MAX629 [MAXIM]

28V, Low-Power, High-Voltage, Boost or Inverting DC-DC Converter; 28V ,低功耗,高电压,升压或反相DC -DC转换器
MAX629
型号: MAX629
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

28V, Low-Power, High-Voltage, Boost or Inverting DC-DC Converter
28V ,低功耗,高电压,升压或反相DC -DC转换器

转换器
文件: 总12页 (文件大小:137K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1219; Rev 1; 6/97  
2 8 V, Lo w -P o w e r, Hig h -Vo lt a g e ,  
Bo o s t o r In ve rt in g DC-DC Co n ve rt e r  
MAX629  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
The MAX629 low-power DC-DC converter features an  
internal N-channel MOSFET switch and programmable  
current limiting. It is designed to supply positive or neg-  
ative bias voltages up to ±28V from input voltages in  
Internal, 500mA, 28V N-Channel Switch  
(No External FET Required)  
Generates Positive or Negative Output Voltages  
80µA Supply Current  
the 0.8V to V  
range, and can be configured for  
OUT  
boost, flyback, and SEPIC topologies.  
1µA Max Shutdown Current  
The MAX629s current-limited pulse-frequency-modula-  
tion (PFM) control scheme provides high efficiency over  
a wide range of load conditions. An internal, 0.5A N-  
channel MOSFET switch reduces the total part count,  
and a high switching frequency (up to 300kHz) allows  
for tiny surface-mount magnetics.  
Up to 300kHz Switching Frequency  
Adjustable Current Limit Allows Use of Small,  
Inexpensive Inductors  
8-Pin SO Package  
The MAX629s combination of low supply current, logic-  
controlled shutdown, small package, and tiny external  
components makes it an extremely compact and effi-  
cient high-voltage biasing solution thats ideal for bat-  
tery-powered applications. The MAX629 is available in  
an 8-pin SO package.  
______________Ord e rin g In fo rm a t io n  
PART  
TEMP. RANGE  
0°C to +70°C  
PIN-PACKAGE  
Dice*  
MAX629C/D  
MAX629ESA  
-40°C to +85°C  
8 SO  
________________________Ap p lic a t io n s  
Positive or Negative LCD Bias Generators  
High-Efficiency DC-DC Boost Converters  
Varactor Tuning Diode Bias  
*Dice are tested at T = +25°C, DC parameters only.  
A
Note: To order tape-and-reel shipping, add -T” to the end of  
the part number.  
Palmtop Computers  
Pin Configuration appears at end of data sheet.  
2-Cell and 3-Cell Battery-Powered Applications  
___________________________________________________Typ ic a l Op e ra t in g Circ u it  
V
IN  
V
IN  
+2.7V  
+2.7V  
TO +5.5V  
TO +5.5V  
V
28V  
OUT  
V
CC  
V
CC  
SHDN  
SHDN  
ISET  
LX  
LX  
FB  
-V  
OUT  
-28V  
ISET  
POL  
POL  
FB  
MAX629  
GND  
MAX629  
GND  
REF  
REF  
POSITIVE OUTPUT VOLTAGE  
NEGATIVE OUTPUT VOLTAGE  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800  
2 8 V, Lo w -P o w e r, Hig h -Vo lt a g e ,  
Bo o s t o r In ve rt in g DC-DC Co n ve rt e r  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage (V to GND) ..................................-0.3V to +6V  
SHDN to GND...........................................................-0.3V to +6V  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature ......................................................+150°C  
Storage Temperature Range .............................-65°C to +165°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
CC  
ISET, REF, FB, POL to GND .......................-0.3V to (V + 0.3V)  
CC  
LX to GND ..............................................................-0.3V to +30V  
Continuous Power Dissipation (T = +70°C)  
A
SO (derate 5.88mW/°C above +70°C)..........................471mW  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
MAX629  
ELECTRICAL CHARACTERISTICS  
(V = +5V, C  
CC  
= 0.1µF, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note1)  
REF  
A
A
PARAMETER  
Input Voltage (Note 2)  
Supply Current  
CONDITIONS  
MIN  
TYP  
MAX  
5.5  
UNITS  
V
V
2.7  
CC  
