MAX651 [MAXIM]

5V/3.3V/3V or Adjustable.High-Efficiency.Low-I<sub>Q</sub>.Step-Down DC-DC Controllers ; 5V / 3.3V / 3V或Adjustable.High - Efficiency.Low -I \u003cSUB \u003e Q \u003c / SUB\u003e .STEP ,降压型DC -DC控制器\n
MAX651
型号: MAX651
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

5V/3.3V/3V or Adjustable.High-Efficiency.Low-I<sub>Q</sub>.Step-Down DC-DC Controllers
5V / 3.3V / 3V或Adjustable.High - Efficiency.Low -I \u003cSUB \u003e Q \u003c / SUB\u003e .STEP ,降压型DC -DC控制器\n

控制器
文件: 总16页 (文件大小:267K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0225; Rev 3; 9/97  
5 V/3 .3 V/3 V o r Ad ju s t a b le , Hig h -Effic ie n c y,  
Lo w I , S t e p -Do w n DC-DC Co n t ro lle rs  
Q
491/MAX652  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
More than 90% Efficiency (10mA to 1.5A Loads)  
More than 12.5W Output Power  
The MAX649/MAX651/MAX652 BiCMOS, step-down DC-  
DC switching controllers provide high efficiency over  
three decades of load current. A unique, current-limited  
pulse-frequency-modulated (PFM) control scheme gives  
these devices the benefits of pulse-width-modulation  
(PWM) converters (high efficiency at heavy loads), while  
using only 100µA of supply current (vs. 2mA to 10mA for  
PWM converters). The result is high efficiency over loads  
ranging from 10mA to more than 2.5A.  
100µA Max Quiescent Supply Current  
5µA Max Shutdown Supply Current  
Less than 1.0V Dropout Voltage  
16.5V Max Input Voltage  
5V (MAX649), 3.3V (MAX651), 3V (MAX652),  
or Adjustable Output Voltage  
These devices use miniature external components.  
Their high switching frequency (up to 300kHz) allows  
for less than 9mm diameter surface-mount inductors.  
Current-Limited Control Scheme  
Up to 300kHz Switching Frequency  
The MAX649/MAX651/MAX652 have dropout voltages  
less than 1V and accept input voltages up to 16.5V.  
Outp ut volta g e s a re p re s e t a t 5V (MAX649), 3.3V  
(MAX651), and 3V (MAX652). These controllers can  
also be adjusted to any voltage from 1.5V to the input  
voltage by using two resistors.  
______________Ord e rin g In fo rm a t io n  
PART  
TEMP. RANGE  
0°C to +70°C  
PIN-PACKAGE  
8 Plastic DIP  
8 SO  
These step-down controllers drive external P-channel  
MOSFETs at loads greater than 10W. If less power is  
required, use the MAX639/MAX640/MAX653 step-down  
c onve rte rs with on-c hip FETs , whic h a llow up to a  
225mA load current.  
MAX649CPA  
MAX649CSA  
MAX649C/D  
MAX649EPA  
MAX649ESA  
MAX649MJA  
0°C to +70°C  
0°C to +70°C  
Dice*  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
8 Plastic DIP  
8 SO  
________________________Ap p lic a t io n s  
5V-to-3.3V Green PC Applications  
8 CERDIP**  
Ordering Information continued at end of data sheet.  
* Dice are tested at T = +25°C.  
**Contact factory for availability and processing to MIL-STD-883.  
High-Efficiency Step-Down Regulation  
Minimum-Component DC-DC Converters  
Battery-Powered Applications  
A
__________Typ ic a l Op e ra t in g Circ u it  
__________________P in Co n fig u ra t io n  
INPUT  
4V TO 16.5V  
TOP VIEW  
V+  
OUT  
FB  
1
2
3
4
8
7
6
5
GND  
EXT  
CS  
MAX651  
SHDN  
CS  
ON/OFF  
MAX649  
MAX651  
MAX652  
SHDN  
REF  
EXT  
P
OUTPUT  
3.3V  
V+  
DIP/SO  
OUT  
REF  
FB GND  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 1-800-835-8769.  
5 V/3 .3 V/3 V o r Ad ju s t a b le , Hig h -Effic ie n c y,  
Lo w I , S t e p -Do w n DC-DC Co n t ro lle rs  
Q
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage, V+ to GND.......................................-0.3V, +17V  
REF, SHDN, FB, CS, EXT, OUT.......................-0.3V, (V+ + 0.3V)  
Operating Temperature Ranges  
MAX649C_A, MAX65_C_A ..................................0°C to +70°C  
MAX649E_A, MAX65_E_A ................................-40°C to +85°C  
MAX649MJA, MAX65_MJA ............................-55°C to +125°C  
Storage Temperature Range .............................-65°C to +160°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
Continuous Power Dissipation (T = +70°C)  
A
Plastic DIP (derate 9.09mW/°C above +70°C) .............727mW  
SO (derate 5.88mW/°C above +70°C)..........................471mW  
CERDIP (derate 8.00mW/°C above +70°C)..................640mW  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V+ = 5V, T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
A
MIN  
PARAMETER  
SYMBOL  
V+  
CONDITIONS  
MIN  
TYP  
MAX  
16.5  
100  
UNITS  
V+ Input Voltage Range  
4.0  
V
V+ = 16.5V, SHDN 0.4V (operating, switch off)  
V+ = 16.5V, SHDN 1.6V (shutdown)  
V+ = 10V, SHDN 1.6V (shutdown)  
MAX649C, MAX65_C  
80  
4
Supply Current  
I
Q
µA  
V
2
5
1.470  
1.4625  
1.455  
1.5  
1.5  
1.5  
1.530  
1.5375  
1.545  
±50  
FB Trip Point  
MAX649E, MAX65_E  
MAX649M, MAX65_M  
MAX649C, MAX65_C  
491/MAX652  
FB Input Current  
Output Voltage  
Reference Voltage  
I
MAX649E, MAX65_E  
±70  
nA  
V
FB  
MAX649M, MAX65_M  
±90  
MAX649, V+ = 6V to 16.5V  
