MAX660CSA+T [MAXIM]

Switched Capacitor Converter, 0.12A, 80kHz Switching Freq-Max, CMOS, PDSO8, 0.150 INCH, SOP-8;
MAX660CSA+T
型号: MAX660CSA+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Switched Capacitor Converter, 0.12A, 80kHz Switching Freq-Max, CMOS, PDSO8, 0.150 INCH, SOP-8

转换器
文件: 总12页 (文件大小:109K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3293; Rev. 2; 9/96  
CMOS Mo n o lit h ic Vo lt a g e Co n ve rt e r  
MAX60  
_______________Ge n e ra l De s c rip t io n  
___________________________ Fe a t u re s  
Small Capacitors  
The MAX660 monolithic, charge-pump voltage inverter  
converts a +1.5V to +5.5V input to a corresponding  
-1.5V to -5.5V outp ut. Us ing only two low-c os t  
capacitors, the charge pumps 100mA output replaces  
switching regulators, eliminating inductors and their  
a s s oc ia te d c os t, s ize , a nd EMI. Gre a te r tha n 90%  
efficiency over most of its load-current range combined  
with a typical operating current of only 120µA provides  
ideal performance for both battery-powered and board-  
level voltage conversion applications. The MAX660 can  
also double the output voltage of an input power supply  
or b a tte ry, p rovid ing +9.35V a t 100mA from a +5V  
input.  
0.65V Typ Loss at 100mA Load  
Low 120µA Operating Current  
6.5Typ Output Impedance  
Guaranteed R  
< 15for C1 = C2 = 10µF  
OUT  
Pin-Compatible High-Current ICL7660 Upgrade  
Inverts or Doubles Input Supply Voltage  
Selectable Oscillator Frequency: 10kHz/80kHz  
88% Typ Conversion Efficiency at 100mA  
(I to GND)  
L
A frequency control (FC) pin selects either 10kHz typ or  
80kHz typ (40kHz min) operation to optimize capacitor  
size and quiescent current. The oscillator frequency  
can also be adjusted with an external capacitor or  
driven with an external clock. The MAX660 is a pin-  
compatible, high-current upgrade of the ICL7660.  
______________Ord e rin g In fo rm a t io n  
PART  
TEMP. RANGE  
0°C to +70°C  
PIN-PACKAGE  
8 Plastic DIP  
8 SO  
MAX660CPA  
MAX660CSA  
MAX660C/D  
MAX660EPA  
MAX660ESA  
MAX660MJA  
0°C to +70°C  
0°C to +70°C  
Dice*  
The MAX660 is available in both 8-pin DIP and small-  
outline packages in commercial, extended, and military  
temperature ranges.  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
8 Plastic DIP  
8 SO  
8 CERDIP  
For 50mA applications, consider the MAX860/MAX861  
pin-compatible devices (also available in ultra-small  
µMAX packages).  
*Contact factory for dice specifications.  
_________Typ ic a l Op e ra t in g Circ u it s  
________________________Ap p lic a t io n s  
Laptop Computers  
+V  
IN  
1.5V TO 5.5V  
Medical Instruments  
1
2
8
7
FC  
V+  
OSC  
LV  
Interface Power Supplies  
CAP+  
GND  
MAX660  
Hand-Held Instruments  
C1  
6
5
3
4
Operational-Amplifier Power Supplies  
INVERTED  
NEGATIVE  
VOLTAGE  
OUTPUT  
1µF to 150µF  
CAP-  
OUT  
__________________P in Co n fig u ra t io n  
C2  
1µF to 150µF  
VOLTAGE INVERTER  
TOP VIEW  
DOUBLED  
POSITIVE  
VOLTAGE  
OUTPUT  
1
2
8
7
V+  
FC  
1
2
3
4
8
7
6
5
FC  
CAP+  
GND  
V+  
C1  
1µF to 150µF  
C2  
1µF to 150µF  
CAP+  
OSC  
MAX660  
OSC  
6
5
3
4
MAX660  
LV  
+V  
GND  
CAP-  
IN  
LV  
2.5V TO 5.5V  
OUT  
CAP-  
OUT  
DIP/SO  
POSITIVE VOLTAGE DOUBLER  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800  
CMOS Mo n o lit h ic Vo lt a g e Co n ve rt e r  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage (V+ to GND, or GND to OUT).......................+6V  
LV Input Voltage ...............................(OUT - 0.3V) to (V+ + 0.3V)  
FC and OSC Input Voltages........................The least negative of  
(OUT - 0.3V) or (V+ - 6V) to (V+ + 0.3V)  
Operating Temperature Ranges  
MAX660C_ _ ........................................................0°C to +70°C  
MAX660E_ _ .....................................................-40°C to +85°C  
MAX660MJA ...................................................-55°C to +125°C  
Storage Temperature Range ............................... -65°to +160°C  
Lead Temperature (soldering, 10sec) ........................... +300°C  
OUT and V+ Continuous Output Current..........................120mA  
Output Short-Circuit Duration to GND (Note 1) ....................1sec  
Continuous Power Dissipation (T = +70°C)  
A
MAX60  
Plastic DIP (derate 9.09mW/°C above + 70°C) ............727mW  
SO (derate 5.88mW/°C above +70°C)..........................471mW  
CERDIP (derate 8.00mW/°C above +70°C)..................640mW  
Note 1: OUT may be shorted to GND for 1sec without damage, but shorting OUT to V+ may damage the device and should be  
avoided. Also, for temperatures above +85°C, OUT must not be shorted to GND or V+, even instantaneously, or device  
damage may result.  