V
CC  
V
= 1.3V  
80  
0.04  
2.5  
120  
1
µA  
µA  
V
FB  
V
CC  
Shutdown Current  
Undervoltage Lockout  
SHDN = GND  
V
CC  
100mV hysteresis  
2.3  
0.8  
2.4  
2.65  
V
OUT  
Input Supply Voltage (Note 2)  
Voltage applied to L1 (V  
)
V
IN  
V
IH  
V
SHDN, POL, ISET Logic Levels  
V
IL  
0.4  
28  
Positive Output Voltage  
Negative Output Voltage  
Circuit of Figure 2  
Circuit of Figure 3  
V
V
- V  
-28  
0.51  
0.33  
1.2  
IN  
ISET = V  
0.39  
0.45  
0.25  
0.6  
CC  
LX Switch-Current Limit  
LX On-Resistance  
A
ISET = GND  
0.20  
V
CC  
= 5V  
V
CC  
= 3.3V  
0.7  
1.4  
LX Leakage Current  
Maximum LX On-Time  
V
= 28V, T = +85°C  
A
0.05  
8.5  
2.5  
µA  
µs  
LX  
6.5  
0.7  
10.0  
1.3  
POL = GND  
POL = V  
1.0  
2.0  
3.2  
3.8  
CC  
Minimum LX Off-Time  
FB Set Point  
µs  
V
POL = GND, V < 1V  
3.0  
4.5  
6.0  
FB  
POL = V  
V
> 0.25V  
3.0  
4.5  
6.0  
CC, FB  
T
= 0°C to +85°C  
= -40°C to +85°C  
= 0°C to +85°C  
= -40°C to +85°C  
1.225  
1.218  
-15  
1.250  
1.275  
1.282  
15  
A
POL = GND  
(positive output)  
T
A
T
A
0
POL = V  
(negative output)  
CC  
mV  
nA  
V
T
A
-25  
25  
FB Input Bias Current  
REF Output Voltage  
5
50  
T
A
= 0°C to +85°C  
1.225  
1.218  
1.250  
1.275  
1.282  
V
= 2.7V to 5.5V,  
CC  
no load on REF  
T
A
= -40°C to +85°C  
2
_______________________________________________________________________________________  
2 8 V, Lo w -P o w e r, Hig h -Vo lt a g e ,  
Bo o s t o r In ve rt in g DC-DC Co n ve rt e r  
MAX629  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +5V, C  
CC  
= 0.1µF, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
REF  
A
A
PARAMETER  
CONDITIONS  
= 0µA to 100µA, C = 0.47µF (Note 3)  
MIN  
TYP  
MAX  
UNITS  
REF Load Regulation  
I
10  
25  
mV  
REF  
REF  
Circuit of Figure 2, V  
= 24V, V = 3V to 5.5V,  
CC  
OUT  
Line Regulation  
Load Regulation  
0.2  
%/V  
I
= 5mA  
LOAD  
Circuit of Figure 2, V  
= 24V, V = 5V,  
CC  
OUT  
0.15  
150  
%
I
= 0mA to 5mA  
LOAD  
Thermal Shutdown Threshold  
Die temperature  
°C  
Note 1: Specifications to -40°C are guaranteed by design and not production tested.  
Note 2: The IC itself requires a supply voltage between +2.7V and +5.5V; however, the voltage that supplies power to the inductor  
can vary from 0.8V to 28V, depending on circuit operating conditions.  
Note 3: For reference currents less than 10µA, a 0.1µF reference-bypass capacitor is adequate.  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(SHDN = V , C  
= 0.1µF, T = +25°C, unless otherwise noted.)  
A
CC  
REF  
EFFICIENCY vs. LOAD CURRENT  
EFFICIENCY vs. LOAD CURRENT  
MAXIMUM LOAD CURRENT vs.  
INPUT VOLTAGE (V = +24V, +12V)  
OUT  
(V = +24V)  
OUT  
(V = +12V)  
OUT  
100  
95  
90  
85  
80  
75  
70  
65  
60  
100  
95  
90  
85  
80  
75  
70  
65  
60  
300  
250  
200  
A: V = 12V,  
OUT  
V
= 24V  
IN  
OUT  
A
ISET = V  
CC  
A: V = 12V, ISET = V  
B: V = 12V, ISET = GND  
C: V = 5V, ISET = V  
CC  
B: V = 12V,  
OUT  
ISET = GND  
A
B
IN  
A
B
IN  
CC  
C: V =24V,  
OUT  
ISET = V  
CC  
C
D: V = 24V,  
OUT  
C
C
D
150  
100  
50  
D
ISET = GND  
B
E, F  
V
OUT  
= 12V,  
ISET = V or GND  
A: V = 9V  
IN  
CC  
D: V = 5V, ISET = GND  
IN  
E: V = 3V, ISET = V  
B: V = 5V  
IN  
CC  
IN  
F: V = 3V, ISET = GND  
IN  
C: V = 3V  
IN  
0
0.1  
1
10  
100  
0.1  
1
10  
100  
0
4
8
12  
16  
20  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
INPUT VOLTAGE (V)  
MAXIMUM LOAD CURRENT vs. INPUT VOLTAGE  
EFFICIENCY vs. LOAD CURRENT  
(V = -18V)  
EFFICIENCY vs. LOAD CURRENT  
(V = -18V, -12V)  
OUT  
(V = -12V)  
OUT  
OUT  
90  
80  
70  
60  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
A
B
A: V = -12V, ISET = V  
A
B
C
D
50  
40  
30  
20  
10  
0
OUT  
CC  
A
B, C  
D
B: V = -18V, ISET = V  
OUT  
CC  
C: V = -12V, ISET = GND  
OUT  