4.80  
3.17  
5.0  
3.3  
3.0  
1.5  
1.5  
1.5  
4
5.20  
3.43  
3.12  
1.530  
1.5375  
1.545  
10  
Circuit of  
Figure 1  
V
OUT  
MAX651, V+ = 4V to 16.5V  
MAX652, V+ = 4V to 16.5V  
2.88  
MAX649C, MAX65_C, I  
= 0  
= 0  
1.470  
1.4625  
1.455  
REF  
REF  
V
REF  
MAX649E, MAX65_E, I  
V
MAX649M, MAX65_M, I  
= 0  
REF  
MAX649C/E, MAX65_C/E  
MAX649M, MAX65_M  
0 I  
100µA,  
REF  
REF Load Regulation  
REF Line Regulation  
mV  
sourcing only  
4
15  
4V V+ 16.5V  
40  
100  
µV/V  
MAX649, 6V V+ 16V,  
2.6  
1.7  
1.9  
I
= 1A  
LOAD  
MAX651, 4.5V V+ 16V,  
= 1A  
Output Voltage  
Line Regulation  
Circuit of  
Figure 1  
mV/V  
I
LOAD  
MAX652, 4V V+ 16V,  
= 1A  
I
LOAD  
2
_______________________________________________________________________________________  
5 V/3 .3 V/3 V o r Ad ju s t a b le , Hig h -Effic ie n c y,  
Lo w I , S t e p -Do w n DC-DC Co n t ro lle rs  
Q
491/MAX652  
ELECTRICAL CHARACTERISTICS (continued)  
(V+ = 5V, T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MAX649, 0 I  
MIN  
TYP  
MAX  
UNITS  
1.5A,  
1.5A,  
1.5A,  
LOAD  
LOAD  
LOAD  
-47  
V
IN  
= 10V  
MAX651, 0 I  
Output Voltage  
Load Regulation  
Circuit of  
Figure 1  
-45  
-45  
92  
mV/A  
V
IN  
= 5V  
MAX652, 0 I  
= 5V  
V
IN  
MAX649, V+ = 10V,  
= 1A  
I
LOAD  
MAX651, V+ = 5V,  
= 1A  
Circuit of  
Figure 1  
89  
Efficiency  
%
I
LOAD  
MAX652, V+ = 5V,  
= 1A  
88  
I
LOAD  
SHDN Input Current  
V+ = 16.5V, SHDN = 0V or V+  
4V V+ 16.5V  
1
µA  
V
SHDN Input Voltage High  
SHDN Input Voltage Low  
V
1.6  
IH  
V
IL  
4V V+ 16.5V  
0.4  
240  
260  
±1  
V
MAX649C/E, MAX65_C/E  
MAX649M, MAX65_M  
180  
160  
210  
210  
Current-Limit Trip  
Level (V+ to CS)  
V
CS  
4V V+ 16.5V  
4V V+ 16.5V  
V+ = 12V  
mV  
µA  
µs  
CS Input Current  
Switch Maximum  
On-Time  
t
ON  
(max)  
12  
16  
20  
Switch Minimum  
Off-Time  
t
OFF  
(min)  
V+ = 12V  
1.8  
2.3  
2.8  
µs  
EXT Rise Time  
EXT Fall Time  
C
C
= 0.001µF, V+ = 12V  
= 0.001µF, V+ = 12V  
50  
50  
ns  
ns  
EXT  
EXT  
_______________________________________________________________________________________  
3
5 V/3 .3 V/3 V o r Ad ju s t a b le , Hig h -Effic ie n c y,  
Lo w I , S t e p -Do w n DC-DC Co n t ro lle rs  
Q
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(T = +25°C, unless otherwise noted.)  
A
SHUTDOWN CURRENT  
vs. TEMPERATURE  
MAX649 MAXIMUM LOAD CURRENT  
vs. SUPPLY VOLTAGE  
SUPPLY CURRENT vs. TEMPERATURE  
80  
4.0  
2500  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
78  
76  
74  
72  
70  
68  
V+ = 16.5V  
V+ = 10V  
2000  
1500  
1000  
500  
0
V+ = 16.5V  
V+ = 8V  
V
= 5V  
OUT  
CIRCUIT OF FIGURE 1  
V+ = 4V  
V+ = 4V  
-60 -40 -20  
66  
0
-60 -40 -20  
0
20 40 60 80 100 120 140  
0
20 40 60 80 100 120 140  
0
1 2 3 4 5 6 7 8 9 10 11 12 13 1415  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
MAX649  
MAX652  
MAX651  
EFFICIENCY vs. LOAD CURRENT  
EFFICIENCY vs. LOAD CURRENT  
EFFICIENCY vs. LOAD CURRENT  
100  
100  
100  
90  
80  
90  
80  
90  
80  
491/MAX652  
TOP TO BOTTOM:  
TOP TO BOTTOM:  
TOP TO BOTTOM:  
70  
60  
70  
60  
70  
60  
V
IN  
= 4.3V  
V
IN  
= 6V  
V
V
IN  
= 4.3V  
= 5V  
IN  
V
IN  
= 5V  
V
IN  
= 8V  
V
IN  
= 8V  
V
= 10V  
= 12V  
= 15V  
V
IN  
= 8V  
IN  
50  
40  
50  
40  
50  
40  
V
= 10V  
= 12V  
= 15V  
IN  
V
V
= 10V  
= 12V  
= 15V  
IN  
IN  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
30  
20  
30  
20  
30  
20  
10  
0
V
= 5V  
10  
0
OUT  
10  
0
V = 3V  
OUT  
V
= 3.3V  
1m  
OUT  
100µ  
1m  
10m  
100m  
1
100µ  
1m  
10m  
100m  
1
100µ  
10m  
100m  
1
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
SWITCH ON-TIME  
vs. TEMPERATURE  
SWITCH ON-TIME/OFF-TIME RATIO  
vs. TEMPERATURE  
SWITCH OFF-TIME  
vs. TEMPERATURE  
17  
8.0  
2.5  
2.0  
1.5  
V+ = 5V  
V+ = 5V  
V+ = 5V  
7.8  
7.6  
7.4  
7.2  
7.0  
6.8  
6.6  
6.4  
6.2  
6.0  
16  
15  
-60 -40 -20  
0
20 40 60 80 100 120  
-60 -40 -20  
0
20 40 60 80 100 120 140  
-60 -40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4
_______________________________________________________________________________________  
5 V/3 .3 V/3 V o r Ad ju s t a b le , Hig h -Effic ie n c y,  
Lo w I , S t e p -Do w n DC-DC Co n t ro lle rs  
Q
491/MAX652  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(T = +25°C, unless otherwise noted.)  
A
DROPOUT VOLTAGE  
vs. LOAD CURRENT  
EXT RISE AND FALL TIMES  
vs. TEMPERATURE (1nF)  
EXT RISE AND FALL TIMES  
vs. TEMPERATURE (5nF)  
130  
500  
450  
1000  
900  
800  
700  
600  
MAX649, V = 5V  
OUT  
C
EXT  
= 5nF  
C
EXT  
= 1nF  
V+ = 5V, t  
120  
RISE  
MAX652, V = 3V  
OUT  
110  
100  
90  
V+ = 5V, t  
RISE  
400  
350  
300  
250  
MAX651, V = 3.3V  
OUT  
V+ = 12V, t  
RISE  
80  
V+ = 5V, t  
FALL  
500  
400  
300  
200  
100  
0
70  
V+ = 5V, t  
FALL  
60  
50  
40  
30  
20  
200  
150  
100  
50  
V+ = 12V, t  
RISE  
V+ = 12V, t  
FALL  
V+ = 12V, t  
FALL  
