2 for a desired  
UVLO threshold:  
DC-DC Converter  
The MAX5953A/MAX5953B/MAX5953C/MAX5953D iso-  
lated PWM power ICs feature integrated switching power  
MOSFETs connected in a voltage-clamped, two-transis-  
tor, power-circuit configuration. These devices can be  
used in both forward and flyback configurations with a  
wide 11V to 76V input voltage range. The voltage-  
clamped power topology enables full recovery of stored  
magnetizing and leakage inductive energy for enhanced  
efficiency and reliability. A look-ahead signal for driving  
secondary-side synchronous rectifiers can be used to  
increase efficiency. A wide array of protection features  
include UVLO, overtemperature shutdown, and short-cir-  
cuit protection with hiccup current-limit for enhanced  
performance and reliability. Operation up to 500kHz  
allows smaller external magnetics and capacitors.  
V
REF,UVLO  
R2 = 25.5k×  
V
IN,EX  
R1= 25.5kR2  
where V  
is the desired UVLO threshold. Since the  
IN,EX  
resistor-divider replaces the 25.5kPD detection resis-  
tor, ensure that the sum of R1 and R2 equals 25.5kΩ  
1%. When using the external resistor-divider, MAX5953A/  
MAX5953C have an external reference voltage hysteresis  
of 20% (typ). In other words, when UVLO is programmed  
externally, the turn-off threshold is 80% (typ) of the new  
UVLO threshold.  
Power Topology  
The two-switch forward-converter topology offers out-  
standing robustness against faults and transformer sat-  
uration while affording efficient use of 0.4power  
MOSFETs. Voltage-mode control with feed-forward  
compensation allows the rejection of input supply dis-  
turbances within a single cycle similar to that of current-  
mode controlled topologies.  
Inrush Current Limit  
The IC charges the gate of the internal MOSFET with a  
constant current source (10µA, typ). The drain-to-gate  
capacitance of the MOSFET limits the voltage rise rate  
at the drain, thereby limiting the inrush current. Add an  
external capacitor from GATE to OUT to further reduce  
the inrush current. Use the following equation to calcu-  
late the inrush current:  
16 ______________________________________________________________________________________  
IEEE 802.3af PD Interface and PWM Controllers  
with Integrated Power MOSFETs  
The two-switch power topology recovers energy stored  
in both the magnetizing and the parasitic leakage induc-  
tances of the transformer. The Typical Application  
Circuit, Figure 3, shows the schematic diagram of a -48V  
input flyback converter using the MAX5953A. Figure 4  
shows the schematic diagram of a -48V input forward  
converter and a 5V, 3A output isolated power supply.  
external resistive divider (R16 and R17) connected to  
DCUVLO (see Figure 3). Use the following equation to  
calculate R16 and R17:  
R16  
R17  
V
= V  
× 1+  
DCUVLO  
DCUVLOIN  
where V  
is the desired input voltage lockout  
is the undervoltage lockout thresh-  
DCUVLOIN  
Voltage-Mode Control and the PWM Ramp  
For voltage-mode control, the feed-forward PWM ramp  
is generated at RCFF. From RCFF, connect a capacitor  
to GND and a resistor to HVIN. The ramp generated is  
applied to the noninverting input of the PWM compara-  
tor at RAMP and has a minimum voltage of approxi-  
mately 2V. The slope of the ramp is determined by the  
voltage at HVIN and affects the overall loop gain. The  
ramp peak must remain below the 5.5V dynamic range  
of RCFF. Assuming the maximum duty cycle approach-  
es 50% at a minimum input voltage (PWM UVLO turn-  
on threshold), use the following formula to calculate the  
minimum value of either the ramp capacitor or resistor:  
level and V  
DCUVLO  
old (1.25V, typ). Select the R17 resistance value  
between 100kand 500k.  
Optocoupled Feedback  
Isolated voltage feedback is achieved by using an  
optocoupler as shown in Figure 3. Connect the collec-  
tor of the optotransistor to OPTO and a pullup resistor  
