MAX6303CSA [MAXIM]

+5V, Low-Power uP Supervisory Circuits with Adjustable Reset/Watchdog; + 5V ,低功耗高达监控电路,带有可调复位/看门狗
MAX6303CSA
型号: MAX6303CSA
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

+5V, Low-Power uP Supervisory Circuits with Adjustable Reset/Watchdog
+ 5V ,低功耗高达监控电路,带有可调复位/看门狗

监控
文件: 总12页 (文件大小:103K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1078; Rev 0; 6/96  
+5 V, Lo w -P o w e r µP S u p e rvis o ry Circ u it s  
w it h Ad ju s t a b le Re s e t /Wa t c h d o g  
1–MAX6304  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
Adjustable Reset Threshold  
The MAX6301/MAX6302/MAX6303/MAX6304* low-  
power microprocessor (µP) supervisory circuits provide  
maximum adjustability for reset and watchdog functions.  
The reset threshold can be adjusted to any voltage  
above 1.22V, using external resistors. In addition, the  
reset and watchdog timeout periods are adjustable  
us ing e xte rna l c a p a c itors . A wa tc hd og s e le c t p in  
extends the watchdog timeout period to 500x. The reset  
function features immunity to power-supply transients.  
Adjustable Reset Timeout  
Adjustable Watchdog Timeout  
500x Watchdog Timeout Multiplier  
4µA Supply Current  
RESET Output Options  
RESET or  
Push/Pull or Open-Drain Output Options  
Guaranteed RESET Asserted At or Above  
These four devices differ only in the structure of their reset  
outputs (see Selector Guide). The MAX6301–MAX6304  
are available in the space-saving 8-pin µMAX package,  
as well as 8-pin DIP/SO.  
V
= 1V (MAX6301/MAX6303)  
CC  
Power-Supply Transient Immunity  
Watchdog Function Can Be Disabled  
DIP/SO/µMAX Packages Available  
________________________Ap p lic a t io n s  
Medical Equipment  
Intelligent Instruments  
Portable Equipment  
Embedded Controllers  
Critical µP Monitoring  
Set-Top Boxes  
______________Ord e rin g In fo rm a t io n  
PART  
TEMP. RANGE  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
8 Plastic DIP  
8 SO  
Battery-Powered  
Computers/Controllers  
Computers  
MAX6301CPA  
MAX6301CSA  
MAX6301CUA  
MAX6301EPA  
MAX6301ESA  
_____________________S e le c t o r Gu id e  
8 µMAX  
8 Plastic DIP  
8 SO  
FEATURE  
MAX6301 MAX6302 MAX6303 MAX6304  
Active-Low  
Reset  
Ordering Information continued at end of data sheet.  
Active-High  
Reset  
__________Typ ic a l Op e ra t in g Circ u it  
Open-Drain  
Reset Output  
V
IN  
MAX6301  
ONLY  
Push/Pull  
Reset Output  
8-DIP/SO/ 8-DIP/SO/ 8-DIP/SO/ 8-DIP/SO/  
µMAX µMAX µMAX µMAX  
R1  
Pins-Package  
1
2
8
7
R
L
V
RESET IN  
GND  
CC  
0.1µF  
R2  
__________________P in Co n fig u ra t io n  
RESET  
(RESET)  
RESET  
TOP VIEW  
µP  
V
RESET IN  
GND  
MAX6301  
R
L
1
2
3
4
8
7
6
5
CC  
MAX6302  
ONLY  
MAX6302  
MAX6303  
MAX6304  
3
4
WDI  
6
5
RESET (RESET)  
WDI  
SRT  
I/O  
MAX6301  
MAX6302  
MAX6303  
MAX6304  
SWT  
WDS  
SRT  
C
SRT  
C
SWT  
WDS  
SWT  
WDS = 0 FOR NORMAL MODE  
WDI = 1 FOR EXTENDED MODE  
DIP/SO/µMAX  
( ) ARE FOR MAX6302/MAX6304.  
( ) ARE FOR MAX6302/MAX6304.  
* Patents pending  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800  
+5 V, Lo w -P o w e r µP S u p e rvis o ry Circ u it s  
w it h Ad ju s t a b le Re s e t /Wa t c h d o g  
ABSOLUTE MAXIMUM RATINGS  
V
CC  
.......................................................................-0.3V to +7.0V  
Continuous Power Dissipation (T = +70°C)  
A
RESET IN, SWT, SRT..................................-0.3V to (V + 0.3V)  
WDI, WDS..............................................................-0.3V to +7.0V  
RESET, RESET  
Plastic DIP (derate 9.09mW/°C above +70°C) ............727mW  
SO (derate 5.88mW/°C above +70°C).........................471mW  
µMAX (derate 4.10mW/°C above +70°C) ....................330mW  
Operating Temperature Ranges  
CC  
MAX6301 ...........................................................-0.3V to +7.0V  
MAX6302/6303/6304 ..............................-0.3V to (V + 0.3V)  
Input Current  
MAX630_C_A......................................................0°C to +70°C  
MAX630_E_A ...................................................-40°C to +85°C  
Storage Temperature Range .............................-65°C to +160°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
CC  
V
CC  
...............................................................................±20mA  
GND..............................................................................±20mA  
Output Current  