-60 -40 -20  
0
20 40 60 80 100 120 140  
-60 -40 -20  
0
20 40 60 80 100 120 140  
0
0.2 0.4 0.6 0.8 1.0  
LOAD CURRENT (A)  
1.4 1.6  
1.2  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
REFERENCE OUTPUT VOLTAGE  
vs. TEMPERATURE  
DROPOUT VOLTAGE  
vs. TEMPERATURE  
CS TRIP LEVEL  
vs. TEMPERATURE  
1.506  
1.504  
1.502  
1.500  
1.498  
1.496  
1.494  
1100  
235  
230  
225  
220  
215  
210  
205  
200  
195  
190  
185  
MAX649  
1000  
900  
800  
700  
600  
MAX652  
MAX651  
I
= 1A  
LOAD  
CIRCUIT OF FIGURE 1  
1.492  
-60 -40 -20  
0
20 40 60 80 100 120 140  
-60 -40 -20  
0
20 40 60 80 100 120 140  
-60 -40 -20  
0
20 40 60 80 100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
REFERENCE OUTPUT RESISTANCE  
vs. TEMPERATURE  
250  
I
= 10µA  
200  
150  
100  
50  
REF  
I
REF  
= 50µA  
I
= 100µA  
REF  
0
-60 -40 -20  
0
20 40 60 80 100 120 140  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
5
5 V/3 .3 V/3 V o r Ad ju s t a b le , Hig h -Effic ie n c y,  
Lo w I , S t e p -Do w n DC-DC Co n t ro lle rs  
Q
_____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
MAX649  
MAX649  
LOAD-TRANSIENT RESPONSE  
LINE-TRANSIENT RESPONSE  
A
A
B
B
250µs/div  
250µs/div  
A: LOAD CURRENT (100mA & 1A), 500mA/div  
B: 5V OUTPUT VOLTAGE, AC COUPLED, 50mV/div  
I
= 1A  
LOAD  
A: INPUT VOLTAGE (7V & 12V), 5V/div  
B: 5V OUT, AC COUPLED, 100mV/div  
MAX649  
SHUTDOWN RESPONSE TIME  
A
491/MAX652  
B
1ms/div  
I
= 1A  
LOAD  
A: SHDN INPUT VOLTAGE (0V & 5V), 2V/div  
B: 5V OUTPUT VOLTAGE, 2V/div  
______________________________________________________________P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
Sense input for fixed 5V, 3.3V, or 3V output operation. OUT is internally connected to the on-chip voltage divider.  
Although it is connected to the output of the circuit, the OUT pin does not supply current.  
OUT  
1
Feedback input. Connect to GND for fixed-output operation. Connect a resistor divider between OUT, FB,  
and GND for adjustable-output operation. See Setting the Output Voltage section.  
2
3
FB  
Active-high TTL/CMOS logic-level input. Part is placed in shutdown when SHDN is driven high. In shutdown mode,  
the reference and the external MOSFET are turned off, and OUT = 0V. Connect to GND for normal operation.  
SHDN  
4
5
REF  
V+  
1.5V reference output that can source 100µA. Bypass with 0.1µF.  
Positive power-supply input  
Current-sense input. Connect current-sense resistor between V+ and CS. When the voltage across the  
resistor equals the current-limit trip level, the external MOSFET is turned off.  
6
CS  
7
8
EXT  
Gate drive for external P-channel MOSFET. EXT swings between V+ and GND.  
Ground  
GND  
6
_______________________________________________________________________________________  
5 V/3 .3 V/3 V o r Ad ju s t a b le , Hig h -Effic ie n c y,  
Lo w I , S t e p -Do w n DC-DC Co n t ro lle rs  
Q
491/MAX652  
is out of regulation. However, unlike traditional PFM  
c onve rte rs , s witc hing is a c c omp lis he d throug h the  
combination of a peak current limit and a pair of one-  
shots that set the maximum switch on-time (16µs) and  
minimum switch off-time (2.3µs). Once off, the minimum  
off-time one-shot holds the switch off for 2.3µs. After  
this minimum time, the switch either 1) stays off if the  
output is in regulation, or 2) turns on again if the output  
is out of regulation.  
V
IN  
C4  
C1  
0.1µF 100µF  
5
V+  
R1  
0.1Ω  
MAX649  
MAX651  
MAX652  
6
7
CS  
P1  
Si9430*  
OUTPUT  
@ 1.5A  
3
4
The MAX649/MAX651/MAX652 also limit the peak induc-  
tor current, which allows them to run in continuous-con-  
duction mode and maintain high efficiency with heavy loads  
(Figure 3a). This current-limiting feature is a key compo-  
nent of the control circuitry. Once turned on, the switch  
stays on until either 1) the maximum on-time one-shot turns  
it off (16µs later), or 2) the current limit is reached.  
SHDN  
EXT  
L1  
22µH**  
1
REF  
OUT  
FB  
GND  
2
8
C3  
0.1µF  
D1  
C2  
330µF  
NSQ03A02L  
To increase light-load efficiency, the current limit for  
the first two pulses is set to half the peak current limit.  
If those pulses bring the output voltage into regulation,  
the voltage comparator holds the MOSFET off and the  
current limit remains at half its peak. If the output vol-  
ta g e is s till out of re g ula tion a fte r two p uls e s , the  
current limit for the next pulse is raised to its peak (Figure  
3b). Calculate the peak current limit by dividing the  
Current-Limit Trip Level (see Electrical Characteristics)  
by the value of the current-sense resistor.  
*SILICONIX SURFACE-MOUNT MOSFET  
**SUMIDA CDR125-220  
Figure 1. Test Circuit  
_______________De t a ile d De s c rip t io n  
The MAX649/MAX651/MAX652 a re BiCMOS, s te p -  
down, switch-mode power-supply controllers that pro-  
vide fixed outputs of 5V, 3.3V, and 3V, respectively.  
Their unique control scheme combines the advantages  