between OPTO and REGOUT.  
Internal Regulators  
As soon as power is provided to HVIN, internal power  
supplies power the DCUVLO detection circuitry.  
REGOUT is used to drive the internal power MOSFETs.  
Bypass REGOUT to GND with a minimum 2.2µF ceram-  
ic capacitor. The HVIN LDO steps down V  
nominal output voltage (V  
V
IN,EX  
R
×C  
RCFF  
to a  
RCFF  
HVIN  
2×f × V  
S
R(PP)  
) of 8.75V. A second  
REGOUT  
parallel LDO powers REGOUT from INBIAS. A tertiary  
winding connected through a diode to INBIAS powers  
up REGOUT once switching commences. This powers  
REGOUT to 10.5V (typ) and shuts off the current flow-  
ing from HVIN to REGOUT. This results in a lower on-  
chip power dissipation and higher efficiency.  
where f is the switching frequency, V  
is the peak-  
RCFF  
S
R(P-P)  
to-peak ramp voltage (2V, typ). Select R  
resistance  
value between 200kand 600k.  
Maximize the signal-to-noise ratio by setting the ramp  
peak as high as possible. Calculate the low-frequency,  
small-signal gain of the power stage (the gain from the  
inverting input of the PWM comparator to the output)  
using the following formula:  
G
PS  
= N x R  
x C  
x f  
RCFF S  
SP  
RCFF  
where N  
is the secondary to primary power trans-  
SP  
MAX5953A  
MAX5953B  
MAX5953C  
former turns ratio.  
Secondary-Side Synchronization  
MAX5953D  
The MAX5953A/MAX5953B/MAX5953C/MAX5953D  
provide convenient synchronization for optional sec-  
ondary-side synchronous rectifiers. Figure 5 shows the  
connection diagram with a high-speed optocoupler.  
Choose an optocoupler with a propagation delay of  
less than 80ns. The synchronizing pulse is generated  
approximately 110ns ahead of the main pulse that dri-  
ves the two power MOSFETs.  
+5V  
R
PPWM  
PGND  
C
Undervoltage Lockout for DC-DC Converter  
Connect PGOOD to DCUVLO to ensure the PD interface  
is ready prior to the DC-DC converter. The DCUVLO  
block monitors the input voltage at HVIN through an  
Figure 5. Secondary-Side Synchronous Rectifier Driver Using a  
High-Speed Optocoupler  
______________________________________________________________________________________ 17  
IEEE 802.3af PD Interface and PWM Controllers  
with Integrated Power MOSFETs  
Soft-Start  
I
× t  
SH  
1.4  
FLTINT  
Program the MAX5953A/MAX5953B/MAX5953C/  
C
FLTINT  
MAX5953D soft-start with an external capacitor (C  
)
CSS  
connected between CSS and GND. When the device  
turns on, C charges with a constant current of  
where I  
is typically 80µA, and t  
is the desired  
SH  
FLTIN  
CSS  
ignore time during which current-limit events from the  
33µA, ramping up to 7.3V. During this time, the feed-  
back input (OPTO) is clamped to V + 0.6V. This ini-  
current-limit comparator are ignored.  
CSS  
This is an approximate formula; some testing may be  
required to fine tune the actual value of the capacitor.  
tially holds the duty cycle lower than the value the  
regulator imposes, thus preventing voltage overshoot at  
the output. When the IC turns off, the soft-start capaci-  
tor internally discharges to GND.  
Calculate the approximate bleed resistor needed for  
the desired recovery time using the following formula:  
Oscillator  
The oscillator is externally programmable through a  
resistor connected from RTCT to REGOUT and a  
capacitor connected from RTCT to GND. The PWM fre-  
quency is one-half the frequency seen at RTCT with a  
50% duty cycle. Use the following formula to calculate  
the oscillator components:  
t
RT  
× 0.3514  
R
FLTINT  
C
FLTINT  
where t is the desired recovery time.  
RT  
Choose t 10 x t . Typical values for t can range  
from a few hundred microseconds to a few milliseconds.  
RT  
SH  
SH  
1
Shutdown  
Shut down the controller section of the IC by driving  
DCUVLO to GND using an open-collector or open-drain  
transistor connected to GND. The DC-DC converter sec-  
tion shuts down if REGOUT is below its DCUVLO level.  
