MAX614EPA [MAXIM]

Dual-Slot PCMCIA Analog Power Controllers; 双槽PCMCIA模拟电源控制器
MAX614EPA
型号: MAX614EPA
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Dual-Slot PCMCIA Analog Power Controllers
双槽PCMCIA模拟电源控制器

控制器 PC
文件: 总8页 (文件大小:102K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0188; Rev 0; 11/93  
Du a l-S lo t P CMCIA  
An a lo g P o w e r Co n t ro lle rs  
3/MAX614  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
The MAX613/MAX614 contain switches for the VPP  
supply-voltage lines for Personal Computer Memory  
Card International Association (PCMCIA) Release 2.0  
card slots. These ICs also contain level-translator out-  
puts to switch the PCMCIA card VCC.  
Logic Compatible with Industry-Standard PCMCIA  
Digital Controllers:  
Intel 82365SL  
Intel 82365SL DF  
Vadem VG-365  
The MAX613 allows digital control of two separate VPP  
lines that can be switched between 0V, VCC, +12V,  
and high impedance. It also includes level shifters that  
allow the control of N-channel power MOSFETs for con-  
necting and disconnecting the slot VCC supply voltage.  
Vadem VG-465  
Vadem VG-468  
Cirrus Logic CL-PD6710  
Cirrus Logic CL-PD6720  
0V/VCC/+12V/High-Impedance VPP Outputs  
Internal 1.6VPP Power Switches  
10µA Quiescent Supply Current  
Break-Before-Make Switching  
VCC Switch Control  
The MAX614 controls a single VPP supply-voltage line  
and includes one level shifter in an 8-pin package.  
________________________Ap p lic a t io n s  
Notebook and Palmtop Computers  
Personal Organizers  
______________Ord e rin g In fo rm a t io n  
Digital Cameras  
Handiterminals  
PART  
TEMP. RANGE  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
14 Plastic DIP  
14 SO  
Bar-Code Readers  
MAX613CPD  
MAX613CSD  
MAX613EPD  
MAX613ESD  
MAX614CPA  
MAX614CSA  
MAX614EPA  
MAX614ESA  
14 Plastic DIP  
14 SO  
_________________P in Co n fig u ra t io n s  
8 Plastic DIP  
8 SO  
8 Plastic DIP  
8 SO  
TOP VIEW  
GND  
AVPP1  
AVPP0  
BVPP1  
BVPP0  
VCC1  
VPPIN  
VCCIN  
AVPP  
BVPP  
SHDN  
DRV3  
DRV5  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
MAX613  
_________Typ ic a l Op e ra t in g Circ u it  
+5V  
+12V  
VCC0  
8
DIP/SO  
VCCIN  
VPPIN  
VCC  
5
DRV3  
VCC  
PCMCIA  
SLOT  
GND  
AVPP1  
AVPP0  
VCC0  
VPPIN  
VCCIN  
AVPP  
DRV  
1
2
3
4
8
7
6
5
PC CARD  
SOCKET  
CONTROLLER  
MAX613  
AVPP  
BVPP  
VPP1  
MAX614  
VPP2  
DIP/SO  
________________________________________________________________ Maxim Integrated Products  
1
Ca ll t o ll fre e 1 -8 0 0 -9 9 8 -8 8 0 0 fo r fre e s a m p le s o r lit e ra t u re .  
Du a l-S lo t P CMCIA  
An a lo g P o w e r Co n t ro lle rs  
ABSOLUTE MAXIMUM RATINGS  
VCCIN to GND.............................................................+7V, -0.3V  
VPPIN to GND ........................................................+13.2V, -0.3V  
DRV5, DRV3, DRV to GND ........................(VPPIN + 0.3V), -0.3V  
AVPP, BVPP to GND..................................(VPPIN + 0.3V), -0.3V  
All Other Pins to GND ...............................(VCCIN + 0.3V), -0.3V  
Operating Temperature Ranges:  
MAX61_C__ ........................................................0°C to +70°C  
MAX61_E__ .....................................................-40°C to +85°C  
Storage Temperature Range .............................-65°C to +160°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
Continuous Power Dissipation (T = +70°C)  
A
8-Pin Plastic DIP (derate 9.09mW/°C above +70°C) ....727mW  
8-Pin SO (derate 5.88mW/°C above +70°C).......................471mW  