of pulse-frequency-modulation (low supply current)  
and pulse-width-modulation (high efficiency at high  
loads). An external P-channel power MOSFET allows  
peak currents in excess of 3A, increasing the output  
current capability over previous PFM devices. Figure 2  
is the block diagram.  
S h u t d o w n Mo d e  
When SHDN is high, the MAX649/MAX651/MAX652 enter  
shutdown mode. In this mode, the internal biasing circuit-  
ry is turned off (including the reference) and the supply  
current drops to less than 5µA. EXT goes high, turning off  
the external MOSFET. SHDN is a TTL/CMOS logic-level  
input. Connect SHDN to GND for normal operation.  
Qu ie s c e n t Cu rre n t  
In normal operation, the quiescent current is less than  
100µA. However, this current is measured by forcing  
the external transistor switch off. In an actual applica-  
tion, even with no load, additional current is drawn to  
supply external feedback resistors (if used) and the  
diode and capacitor leakage currents. In the circuit of  
The MAX649/MAX651/MAX652 offe r thre e ma in  
improvements over prior solutions:  
1) The converters operate with tiny (less than 9mm  
d ia me te r) s urfa c e -mount ind uc tors , d ue to the ir  
300kHz switching frequency.  
Figure 1, with V+ at 5V and V  
quiescent current is 90µA.  
at 3.3V, the typical  
OUT  
2) The c urre nt-limite d PFM c ontrol s c he me a llows  
greater than 90% efficiencies over a wide range of  
load currents (1.0mA to 1.5A).  
EXT Drive Vo lt a g e Ra n g e  
EXT swings from V+ to GND and provides the drive out-  
put for an external P-channel power MOSFET.  
3) The maximum supply current is only 100µA.  
P FM Co n t ro l S c h e m e  
The MAX649/MAX651/MAX652 use a proprietary, cur-  
rent-limited PFM control scheme. As with traditional  
PFM converters, the external power MOSFET is turned  
on when the voltage comparator senses that the output  
Mo d e s o f Op e ra t io n  
Whe n d e live ring hig h outp ut c urre nts , the MAX649/  
MAX651/MAX652 op e ra te in c ontinuous-c ond uc tion  
mode (CCM). In this mode, current always flows in the  
_______________________________________________________________________________________  
7
5 V/3 .3 V/3 V o r Ad ju s t a b le , Hig h -Effic ie n c y,  
Lo w I , S t e p -Do w n DC-DC Co n t ro lle rs  
Q
V+  
FB  
DUAL-MODE™  
COMPARATOR  
MAX649  
MAX651  
MAX652  
SHDN  
REF  
ERROR  
COMPARATOR  
OUT  
1.5V  
REFERENCE  
N
MINIMUM  
Q
OFF-TIME TRIG  
ONE-SHOT  
FROM V+  
EXT  
491/MAX652  
S
Q
MAXIMUM  
TRIG ON-TIME  
ONE-SHOT  
Q
R
CURRENT  
COMPARATOR  
CS  
CURRENT  
CONTROL CIRCUITS  
0.2V  
(FULL CURRENT)  
0.1V  
(HALF CURRENT)  
FROM V+  
GND  
Figure 2. Block Diagram  
8
_______________________________________________________________________________________  
5 V/3 .3 V/3 V o r Ad ju s t a b le , Hig h -Effic ie n c y,  
Lo w I , S t e p -Do w n DC-DC Co n t ro lle rs  
Q
491/MAX652  
2.5A  
2.0A  
1.5A  
1A  
1.5A  
1.0A  
0.5A  
0A  
0A  
2µs/div  
CIRCUIT OF FIGURE 1, R1 = 150mΩ  
5µs/div  
CIRCUIT OF FIGURE 1, R1 = 100mΩ  
V+ = 10V, I  
= 1.3A  
V+ = 10V, I  
= 1.4A  
LOAD  
LOAD  
Figure 3a. MAX649 Continuous-Conduction Mode, Heavy  
Load-Current Waveform (500mA/div)  
Figure 3b. MAX649 Light/Medium Load-Current Waveform  
(500mA/div)  
inductor, and the control circuit adjusts the switch duty  
c yc le to ma inta in re g ula tion without e xc e e d ing the  
s witc h c urre nt c a p a b ility (Fig ure 3a ). This p rovid e s  
excellent load-transient response and high efficiency.  
V
IN  
C4  
C1  
0.1µF 100µF  
5
V+  
In d is c ontinuous -c ond uc tion mod e (DCM), c urre nt  
through the inductor starts at zero, rises to a peak  
value, then ramps down to zero. Although efficiency is  
still excellent, the output ripple increases slightly, and  
the switch waveforms exhibit ringing (the self-resonant  
frequency of the inductor). This ringing is to be expect-  
ed and poses no operational problems.  
R1  
0.1Ω  
MAX649  
MAX651  
MAX652  
6
7
CS  
P1  
Si9430  
L1  
22µH  
3
4
OUTPUT  
@ 1.5A  
SHDN  
EXT  
1
2
REF  
OUT  
FB  
Dro p o u t  
The MAX649/MAX651/MAX652 a re s a id to b e in  
d rop out whe n the inp ut volta g e (V+) is low e noug h  
tha t the outp ut d rop s b e low the minimum outp ut  
voltage specification (see Electrical Characteristics ).  
The d rop out volta g e is the d iffe re nc e b e twe e n the  
inp ut a nd outp ut volta g e whe n d rop out oc c urs .  
Se e the Typ ic a l Op e ra ting Cha ra c te ris tic s for the  
Dropout Voltage vs. Load Current and Dropout Voltage  
vs. Temperature graphs.  
R2  
GND  
8
C2  
C3  
0.1µF  
330µF  
D1  
1N5820  
R3  
150k  
V
OUT  
R2 = R3  
– 1  
(
)
V
REF  
V
= 1.5V  
REF  
Figure 4. Adjustable-Output Operation  
_______________________________________________________________________________________  
9
5 V/3 .3 V/3 V o r Ad ju s t a b le , Hig h -Effic ie n c y,  
Lo w I , S t e p -Do w n DC-DC Co n t ro lle rs  