D: V = -18V, ISET = GND  
OUT  
C
A: V = 12V, ISET = V  
IN  
CC  
A = V = 5V, ISET = V  
IN CC  
B: V = 12V, ISET = GND  
IN  
B = V = 5V, ISET = GND  
IN  
D
C: V = 5V, ISET = V or GND  
IN  
CC  
C = V = 3V, ISET = V  
IN CC  
D: V = 3V, ISET = V or GND  
IN  
CC  
D = V = 3V, ISET = GND  
IN  
0
4
8
12  
16  
20  
0.1  
1
10  
100  
0.1  
1
10  
100  
INPUT VOLTAGE (V)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
_______________________________________________________________________________________  
3
2 8 V, Lo w -P o w e r, Hig h -Vo lt a g e ,  
Bo o s t o r In ve rt in g DC-DC Co n ve rt e r  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(SHDN = V , C  
= 0.1µF, T = +25°C, unless otherwise noted.)  
REF A  
CC  
SUPPLY CURRENT  
vs. INPUT VOLTAGE  
REFERENCE VOLTAGE  
vs. REFERENCE LOAD CURRENT  
700  
1.255  
1.250  
1.245  
1.240  
1.235  
1.230  
V
= V  
V
= V = 5V  
IN CC  
IN CC  
C4 = 0.47µF  
600  
500  
400  
300  
200  
100  
0
MAX629  
I
IN  
I
IN  
I
CC  
0
1
2
3
4
5
0
20 40 60 80 100 120 140 160  
INPUT VOLTAGE (V)  
REFERENCE LOAD CURRENT (µA)  
LOAD-TRANSIENT RESPONSE  
(I = V , I = 500mA)  
LOAD-TRANSIENT RESPONSE  
(I = GND, I = 250mA)  
OUTPUT VOLTAGE RIPPLE  
SET  
CC LIM  
SET  
LIM  
0mA  
0mA  
A
A
A
B
5mA  
5mA  
B
B
200µs/div  
100µs/div  
10µs/div  
V
= +24V, ISET = V  
V
= +24V, ISET = GND  
V
= +24V, I  
= 5mA  
OUT  
OUT  
CC  
OUT  
LOAD  
A: LOAD CURRENT, 0mA TO 5mA, 2.5mA/div  
B: V , AC-COUPLED, 10mV/div  
A: LOAD CURRENT, 0mA TO 5mA, 2.5mA/div  
B: V AC-COUPLED, 10mV/div  
A: ISET = V , 20mV/div  
B: ISET = GND, 20mV/div  
CC  
OUT  
OUT,  
SHUTDOWN TRANSIENT  
SHUTDOWN TRANSIENT  
(POSITIVE CONFIGURATION)  
(NEGATIVE CONFIGURATION)  
5V  
SHDN  
0V  
5V  
SHDN  
0V  
24V  
0V  
V
OUT  
V
OUT  
0V  
-20V  
50ms/div  
250ms/div  
V
CC  
= V = 5V, R = 4kΩ  
SVTAR=T-VUP=D5EVL,ARY, =V 4k= V = 5V, I  
= 5mA  
IN  
L
CC  
IN  
L
CC  
IN  
LOAD  
4
_______________________________________________________________________________________  
2 8 V, Lo w -P o w e r, Hig h -Vo lt a g e ,  
Bo o s t o r In ve rt in g DC-DC Co n ve rt e r  
MAX629  
______________________________________________________________P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
Active-Low Shutdown Input. A logic low puts the MAX629 in shutdown mode and reduces supply current to  
1µA.  
1
SHDN  
Polarity Input. Changes polarity and threshold of FB to allow regulation of either positive or negative output  
2
3
4
5
POL  
REF  
FB  
voltages. Set POL = GND for positive output voltage, or set POL = V for negative output voltage.  
CC  
1.25V Reference Output. Bypass to GND with a 0.1µF capacitor for I  
10µA. REF can source 100µA to  
REF  
drive external loads. For 10µA I  
100µA, bypass REF with a 0.47µF capacitor.  
REF  
Feedback Input for setting output voltage. Connect to an external voltage divider. See Setting the Output  
Voltage.  
Current-Limit Set Input. Connect to V for a 500mA LX current limit, or connect to GND for a 250mA LX  
CC  
current limit. See Setting the Current Limit.  
ISET  
6
7
8
GND  
LX  
Ground  
Internal N-Channel DMOS Switch Drain  
Power-Supply Input  
V
CC  
ulation, however, the off-time is increased to 5µs to pro-  
_______________De t a ile d De s c rip t io n  
vide soft-start during start-up. The switching frequency,  
whic h d e p e nd s up on the loa d , c a n b e a s hig h a s  
300kHz.  
The MAX629 low-power, boost DC-DC converter pro-  
vides either positive or negative output voltages up to  
± 28V from a wid e ra ng e of inp ut volta g e s . It is  
designed primarily for use in low-power, high-voltage  
applications such as LCD biasing and set-top box var-  
actor tuning. The MAX629s unique control scheme  
provides high efficiency and a wide range of output  
voltages with only 80µA quiescent supply current, mak-  