14-Pin Plastic DIP (derate 10.00mW/°C above +70°C).......800mW  
14-Pin SO (derate 8.33mW/°C above +70°C) ..............667mW  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
3/MAX614  
ELECTRICAL CHARACTERISTICS  
(VCCIN = +5V, VPPIN = +12V, T = T  
A
to T , unless otherwise noted.)  
MAX  
MIN  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER REQUIREMENTS  
VCCIN Input Voltage Range  
VPPIN Input Voltage Range  
2.85  
0
5.5  
12.6  
1
V
V
——  
0.05  
2.25  
0.05  
0.05  
2
SHDN = 0V  
MAX613  
VPPIN Supply Current  
(12V Mode)  
——  
µA  
µA  
µA  
µA  
µA  
µA  
AVPP = BVPP = VPPIN = 12.6V  
10  
1
SHDN = VCCIN  
MAX614  
MAX613  
——  
SHDN = 0V  
VPPIN Supply Current  
(5V Mode)  
VPPIN = 12.6V,  
AVPP = BVPP= VCCIN  
——  
SHDN = VCCIN  
0.05  
0.05  
2.25  
0.05  
3.5  
MAX614  
MAX613  
——  
SHDN = 0V  
VPPIN Supply Current  
(0V Mode)  
——  
AVPP = BVPP = 0V  
AVPP = BVPP = VPPIN  
AVPP = BVPP = VCCIN  
AVPP = BVPP = 0V  
SHDN = VCCIN  
MAX614  
MAX613  
——  
SHDN = 0V  
VCCIN Supply Current  
(12V Mode)  
——  
20  
SHDN = VCCIN  
3.5  
MAX614  
MAX613  
——  
3.5  
10  
50  
10  
SHDN = 0V  
VCCIN Supply Current  
(5V Mode)  
——  
22  
SHDN = VCCIN  
3.5  
MAX614  
MAX613  
——  
3.5  
SHDN = 0V  
VCCIN Supply Current  
(0V Mode)  
——  
20  
SHDN = VCCIN  
MAX614  
3.5  
2
_______________________________________________________________________________________  
Du a l-S lo t P CMCIA  
An a lo g P o w e r Co n t ro lle rs  
3/MAX614  
ELECTRICAL CHARACTERISTICS (continued)  
(VCCIN = +5V, VPPIN = +12V, T = T  
A
to T , unless otherwise noted.)  
MAX  
MIN  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DC CHARACTERISTICS  
VPPIN = 11.4V, 0mA < I  
< 120mA (12V mode)  
1.60  
2.45  
50  
LOAD  
AVPP, BVPP Switch Resistance  
VCCIN = 4.5V, 0mA < I  
< 1mA (5V mode)  
< 1mA (0V mode)  
30  
135  
1
LOAD  
LOAD  
VPPIN = 11.4V, 0mA < I  
High-impedance mode  
300  
75  
DRV, DRV3, DRV5 Leakage Current  
DRV, DRV3, DRV5 Output Voltage Low  
LOGIC SECTION  
nA  
V
I
= 1mA  
0.1  
0.4  
LOAD  
µA  
V
Logic Input Leakage Current  
Logic Input High  
1
2.4  
Logic Input Low  
0.8  
V
_VCC_ to DRV_ Propagation Delay  
50  
ns  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(Circuit of Figure 1, TA = +25°C, unless otherwise noted.)  
AVPP SWITCH RESISTANCE  
(12V MODE)  
AVPP SWITCH RESISTANCE  
(5V MODE)  
110  
90  
2.6  
2.2  
1.8  
VPPIN = +12.0V  
AVPP1 = 0V  
AVPP0 = VCCIN  
+125°C  
+85°C  
+25°C  
70  
50  
30  
10  
+125°C  
VCCIN = +5.0V  
AVPP0 = 0V  
AVPP1 = +5.0V  
1.4  
1.0  
+25°C  
-55°C  
-55°C  
10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5  
VPPIN (V)  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5  
VCCIN (V)  
AVPP SWITCHING 5V TO 12V  
AVPP SWITCHING 12V TO 5V  
+5V  
AVPP1  
+5V  
AVPP1  
0V  
0V  
+12V  
+12V  
AVPP  
AVPP  
+5V  
+5V  
1µs/div  
2µs/div  
C
VPPIN  
= 1µF, AVPP0 = AVPP1, C = 0.1µF  
AVPP  
C
VPPIN  
= 1µF, AVPP0 = AVPP1, C = 0.1µF  
AVPP  
_______________________________________________________________________________________  
3
Du a l-S lo t P CMCIA  
An a lo g P o w e r Co n t ro lle rs  
______________________________________________________________P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
MAX613 MAX614  
1
2
3
4
5
6
1
2
GND  
AVPP1  
AVPP0  
BVPP1  
BVPP0  
VCC1  
Ground  
Logic inputs that control the voltage on AVPP (see Table 1 in Detailed Description).  
3
Logic inputs that control the voltage on BVPP (see Table 2 in Detailed Description).  