Stresses beyond those listed under Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V+ = 5V, C1 = C2 = 150µF, test circuit of Figure 1, FC = open, T = T  
to T , unless otherwise noted.) (Note 2)  
MAX  
A
MIN  
PARAMETER  
Inverter, LV = open  
MIN  
3.0  
1.5  
2.5  
TYP  
MAX  
5.5  
5.5  
5.5  
0.5  
3
UNITS  
R
= 1kΩ  
Operating Supply Voltage  
Inverter, LV = GND  
Doubler, LV = OUT  
FC = open, LV = open  
FC = V+, LV = open  
V
L
0.12  
1
Supply Current  
Output Current  
No load  
mA  
mA  
T
A
+85°C, OUT more negative than -4V  
100  
100  
T
A
> +85°C, OUT more negative than -3.8V  
T
+85°C, C1 = C2 = 10µF, FC = V+ (Note 4)  
+85°C, C1 = C2 = 150µF  
+85°C  
15  
10.0  
12  
A
T
A
Output Resistance (Note 3)  
I
L
= 100mA  
6.5  
T
A
FC = open  
FC = V+  
5
10  
80  
±1  
±8  
98  
96  
88  
Oscillator Frequency  
OSC Input Current  
kHz  
µA  
40  
FC = open  
FC = V+  
R
R
= 1kconnected between V+ and OUT  
= 500connected between OUT and GND  
96  
92  
L
L
Power Efficiency  
%
%
I
L
= 100mA to GND  
Voltage-Conversion  
Efficiency  
No load  
99.00  
99.96  
Note 2: In the test circuit, capacitors C1 and C2 are 150µF, 0.2maximum ESR, aluminum electrolytics.  
Capacitors with higher ESR may reduce output voltage and efficiency. See Capacitor Selection section.  
Note 3: Specified output resistance is a combination of internal switch resistance and capacitor ESR. See Capacitor Selection section.  
Note 4: The ESR of C1 = C2 0.5Ω. Guaranteed by correlation, not production tested.  
2
_______________________________________________________________________________________  
CMOS Mo n o lit h ic Vo lt a g e Co n ve rt e r  
MAX60  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
All curves are generated using the test circuit of Figure 1  
with V+ =5V, LV = GND, FC = open, and T = +25°C,  
A
unless otherwise noted. The charge-pump frequency is  
one-half the oscillator frequency. Test results are also  
valid for doubler mode with GND = +5V, LV = OUT, and  
OUT = 0V, unless otherwise noted; however, the input  
voltage is restricted to +2.5V to +5.5V.  
I
S
8
7
6
5
1
2
3
V+  
(+5V )  
V+  
V+  
OSC  
LV  
FC  
CAP+  
GND  
CAP-  
MAX660  
C1  
4
OUT  
R
L
I
L
V
OUT  
C2  
Figure 1. MAX660 Test Circuit  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
SUPPLY CURRENT  
vs. OSCILLATOR FREQUENCY  
OUTPUT VOLTAGE AND EFFICIENCY  
vs. LOAD CURRENT, V+ = 5V  
400  
350  
10  
-3.0  
100  
MAX660  
ICL7660  
-3.4  
-3.8  
-4.2  
-4.6  
-5.0  
92  
84  
76  
68  
60  
300  
250  
LV = OUT  
1
EFF.  