RESET, RESET..............................................................±20mA  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = +2V to +5.5V, T = T  
to T , unless otherwise noted. Typical values are at V = +5V and T = +25°C.)  
MAX CC A  
CC  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MAX6301C/MAX6303C  
MIN  
1.00  
1.20  
1.31  
TYP  
MAX  
5.50  
5.50  
5.50  
7.0  
UNITS  
V
1–MAX6304  
Operating Voltage Range  
(Note 1)  
V
CC  
MAX6301E/MAX6303E  
MAX6302/MAX6304  
No load  
Supply Current (Note 2)  
I
CC  
4.0  
µA  
RESET TIMER  
V
falling, V = 5.0V  
1.195  
1.220  
1.240  
20  
1.245  
1.265  
RESET IN  
CC  
Reset Input Threshold Voltage  
V
V
TH  
V
rising, V = 5.0V  
CC  
RESET IN  
Reset Input Hysteresis  
V
HYST  
mV  
nA  
Reset Input Leakage Current  
I
±0.01  
±1  
RESET IN  
V
4.5V, I  
= 0.8mA  
V
- 0.4  
CC  
SOURCE  
CC  
Reset Output Voltage High  
(MAX6302/MAX6303/MAX6304)  
V
OH  
V
CC  
= 2V, I = 0.4mA  
SOURCE  
VCC - 0.4  
V
MAX6302/MAX6304, V = 1.31V, R = 10kΩ  
V
CC  
- 0.3  
CC  
L
V
4.5V, I  
= 3.2mA  
0.4  
0.4  
CC  
SINK  
V
CC  
= 2V, I  
= 1.6mA  
SINK  
Reset Output Voltage Low  
(MAX6301/MAX6303/MAX6304)  
V
= 1V, I  
= 50µA,  
CC  
SINK  
V
OL  
0.3  
0.3  
V
T = 0°C to +70°C  
A
MAX6301/  
MAX6303  
V
= 1.2V, I  
= -40°C to +85°C  
= 100µA,  
CC  
SINK  
T
A
V
to Reset Delay  
t
t
V
falling at 1mV/µs  
63  
26  
µs  
µs  
CC  
RD  
CC  
Reset Input Pulse Width  
t
Comparator overdrive = 50mV  
= 1500pF  
RI  
Reset Timeout Period (Note 3)  
C
2.8  
4.0  
5.2  
±1  
±1  
ms  
RP  
SRT  
MAX6301, V  
MAX6302, V  
= V  
CC  
RESET  
Reset Output Leakage Current  
µA  
= GND  
RESET  
2
_______________________________________________________________________________________  
+5 V, Lo w -P o w e r µP S u p e rvis o ry Circ u it s  
w it h Ad ju s t a b le Re s e t /Wa t c h d o g  
1–MAX6304  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +2V to +5.5V, T = T  
to T , unless otherwise noted. Typical values are at V = +5V and T = +25°C.)  
MAX CC A  
CC  
A
MIN  
PARAMETER  
WATCHDOG TIMER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
0.7V  
CC  
IH  
WDI, WDS Input Threshold  
WDI Pulse Width  
V
V
IL  
0.3V  
CC  
V
= 4.5V to 5.5V  
30  
60  
CC  
t
ns  
WP  
V
CC  
= 2V to 4.5V  
WDI, WDS Leakage Current  
Extended mode disabled  
±1  
µA  
µA  
WDI Sink/Source Current  
(Note 4)  
Extended mode enabled  
±70  
WDS = GND, C  
= 1500pF  
2.8  
1.4  
4.0  
2.0  
5.2  
2.6  
ms  
SWT  
Watchdog Timeout Period  
(Note 3)  
t
WD  
WDS = V , C  
= 1500pF  
SWT  
sec  
CC  
Note 1: Reset is guaranteed valid from the selected reset threshold voltage down to the minimum V  
.
CC  
Note 2: VDS = V , WDI unconnected.  
CC  
Note 3: Precision timing currents of 500nA are present at both the SRT and SWT pins. Timing capacitors connected to these nodes  
must have low leakage consistent with these currents to prevent timing errors.  
Note 4: The sink/source is supplied through a resistor, and is proportional to V (Figure 8). At V = 2V, it is typically ±24µA.  
CC  
CC  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(C  
= C  
= 1500pF, T = +25°C, unless otherwise noted.)  
SRT A  
SWT  
NORMAL-MODE  
EXTENDED-MODE  
WATCHDOG TIMEOUT PERIOD vs. C  
WATCHDOG TIMEOUT PERIOD vs. C  
RESET TIMEOUT PERIOD  
vs. C  
SWT  
SWT  
(WDS = GND)  
(WDS = V )  
CC  
SRT  
10,000  
10,000  
10,000  
V
CC  
= 5V  
V
CC  
= 5V  
V
CC  
= 5V  
1000  
100  
10  
1000  
100  
10  
1000  
100  
10  
1
1
1
0.1  
0
0
0.001 0.01  
0.1  
1
10  
100 1000  
0.001 0.01  
0.1  
1
10  
100 1000  
0.001 0.01  
0.1  
1
10  
100 1000  
C
SWT  
(nF)  
C
SWT  
(nF)  
C
SRT  
(nF)  
_______________________________________________________________________________________  
3
+5 V, Lo w -P o w e r µP S u p e rvis o ry Circ u it s  
w it h Ad ju s t a b le Re s e t /Wa t c h d o g  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(C  
= C  
= 1500pF, T = +25°C, unless otherwise noted.)  
SRT A  
SWT  
RESET AND NORMAL-MODE  
WATCHDOG TIMEOUT PERIOD  
vs. TEMPERATURE  
SUPPLY CURRENT vs.  
SUPPLY VOLTAGE  
MAXIMUM TRANSIENT DURATION vs.  
RESET THRESHOLD OVERDRIVE (V  
)
RST  
4.2  
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
2.8  
4.20  
4.15  
4.10  
4.05  
4.00  
3.95  
3.90  
3.85  
120  
110  
100  
90  
SEE NEGATIVE-GOING V  
RESET DEASSERTED  
NO LOAD  
CC  
V
= 5.0V  
CC  
TRANSIENTS SECTION  
RESET OCCURS  
ABOVE THE CURVE  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
RST  
= 4.60V  
2.6  
3.80  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
SUPPLY VOLTAGE (V)  