Logic input that controls the state of DRV3 and DRV5 (see Table 3 in Detailed Description).  
Logic input that controls the state of DRV on the MAX614. On the MAX613, both VCC0 and  
VCC1 control the state of DRV3 and DRV5 (see Table 3 in Detailed Description).  
7
8
4
VCC0  
DRV  
Open-drain power MOSFET gate-driver output used to switch the slot VCC supply voltage.  
DRV sinks current when VCC0 is high and goes high impedance when VCC0 is low.  
5
3/MAX614  
Open-drain power MOSFET gate-driver output used to switch the slot VCC supply voltage (see  
Table 3 in Detailed Description).  
6
DRV5  
DRV3  
Open-drain power MOSFET gate-driver output used to switch the slot VCC supply voltage (see  
Table 3 in Detailed Description).  
9
——  
——  
SHDN  
Logic-level shutdown input. When SHDN is low, DRV3 and DRV5 sink current regardless of the state of  
——  
10  
11  
12  
VCC0 and VCC1. When SHDN is high, DRV3 and DRV5 are controlled by VCC0 and VCC1.  
Switched output, controlled by BVPP1 and BVPP0, that outputs 0V, +5V, or +12V. BVPP can  
also be programmed to go high impedance (see Table 2 in Detailed Description).  
BVPP  
AVPP  
Switched output, controlled by AVPP1 and AVPP0, that outputs 0V, +5V, or +12V. AVPP can  
also be programmed to go high impedance (see Table 1 in Detailed Description).  
13  
14  
7
8
VCCIN  
VPPIN  
+5V power input  
+12V power input. VPPIN can have 0V or +5V applied as long as VCCIN > 2.85V.  
Thus, systems with less than 60mA current capability  
_______________De t a ile d De s c rip t io n  
from +12V cannot program two 8-bit flash chips simulta-  
neously, and need separate controls for VPP1 and VPP2.  
Figure 1 shows an example of a power-control circuit  
using the MAX613 to control VPP1 and VPP2 separately.  
Figure 1s circuit uses a MAX662 charge-pump DC-DC  
converter to convert +5V to +12V at 30mA output current  
capability without an inductor. When higher VPP cur-  
rent is required, the MAX734 can supply 120mA.  
VP P S w it c h in g  
The MAX613/MAX614 a llow s imp le s witc hing of  
PCMCIA card VPP to 0V, +5V, and +12V. On-chip  
power MOSFETs connect AVPP and BVPP to either  
GND, VCCIN, or VPPIN. The AVPP0 and AVPP1 control  
logic inputs determine AVPPs state. Likewise, BVPP0  
and BVPP1 control BVPP. AVPP and BVPP can also be  
programmed to be high impedance.  
Use the MAX614 for single-slot applications that do  
not re q uire a s e p a ra te VPP1 a nd VPP2. Fig ure 2  
shows the MAX614 interfaced to the Vadem VG-465  
single-slot controller.  
Each PCMCIA card slot has two VPP voltage inputs  
labeled VPP1 and VPP2. Typically, VPP1 supplies the  
flash chips that store the low-order byte of the 16-bit  
words, and VPP2 supplies the chips that contain the  
high-order byte. Programming the high-order bytes  
separately from the low-order bytes may be necessary  
to minimize +12V current consumption. A single 8-bit  
flash chip typically requires at most 30mA of +12V VPP  
current during erase or programming.  
To p re ve nt VPP ove rs hoot re s ulting from p a ra s itic  
ind uc ta nc e in the +12V s up p ly, the VPPIN b yp a s s  
capacitors value must be at least 10 times greater than  
the capacitance from AVPP or BVPP to GND; the AVPP  
and BVPP bypass capacitors must be at least 0.01µF.  
4
_______________________________________________________________________________________  
Du a l-S lo t P CMCIA  
An a lo g P o w e r Co n t ro lle rs  
3/MAX614  
+5V  
100k  
1
Si9956DY  
M1  
2
VPPIN VCCIN VCC1  
DRV3  
PCMCIA  
SLOT A  
