MAX6509-MAX6510 [MAXIM]

Resistor-Programmable SOT Temperature Switches; 电阻可编程SOT温度开关
MAX6509-MAX6510
型号: MAX6509-MAX6510
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Resistor-Programmable SOT Temperature Switches
电阻可编程SOT温度开关

开关
文件: 总8页 (文件大小:142K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1617; Rev 0; 1/00  
Resistor-Programmable  
SOT Temperature Switches  
________________General Description  
____________________________Features  
The MAX6509/MAX6510 are fully integrated, resistor-  
programmable temperature switches with thresholds  
set by an external resistor. They require only one exter-  
nal resistor to set the temperature threshold within a  
wide -40°C to +125°C temperature range. The MAX6509  
provides an open-drain output. The MAX6510 features  
three selectable output options: active-low, active-high,  
and open drain with an internal pull-up resistor.  
0.5°C Threshold Accuracy  
4.0°C (max) Threshold Accuracy (-40°C to +125°C)  
Temperature Threshold Set by a 1% External  
Resistor  
Set-Hot or Set-Cold Option  
Low 32µA Supply Current  
Open-Drain, Push-Pull Outputs;  
These switches operate with a +2.7V to +5.5V single  
supply while providing a temperature threshold accura-  
cy of 0.5°C ꢀtypꢁ or 4.0°C ꢀmaxꢁ. They typically con-  
sume 32µA supply current. Hysteresis is pin selectable  
to 2°C or 10°C.  
Open-Drain with Internal Pull-Up Resistor  
Pin-Selectable 2°C or 10°C Hysteresis  
SOT23 Packages  
The MAX6509/MAX6510 are available in 5-pin and 6-pin  
SOT23 packages, respectively.  
Ordering Information  
________________________Applications  
PIN-  
TOP  
µP Temperature Monitoring in High-Speed  
Computers  
PART  
TEMP. RANGE  
PACKAGE MARK  
5 SOT23-5 ADNT  
5 SOT23-5 ADNU  
6 SOT23-6 AAHA  
6 SOT23-6 AAHB  
MAX6509HAUK-T  
MAX6509CAUK-T  
MAX6510HAUT-T*  
MAX6510CAUT-T*  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
Temperature Control  
Temperature Alarms  
Fan Control  
Automotive Applications  
Note: A 2500 pc. minimum is required for SOT packages.  
*See Table 1 for selectable output options.  
Typical Operating Circuit  
Pin Configurations  
+2.7V TO +5.5V  
TOP VIEW  
0.1µF  
V
CC  
V
CC  
V
SET  
GND  
OUT  
1
2
3
5
4
CC  
SET  
GND  
1
2
3
6
5
4
V
CC  
MAX6509  
MAX6510  
SET  
INT µP  
OUT  
MAX6509  
MAX6510  
(OUT)  
OUTSET  
HYST  
R
SET  
(OUTSET)  
GND HYST  
GND  
GND  
HYST  
OUT, OUT  
SOT23-5  
SOT23-6  
( ) ARE FOR MAX6510.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 1-800-835-8769.  
Resistor-Programmable  
SOT Temperature Switches  
ABSOLUTE MAXIMUM RATINGS  
Reference to GND Supply Voltage ꢀV ꢁ.................-0.3V to +6V  
Continuous Power Dissipation ꢀT = +70°Cꢁ  
A
CC  
OUT ꢀMAX6509ꢁ ....................................................-0.3V to +6V  
5-Pin SOT23 ꢀderate 7.1mW/°C above +70°Cꢁ.............571mW  
6-Pin SOT23 ꢀderate 8.7mW/°C above +70°Cꢁ.............696mW  
Operating Temperature Range .........................-40°C to +125°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature ꢀsoldering, 10sꢁ .................................+300°C  
OUT, OUT ꢀMAX6510ꢁ.............................-0.3V to ꢀV  
SET, HYST, OUTSET ..................................-0.3V to ꢀV  
+ 0.3Vꢁ  
+ 0.3Vꢁ  
CC  
CC  
Output Current ꢀall pinsꢁ .....................................................20mA  
Input Current ꢀall pinsꢁ ........................................................20mA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
ꢀV = +2.7V to +5.5V, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.ꢁ ꢀNote 1ꢁ  
MAX A  
CC  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
5.5  
50  
UNITS  
Supply Voltage Range  
V
CC  
2.7  
V
MAX6509  
32  
47  
97  
0.5  
0.5  
2
Supply Current  
I
OUTSET = GND or V ꢀMAX6510ꢁ  
CC  
80  
CC  
165  
4.0  
3.0  
OUTSET = unconnected ꢀMAX6510ꢁ, OUT = low  
T
A
T
A
= 0°C to +125°C  
= -40°C to 0°C  
Temperature Threshold  
Accuracy  
T  
TH  
°C  
HYST = GND  
HYST = V  
Temperature Threshold  
Hysteresis  
T
HYST  
°C  
µA  
V
10  
1
CC  
HYST Input Leakage  
V
IH  
V
- 0.4  
CC  
HYST Input Threshold  
V
IL  
0.4  
OUT Impedance to V  