-60 -40 -20  
0
20 40 60 80 100  
0
200  
400  
600  
800  
1000  
1–MAX6304  
TEMPERATURE (°C)  
RESET THRESHOLD OVERDRIVE (mV)  
SUPPLY CURRENT  
vs. TEMPERATURE  
RESET IN THRESHOLD VOLTAGE  
vs. TEMPERATURE  
5.00  
1.226  
RESET DEASSERTED  
NO LOAD  
4.75  
1.224  
1.222  
1.220  
4.50  
4.25  
V
= 5.0V  
= 2.0V  
CC  
4.00  
3.75  
3.50  
3.25  
3.00  
2.75  
2.50  
1.218  
1.216  
1.214  
V
CC  
-60 -40 -20  
0
20 40 60 80 100  
-60 -40 -20  
0
20 40 60 80 100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
V
TO RESET DELAY  
RESET AND WATCHDOG  
TIMEOUT vs. V  
CC  
vs. TEMPERATURE (V FALLING)  
CC  
CC  
76  
72  
68  
64  
60  
56  
4.16  
4.12  
4.08  
4.04  
4.00  
3.96  
V
CC  
FALLING AT 1mV/µs  
52  
-60 -40 -20  
0
20 40 60 80 100  
2
3
4
5
6
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
4
_______________________________________________________________________________________  
+5 V, Lo w -P o w e r µP S u p e rvis o ry Circ u it s  
w it h Ad ju s t a b le Re s e t /Wa t c h d o g  
1–MAX6304  
______________________________________________________________P in De s c rip t io n  
PIN  
NAME  
RESET IN  
GND  
FUNCTION  
Reset Input. High-impedance input to the reset comparator. Connect this pin to the center point of an  
external resistor voltage-divider network to set the reset threshold voltage. The reset threshold voltage  
1
is calculated as follows: V  
= 1.22 x (R1 + R2) / R2 (see Typical Operating Circuit).  
RST  
2
Ground  
Set Reset-Timeout Input. Connect a capacitor between this input and ground to select the reset timeout  
3
SRT  
period (t ). Determine the period as follows: t = 2.67 x C  
, with C  
SRT  
in pF and t in µs (see  
SRT RP  
RS  
RP  
Typical Operating Circuit).  
Set Watchdog-Timeout Input. Connect a capacitor between this input and ground to select the basic  
watchdog timeout period (t ). Determine the period as follows: t = 2.67 x C , with C in pF  
4
5
SWT  
WDS  
WD  
WD  
SWT  
SWT  
and t  
in µs. The watchdog function can be disabled by connecting this pin to ground.  
WD  
Watchdog-Select Input. This input selects the watchdog mode. Connect to ground to select normal mode  
and the basic watchdog timeout period. Connect to V to select extended mode, multiplying the basic  
CC  
timeout period by a factor of 500. A change in the state of this pin resets the watchdog timer to zero.  
Watchdog Input. A rising or falling transition must occur on this input within the selected watchdog  
timeout period, or a reset pulse will occur. The capacitor value selected for SWT and the state of WDS  
determine the watchdog timeout period. The watchdog timer clears and restarts when a transition  
occurs on WDI or WDS. The watchdog timer is cleared when reset is asserted and restarted after reset  
6
WDI  
deasserts. In the extended watchdog mode (WDS = V ), the watchdog function can be disabled by  
CC  
driving WDI with a three-stated driver or by leaving WDI unconnected.  
RESET changes from high to low whenever the monitored voltage  
Open-Drain, Active-Low Reset  
Output (MAX6301)  
(V ) drops below the selected reset threshold (V ). RESET  
IN  
RST  
RESET  
remains low as long as V is below V . Once V exceeds V  
,
IN  
RST  
IN  
RST  
(MAX6301/3)  
RESET remains low for the reset timeout period and then goes high.  
The watchdog timer triggers a reset pulse (t ) whenever the watch-  
dog timeout period (t ) is exceeded.  
WD  
Push/Pull, Active-Low Reset  
Output (MAX6303)  
RP  
7
8
RESET changes from low to high whenever the monitored voltage  
Open-Drain, Active-High Reset  
Output (MAX6302)  
(V ) drops below the selected reset threshold (V ). RESET  
IN  
RST  
RESET  
(MAX6302/4)  
remains high as long as V is below V . Once V exceeds V  
,
IN  
RST  
IN  
RST  
RESET remains high for the reset timeout period and then goes low.  
The watchdog timer triggers a reset pulse (t ) whenever the watch-  
Push/Pull, Active-High Reset  
Output (MAX6304)  
RP  
dog timeout period (t ) is exceeded.  
WD  
V
CC  
Supply Voltage  
_______________________________________________________________________________________  
5
+5 V, Lo w -P o w e r µP S u p e rvis o ry Circ u it s  
w it h Ad ju s t a b le Re s e t /Wa t c h d o g  
_______________De t a ile d De s c rip t io n  
V
IN  
Re s e t Fu n c t io n /Ou t p u t  
The reset output is typically connected to the reset  
input of a microprocessor (µP). A µPs reset input starts  
or restarts the µP in a known state. The MAX6301–  