A: V 1_EN0 (A_VPP1EN0)  
PP  
VCC  
MAX613 AVPP0  
AVPP1  
A:V 1_EN1 (A_VPP1EN1)  
PP  
VPP1  
VPP2  
AVPP  
BVPP  
1µF  
A:V 2_EN0 (A_VPP2EN0)  
PP  
BVPP0  
A:V 2_EN1 (A_VPP2EN1)  
PP  
BVPP1  
A:V _EN (A_VCCEN)  
CC  
VCC0  
GND  
0.1µF  
0.1µF  
INTEL 82365SL  
VADEM VG-365  
or  
VADEM VG-468)  
100k  
1
Si9956DY  
M2  
2
VPPIN VCCIN VCC1  
B:V 1_EN0 (B_VPP1EN0)  
PP  
DRV3  
AVPP0  
AVPP1  
BVPP0  
BVPP1  
VCC0  
PCMCIA  
SLOT B  
VCC  
B:V 1_EN1 (B_VPP1EN1)  
PP  
B:V 2_EN0 (B_VPP2EN0)  
PP  
MAX613  
AVPP  
VPP1  
B:V 2_EN1 (B_VPP2EN1)  
PP  
1µF  
B:V _EN (B_VCCEN)  
CC  
VPP2  
BVPP  
VCC  
VSS  
0.1µF  
0.1µF  
GND  
4.7µF  
0.1µF  
4.7µF  
VCC  
GND  
VOUT  
SHDN  
0.22µF  
0.22µF  
C1+  
C1-  
C2+  
C2-  
MAX662  
Figure 1. MAX613 Dual Slot, Separate VPP1 and VPP2, 5V Only VCC Operating Circuit  
+12V  
+5V  
32.76kHz  
50% DUTY CYCLE  
4.5V MIN  
9.97V (WITH  
100kLOAD)  
100k  
10nF  
VPPIN VCCIN  
DRV  
PCMCIA  
SLOT  
VADEM  
VG-465  
0.1µF  
0.1µF  
10nF  
AVPP0  
AVPP1  
VPP1EN0  
VPP1EN1  
VPP2EN0  
VPP2EN1  
VCCEN  
VCC  
MAX614  
1µF  
NOTE:  
1. ALL DIODES 1N4148.  
2. OSCILLATOR FREQUENCY CAN BE  
VPP1  
VPP2  
AVPP  
INCREASED FOR HIGHER OUTPUT POWER.  
4.5V MIN  
VCC0  
GND  
Figure 3. Charge Pump  
Figure 2. MAX614 Single-Slot Application  
_______________________________________________________________________________________  
5
Du a l-S lo t P CMCIA  
An a lo g P o w e r Co n t ro lle rs  
VCC S w it c h in g  
The MAX613/MAX614 contain level shifters that simplify  
driving external power MOSFETs to switch PCMCIA card  
VCC. While a PCMCIA card is being inserted into the  
socket, the VCC pins on the card edge connector should  
be powered down to 0V to prevent hot insertion” that  
may damage the PCMCIA card. The MAX613/MAX614  
MOSFET drivers are open drain. Their rise time is con-  
trolled by an external pull-up resistor, allowing slow turn-  
on of VCC power to the PCMCIA card.  
Table 3. MAX613 DRV3 and DRV5 Control  
——  
Logic (SHDN = VCCIN)  
LOGIC INPUT  
OUTPUT  
VCC1  
VCC0  
DRV3  
0V  
DRV5  
0V  
0
0
1
1
0
1
0
1
HI-Z  
0V  
0V  
HI-Z  
0V  
The DRV3 and DRV5 pins on the MAX613 and the DRV  
pin on the MAX614 are open-drain outputs pulled down  
with internal N-channel devices. The gate drive to  
the s e inte rna l N-c ha nne l d e vic e s is p owe re d from  
VCCIN, regardless of VPPIN’s voltage. If VCCIN is left  
unconnected or less than 2V is applied to VCCIN, the  
DRV3/DRV5/DRV gate drivers will not sink current.  
0V  
The gates of M1 and M2 can be pulled up to any 10V to  
20V source, and do not need to be pulled up to VPPIN.  
Typically, the +12V used for VPPIN is supplied from a  
+5V to +12V switching regulator. To save power, the  
+5V to +12V switching regulator can be shut down  
when not using the VPP programming voltage, allowing  
VPPIN to fall below +5V.  
3/MAX614  
To switch VCC (M1 and M2 in Figure 1), use external  
N-channel power MOSFETs. M1 and M2 should be  
log ic -le ve l N-c ha nne l p owe r MOSFETs with low on  
re sista nc e . The Motorola MTP3055EL a nd Silic onix  
Si9956DY MOSFETs are both good choices. Turn on  
M1 and M2 by pulling their gates above +5V. With the  
gates pulled up to VPPIN as shown in Figure 1, VPPIN  
should be at least 10V so that with VCC = 5.5V, M1 and  
M2 have at least 4.5V of gate drive.  
In this case, M1 and M2 should not be pulled up to  
VPPIN, since M1 and M2 cannot be turned on reliably  
when VPPIN falls below +10V. Any clock source can  
be used to generate a high-side gate-drive voltage by  