200  
150  
V
OUT  
LV = GND  
0.1  
ICL7660  
40  
100  
50  
0
LV = OPEN  
MAX660  
80  
0.01  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
SUPPLY VOLTAGE (V)  
0.1  
1
10  
100  
0
20  
60  
100  
OSCILLATOR FREQUENCY (kHz)  
LOAD CURRENT (mA)  
OUTPUT VOLTAGE DROP  
vs. LOAD CURRENT  
OUTPUT VOLTAGE  
vs. OSCILLATOR FREQUENCY  
EFFICIENCY vs. LOAD CURRENT  
1.2  
1.0  
-5.0  
-4.5  
100  
I
= 1mA  
V+ = 5.5V  
LOAD  
V+ = 1.5V  
92  
84  
76  
68  
60  
I
= 10mA  
LOAD  
V+ = 2.5V  
0.8  
0.6  
0.4  
0.2  
0
V+ = 3.5V  
-4.0  
-3.5  
-3.0  
V+ = 4.5V  
V+ = 3.5V  
V+ = 4.5V  
V+ = 1.5V  
I
= 80mA  
LOAD  
V+ = 2.5V  
V+ = 5.5V  
0
20  
40  
60  
80  
100  
0
10 20 30 40 50 60 70 80 90 100  
LOAD CURRENT (mA)  
0.1  
1
10  
100  
LOAD CURRENT (mA)  
OSCILLATOR FREQUENCY (kHz)  
_________________________________________________________________________________________________  
3
CMOS Mo n o lit h ic Vo lt a g e Co n ve rt e r  
_____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
OSCILLATOR FREQUENCY  
vs. SUPPLY VOLTAGE  
EFFICIENCY  
vs. OSCILLATOR FREQUENCY  
OSCILLATOR FREQUENCY  
vs. SUPPLY VOLTAGE  
100  
96  
92  
88  
84  
80  
100  
12  
10  
LV = GND  
LV = GND  
MAX60  
80  
I
= 1mA  
LOAD  
LV = OPEN  
LV = OPEN  
8
6
4
2
0
60  
I
= 10mA  
LOAD  
FC = V+, OSC = OPEN  
76  
72  
FC = OPEN, OSC = OPEN  
40  
I
= 80mA  
LOAD  
68  
64  
60  
20  
0
0.1  
1
10  
100  
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
1.5  
2.5  
3.5  
4.5  
5.5  
5  
OSCILLATOR FREQUENCY (kHz)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
OSCILLATOR FREQUENCY  
vs. TEMPERATURE  
OSCILLATOR FREQUENCY  
vs. EXTERNAL CAPACITANCE  
OSCILLATOR FREQUENCY  
vs. TEMPERATURE  
100  
10  
12  
100  
80  
10  
8
FC = V+  
FC = V+, OSC = OPEN, RL = 100  
60  
40  
20  
0
1
0.1  
6
FC = OPEN  
4
FC = OPEN, OSC = OPEN  
R = 100Ω  
L
2
0.01  
0
1
10  
100  
1000  
10000  
-60 -40 -20  
0
20 40 60 80 100 120 140  
-60 -40 -20  
0
20 40 60 80 100 120 140  
CAPACITANCE (pF)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
OUTPUT SOURCE RESISTANCE  
vs. SUPPLY VOLTAGE  
OUTPUT SOURCE RESISTANCE  
vs. TEMPERATURE  
OUTPUT SOURCE RESISTANCE  
vs. TEMPERATURE  
14  
12  
30  
25  
30  
25  
C1, C2 = 150µF ALUMINUM  
C1, C2 = 150µF OS-CON CAPACITORS  
10  
ELECTROLYTIC  
R = 100Ω  
L
20  
15  
10  
5
CAPACITORS  
20  
15  
10  
5
8
6
4
2
R = 100Ω  
L
V+ = 1.5V  
V+ = 3.0V  
V+ = 1.5V  
V+ = 3.0V  
V+ = 5.0V  
V+ = 5.0V  
0
0
0
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
SUPPLY VOLTAGE (V)  
-60 -40 -20  
0
20 40 60 80 100 120 140  
-60 -40 -20  
0
20 40 60 80 100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4
_______________________________________________________________________________________  
CMOS Mo n o lit h ic Vo lt a g e Co n ve rt e r  
MAX60  
OUTPUT CURRENT vs. CAPACITANCE:  
= +4.5V, V = -4V  
OUTPUT CURRENT vs. CAPACITANCE:  
= +4.5V, V = -3.5V  
V
IN  
V
IN  
OUT  
OUT  
250  
200  
150  
100  
50  
120  
100  
80  
60  
40  
20  
0
FC = V+  
OSC = OPEN  
FC = V+  
OSC = OPEN  
0
0.33 1.0 2.0 2.2 4.7 10 22 47 100 220  
0.33 1.0 2.0 2.2 4.7 10 22 47 100 220  
CAPACITANCE (µF)  
CAPACITANCE (µF)  
OUTPUT CURRENT vs. CAPACITANCE:  
OUTPUT CURRENT vs. CAPACITANCE:  
V
= +3.0V, V = -2.4V  
OUT  
V
= +3.0V, V = -2.7V  
IN  
IN  
OUT  