R
RTCT  
V
REGOUT  
V  
2f C  
+ C  
In  
PCB  
(
)
s
RTCT  
V
REGOUT  
TH,RTCT  
where C  
(14pF, typ), V  
f is the switching frequency.  
S
is the stray capacitance on the PC board  
PCB  
Current-Sense Comparator  
The current-sense (CS) comparator and its associated  
logic limit the peak current through the internal MOSFET.  
Current is sensed at CS as a voltage across a sense  
resistor between the source of the MOSFET and GND.  
The power MOSFET switches off when the voltage at  
CS reaches 156mV. Select the current-sense resistor,  
is the RTCT peak trip level, and  
TH,RTCT  
Integrating Fault Protection  
The integrating fault protection feature allows the IC to  
ignore transient overcurrent conditions for a program-  
mable amount of time, giving the power-supply time to  
behave like a current source to the load. This can hap-  
pen, for example, under load-current transients when  
the control loop requests maximum current to keep the  
output voltage from going out of regulation. The ignore  
time is programmed externally by connecting a capaci-  
tor from FLTINT to GND. Under sustained overcurrent  
faults, the voltage across this capacitor ramps up  
toward the FLTINT shutdown threshold (2.7V, typ).  
R
, according to the following equation:  
SENSE  
R
= 0.156V / I  
LimPrimary  
SENSE  
where I  
current.  
is the maximum peak primary-side  
LimPrimary  
To reduce switching noise, connect CS to an external  
RC lowpass filter for additional filtering (Figure 3).  
Applications Information  
When V  
reaches the shutdown threshold, the  
FLTINT  
power supply shuts down. A high-value bleed resistor  
connected in parallel with the FLTINT capacitor allows  
the capacitor to discharge toward the restart threshold  
(1.9V, typ). FLTINT drops to the restart threshold allow-  
ing for soft-starting the supply again.  
Design Example  
Design Example 1: PD with three-output flyback DC-  
DC converter  
Figure 6 shows an isolated three-output flyback DC-DC  
converter. It provides output voltages of 10V at 30mA,  
5.1V at 1.8A, and 2.55V at 5.4A.  
The fault integration circuit works by forcing an 80µA  
current into FLTINT for one clock cycle every time the  
current-limit comparator ILIM (Figure 9) trips. Use the  
following formula to calculate the approximate capaci-  
tor needed for the desired shutdown time:  
Design Example 2: PD with nonisolated step-down  
(buck) converter  
Figure 7 shows a buck converter with 12V, 0.75A out-  
put. Caution: this converter does not have active cur-  
rent limit.  
18 ______________________________________________________________________________________  
IEEE 802.3af PD Interface and PWM Controllers  
with Integrated Power MOSFETs  
Figure 6. PD with Three-Output Flyback DC-DC Converter  
______________________________________________________________________________________ 19  
IEEE 802.3af PD Interface and PWM Controllers  
with Integrated Power MOSFETs  
Figure 7. PD with Nonisolated Step-Down (Buck) Converter  
20 ______________________________________________________________________________________  
IEEE 802.3af PD Interface and PWM Controllers  
with Integrated Power MOSFETs  
Table 3. Component Suppliers  
COMPONENT  
SUPPLIERS  
International Rectifier  
Fairchild  
WEBSITE  
www.irf.com  
Power FETS  
www.fairchildsemi.com  
www.vishay.com/brands/siliconix/main.html  
www.vishay.com/brands/dale/main.html  
www.irctt.com/pages/index.cfm  
www.onsemi.com  
Vishay-Siliconix  
Dale-Vishay  
Current-Sense Resistors  
Diodes  
IRC  
ON Semi  
General Semiconductor  
Central Semiconductor  
Sanyo  
www.gensemi.com  
www.centralsemi.com  
www.sanyo.com  
Capacitors  
Magnetics  
Taiyo Yuden  
AVX  
www.t-yuden.com  
www.avxcorp.com  
Coiltronics  
www.cooperet.com  
Coilcraft  
www.coilcraft.com  
Pulse Engineering  
www.pulseeng.com  
Current loops must be analyzed in any layout pro-  
posed, and the internal area kept to a minimum to  