Output Voltage High  
Output Voltage Low  
OUTSET = unconnected ꢀMAX6510ꢁ  
60  
- 0.4  
100  
160  
kΩ  
V
CC  
V
I = 5mA, OUTSET = GND or V ꢀMAX6510ꢁ V  
CC  
OUT  
OH  
CC  
V
I
= 5mA  
0.3  
10  
V
OL  
OUT  
Open-Drain Output Leakage  
Current  
I
V
OUT  
= V ꢀMAX6509ꢁ  
µA  
OUT  
CC  
OUTSET, active low  
0.2 · V  
CC  
OUTSET Voltage  
V
I
MAX6510 OUTSET, active high  
OUTSET, open drain  
V
0.85 · V  
0.42 · V  
OUTSET  
CC  
0.55 ·V  
CC  
CC  
V
V
= GND  
-5.5  
5.5  
OUTSET  
OUTSET  
OUTSET Current  
MAX6510  
µA  
= V  
CC  
OUTSET  
OUTSET = unconnected  
Note 1: 100% production tested at T = +25°C. Specifications over temperature limits are guaranteed by design.  
+0.1  
A
2
_______________________________________________________________________________________  
Resistor-Programmable  
SOT Temperature Switches  
__________________________________________Typical Operating Characteristics  
ꢀV  
= +5V, R  
= 10kꢀMAX6509 onlyꢁ, T = +25°C, unless otherwise noted.ꢁ  
CC  
PULL-UP  
A
R
vs. TEMPERATURE  
(T = -40°C TO 0°C)  
A
SET  
SUPPLY CURRENT vs. TEMPERATURE  
50  
45  
40  
35  
30  
25  
20  
15  
10  
160  
V
= +5V  
CC  
150  
140  
130  
120  
110  
100  
90  
V
= +3.3V  
CC  
V
= +2.7V  
CC  
R
= 0Ω  
SET  
OUTSET = GND (MAX6510)  
-50 -25  
0
25  
50  
75 100 125  
-40 -35 -30 -25 -20 -15 -10 -5  
0
TEMPERATURE (°C)  
TEMPERATURE (°C)  
R
vs. TEMPERATURE  
(T = 0°C TO +125°C)  
SET  
A
TRIP THRESHOLD OFFSET vs.  
TEMPERATURE  
0.20  
0.15  
0.10  
0.05  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= +2.7V  
CC  
V
= +3.3V  
CC  
V
CC  
= +5V  
-0.05  
-0.10  
-0.15  
-0.20  
V
= +3.3V  
CC  
V
= +2.7V  
0
CC  
0
20  
40  
60  
80 100 120 140  
-50 -25  
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TRIP POINT ERROR vs.  
SET TEMPERATURE  
HYSTERESIS vs. TEMPERATURE  
12  
10  
8
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
= +5V  
SET  
CC  
1% R  
HYST = V  
CC  
SET RESISTOR TEMPCO  
6
200ppm  
R
SET  
100ppm  
4
HYST = GND  
2
50ppm  
50  
0
-40 -25  
0
25  
50  
75 100 125  
-40 -25  
0
25  
75  
100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
3
Resistor-Programmable  
SOT Temperature Switches  
Pin Description  
PIN  
NAME  
MAX6509 MAX6510  
FUNCTION  
1
2
3
1
2
SET  
GND  
OUT  
Temperature Set Point. Connect an external 1% resistor from SET to GND to set trip point.  
Ground  
Open-Drain Output. Reset to high impedance during power-on.  
OUT,  
OUT  
Open-Drain with Internal Pull-Up Resistor, Active-High, or Active-Low Output.  
See Table 1. Reset to deassert during power-on.  
3
4
5
4
6
HYST  
Hysteresis Selection. Hysteresis is 10°C for HYST = V , 2°C for HYST = GND.  
CC  
V
CC  
Power-Supply Input  
Trilevel Control Input:  
OUTSET = V  
OUTSET = GND sets OUT to active low.  
sets OUT to active high.  
CC  
5
OUTSET  
OUTSET = Unconnected sets OUT to open drain with internal pull-up resistor.  
Hysteresis Input  
Detailed Description  
The HYST pin is a CMOS-compatible input that selects  
The MAX6509/MAX6510 fully integrated temperature  
switches incorporate two temperature-dependent refer-  
ences and one comparator. One reference exhibits a  
positive temperature coefficient, and the other has a  
negative temperature coefficient. The temperature at  
which the two reference voltages are equal determines  
the temperature trip point. Pin-selectable 2°C or 10°C  
hysteresis keeps the output from oscillating when the  
temperature is close to the threshold. The MAX6509  
has an active-low, open-drain output structure that can  
only sink current. The MAX6510 has three different out-  
put options from which to choose ꢀTable 1ꢁ.  
hysteresis at either a high level ꢀ10°C for HYST = V  
CC  
or a low level ꢀ2°C for HYST = GNDꢁ. Hysteresis pre-  
vents the output from oscillating when the temperature  
is near the trip point. Do not leave HYST unconnected.  
Connect HYST to GND or V . Other input voltages  
CC  
cause increased supply current.  
Choose the set-hot temperature ꢀHꢁ or set-cold temper-  
ature ꢀCꢁ option to ensure that the trip point is accurate  
and the hysteresis is in the right direction. A MAX6509  