60  
50  
40  
30  
20  
10  
0
120  
100  
80  
60  
40  
20  
0
FC = V+  
OSC = OPEN  
FC = V+  
OSC = OPEN  
0.33 1.0 2.0 2.2 4.7 10 22 47 100 220  
0.33 1.0 2.0 2.2 4.7 10 22 47 100 220  
CAPACITANCE (µF)  
CAPACITANCE (µF)  
______________________________________________________________P in De s c rip t io n  
FUNCTION  
PIN  
NAME  
INVERTER  
DOUBLER  
Frequency Control for internal oscillator, FC = open,  
f
= 10kHz typ; FC = V+, f  
= 80kHz typ (40kHz min),  
Same as Inverter  
1
FC  
OSC  
OSC  
FC has no effect when OSC pin is driven externally.  
Charge-Pump Capacitor, Positive Terminal  
Power-Supply Ground Input  
2
3
4
5
CAP+  
GND  
CAP-  
OUT  
Same as Inverter  
Power-Supply Positive Voltage Input  
Same as Inverter  
Charge-Pump Capacitor, Negative Terminal  
Output, Negative Voltage  
Power-Supply Ground Input  
Low-Voltage Operation Input. Tie LV to GND when input  
voltage is less than 3V. Above 3V, LV may be connected to  
GND or left open; when overdriving OSC, LV must be  
connected to GND.  
LV must be tied to OUT for all input  
voltages.  
6
LV  
Oscillator Control Input. OSC is connected to an internal  
15pF capacitor. An external capacitor can be added to slow  
the oscillator. Take care to minimize stray capacitance. An  
external oscillator may also be connected to overdrive OSC.  
Same as Inverter; however, do not over-  
drive OSC in voltage-doubling mode.  
7
8
OSC  
V+  
Power-Supply Positive Voltage Input  
Positive Voltage Output  
_______________________________________________________________________________________  
5
CMOS Mo n o lit h ic Vo lt a g e Co n ve rt e r  
one-half of the charge-pump cycle. This introduces a  
peak-to-peak ripple of:  
______________De t a ile d De s c rip t io n  
The MAX660 capacitive charge-pump circuit either  
inve rts or d oub le s the inp ut volta g e (s e e Typ ic a l  
Op e ra ting Circ uits ). For hig he s t p e rforma nc e , low  
effective series resistance (ESR) capacitors should be  
used. See Capacitor Selection section for more details.  
V
RIPPLE  
=
I
+ I  
OUT  
(ESR  
)
OUT  
C2  
2(f  
PUMP  
) (C2)  
For a nominal f  
of 5kHz (one-half the nominal  
PUMP  
10kHz oscillator frequency) and C2 = 150µF with an  
ESR of 0.2, rip p le is a p p roxima te ly 90mV with a  
100mA load current. If C2 is raised to 390µF, the ripple  
drops to 45mV.  
When using the inverting mode with a supply voltage  
le s s tha n 3V, LV mus t b e c onne c te d to GND. This  
bypasses the internal regulator circuitry and provides  
best performance in low-voltage applications. When  
using the inverter mode with a supply voltage above  
3V, LV may be connected to GND or left open. The part  
is typically operated with LV grounded, but since LV  
may be left open, the substitution of the MAX660 for the  
ICL7660 is simplified. LV must be grounded when over-  
driving OSC (see Changing Oscillator Frequency sec-  
tion). Connect LV to OUT (for any supply voltage) when  
using the doubling mode.  
MAX60  
P o s it ive Vo lt a g e Do u b le r  
The MAX660 operates in the voltage-doubling mode as  
shown in the Typical Operating Circuit. The no-load  
output is 2 x V  
.
IN  
Ot h e r S w it c h e d -Ca p a c it o r Co n ve rt e rs  
Please refer to Table 1, which shows Maxims charge-  
pump offerings.  