ing it ideal for battery-powered applications. The inter-  
nal N-channel DMOS switch has a pin-programmable  
current limit (250mA and 500mA), allowing optimization  
of output current and component size. Figure 1 shows  
the MAX629 functional diagram.  
S h u t d o w n Mo d e  
Whe n SHDN is low, the MAX629 e nte rs s hutd own  
mode. In this mode, the feedback and control circuit,  
reference, and internal biasing circuitry turn off. The  
shutdown current drops to less than 1µA. SHDN is a  
logic-level input; connect it to V for normal operation.  
CC  
The outp ut volta g e b e ha vior in s hutd own mod e  
depends on the output voltage polarity. In the positive  
output voltage configuration (Figure 2), the output is  
directly connected to the input through the diode (D1)  
and the inductor (L1). When the device is in shutdown  
mode, the output voltage falls to one diode drop below  
the input voltage, and any load connected to the output  
may still conduct current. In the negative output voltage  
configuration (Figure 3), there is no DC connection  
between the input and the output, and in shutdown  
mode the output is pulled to GND.  
Co n t ro l S c h e m e  
A combination of peak-current limiting and a pair of  
one-shots controls the MAX629 switching, determining  
the maximum on-time and constant off-time. During the  
on-c yc le , the inte rna l s witc h c los e s , a nd c urre nt  
through the inductor ramps up until either the fixed  
10µs maximum on-time expires (at low input voltages)  
or the switchs peak current limit is reached. The peak  
switch current limit is selectable to either 500mA (ISET  
__________________De s ig n P ro c e d u re  
= V ) or 250mA (ISET = GND) (s e e Se tting the  
CC  
S e t t in g t h e Ou t p u t Vo lt a g e  
For either positive or negative output voltage applica-  
tions, set the MAX629s output voltage using two exter-  
nal resistors, R1 and R2, as shown in Figures 2 and 3.  
Since the input bias current at FB has a 50nA maximum  
value, large resistors can be used in the feedback loop  
Current Limit). After the on-cycle terminates, the switch  
turns off, charging the output capacitor through the  
diode. In normal operation, the minimum off-time is set  
to 1µs for positive output voltages and 3.5µs for nega-  
tive output voltages. When the output is well below reg-  
_______________________________________________________________________________________  
5
2 8 V, Lo w -P o w e r, Hig h -Vo lt a g e ,  
Bo o s t o r In ve rt in g DC-DC Co n ve rt e r  
POL  
MIN OFF-TIME  
1.25V  
GENERATOR  
REF  
REF  
TRIG  
POLARITY  
MAX629  
START-UP  
Q
MAX629  
ERROR  
AMP  
LX  
F/F  
R
S
Q
FB  
START-UP  
COMPARATOR  
ISET  
TRIG  
Q
MAX ON-TIME  
GENERATOR  
(10µs)  
1V  
SHDN  
CONTROL  
V
CC  
GND  
Figure 1. Functional Diagram  
without a significant loss of accuracy. Begin by select-  
ing R2 to be in the 10kto 200krange, and calculate  
R1 using the applicable equation from the following  
subsections.  
the FB threshold voltage to GND so that negative volt-  
ages can be regulated. Choose R2 and calculate R1 as  
follows:  
| V  
|
OUT  
R1 = R2 x  
Positive Output Voltages  
For positive output voltages, use the typical boost con-  
figuration shown in Figure 2, connecting POL to GND.  
V
REF  
where V  
= 1.25V.  
REF  
This sets the threshold voltage at FB to equal V  
.
REF  
Figure 3 demonstrates generation of a negative output  
volta g e b y following the MAX629 with a n inve rting  
Choose the value of R2 and calculate R1 as follows:  
V
charge pump. This configuration limits  
V
OUT  
to values  
OUT  
R1 = R2 x  
1  
between - V and -28V. If smaller negative output volt-  
IN  
V
REF  
ages are required, D2s cathode can be connected to  
V . This alternative configuration permits output volt-  
IN  