reduce radiated EMI. Ground planes must be kept as  
intact as possible.  
Layout Recommendations  
All connections carrying pulsed currents must be very  
short, as wide as possible, and have a ground plane as  
a return path. The inductance of these connections  
must be kept to a minimum due to the high di/dt of the  
currents in high-frequency-switching power converters.  
______________________________________________________________________________________ 21  
IEEE 802.3af PD Interface and PWM Controllers  
with Integrated Power MOSFETs  
Block Diagrams  
V+  
2.4V  
REF  
UVLO  
REF  
6.8V  
EN  
V+  
RCLASS  
CLASSIFICATION  
MAX5953A  
MAX5953B  
MAX5953C  
MAX5953D  
PGOOD**  
2.4V, 0.8  
HYST  
21.8V  
39V  
Q4  
V
GATE  
, 6V  
1.2V, REF  
EN  
UVLO*  
PGOOD***  
5V, REF  
Q3  
OUT  
Q2  
38Ω  
200mV  
Q1  
0.6Ω  
GATE  
V
EE  
*MAX5953A/MAX5953C ONLY.  
**MAX5953C/MAX5953D ONLY.  
***MAX5953A/MAX5953B ONLY.  
Figure 8. Powered Device Interface Block Diagram  
22 ______________________________________________________________________________________  
IEEE 802.3af PD Interface and PWM Controllers  
with Integrated Power MOSFETs  
Block Diagrams (continued)  
INBIAS  
REGOK  
REGOUT  
RCFF  
HVIN  
REG  
DCUVLO  
OVT  
REF  
(1.25V)  
REFOK  
DCUVLO  
DCUVLO  
1.25V  
5V  
PPWM  
5V  
D
7.5V  
IFLT  
50  
80µA  
Q
T
BST  
GND  
R
DRNH  
FLTINT  
OVRLD  
80ns  
DELAY  
LEVEL  
SHIFT  
2.7V/1.9V  
R
S
Q
0.4Ω  
RAMP  
QH  
XFRMRH  
CPWM  
OPTO  
LEADING-  
EDGE  
DELAY  
30Ω  
5V  
ONE  
SHOT  
QB  
DRVIN  
33µA  
CLK  
R
SHDN  
OSC  
XFRMRL  
Q
T-FF  
T
CSS  
0.4Ω  
QL  
THERMAL  
SHUTDOWN  
OVT  
SRC  
PGND  
RTCT  
OVT  
50Ω  
DCUVLO  
REFOK  
REGOK  
OVRLD  
GND  
CS  
GND  
MAX5953A  
MAX5953B  
MAX5953C  
MAX5953D  
ILIM  
10MHz  
150mV  
PGND  
Figure 9. DC-DC Converter Block Diagram (Voltage-Mode PWM Controller and Two-Switch Power Stage)  
______________________________________________________________________________________ 23  
IEEE 802.3af PD Interface and PWM Controllers  
with Integrated Power MOSFETs  
Typical Operating Circuit  
24 ______________________________________________________________________________________  
IEEE 802.3af PD Interface and PWM Controllers  
with Integrated Power MOSFETs  
Pin Configuration  
TOP VIEW  
35 34 33 32 31 30 29 28 27  
36  
26  
25  
CSS  
DCUVLO  
N.C.  
24  
23  
22  
37  
38  
39  
PGND  
GND  
HVIN  
21 PPWM  
20 CS  
INBIAS 40  
REGOUT 41  
MAX5953A  
MAX5953B  
MAX5953C  
MAX5953D  
RTCT  
42  
43  
19 N.C.  
18  
**  
FLTINT  
17 N.C.  
16 OUT  
RCFF 44  
RAMP 45  
OUT  
14 N.C.  
13  
N.C.  
N.C.  
N.C.  
15  
46  
47  
48  
+
N.C.  
2
3
4
5
6
7
8
9
10  
1
11  
12  
THIN QFN  
7mm x 7mm  
*UVLO FOR MAX5953A/MAX5953C  
N.C. FOR MAX5953B/MAX5953D  
** PGOOD FOR MAX5953A/MAX5953B  
PGOOD FOR MAX5953C/MAX5953D  
Selector Guide  
Chip Information  
PROCESS: BiCMOS  
PGOOD or  
PGOOD  
PART  
UVLO  
MAX5953A  
MAX5953B  
MAX5953C  
MAX5953D  
PGOOD  
PGOOD  
PGOOD  
PGOOD  
Adjustable  
Fixed  
Adjustable  
Fixed  
______________________________________________________________________________________ 25  
IEEE 802.3af PD Interface and PWM Controllers  
with Integrated Power MOSFETs  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
E
DETAIL A  
(NE-1) X  
e
E/2  
k
e
D/2  
C
(ND-1) X  
e
D2  
D
L
D2/2  
b
L
E2/2  
C
L
k
DETAIL B  
E2  
e
C
C
L
L
L
L1  
L
L
e
e
A
A1  
A2  
PACKAGE OUTLINE  
32, 44, 48, 56L THIN QFN, 7x7x0.8mm  
1
21-0144  
E
2
26 ______________________________________________________________________________________  
IEEE 802.3af PD Interface and PWM Controllers  
with Integrated Power MOSFETs  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE  
32, 44, 48, 56L THIN QFN, 7x7x0.8mm  
2
21-0144  
E
2
Revision History  
Pages changed at Rev 1: 1, 27  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 27  
© 2006 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  
M. Quijano  