__________Ap p lic a t io n s In fo rm a t io n  
Ch a n g in g Os c illa t o r Fre q u e n c y  
Four modes control the MAX660s clock frequency, as  
listed below:  
Ne g a t ive Vo lt a g e Co n ve rt e r  
The most common application of the MAX660 is as a  
charge-pump voltage inverter. The operating circuit  
uses only two external capacitors, C1 and C2 (see  
Typical Operating Circuits).  
FC  
OSC  
Oscillator Frequency  
10kHz  
Open  
FC = V+  
Open  
Open  
External  
80kHz  
Even though its output is not actively regulated, the  
MAX660 is very insensitive to load current changes. A  
typical output source resistance of 6.5means that  
with an input of +5V the output voltage is -5V under  
light load, and decreases only to -4.35V with a load of  
100mA. Output source resistance vs. temperature and  
supply voltage are shown in the Typical Operating  
Characteristics graphs.  
Open or  
FC = V+  
See Typical Operating  
Capacitor Characteristics  
Open  
External  
Clock  
External Clock Frequency  
When FC and OSC are unconnected (open), the oscil-  
lator runs at 10kHz typically. When FC is connected to  
V+, the charge and discharge current at OSC changes  
from 1.0µA to 8.0µA, thus inc re a sing the osc illa tor  
Output ripple voltage is calculated by noting the output  
current supplied is solely from capacitor C2 during  
Table 1. Single-Output Charge Pumps  
MAX8 2 8  
MAX829  
MAX860  
MAX8 6 1  
MAX6 6 0  
MAX1 0 4 4  
ICL7 6 6 2  
ICL7 6 6 0  
SO-8,  
µMAX  
SO-8,  
µMAX  
SO-8,  
µMAX  
SO-8,  
µMAX  
Package  
SOT 23-5  
SOT 23-5  
SO-8  
SO-8  
0.2 at 6kHz, 0.3 at 13kHz, 0.12 at 5kHz,  
0.6 at 50kHz, 1.1 at 100kHz, 1 at 40kHz  
1.4 at 130kHz 2.5 at 250kHz  
Op. Current  
(typ, mA)  
0.06  
0.15  
0.03  
0.25  
0.08  
Output Ω  
(typ)  
20  
12  
20  
35  
12  
12  
6.5  
6.5  
5
125  
10  
55  
10  
Pump Rate  
(kHz)  
6, 50, 130  
1.5 to 5.5  
13, 100, 150  
1.5 to 5.5  
5, 40  
Input (V)  
1.25 to 5.5  
1.25 to 5.5  
1.5 to 5.5  
1.5 to 10  
1.5 to 10  
1.5 to 10  
6
_______________________________________________________________________________________  
CMOS Mo n o lit h ic Vo lt a g e Co n ve rt e r  
MAX60  
frequency eight times. In the third mode, the oscillator  
fre q ue nc y is lowe re d b y c onne c ting a c a p a c itor  
between OSC and GND. FC can still multiply the fre-  
quency by eight times in this mode, but for a lower  
ra ng e of fre q ue nc ie s (s e e Typ ic a l Op e ra ting  
Characteristics).  
20  
18  
16  
ESR = 0.25Ω  
FOR BOTH  
C1 AND C2  
14  
12  
In the inverter mode, OSC may also be overdriven by an  
external clock source that swings within 100mV of V+  
and GND. Any standard CMOS logic output is suitable  
for driving OSC. When OSC is overdriven, FC has no  
effect. Also, LV must be grounded when overdriving  
OSC. Do not overdrive OSC in voltage-doubling mode.  
MAX660 OUTPUT  
SOURCE RESISTANCE  
ASSUMED TO BE  
5.25Ω  
10  
8
6
4
2
Note: In all modes, the frequency of the signal appear-  
ing at CAP+ and CAP- is one-half that of the oscillator.  
Also, an undesirable effect of lowering the oscillator fre-  
quency is that the effective output resistance of the  
charge pump increases. This can be compensated by  
increasing the value of the charge-pump capacitors  
(see Capacitor Selection section and Typical Operating  
Characteristics).  