where V  
= 1.25V.  
REF  
ages smaller than - V , but cannot be used for output  
IN  
voltages more negative than - 28V - V . It produces  
roughly one-half the output current as the standard con-  
figuration and is typically 5% less efficient.  
Negative Output Voltages  
For negative output voltages, configure R1 and R2 as  
shown in Figure 3, connecting POL to V . This sets  
IN  
CC  
6
_______________________________________________________________________________________  
2 8 V, Lo w -P o w e r, Hig h -Vo lt a g e ,  
Bo o s t o r In ve rt in g DC-DC Co n ve rt e r  
MAX629  
Typical Operating Circuit is recommended for most  
a p p lic a tions . La rg e r ind uc ta nc e s re d uc e the p e a k  
inductor current, but may limit output current capability  
at low input voltages and provide slower start-up times.  
Smaller inductances require less board space, but may  
cause greater peak current due to current-sense com-  
parator propagation delay. If input voltages below 2V  
will b e c ommon, re d uc ing the ind uc ta nc e to 22µH  
might improve performance; however, maximum load  
current and efficiency may decline. It is important to  
thoroughly test operation under all input and output  
conditions to ensure proper component selection.  
S e t t in g t h e Cu rre n t Lim it  
External current-limit selection provides added control  
over the MAX629s output performance. A higher cur-  
rent limit increases the amount of energy stored in the  
inductor during each cycle, which provides a higher  
output current capability. For higher output current  
applications, choose the 500mA current-limit option by  
connecting ISET to V . When lower output current is  
CC  
required, the 250mA current limit can provide several  
advantages. First, a smaller inductor can be used,  
which saves board area and cost. Second, the smaller  
energy transfer per cycle reduces output ripple for a  
given capacitor, providing design flexibility between  
board area, cost, and output ripple by allowing cheap-  
er, higher-ESR capacitors. Connect ISET to GND to  
select the 250mA current-limit option.  
Inductors with a ferrite core or equivalent are recom-  
mended; powder iron cores are not recommended for  
use with high switching frequencies. The inductors  
incremental saturation rating must exceed the selected  
current limit. For highest efficiency, use an inductor with  
a low DC resistance (under 100m). See Table 1 for a  
list of inductor suppliers.  
In d u c t o r S e le c t io n  
The MAX629s high switching frequency allows for the  
use of a small inductor. The 47µH inductor shown in the  
V
+0.8V  
TO +15V  
IN  
V
IN  
+0.8V  
TO +24V  
V
C1  
10µF  
35V  
CC  
C1  
10µF  
35V  
V
*
+2.7V  
TO +5.5V  
CC  
+2.7V  
TO +5.5V  
*
L1  
47µH  
L1  
47µH  
C3  
0.1µF  
C3  
0.1µF  
C5  
2.2µF  
R3  
2Ω  
D1  
MBR0540L  
V
+24V  
OUT  
V
CC  
V
CC  
D1 = D2 = MBR0540L  
D2  
D1  
SHDN  
LX  
SHDN  
LX  
FB  
V
C2  
10µF  
35V  
OUT  
R1  
576k  
1%  
C
F
150pF  
ISET  
POL  
-20V  
MAX629  
GND  
ISET  
POL  
C2  
10µF  
35V  
CF  
150pF  
R1  
576k  
1%  
R2  
31.6k  
1%  
MAX629  
FB  
R2  
35.7k  
1%  
REF  
C4  
REF  
0.1µF  
GND  
C4  
0.1µF  
* FOR SINGLE-SUPPLY OPERATION  
* FOR SINGLE-SUPPLY OPERATION  
*FOR SINGLE-SUPPLY OPERATION  
*FOR SINGLE-SUPPLY OPERATION  
Figure 2. +24V for a Positive LCD Bias  
Figure 3. -20V for a Negative LCD Bias  
_______________________________________________________________________________________  
7
2 8 V, Lo w -P o w e r, Hig h -Vo lt a g e ,  
Bo o s t o r In ve rt in g DC-DC Co n ve rt e r  
source, and reduces noise caused by the MAX629s  
switching action. The input source impedance deter-  
mines the size of the capacitor required at the input  
Dio d e S e le c t io n  
The MAX629s high switching frequency demands a  