MAX6304 µP supervisory circuits provide the reset  
logic to prevent code-execution errors during power-  
up, power-down, and brownout conditions (see Typical  
Operating Circuit).  
R1  
R2  
RESET IN  
V
CC  
0.1µF  
MAX6301  
MAX6302  
MAX6303  
MAX6304  
For the MAX6301/MAX6303, RESET changes from high  
to low whenever the monitored voltage (V ) drops  
IN  
b e low the re s e t thre s hold volta g e (V  
). RESET  
RST  
remains low as long as V is below V  
. Once V  
R1 + R2  
R2  
IN  
RST  
IN  
V
RST  
= 1.22  
(
)
exceeds V , RESET remains low for the reset timeout  
RST  
period, then goes high. When a reset is asserted due to  
a watchdog timeout condition, RESET stays low for the  
reset timeout period. Anytime reset asserts, the watch-  
dog timer clears. At the end of the reset timeout period,  
RESET goes high and the watchdog timer is restarted  
from zero. If the watchdog timeout period is exceeded  
again, then RESET goes low again. This cycle contin-  
ues unless WDI receives a transition.  
Figure 1. Calculating the Reset Threshold Voltage (V  
)
RST  
1–MAX6304  
R2 can have very high values to minimize current con-  
sumption. Set R2 to some conveniently high value (1M,  
for example) and calculate R1 based on the desired  
reset threshold voltage, using the following formula:  
On power-up, once V reaches 1V, RESET is guaran-  
CC  
VRST  
teed to be a logic low. For information about applica-  
R1 = R2 ×  
1  
( )  
tions whe re V  
is le s s tha n 1V, s e e the s e c tion  
V
CC  
TH  
Ensuring a Valid RESET/RESET Output Down to V  
=
CC  
0V (MAX6303/MAX6304). As V rises, RESET remains  
CC  
Wa t c h d o g Tim e r  
The watchdog circuit monitors the µPs activity. If the µP  
does not toggle the watchdog input (WDI) within t  
(user selected), reset asserts. The internal watchdog  
timer is cleared by reset, by a transition at WDI (which  
can detect pulses as short as 30ns), or by a transition  
at WDS. The watchdog timer remains cleared while  
reset is asserted; as soon as reset is released, the timer  
starts counting (Figure 2).  
low. When V rises above V , the reset timer starts  
IN  
RST  
and RESET remains low. When the reset timeout period  
ends, RESET goes high.  
WD  
On power-down, once V goes below V  
goes low and is guaranteed to be low until V droops  
, RESET  
CC  
IN  
RST  
below 1V. For information about applications where  
V
CC  
is less than 1V, see the section Ensuring a Valid  
RESET/RESET Output Down to V  
= 0V (MAX6303/  
CC  
MAX6304).  
The MAX6301–MAX6304 feature two modes of watch-  
dog timer operation: normal mode and extended mode.  
In normal mode (WDS = GND), the watchdog timeout  
period is determined by the value of the capacitor con-  
ne c te d b e twe e n SWT a nd g round (s e e the s e c tion  
Selecting the Reset and Watchdog Timeout Capacitor).  
The MAX6302/MAX6304 active-high RESET output is  
the inve rs e of the MAX6301/MAX6303 a c tive -low  
RESET output, and is guaranteed valid for V > 1.31V.  
CC  
Re s e t Th re s h o ld  
These supervisors monitor the voltage on RESET IN.  
The MAX6301–MAX6304 ha ve a n a d jus ta b le re s e t  
In extended mode (WDS = V ), the watchdog timeout  
CC  
period is multiplied by 500. For example, in the extend-  
ed mode, a 1µF capacitor gives a watchdog timeout  
period of 22 minutes (see the graph Extended-Mode  
threshold voltage (V ) set with an external resistor  
RST  
voltage divider (Figure 1). Use the following formula to  
calculate V (the point at which the monitored volt-  
Wa tc hd og Time out Pe riod vs . C  
Operating Characteristics).  
in the Typ ic a l  
RST  
SWT  
age triggers a reset):  
V
× R1+ R2  
(
)
V
TH  
In extended mode, the watchdog function can be dis-  
abled by leaving WDI unconnected or by three-stating  
the driver connected to WDI. In this mode, the watch-  
dog input is internally driven low during the watchdog  
V
( )  
RST =  
R2  
where V  
is the desired reset threshold voltage and  
RST  
V
TH  
is the reset input threshold (1.22V). Resistors R1 and  
6
_______________________________________________________________________________________  
+5 V, Lo w -P o w e r µP S u p e rvis o ry Circ u it s  
w it h Ad ju s t a b le Re s e t /Wa t c h d o g  
1–MAX6304  
V
CC  
t
t
RP  
WD  
WDI  
0V  
V
CC  
RESET  
0V  
NORMAL MODE (WDS = GND)  
Figure 2a. Watchdog Timing Diagram, WDS = GND  
V
CC  
t
x 500  
t
RP  
WD  
WDI  
0V  
V
CC  
RESET  
0V  
EXTENDED MODE (WDS = V  
)
CC  