using capacitors and diodes to build an inexpensive  
charge pump. Figure 3 shows a charge-pump circuit  
that generates 10V from a +5V logic clock source.  
Table 1. AVPP Control Logic  
__________Ap p lic a t io n s In fo rm a t io n  
The MAX613 contains all the gate drivers and switch-  
ing c irc uitry ne e d e d to s up p ort a +3.3V/+5V VCC  
PCMCIA s lot with minima l e xte rna l c omp one nts .  
Figure 4 shows the analog power control necessary to  
support two dual voltage PCMCIA slots. The A:VCC  
and B:VCC pins on the Intel 82365SL DF power the  
drivers for the control signals that directly connect to  
the PCMCIA card.  
LOGIC INPUT  
OUTPUT  
AVPP1  
AVPP0  
AVPP  
0V  
0
0
1
1
0
1
0
1
VCCIN  
VPPIN  
HI-Z  
A 3.3V card needs 3.3V logic-level control signals and  
the capability to program VPP1 and VPP2 to 3.3V. The  
MAX613s VCCIN is switched with slot VCC, so AVPP0  
= 1 a nd AVPP1 = 0 c a us e s AVPP = s lot VCC.  
Likewise, A:VCC and B:VCC are connected to VCCIN,  
so the Intel 82365SL DF control signals to the PCMCIA  
card are the right logic levels.  
Table 2. BVPP Control Logic  
LOGIC INPUT  
OUTPUT  
PCMCIA c a rd inte rfa c e c ontrolle rs othe r tha n the  
Inte l 82365SL DF c a n be use d with Fig ure 4s c ir-  
c uit. Ta b le 4 s hows the p ins on the Cirrus Log ic  
CL-PD6720 tha t p e rform the s a me func tion a s the  
Inte l 82365SL DF p ins.  
BVPP1  
BVPP0  
BVPP  
0V  
0
0
1
1
0
1
0
1
VCCIN  
VPPIN  
HI-Z  
6
_______________________________________________________________________________________  
Du a l-S lo t P CMCIA  
An a lo g P o w e r Co n t ro lle rs  
3/MAX614  
+5V  
+3.3V  
1M  
MOTOROLA  
2N7002LT1  
Si9956DY  
1M  
NIHON  
E10QS03  
A:V  
CC  
1
SILICONIX  
Si9956DY  
2
VCCIN  
DRV3  
VPPIN  
A:V _EN0  
PP  
AVPP0  
AVPP1  
BVPP0  
BVPP1  
VCC0  
A:V _EN1  
PP  
PCMCIA  
SLOT A  
DRV5  
VCC  
MAX613  
VPP1  
VPP2  
GND  
AVPP  
BVPP  
GND  
A:V _EN0  
CC  
A:V _EN1  
CC  
VCC1  
INTEL  
82365SL DF  
+5V  
+3.3V  
SUMIDA CD54 18µH  
T1  
1M  
1M  
E10QS03  
2N7002LT1  
Si9956DY  
E10QS03  
LX  
V+  
V
OUT  
SHDN  
1nF  
B:V  
CC  
33µF  
1
Si9956DY  
2
MAX734  
CC  
V
REF  
VCCIN  
VPPIN  
AVPP0  
33µF  
GND  
SS  
DRV3  
B:V _EN0  
PP  
B:V _EN1  
PP  
AVPP1  
BVPP0  
BVPP1  
VCC0  
PCMCIA  
SLOT B  
DRV5  
VCC  
MAX613  
VPP1  
VPP2  
GND  
AVPP  
BVPP  
GND  
B:V _EN0  
CC  
B:V _EN1  
CC  
VCC1  
Figure 4. Mixed 3.3V/5V VCC Application Circuit  
_______________________________________________________________________________________  
7
Du a l-S lo t P CMCIA  
An a lo g P o w e r Co n t ro lle rs  
_________________Ch ip To p o g ra p h ie s  
Table 4. Interchangeable Interface  
Controllers  
MAX613  
INTEL  
82365SL DF  
A:V  
CIRRUS LOGIC  
GND  
VPPIN VCCIN  
CL-PD6720  
AVPP1  
AVPP0  
A_SLOT_VCC  
A_VPP_VCC  
A_VPP_PGM  
A_-VCC_5  
CC  
A:V _EN0  
PP  
AVPP  
BVPP  
A:V _EN1  
PP  
A:V _EN0  
CC  
BVPP1  
BVPP0  
A:V _EN1  
A_-VCC_3  
CC  
B:V  
B_SLOT_VCC  
B_VPP_VCC  
B_VPP_PGM  
B_-VCC_5  
CC  
SHDN  
3/MAX614  
V:V _EN0  
PP  
B:V _EN1  
PP  
B:V _EN0  
CC  
B:V _EN1  
B_-VCC_3  
CC  
VCC1 VCC0 DRV5  
DRV3  
TRANSISTOR COUNT: 982;  
SUBSTRATE CONNECTED TO GND.  
MAX614  
GND  
VPPIN  
VCCIN  
AVPP  
AVPP1  
AVPP0  
VCC0  
DRV  
TRANSISTOR COUNT: 982;  
SUBSTRATE CONNECTED TO GND.  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
8
___________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 (4 0 8 ) 7 3 7 -7 6 0 0  
© 1993 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX614ESA