hig h-s p e e d re c tifie r. Sc hottky d iod e s , s uc h a s the  
1N5819 or MBR0530L, are recommended. Make sure  
that the diodes peak current rating exceeds the peak  
current set by ISET, and that its breakdown voltage  
exceeds the output voltage. Schottky diodes are pre-  
ferred due to their low forward voltage. However, ultra-  
high-speed silicon rectifiers are also acceptable. Table  
1 lists Schottky diode suppliers.  
(V ). As with the output filter capacitor, a low-ESR  
IN  
capacitor is recommended. A 10µF, low-ESR capacitor  
is adequate for most applications, although smaller  
bypass capacitors may also be acceptable. Bypass the  
IC separately with a 0.1µF ceramic capacitor placed as  
MAX629  
close as possible to the V and GND pins.  
CC  
Reference Capacitor  
Bypass REF to GND with a 0.1µF ceramic capacitor for  
REF currents up to 10µA. REF can source up to 100µA  
Ca p a c it o r S e le c t io n  
Output Filter Capacitor  
The p rima ry c rite rion for s e le c ting the outp ut filte r  
capacitor is low effective series resistance (ESR). The  
product of the peak inductor current and the output fil-  
ter capacitors ESR determines the amplitude of the  
hig h-fre q ue nc y rip p le s e e n on the outp ut volta g e .  
These requirements can be balanced by appropriate  
selection of the current limit, as discussed in the Setting  
the Current Limit section. Table 1 lists some low-ESR  
capacitor suppliers. See the Output Voltage Ripple  
graph in the Typical Operating Characteristics section.  
of current for external loads. For 10µA I  
100µA,  
REF  
bypass REF with a 0.47µF capacitor.  
Feed-Forward Capacitor  
Parallel a capacitor (C ) across R1 to compensate the  
F
feedback loop and ensure stability (Figures 2 and 3).  
Values up to 270pF are recommended for most appli-  
c a tions . Choos e the lowe s t c a p a c itor va lue tha t  
e ns ure s s ta b ility; hig h c a p a c ita nc e va lue s ma y  
degrade line regulation.  
__________Ap p lic a t io n s In fo rm a t io n  
Input Bypass Capacitor  
Although the output current of many MAX629 applica-  
tions ma y b e re la tive ly s ma ll, the inp ut mus t b e  
designed to withstand current transients equal to the  
ind uc tor c urre nt limit. The inp ut b yp a s s c a p a c itor  
re d uc e s the p e a k c urre nts d ra wn from the volta g e  
Ad ju s t in g t h e Ou t p u t Vo lt a g e  
Many biasing applications require an adjustable output  
voltage, which is easily obtained using the configura-  
tion in Figure 4. In this circuit, an external bias voltage  
(which may be generated by a potentiometer, a DAC,  
or other means) is coupled to FB through the resistor  
Table 1. Component Suppliers  
R . The output voltage of this circuit is given by:  
B
R1  
SUPPLIER  
CAPACITORS  
PHONE  
FAX  
V
= V  
+
(V V  
)
OUT  
INIT  
FB  
BIAS  
RB  
AVX: TPS series  
(803) 946-0690 (803) 626-3123  
(714) 969-2491 (714) 960-6492  
(603) 224-1961 (603) 224-1430  
where V  
is the fixed output voltage as calculated in  
INIT  
Matsuo: 267 series  
Sprague: 595D series  
DIODES  
the section Setting the Output Voltage, and V is equal  
to either V  
0V for the negative configuration. Proper choice of R  
FB  
(1.25V) for the positive configuration or  
REF  
B
provides a wide range of available output voltages  
using simple external components to generate V  
Motorola: MBR0530L  
Nihon: EC11 FS1 series  
INDUCTORS  
(602) 303-5454 (602) 994-6430  
(805) 867-2555 (805) 867-2698  
.
BIAS  
In p u t Vo lt a g e Ra n g e  
Although, in many cases, the MAX629 and the inductor  
are powered from the same source, it is often advanta-  
geous in battery-powered applications to power the  
d e vic e from a n a va ila b le re g ula te d s up p ly a nd to  
power the inductor directly from a battery. The MAX629  
Coilcraft: DO1608 and  