Figure 2b. Watchdog Timing Diagram, WDS = V  
CC  
timeout period, then momentarily pulses high, resetting  
the watchdog counter. When WDI is left unconnected,  
the watchdog timer is cleared by this internal driver just  
before the timeout period is reached (the internal driver  
V
CC  
V
CC  
GND  
pulls WDI high at about 94% of t  
). When WDI is  
WD  
MAX6301  
MAX6302  
MAX6303  
MAX6304  
three-stated, the maximum allowable leakage current of  
the device driving WDI is 10µA.  
0.1µF  
SRT  
In normal mode (WDS = GND), the watchdog timer  
cannot be disabled by three-stating WDI. WDI is a  
high-impedance input in this mode. Do not leave WDI  
unconnected in normal mode.  
SWT  
C
SRT  
C
SWT  
t
t
WD  
2.67  
RP  
C
RST  
=
C
SWT  
=
2.67  
C
RST  
in pF  
C
SWT  
in pF  
t
in µs  
t
in µs  
WD  
WD  
Figure 3. Calculating the Reset (C  
) and Watchdog  
SRT  
(C  
) Timeout Capacitor Values  
SWT  
_______________________________________________________________________________________  
7
+5 V, Lo w -P o w e r µP S u p e rvis o ry Circ u it s  
w it h Ad ju s t a b le Re s e t /Wa t c h d o g  
V
IN  
V
CC  
V
CC  
V
CC  
80C51  
R1  
R2  
MAX6302  
V
CC  
V
CC  
RESET IN  
V
CC  
RST  
RESET  
*
0.1µF  
MAX6301  
WDI  
I/O  
I/O  
I/O  
MAX6302  
MAX6303  
MAX6304  
WDS  
GND  
GND  
R1 + R2  
R2  
V
RST  
= 1.22  
(
)
* THREE-STATE LEAKAGE MUST BE <10µA.  
Figure 4. Monitoring a Voltage Other than V  
Figure 5. Wake-Up Timer  
CC  
1–MAX6304  
Wa k e -Up Tim e r  
__________Ap p lic a t io n s In fo rm a t io n  
In some applications, it is advantageous to put a µP  
into sleep mode, periodically “wake it upto perform  
checks and/or tasks, then put it back into sleep mode.  
The MAX6301 family supervisors can easily accommo-  
date this technique. Figure 5 illustrates an example  
using the MAX6302 and an 80C51.  
S e le c t in g t h e Re s e t a n d  
Wa t c h d o g Tim e o u t Ca p a c it o r  
The reset timeout period is adjustable to accommodate  
a variety of µP applications. Adjust the reset timeout  
period (t ) by connecting a specific value capacitor  
RS  
(C  
) between SRT and ground (Figure 3). Calculate  
SRT  
In Figure 5, just before the µC puts itself into sleep  
mode, it pulls WDS high. The µCs I/O pins maintain  
their logic levels while in sleep mode and WDS remains  
high. This places the MAX6302 in extended mode,  
increasing the watchdog timeout 500 times. When the  
watchdog timeout period ends, a reset is applied on  
the 80C51, waking it upto perform tasks. While the µP  
is performing tasks, the 80C51 pulls WDS low (select-  
ing normal mode), and the MAX6302 monitors the µP  
for hang-ups. When the µP finishes its tasks, it puts  
its e lf b a c k into s le e p mod e , d rive s WDS hig h, a nd  
starts the cycle over again. This is a power-saving tech-  
nique, since the µP is operating only part of the time  
and the MAX6302 has very low quiescent current.  
the reset timeout capacitor as follows:  
C
= t ⁄ 2.67  
SRT  
RP  
with C  
in pF and t in µs. C  
must be a low-leak-  
SRT  
SRT  
RP  
age (<10nA) type capacitor. Ceramic is recommended.  
The watchdog timeout period is adjustable to accom-  
modate a variety of µP applications. With this feature,  
the watchdog timeout can be optimized for software  
execution. The programmer can determine how often  
the watchdog timer should be serviced. Adjust the  
watchdog timeout period (t ) by connecting a specif-  
WD  
ic value capacitor (C  
) between SWT and ground  
SWT  
(Figure 3). For normal-mode operation, calculate the  
watchdog timeout capacitor as follows:  
Ad d in g a Ma n u a l Re s e t Fu n c t io n  
A manual reset option can easily be implemented by  
connecting a normally open momentary switch in paral-  
lel with R2 (Figure 6). When the switch is closed, the  
voltage on RESET IN goes to zero, initiating a reset.  
When the switch is released, reset remains asserted for  
the reset timeout period and then is cleared. The push-  
button switch is effectively debounced by the reset  
timer.  
C
= t  
⁄ 2.67  
WD  
SWT  
where C  
is in pF and t  
is in µs. C  
must be a  
SRT  
SWT  
WD  
low leakage (<10nA) type capacitor. Ceramic is recom-  
mended.  
Mo n it o rin g Vo lt a g e s Ot h e r t h a n V  
The Typical Operating Circuit monitors V . However,  
monitoring other voltages is simple, and Figure 4 shows  
a circuit that accomplishes this. Calculate V  
shown in the Reset Threshold section.  
CC  
CC  
as  
RST  
8