Dual-Slot PCMCIA Analog Power Controllers
MAXIM

MAX6150

SOT23, Low-Cost, Low-Dropout, 3-Terminal Voltage References
MAXIM

MAX6150ESA

SOT23, Low-Cost, Low-Dropout, 3-Terminal Voltage References
MAXIM

MAX6150ESA

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 5 V, PDSO8, SO-8
ROCHESTER

MAX6150ESA+T

Three Terminal Voltage Reference, 1 Output, 5V, PDSO8, SO-8
MAXIM

MAX6150ESA-T

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 5 V, PDSO8, SO-8
ROCHESTER

MAX6150ESA-T

Three Terminal Voltage Reference, 1 Output, 5V, PDSO8, SO-8
MAXIM

MAX6150EUR

SOT23, Low-Cost, Low-Dropout, 3-Terminal Voltage References
MAXIM

MAX6160

SOT23, Low-Cost, Low-Dropout, 3-Terminal Voltage References
MAXIM

MAX6160ESA

SOT23, Low-Cost, Low-Dropout, 3-Terminal Voltage References
MAXIM

MAX6160ESA-T

Three Terminal Voltage Reference, 1 Output, 2.5V, Trim/Adjustable, PDSO8, SO-8
MAXIM

MAX6160EUR

Voltage Reference
MAXIM