Q
3.0  
2.5  
3.0  
2.5  
2.0  
1.5  
1.0  
R = 0.06Ω  
S
R = 0.06Ω  
S
R = 0.07Ω  
S
R = 0.07Ω  
S
2.0  
1.5  
R = 0.08Ω  
S
R = 0.08Ω  
S
R = 0.10Ω  
S
R = 0.10Ω  
S
R = 0.12Ω  
S
R = 0.12Ω  
S
R = 0.14Ω  
S
1.0  
R = 0.14Ω  
S
0.5  
0
0.5  
0
MAX649  
MAX651  
V
OUT  
= 5V  
V
OUT  
= 3.3V  
4
5
6
7
8
9
10 11 12 13 14 15 16  
3
3 4 5 7 8 9  
6 10 11 12 13 14 15 16  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 5a. MAX649 Current-Sense Resistor Graph  
Figure 5b. MAX651 Current-Sense Resistor Graph  
__________________De s ig n P ro c e d u re  
S e t t in g t h e Ou t p u t Vo lt a g e  
The MAX649/MAX651/MAX652 are preset for 5V, 3.3V,  
and 3V output voltages, respectively. Tie FB to GND  
for fixed-output operation. They may also be adjusted  
from 1.5V (the reference voltage) to the input voltage,  
us ing e xte rna l re s is tors R2 a nd R3 c onfig ure d a s  
shown in Figure 4. For adjustable-output operation,  
150kis recommended for resistor R3. 150kis a  
good value—high enough to avoid wasting energy, yet  
low enough to avoid RC delays caused by parasitic  
capacitance at FB. R2 is given by:  
3.0  
491/MAX652  
R = 0.06Ω  
S
2.5  
2.0  
1.5  
1.0  
R = 0.07Ω  
S
R = 0.08Ω  
S
R = 0.10Ω  
S
R = 0.12Ω  
S
R = 0.14Ω  
S
0.5  
0
MAX652  
V
OUT  
V
OUT  
= 3.0V  
——— -1  
R2 = R3 x  
[
]
V
REF  
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
INPUT VOLTAGE (V)  
where V  
= 1.5V.  
REF  
When using external resistors, it does no harm to con-  
nect OUT and the output together, or to leave OUT  
unconnected.  
Figure 5c. MAX652 Current-Sense Resistor Graph  
To choose the proper current-sense resistor for a par-  
ticular output voltage, determine the minimum input  
voltage and the maximum load current. Next, referring  
to Figures 5a, 5b, or 5c, using the minimum input volt-  
age, find the curve with the largest sense resistor that  
provides sufficient output current. It is not necessary  
to perform worst-case calculations. These curves take  
into account the worst-case values for sense resistor  
(±5%), inductor (22µH ±10%), diode drop (0.6V), and  
the ICs current-sense trip level; an external MOSFET  
Cu rre n t -S e n s e Re s is t o r S e le c t io n  
The current-sense resistor limits the peak switch cur-  
rent to 210mV/R  
, where R  
is the value of  
SENSE  
SENSE  
the current-sense resistor, and 210mV is the current-  
limit trip level (see Electrical Characteristics).  
To maximize efficiency and reduce the size and cost  
of external components, minimize the peak current.  
However, since the available output current is a func-  
tion of the p e a k c urre nt, the p e a k c urre nt mus t not  
be too low.  
on-resistance of 0.13is assumed for V = -4.5V.  
GS  
10 ______________________________________________________________________________________  
5 V/3 .3 V/3 V o r Ad ju s t a b le , Hig h -Effic ie n c y,  
Lo w I , S t e p -Do w n DC-DC Co n t ro lle rs  
Q
491/MAX652  
Standard wire-wound and metal-film resistors have an  
ind uc ta nc e hig h e noug h to d e g ra d e p e rforma nc e .  
Surface-mount (chip) resistors have very little induc-  
tance and are well suited for use as current-sense  
resistors. A wire resistor made by IRC works well in  
through-hole applications. Because this resistor is a  
band of metal shaped as a U”, its inductance is less  
than 10nH (an order of magnitude less than metal film  
resistors). Resistance values between 5mand 0.1Ω  
are available (see Table 1).  
tors saturation-current rating is greater than I (max).  
LIM  
However, it is generally acceptable to bias the inductor  
into s a tura tion b y a b out 20% (the p oint whe re the  
inductance is 20% below its nominal value).  
The peak current of Figure 1 is 2.35A for a 1.5A output.  
The inductor used in this circuit is specified to drop by  
10% at 2.2A (worst case); a curve provided by the  
manufacturer shows that the inductance typically drops  
by 20% at 3.1A. Using a slightly underrated inductor  
can sometimes reduce size and cost, with only a minor  
impact on efficiency. The MAX649/MAX651/MAX652  
current limit prevents any damage from an underrated  
inductors low inductance at high currents.  
In d u c t o r S e le c t io n  
Practical inductor values range from 10µH to 50µH or more.  
The circuit operates in discontinuous-conduction mode if:  
Table 1 lists inductor types and suppliers for various  
applications. The efficiencies of the listed surface-  
mount inductors are nearly equivalent to those of the  
larger size through-hole versions.  
V
x (R + 1)  
V
D
OUT  
V + ——————— + —— + V  
SW  
R
R
R, the switch on-time/off-time ratio, equals 6.7. V is the  
D
diodes drop, and V  
is the voltage drop across the  
Dio d e S e le c t io n  
The MAX649/MAX651/MAX652s high switching fre-  
quency demands a high-speed rectifier (commonly  
called a catch diode when used in switching-regulator  