_______________________________________________________________________________________  
+5 V, Lo w -P o w e r µP S u p e rvis o ry Circ u it s  
w it h Ad ju s t a b le Re s e t /Wa t c h d o g  
1–MAX6304  
RESET TO  
OTHER SYSTEM  
COMPONENTS  
V
CC  
V
CC  
V
CC  
R1  
R2  
µP  
MAX6301  
RESET IN  
V
CC  
V
CC  
0.1µF  
0.1µF  
4.7k  
MAX6301  
GND  
MAX6302  
MAX6303  
MAX6304  
RESET  
RESET  
Figure 6. Adding a Manual Reset Function  
Figure 7. Interfacing to µPs with Bidirectional Reset I/O Pins  
In t e rfa c in g t o µP s w it h  
Bid ire c t io n a l Re s e t P in s  
Since RESET is open-drain, the MAX6301 interfaces  
easily with µPs that have bidirectional reset pins, such  
as the Motorola 68HC11 (Figure 7). Connecting RESET  
directly to the µPs reset pin with a single pull-up allows  
either device to assert reset.  
TO RESET  
GENERATOR  
WDI  
WATCHDOG  
TIMER  
Ne g a t ive -Go in g V  
Tra n s ie n t s  
CC  
In addition to issuing a reset to the µP during power-up,  
power-down, and brownout conditions, these supervisors  
are relatively immune to short-duration negative-going  
transients (glitches). The graph Maximum Transient  
Duration vs. Reset Threshold Overdrive in the Typical  
Operating Characteristics shows this relationship.  
MAX6301  
MAX6302  
MAX6303  
MAX6304  
WDS  
TO MODE  
CONTROL  
The area below the curves of the graph is the region in  
which these devices typically do not generate a reset  
pulse. This graph was generated using a negative-  
Figure 8. Watchdog Input Structure  
going pulse applied to V , starting above the actual  
IN  
watchdog timeout period by a very brief low-high-low  
pulse from the counter chain. For minimum watchdog  
input current (minimum overall power consumption),  
leave WDI low for the majority of the watchdog timeout  
period, pulsing it low-high-low (>30ns) once within the  
period to reset the watchdog timer. If instead WDI is  
externally driven high for the majority of the timeout  
period, typically 70µA can flow into WDI.  
reset threshold (V ) and ending below it by the mag-  
RST  
nitude indicated (reset-threshold overdrive). As the  
magnitude of the transient increases (farther below the  
reset threshold), the maximum allowable pulse width  
decreases. Typically, a V transient that goes 100mV  
CC  
below the reset threshold and lasts 50µs or less will not  
cause a reset pulse to be issued.  
Wa t c h d o g In p u t Cu rre n t  
Normal Mode  
In normal mode (WDS = GND), the internal buffer that  
drives WDI is disabled. In this mode, WDI is a standard  
CMOS input and leakage current is typically 100pA,  
regardless of whether WDI is high or low.  
Extended Mode  
In extended mode (WDS = V ), the WDI input is inter-  
nally driven through a buffer and series resistor from  
the wa tc hdog c ounte r (Figure 8). Whe n WDI is le ft  
unconnected, the watchdog timer is serviced within the  
CC  
_______________________________________________________________________________________  
9
+5 V, Lo w -P o w e r µP S u p e rvis o ry Circ u it s  
w it h Ad ju s t a b le Re s e t /Wa t c h d o g  
V
CC  
V
CC  
100k  
MAX6303  
MAX6304  
V
CC  
V
CC  
0.1µF  
100k  
0.1µF  
RESET  
RESET  
GND  
GND  
Figure 10. Ensuring RESET Valid to V = 0V  
CC  
Figure 9. Ensuring RESET Valid to V = 0V  
CC  
En s u rin g a Va lid RESET/RES ET Ou t p u t  
1–MAX6304  
Do w n t o V  
= 0 V (MAX6 3 0 3 /MAX6 3 0 4 )  
CC  
When V  
falls below 1V, RESET/RESET current sink-  
START  
CC  
ing (sourcing) capabilities decline drastically. In the  
case of the MAX6303, high-impedance CMOS-logic  
inputs connected to RESET can drift to undetermined  
voltages. This presents no problem in most applica-  
tions, since most µPs and other circuitry do not operate  
SET WDI  
LOW  
with V below 1V.  
CC  
SUBROUTINE OR  
PROGRAM LOOP  
SET WDI HIGH  
In those applications where RESET must be valid down  
to 0V, adding a pull-down resistor between RESET and  
g round s inks a ny s tra y le a ka g e c urre nts , hold ing  
RESET low (Figure 9). The value of the pull-down resis-  
tor is not critical; 100kis large enough not to load  
RESET and small enough to pull RESET to ground. For  
applications using the MAX6304, a 100kpull-up resis-  
RETURN  
END  
tor between RESET and V will hold RESET high when  
CC  
V
CC  
falls below 1V (Figure 10).  
Wa t c h d o g -S o ft w a re Co n s id e ra t io n s  
To help the watchdog timer monitor software execution  
more closely, set and reset the watchdog input at differ-  