DT1608 series  
(847) 639-6400 (847) 639-1469  
(814) 237-1431 (814) 238-0490  
(847) 956-0666 (847) 956-0702  
(847) 390-4373 (847) 390-4428  
Murata-Erie: LQH4 series  
Sumida: CD43, CD54,  
and CDRH62B series  
requires a +2.7V to +5.5V supply at V , but the induc-  
CC  
TDK: NLC565050 series  
tor can be powered from as low as +0.8V, significantly  
8
_______________________________________________________________________________________  
2 8 V, Lo w -P o w e r, Hig h -Vo lt a g e ,  
Bo o s t o r In ve rt in g DC-DC Co n ve rt e r  
MAX629  
limit threshold. Resistor R3 increases the usable input  
voltage range by limiting the peak injected current. The  
V
OUT  
2re sistor shown provide s a usa b le input volta ge  
R1  
range beyond V = 15V. In applications with a different  
IN  
R
B
inp ut volta g e ra ng e , R3 ma y b e inc re a s e d or  
decreased as necessary, with a resulting efficiency  
change of roughly 0.5%/.  
FB  
V
BIAS  
MAX629  
R2  
La yo u t Co n s id e ra t io n s  
Proper PC board layout is essential due to high current  
levels and fast switching waveforms that radiate noise.  
It is recommended that initial prototyping be performed  
us ing the MAX629 e va lua tion kit or e q uiva le nt PC  
board-based design. Breadboards or proto-boards  
should never be used when prototyping switching reg-  
ulators.  
GND  
(REF)  
( ) ARE FOR NEGATIVE OUTPUT VOLTAGE CONFIGURATIONS.  
Figure 4. Adjustable Output Voltage  
increasing usable battery life. Using separate supplies  
for V and V also reduces noise injection onto V  
CC  
It is imp orta nt to c onne c t the GND p in, the inp ut  
bypass-capacitor ground lead, and the output filter-  
capacitor ground lead to a single point (star ground  
configuration) to minimize ground noise and improve  
regulation. Also, minimize lead lengths to reduce stray  
capacitance, trace resistance, and radiated noise, with  
preference given to the feedback circuit, the ground  
circuit, and LX. Place R1 and R2 as close to the feed-  
back pin as possible. Place the input bypass capacitor  
CC  
IN  
by isolating it from the switching transients, allowing a  
smaller, less-expensive input filter capacitor to be used  
in many applications. If input voltages below 2V will be  
common, reducing the inductor to 22µH may improve  
performance in this voltage range, at the potential cost  
of some decrease in maximum load current and effi-  
ciency.  
as close as possible to V and GND.  
In the negative configuration shown in Figure 3, the  
inverting charge pump injects current into LX with each  
c yc le . The a mount of c ha rg e inje c te d inc re a s e s a t  
CC  
Refer to the MAX629 evaluation kit data sheet for an  
example of proper board layout.  
higher V , and may prematurely trip the internal current-  
IN  
_______________________________________________________________________________________  
9
2 8 V, Lo w -P o w e r, Hig h -Vo lt a g e ,  
Bo o s t o r In ve rt in g DC-DC Co n ve rt e r  
__________________P in Co n fig u ra t io n  
___________________Ch ip In fo rm a t io n  
TRANSISTOR COUNT: 653  
SUBSTRATE CONNECTED TO GND  
TOP VIEW  
MAX629  
SHDN  
POL  
REF  
1
2
3
4
8
7
6
5
V
CC  
LX  
MAX629  
GND  
ISET  
FB  
SO  
10 ______________________________________________________________________________________  
2 8 V, Lo w -P o w e r, Hig h -Vo lt a g e ,  
Bo o s t o r In ve rt in g DC-DC Co n ve rt e r  
MAX629  
________________________________________________________P a c k a g e In fo rm a t io n  
______________________________________________________________________________________ 11  
2 8 V, Lo w -P o w e r, Hig h -Vo lt a g e ,  
Bo o s t o r In ve rt in g DC-DC Co n ve rt e r  
NOTES  
MAX629  
12 ______________________________________________________________________________________  