circuits). Schottky diodes, such as the 1N5817 through  
1N5822 families (and their surface-mount equivalents),  
are recommended. Choose a diode with an average  
SW  
P-c ha nne l FET. To g e t the full outp ut c a p a b ility in  
discontinuous-conduction mode, choose an inductor  
value no larger than:  
R
x 12µs x (V+ - V - V  
)
SENSE  
SW  
OUT  
L(max) = —————————————————  
V
CS  
current rating equal to or greater than I (max) and a  
LIM  
where V is the current-sense voltage.  
CS  
voltage rating higher than V+(max). For high-tempera-  
ture a p p lic a tions , whe re Sc hottky d iod e s c a n b e  
ina d e q ua te b e c a use of high le a ka g e c urre nts, use  
high-speed silicon diodes instead. At heavy loads and  
high temperatures, the disadvantages of a Schottky  
diodes high leakage current may outweigh the benefits  
of its low forward voltage. Table 1 lists diode types and  
suppliers for various applications.  
In both the continuous and discontinuous modes, the  
lowe r limit of the ind uc tor is more imp orta nt. With a  
small inductor value, the current rises faster and over-  
shoots the desired peak current limit because the cur-  
rent-limit comparator cannot respond fast enough. This  
reduces efficiency slightly and, more importantly, could  
cause the current rating of the external components  
to be exceeded. Calculate the minimum inductor value  
as follows:  
Ex t e rn a l S w it c h in g Tra n s is t o r  
The MAX649/MAX651/MAX652 d rive P-c ha nne l  
e nha nc e me nt-mod e MOSFET tra ns is tors only. The  
choice of power transistor is primarily dictated by the  
input voltage and the peak current. The transistor's  
on-re s is ta nc e , g a te -s ourc e thre s hold , a nd g a te  
capacitance must also be appropriately chosen. The  
drain-to-source and gate-to-source breakdown voltage  
ratings must be greater than V+. The total gate-charge  
specification is normally not critical, but values should  
be less than 100nC for best efficiency. The MOSFET  
should be capable of handling the peak current and,  
for maximum efficiency, have a very low on-resistance  
at that current. Also, the on-resistance must be low for  
(V+(max) - V - V  
L(min) = ————————————––——  
) x 0.3µs  
OUT  
SW  
I x I (min)  
LIM  
whe re I is the pe rc e nta ge of induc tor-c urre nt ove r-  
shoot, where I  
= V /R  
and 0.3µs is the time  
LIM  
CS SENSE  
it takes the comparator to switch. An overshoot of 10%  
is usually not a problem. Inductance values above the  
minimum work well if the maximum value defined above  
is not e xc e e d e d . Sma lle r ind uc ta nc e va lue s c a us e  
higher output ripple because of overshoot. Larger val-  
ues tend to produce physically larger coils.  
For highest efficiency, use a coil with low DC resis-  
tance; a value smaller than 0.1V/I  
works best. To  
the minimum available V , which equals V+(min).  
LIM  
GS  
minimize ra d ia te d nois e , us e a toroid , p ot c ore , or  
shielded-bobbin inductor. Inductors with a ferrite core  
or equivalent are recommended. Make sure the induc-  
Select a transistor with an on-resistance between 50%  
and 100% of the current-sense resistor. The Si9430  
transistor chosen for the Typical Operating Circuit has  
______________________________________________________________________________________ 11  
5 V/3 .3 V/3 V o r Ad ju s t a b le , Hig h -Effic ie n c y,  
Lo w I , S t e p -Do w n DC-DC Co n t ro lle rs  
Q
a drain-to-source rating of -20V and a typical on-resis-  
tance of 0.115at 2A with VGS = -4.5V. Tables 1 and 2  
list suppliers of switching transistors suitable for use  
with these devices.  
amount of noise at the voltage source caused by the  
s witc hing a c tion of the MAX649/MAX651/MAX652.  
The input voltage source impedance determines the  
s ize of the c a p a c itor re q uire d a t the V+ inp ut. As  
with the outp ut filte r c a p a c itor, a low-ESR c a p a c itor  
is re c omme nd e d . Byp a s s the IC s e p a ra te ly with a  
0.1µF ceramic capacitor placed close to the V+ and  
GND p ins .  
Ca p a c it o r S e le c t io n  
Output Filter Capacitor  
The p rima ry c rite rion for s e le c ting the outp ut filte r  
capacitor is low equivalent series resistance (ESR),  
rather than high capacitance. An electrolytic capacitor  
with low e noug h ESR will a utoma tic a lly ha ve hig h  
enough capacitance. The product of the inductor-cur-  
rent variation and the ESR of the output filter capacitor  
determines the amplitude of the high-frequency ripple  
s e e n on the outp ut volta g e . Whe n a 330µF, 10V  
Sprague surface-mount capacitor (595D series) with  
ESR = 0.15is used, 40mV of output ripple is typically  
observed when stepping down from 10V to 5V at 1A.  
Reference Capacitor  
Bypass REF with a 0.1µF or larger capacitor. REF can  
source at least 100µA.  
La yo u t Co n s id e ra t io n s  
Proper PC board layout is essential because of high  