ent points in the program, rather than pulsing” the  
watchdog input high-low-high or low-high-low. This  
technique avoids a stuck” loop in which the watchdog  
timer would continue to be reset within the loop, keep-  
ing the watchdog from timing out.  
Figure 11. Watchdog Flow Diagram  
corrected, since the I/O is continually set low and the  
watchdog timer is allowed to time out, causing a reset  
or interrupt to be issued. When using extended mode,  
as described in the Watchdog Input Current section,  
this scheme does result in higher average WDI input  
current than does the method of leaving WDI low for the  
majority of the timeout period and periodically pulsing it  
low-high-low.  
Figure 11 shows an example of a flow diagram where  
the I/O driving the watchdog input is set high at the  
beginning of the program, set low at the beginning of  
every subroutine or loop, then set high again when the  
program returns to the beginning. If the program should  
hang” in any subroutine the problem would quickly be  
10 ______________________________________________________________________________________  
+5 V, Lo w -P o w e r µP S u p e rvis o ry Circ u it s  
w it h Ad ju s t a b le Re s e t /Wa t c h d o g  
1–MAX6304  
_____________La yo u t Co n s id e ra t io n s  
__Ord e rin g In fo rm a t io n (c o n t in u e d )  
SRT and SWT are precision current sources. When  
developing the layout for the application, be careful to  
minimize b oa rd c a p a c ita nc e a nd le a ka g e c urre nts  
around these pins. Traces connected to these pins  
should be kept as short as possible. Traces carrying  
high-speed digital signals and traces with large voltage  
potentials should be routed as far from these pins as  
possible. Leakage currents and stray capacitance (e.g.,  
a scope probe) at these pins could cause errors in the  
reset and/or watchdog timeout period. When evaluating  
these parts, use clean prototype boards to ensure accu-  
rate reset and watchdog timeout periods.  
PART  
TEMP. RANGE  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
8 Plastic DIP  
8 SO  
MAX6302CPA  
MAX6302CSA  
MAX6302CUA  
MAX6302EPA  
MAX6302ESA  
MAX6303CPA  
MAX6303CSA  
MAX6303CUA  
MAX6303EPA  
MAX6303ESA  
MAX6304CPA  
MAX6304CSA  
MAX6304CUA  
MAX6304EPA  
MAX6304ESA  
8 µMAX  
8 Plastic DIP  
8 SO  
8 Plastic DIP  
8 SO  
8 µMAX  
8 Plastic DIP  
8 SO  
RESET IN is a high-impedance input which is typically  
driven by a high-impedance resistor-divider network  
(e.g., 1Mto 10M). Minimize coupling to transient  
signals by keeping the connections to this input short.  
Any DC leakage current at RESET IN (e.g., a scope  
probe) causes errors in the programmed reset thresh-  
old. Note that sensitive pins are located on the GND  
side of the device, away from the digital I/O, to simplify  
board layout.  
8 Plastic DIP  
8 SO  
8 µMAX  
8 Plastic DIP  
8 SO  
___________________Ch ip In fo rm a t io n  
TRANSISTOR COUNT: 580  
______________________________________________________________________________________ 11  
+5 V, Lo w -P o w e r µP S u p e rvis o ry Circ u it s  
w it h Ad ju s t a b le Re s e t /Wa t c h d o g  
________________________________________________________P a c k a g e In fo rm a t io n  
INCHES  
MILLIMETERS  
DIM  
MIN  
0.036  
MAX  
0.044  
0.008  
0.014  
0.007  
0.120  
0.120  
MIN  
0.91  
0.10  
0.25  
0.13  
2.95  
2.95  
MAX  
1.11  
0.20  
0.36  
0.18  
3.05  
3.05  
A
C
A1 0.004  
α
A
B
C
D
E
e
0.010  
0.005  
0.116  
0.116  
0.101mm  
0.004 in  
e
B
A1  
L
0.0256  
0.65  
H
L
0.188  
0.016  
0°  
0.198  
0.026  
6°  
4.78  
0.41  
0°  
5.03  
0.66  
6°  
α
21-0036D  
E
H
1–MAX6304  
8-PIN µMAX  
MICROMAX SMALL-OUTLINE  
PACKAGE  
D
INCHES  
MILLIMETERS  
DIM  
MIN  
MAX  
0.069  
0.010  
0.019  
0.010  
0.157  
MIN  
1.35  
0.10  
0.35  
0.19  
3.80  
MAX  
1.75  
0.25  
0.49  
0.25  
4.00  
A
0.053  
D
A1 0.004  
B
C
E
e
0.014  
0.007  
0.150  
0°-8°  
A
0.101mm  
0.004in.  
0.050  
1.27  
e
H
L
0.228  
0.016  
0.244  
0.050  
5.80  
0.40  
6.20  
1.27  
A1  
C
B
L
INCHES  
MILLIMETERS  
DIM PINS  
Narrow SO  
SMALL-OUTLINE  
PACKAGE  
MIN MAX  
MIN  
MAX  
5.00  
8.75  
8
0.189 0.197 4.80  
D
D
D
E
H
14 0.337 0.344 8.55  
16 0.386 0.394 9.80 10.00  
(0.150 in.)  
21-0041A  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 __________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 (4 0 8 ) 7 3 7 -7 6 0 0  
© 1996 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX6303CSA+