or MAX6510 with the H suffix will first trip at the correct  
point when temperature is increasing. For example, a  
MAX6509HAUK-T or MAX6510HAUT-T with its trip point  
set to 100°C will assert when its temperature rises  
above +100°C, and will not deassert until its tempera-  
ture drops below +100°C minus the selected hysteresis  
value ꢀe.g., +98°C if 2°C hysteresis is chosenꢁ. Con-  
versely, if the trip temperature of a MAX6509CAUK-T or  
MAX6510CAUT-T is -40°C, the output asserts at  
-40°C as temperature falls, and deasserts when tem-  
perature rises above -40°C plus the hysteresis value  
ꢀe.g., -38°C if 2°C hysteresis is chosenꢁ as shown in  
Figure 4.  
The MAX6509/MAX6510 are programmable for a wide  
range of temperature thresholds from -40°C to +125°C.  
The temperature threshold is set by an external resistor  
between SET and GND. The MAX6509 output easily  
interfaces with a microprocessor ꢀµPꢁ reset input  
ꢀFigure 2ꢁ. The MAX6510 output is intended for applica-  
tions such as driving a fan control switch ꢀFigure 3ꢁ.  
Table 1. OUTSET-Selectable Outputs  
OUTSET  
OUT  
Connected to V  
Active high  
Active low  
CC  
Output Selection  
The MAX6509 provides an open-drain output. The  
MAX6510 features three output options selectable by  
OUTSET ꢀTable 1ꢁ.  
Connected to GND  
Open drain with internal  
pull-up resistor  
Unconnected  
4
_______________________________________________________________________________________  
Resistor-Programmable  
SOT Temperature Switches  
MAX6509  
WITH A PULL-UP RESISTOR  
V
OUT  
OUT  
NEGATIVE  
TEMPCO  
REFERENCE  
POSITIVE  
TEMPCO  
REFERENCE  
HYST  
NETWORK  
HYST  
TEMP  
T
TH  
HYSTERESIS*  
MAX6509HAUK-T  
V
OUT  
MAX6510  
OUT  
NEGATIVE  
TEMPCO  
REFERENCE  
POSITIVE  
TEMPCO  
REFERENCE  
HYST  
NETWORK  
HYST  
TEMP  
T
TH  
OUTSET = V  
CC  
HYSTERESIS*  
MAX6510HAUT-T  
MAX6509  
WITH A PULL-UP RESISTOR  
V
OUT  
OUT  
NEGATIVE  
TEMPCO  
REFERENCE  
POSITIVE  
TEMPCO  
REFERENCE  
HYST  
NETWORK  
HYST  
TEMP  
T
TH  
HYSTERESIS*  
MAX6509CAUK-T  
MAX6510  
OUT  
OUT  
NEGATIVE  
TEMPCO  
REFERENCE  
POSITIVE  
TEMPCO  
REFERENCE  
HYST  
NETWORK  
HYST  
TEMP  
T
TH  
OUTSET = V  
CC  
HYSTERESIS*  
MAX6510CAUT-T  
*HYSTERESIS IS 10°C FOR HYST = V AND 2°C FOR HYST = GND.  
CC  
Figure 1. Block and Functional Diagrams  
_______________________________________________________________________________________  
5
Resistor-Programmable  
SOT Temperature Switches  
+3.3V  
+5V  
V
V
HYST  
SET  
CC  
CC  
R
V
V
CC  
PULL-UP  
100k  
OUTSET  
CC  
µP  
FAN  
HEAT  
R
µP  
MAX6510  
MAX6509  
INT  
SET  
SHUTDOWN  
OR  
OUT  
SET  
GND  
OUT  
RESET  
HYST  
GND  
R
SET  
HEAT  
Figure 2. Microprocessor Alarm/Reset  
Figure 3. Overtemperature Fan Control  
Applications Information  
100°C  
Thermal Considerations  
The MAX6509/MAX6510 supply current is typically  
32µA. When used to drive high-impedance loads, the  
devices dissipate negligible power; therefore, the die  
temperature is essentially the same as the package  
temperature. The key to accurate temperature monitor-  
ing is good thermal contact between the MAX6509/  
MAX6510 package and the device being monitored. In  
some applications, the SOT23-5 and SOT23-6 pack-  
ages may be small enough to fit underneath a socketed  
µP, allowing the device to monitor the µP’s temperature  
directly. Use the monitor’s output to reset the µP, assert  
an interrupt, or trigger an external alarm. Accurate tem-  
perature monitoring depends on the thermal resistance  
between the device being monitored and the  
MAX6509/MAX6510 die.  
98°C  
TEMPERATURE  
-38°C  
THYST = 2°C  
-40°C  
OUT  
SET HOT  
MAX6509H  
100°C  
98°C  
OUT  
SET COLD  
MAX6510C  
OUTSET = GND  
-40°C  
-38°C  
The rise in die temperature due to self-heating is given  
by the following formula:  
Figure 4. Temperature Response  
T = P  
· θ  
JA  
J
DISS  
and a set-hot device creates an over/undertemperature  
detector. The MAX6509/MAX6510 are designed to form  
two complementary pairs, each containing one cold trip  