current levels and fast switching waveforms that radiate  
noise. Minimize ground noise by connecting the anode  
of the catch diode, the input bypass capacitor ground  
lead, and the output filter capacitor ground lead to a  
single point (“starground configuration). A ground  
plane is recommended. Also minimize lead lengths to  
reduce stray capacitance, trace resistance, and radiat-  
ed noise. In particular, the traces connected to FB (if an  
e xte rna l re sistor d ivid e r is use d ) a nd EXT must be  
short. Place the 0.1µF ceramic bypass capacitor as  
close as possible to V+ and GND.  
The output filter capacitor's ESR also affects efficiency.  
Use low-ESR capacitors for best performance. The  
smallest low-ESR SMT tantalum capacitors currently  
available are from the Sprague 595D series. Sanyo OS-  
CON organic semiconductor through-hole capacitors  
and the Nichicon PL series also exhibit very low ESR.  
Table 1 lists some suppliers of low-ESR capacitors.  
491/MAX652  
Input Bypass Capacitor  
The inp ut b yp a s s c a p a c itor re d uc e s p e a k c urre nts  
drawn from the voltage source, and also reduces the  
Table 1. Component Selection Guide  
PRODUCTION  
METHOD  
CURRENT-SENSE  
RESISTORS  
INDUCTORS  
CAPACITORS  
DIODES  
MOSFETS  
Siliconix  
Sumida  
Matsuo  
Little Foot series  
CDR125-220 (22µH) 267 series  
Nihon  
NSQ series  
IRC  
LRC series  
Surface Mount  
Motorola  
medium-power  
surface-mount products  
Coiltronics  
CTX 100 series  
Sprague  
595D series  
Sanyo  
Miniature  
Through-Hole  
Sumida  
RCH855-220M  
OS-CON series  
low-ESR organic  
semiconductor  
IRC  
OAR series  
Motorola  
Nichicon  
PL series  
low-ESR electrolytics  
Motorola  
1N5820,  
1N5823  
Low-Cost  
Renco  
Motorola  
Through-Hole  
RL 1284-22  
TMOS power MOSFETs  
United Chemi-Con  
LXF series  
12 ______________________________________________________________________________________  
5 V/3 .3 V/3 V o r Ad ju s t a b le , Hig h -Effic ie n c y,  
Lo w I , S t e p -Do w n DC-DC Co n t ro lle rs  
Q
491/MAX652  
Table 2. Component Suppliers  
COMPANY  
Coiltronics  
PHONE  
FAX  
USA  
USA  
USA  
USA  
(407) 241-7876  
(800) 442-7747  
(310) 322-3331  
(704) 264-8861  
(407) 241-9339  
(407) 724-3937  
(310) 322-3332  
(704) 264-8866  
Harris  
International Rectifier  
IRC  
Matsuo  
USA  
Japan  
(714) 969-2491  
81-6-337-6450  
(714) 960-6492  
81-6-337-6456  
Motorola  
Nichicon  
USA  
(800) 521-6274  
(602) 244-4015  
USA  
Japan  
(708) 843-7500  
81-7-5231-8461  
(708) 843-2798  
81-7-5256-4158  
Nihon  
USA  
Japan  
(805) 867-2555  
81-3-3494-7411  
(805) 867-2556  
81-3-3494-7414  
Renco  
Sanyo  
USA  
(516) 586-5566  
(516) 586-5562  
USA  
Japan  
(619) 661-6835  
81-7-2070-6306  
(619) 661-1055  
81-7-2070-1174  
Siliconix  
Sprague  
Sumida  
USA  
USA  
(408) 988-8000  
(603) 224-1961  
(408) 970-3950  
(603) 224-1430  
USA  
Japan  
(708) 956-0666  
81-3-3607-5111  
(708) 956-0702  
81-3-3607-5144  
United Chemi-Con  
USA  
(714) 255-9500  
(714) 255-9400  
__Ord e rin g In fo rm a t io n (c o n t in u e d )  
___________________Ch ip To p o g ra p h y  
PART  
TEMP. RANGE  
0°C to +70°C  
PIN-PACKAGE  
8 Plastic DIP  
8 SO  
GND  
OUT  
MAX651CPA  
MAX651CSA  
MAX651C/D  
MAX651EPA  
MAX651ESA  
MAX651MJA  
MAX652CPA  
MAX652CSA  
MAX652C/D  
MAX652EPA  
MAX652ESA  
MAX652MJA  
0°C to +70°C  
0°C to +70°C  
Dice*  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
0°C to +70°C  
8 Plastic DIP  
8 SO  
EXT  
8 CERDIP**  
8 Plastic DIP  
8 SO  
FB  
0.109"  
0°C to +70°C  
(2.769mm)  
0°C to +70°C  
Dice*  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
8 Plastic DIP  
8 SO  
CS  
SHDN  
REF  
8 CERDIP**  
* Dice are tested at T = +25°C.  
**Contact factory for availability and processing to MIL-STD-883.  
A
V+  
0. 080"  
(2. 032mm)  
TRANSISTOR COUNT: 442;  
SUBSTRATE CONNECTED TO V+.  
______________________________________________________________________________________ 13  
5 V/3 .3 V/3 V o r Ad ju s t a b le , Hig h -Effic ie n c y,  
Lo w I , S t e p -Do w n DC-DC Co n t ro lle rs  
Q
________________________________________________________P a c k a g e In fo rm a t io n  
491/MAX652  
14 ______________________________________________________________________________________  
5 V/3 .3 V/3 V o r Ad ju s t a b le , Hig h -Effic ie n c y,  
Lo w I , S t e p -Do w n DC-DC Co n t ro lle rs  
Q
491/MAX652  
___________________________________________P a c k a g e In fo rm a t io n (c o n t in u e d )  
______________________________________________________________________________________ 15  
5 V/3 .3 V/3 V o r Ad ju s t a b le , Hig h -Effic ie n c y,  
Lo w I , S t e p -Do w n DC-DC Co n t ro lle rs  
Q
NOTES  
491/MAX652  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
16 ____________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 4 0 8 -7 3 7 -7 6 0 0  
© 1997 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX6510