Power Supply Support Circuit, Adjustable, 1 Channel, CMOS, PDSO8, 0.150 INCH, LEAD FREE, MS-012AA, SOIC-8
MAXIM

MAX6303CUA

+5V, Low-Power uP Supervisory Circuits with Adjustable Reset/Watchdog
MAXIM

MAX6303CUA+T

Power Supply Support Circuit, Fixed, 1 Channel, CMOS, PDSO8, MICRO MAX PACKAGE-8
MAXIM

MAX6303CUA-T

Power Supply Support Circuit, Adjustable, 1 Channel, CMOS, PDSO8, MO-187CAA, MICRO MAX PACKAGE-8
MAXIM

MAX6303EPA

+5V, Low-Power uP Supervisory Circuits with Adjustable Reset/Watchdog
MAXIM

MAX6303ESA

+5V, Low-Power uP Supervisory Circuits with Adjustable Reset/Watchdog
MAXIM

MAX6303ESA+

Power Supply Support Circuit, Adjustable, 1 Channel, CMOS, PDSO8, 0.150 INCH, LEAD FREE, MS-012AA, SOIC-8
MAXIM

MAX6303ESA-T

Power Supply Support Circuit, Adjustable, 1 Channel, CMOS, PDSO8, 0.150 INCH, MS-012AA, SOIC-8
MAXIM

MAX6304

+5V, Low-Power uP Supervisory Circuits with Adjustable Reset/Watchdog
MAXIM

MAX6304CPA

+5V, Low-Power uP Supervisory Circuits with Adjustable Reset/Watchdog
MAXIM

MAX6304CSA

+5V, Low-Power uP Supervisory Circuits with Adjustable Reset/Watchdog
MAXIM

MAX6304CSA+

暂无描述
MAXIM