point output and one hot trip point output. The assertion  
of either output alerts the system to an out-of-range tem-  
perature. The MAX6510 push-pull output stages can be  
ORed to produce a thermal out-of-range alarm. More  
favorably, a MAX6509HAUK-T and MAX6509CAUK-T  
can be directly wire-ORed with a single external resis-  
tor to accomplish the same task ꢀFigure 5ꢁ.  
where P  
is the power dissipated by the  
MAX6509/MAX6510, and θ is the package’s thermal  
DISS  
JA  
resistance. The typical thermal resistance is 115°C/W  
for the SOT23-6 package. To limit the effects of self-  
heating, minimize the output currents. For example, if  
the MAX6510 sinks 5mA, the output voltage is guaran-  
teed to be less than 0.3V; therefore, an additional  
1.5mW of power is dissipated within the IC. This corre-  
sponds to a 0.173°C shift in the die temperature in the  
SOT23-6.  
The temperature window ꢀalarms or detectors as in  
Figure 5ꢁ can be used to accurately determine when a  
device’s temperature falls out of a programmed range,  
for example -3°C to +75°C as shown in Figure 5. The  
thermal overrange signal can be used to assert a ther-  
Temperature-Window Detector  
The MAX6509/MAX6510 temperature switch outputs  
assert when the die temperature is outside the pro-  
grammed range. Combining the outputs of a set-cold  
6
_______________________________________________________________________________________  
Resistor-Programmable  
SOT Temperature Switches  
+5V  
+5V  
V
CC  
V
V
CC  
OUTSET  
R
30k  
CC  
SET  
MAX6510HAUT  
GND  
TEMPERATURE  
FAULT  
MAX6510HAUT  
HEAT  
OVERTEMP  
OUT  
SET  
GND  
HYST  
OUT  
OUTSET  
OUT OF RANGE  
HYST  
V
CC  
R
30k  
SET  
µP  
OUT  
V
CC  
UNDERTEMP  
FAN  
CONTROL  
MAX6509CAUT  
OUTSET  
V
CC  
HEAT  
V
CC  
OUT  
HYST  
SET  
HYST  
OUTSET  
V
CC  
GND  
R
100k  
SET  
MAX6510HAUT  
SET  
R
GND  
SET  
+5V  
55k  
R
PULL-UP  
100k  
OUT OF RANGE  
Figure 6. Low-Power, High-Reliability, Fail-Safe Temperature  
Monitor  
V
V
CC  
CC  
OUT  
OUT  
R
30k  
SET  
Set-Point Resistor  
To set the trip-point temperature, connect a resistor  
between SET and GND. The resistor’s value is deter-  
MAX6509HAUK  
MAX6509CAUK  
GND  
SET  
GND  
HYST  
HYST  
mined either from the R  
vs. Temperature graphs  
SET  
R
100k  
SET  
ꢀsee Typical Operating Characteristicsꢁ or from the  
equations below.  
To set the temperature trip point from -40°C to 0°C, use  
the following equation:  
Figure 5. Temperature-Window Detector  
R
SET  
= [ꢀ1.3258 · 105ꢁ / ꢀT+1.3ꢁ] - 310.1693 -  
[ꢀ5.7797 · 106ꢁ / ꢀT+1.3ꢁ2]  
mal shutdown, power-up, recalibration, or other tem-  
perature-dependent function.  
To set the temperature trip point from 0°C to +125°C,  
use the following equation:  
Low-Cost, Fail-Safe Temperature Monitor  
In high-performance/high-reliability applications, multi-  
ple temperature monitoring is important. The high-level  
integration and low cost of the MAX6509/MAX6510  
facilitate the use of multiple temperature monitors to  
increase system reliability. Figure 6 shows two  
MAX6510s with different temperature thresholds. This  
ensures that fault conditions that can overheat the mon-  
itored device cause no permanent damage. The first  
temperature monitor activates the fan when the die  
temperature exceeds +45°C. The second MAX6510  
triggers a system shutdown if the die temperature  
reaches +75°C. The second temperature monitor’s out-  
put asserts when a wide variety of destructive fault con-  
ditions occur, including latchups, short circuits, and  
cooling-system failures.  
R
= [ꢀ8.3793 · 104ꢁ / T] - 211.3569 +  
[ꢀ1.2989 · 105ꢁ / T2]  
SET  
where T is the trip temperature in Kelvin.  
Chip Information  
TRANSISTOR COUNT: 234  
_______________________________________________________________________________________  
7
Resistor-Programmable  
SOT Temperature Switches  
________________________________________________________Package Information  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
8 _____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2000 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX6509CAUK