Low-Cost, Remote SOT Temperature Switches
MAXIM

MAX6510CAUT

SPECIALTY ANALOG CIRCUIT, PDSO6, MO-178AB, SOT-23, 6 PIN
ROCHESTER

MAX6510CAUT+

Analog Circuit, 1 Func, PDSO6, ROHS COMPLIANT, MO-178AB, SOT-23, 6 PIN
MAXIM

MAX6510CAUT-T

Resistor-Programmable SOT Temperature Switches
MAXIM

MAX6510HAUT

Resistor-Programmable SOT Temperature Switches
MAXIM

MAX6510HAUT+

Analog Circuit, 1 Func, PDSO6, ROHS COMPLIANT, MO-178AB, SOT-23, 6 PIN
MAXIM

MAX6510HAUT-T

Resistor-Programmable SOT Temperature Switches
MAXIM

MAX6511

Low-Cost, Remote SOT Temperature Switches
MAXIM

MAX6511UT045

Low-Cost, Remote SOT Temperature Switches
MAXIM

MAX6511UT045-T

暂无描述
MAXIM

MAX6511UT055

Low-Cost, Remote SOT Temperature Switches
MAXIM

MAX6511UT055-T

Analog Circuit, 1 Func, PDSO6, MO-178AB, SOT-23, 6 PIN
MAXIM