相关型号:

MAX629C/D

28V, Low-Power, High-Voltage, Boost or Inverting DC-DC Converter
MAXIM

MAX629ESA

28V, Low-Power, High-Voltage, Boost or Inverting DC-DC Converter
MAXIM

MAX629ESA+G071

Switching Regulator
MAXIM

MAX629ESA+T

Switching Regulator, Current-mode, 0.39A, 300kHz Switching Freq-Max, CMOS, PDSO8, 0.150 INCH, SOIC-8
MAXIM

MAX629ESA+TG071

Switching Regulator,
MAXIM

MAX629ESA-T

Switching Regulator, Current-mode, 0.39A, 300kHz Switching Freq-Max, CMOS, PDSO8, 0.150 INCH, SOIC-8
MAXIM

MAX629EVKIT

Evaluation Kit for the MAX629
MAXIM

MAX630

CMOS Micropower Step-UP Switching Regulator
MAXIM

MAX6301

+5V, Low-Power uP Supervisory Circuits with Adjustable Reset/Watchdog
MAXIM

MAX6301CPA

+5V, Low-Power uP Supervisory Circuits with Adjustable Reset/Watchdog
MAXIM

MAX6301CSA

+5V, Low-Power uP Supervisory Circuits with Adjustable Reset/Watchdog
MAXIM

MAX6301CSA-T

Power Supply Support Circuit, Adjustable, 1 Channel, CMOS, PDSO8, 0.150 INCH, MS-012AA, SOIC-8
MAXIM