Analog Circuit, 1 Func, PDSO5, MO-178AA, SOT-23, 5 PIN
MAXIM

MAX6509CAUK+T

Analog Circuit, 1 Func, PDSO5, ROHS COMPLIANT, MO-178AA, SOT-23, 5 PIN
MAXIM

MAX6509CAUK-T

Resistor-Programmable SOT Temperature Switches
MAXIM

MAX6509HAUK

Analog Circuit, 1 Func, PDSO5, MO-178AA, SOT-23, 5 PIN
MAXIM

MAX6509HAUK+T

Analog Circuit, 1 Func, PDSO5, ROHS COMPLIANT, MO-178AA, SOT-23, 5 PIN
MAXIM

MAX6509HAUK-T

Resistor-Programmable SOT Temperature Switches
MAXIM

MAX6509_03

Resistor-Programmable SOT Temperature Switches
MAXIM

MAX650AC/D

Voltage-Mode SMPS Controller
MAXIM

MAX650ACPD

Voltage-Mode SMPS Controller
MAXIM

MAX650ACWE-T

Switching Regulator, 0.25A, 25kHz Switching Freq-Max, PDSO16, 0.300 INCH, SOIC-16
MAXIM

MAX650AEPD

Voltage-Mode SMPS Controller
MAXIM