相关型号:

MAX5953CUTM

IEEE 802.3af PD Interface and PWM Controllers with Integrated Power MOSFETs
MAXIM

MAX5953CUTM+

暂无描述
MAXIM

MAX5953CUTM+T

Switching Controller, Voltage-mode, 250kHz Switching Freq-Max, BICMOS, 7 X 7 MM, 0.80 MM HEIGHT, LEAD FREE, TQFN-48
MAXIM

MAX5953D

IEEE 802.3af PD Interface and PWM Controllers with Integrated Power MOSFETs
MAXIM

MAX5953DUTM

IEEE 802.3af PD Interface and PWM Controllers with Integrated Power MOSFETs
MAXIM

MAX5953DUTM+

Switching Controller, Voltage-mode, 250kHz Switching Freq-Max, 7 X 7 MM, 0.80 MM HEIGHT, LEAD FREE, TQFN-48
MAXIM

MAX5953DUTM+

SWITCHING CONTROLLER, 250kHz SWITCHING FREQ-MAX, QCC48, 7 X 7 MM, 0.80 MM HEIGHT, LEAD FREE, TQFN-48
ROCHESTER

MAX5954

Single PCI Express, Hot-Plug Controller
MAXIM

MAX5954AETX+

Single PCI Express, Hot-Plug Controller
MAXIM

MAX5954AETX+T

Power Supply Support Circuit, Fixed, 3 Channel, BICMOS, 6 X 6 MM, 0.80 MM HEIGHT, LEAD FREE, MO220WJJD-1, TQFN-36
MAXIM

MAX5954LETX+

Single PCI Express, Hot-Plug Controller
MAXIM

MAX5954LETX+T

暂无描述
MAXIM