0
1
2
4
6 8 10  
100  
1000  
CAPACITANCE (µF)  
Figure 2. Total Output Source Resistance vs. C1 and C2  
Capacitance (C1 = C2)  
output resistance for various capacitor values (the pump  
and reservoir capacitors values are equal) and oscillator  
frequencies. These curves assume 0.25capacitor ESR  
and a 5.25MAX660 output resistance, which is why  
In some applications, the 5kHz output ripple frequency  
may be low enough to interfere with other circuitry. If  
desired, the oscillator frequency can then be increased  
through use of the FC pin or an external oscillator as  
described above. The output ripple frequency is one-  
half the selected oscillator frequency. Increasing the  
clock frequency increases the MAX660s quiescent  
current, but also allows smaller capacitance values to  
be used for C1 and C2.  
the flat portion of the curve shows a 6.5(R MAX660 +  
O
4 (ESR ) + ESR ) effective output resistance. Note:  
C1  
C2  
R
= 5.25is us e d , ra the r tha n the typ ic a l 6.5,  
O
because the typical specification includes the effect of  
the ESRs of the capacitors in the test circuit.  
In addition to the curves in Figure 2, four bar graphs in  
the Typical Operating Characteristics show output cur-  
rent for capacitances ranging from 0.33µF to 220µF.  
Output current is plotted for inputs of 4.5V (5V-10%) and  
3.0V (3.3V-10%), and allow for 10% and 20% output  
droop with each input voltage. As can be seen from the  
g ra p hs , the MAX660 6.5s e rie s re s is ta nc e limits  
increases in output current vs. capacitance for values  
much above 47µF. Larger values may still be useful,  
however, to reduce ripple.  
________________Ca p a c it o r S e le c t io n  
Three factors (in addition to load current) affect the  
MAX660 output voltage drop from its ideal value:  
1) MAX660 output resistance  
2) Pump (C1) and reservoir (C2) capacitor ESRs  
3) C1 and C2 capacitance  
The voltage drop caused by MAX660 output resistance  
is the loa d c urre nt time s the outp ut re s is ta nc e .  
Similarly, the loss in C2 is the load current times C2s  
ESR. The loss in C1, however, is larger because it  
handles currents that are greater than the load current  
during charge-pump operation. The voltage drop due  
to C1 is therefore about four times C1s ESR multiplied  
by the load current. Consequently, a low (or high) ESR  
capacitor has a much greater impact on performance  
for C1 than for C2.  
To reduce the output ripple caused by the charge  
p ump , inc re a s e the re s e rvoir c a p a c itor C2 a nd /or  
reduce its ESR. Also, the reservoir capacitor must have  
low ESR if filtering high-frequency noise at the output is  
important.  
Not all manufacturers guarantee capacitor ESR in the  
range required by the MAX660. In general, capacitor ESR  
is inversely proportional to physical size, so larger capaci-  
tance values and higher voltage ratings tend to reduce  
ESR.  
Ge ne ra lly, a s the p ump fre q ue nc y of the MAX660  
increases, the capacitance values required to maintain  
comparable ripple and output resistance diminish pro-  
portionately. The curves of Figure 2 show the total circuit  
_______________________________________________________________________________________  
7
CMOS Mo n o lit h ic Vo lt a g e Co n ve rt e r  
The following is a list of manufacturers who provide  
low-ESR electrolytic capacitors:  
Ca s c a d in g De vic e s  
To produce larger negative multiplication of the initial  
s up p ly volta g e , the MAX660 ma y b e c a s c a d e d a s  
shown in Figure 3. The resulting output resistance is  
a p p roxima te ly e q ua l to the s um of the ind ivid ua l  
Manufacturer/  
Series  
Phone  
Fax  
Comments  
Low-ESR  
tantalum SMT  
MAX660 R  
values. The output voltage, where n is  
OUT  
AVX TPS Series  
AVX TAG Series  
(803) 946-0690  
(803) 946-0690  
(803) 626-3123  
(803) 626-3123  
(714) 960-6492  
(603) 224-1430  
(619) 661-1055  
(619) 661-1055  
(847) 843-2798  
an integer representing the number of devices cascad-  
ed, is defined by V = -n (V ).  
MAX60  
Low-cost  
tantalum SMT  
OUT  
IN  
P a ra lle lin g De vic e s  
Low-cost  
tantalum SMT  
Matsuo 267 Series (714) 969-2491  
Paralleling multiple MAX660s reduces the output resis-  
tance. As illustrated in Figure 4, each device requires  
its own pump capacitor C1, but the reservoir capacitor  
C2 s e rve s a ll d e vic e s . The va lue of C2 s hould b e  
increased by a factor of n, where n is the number of  
devices. Figure 4 shows the equation for calculating  
output resistance.  
Sprague 595  
(603) 224-1961  
Series  
Aluminum elec-  
trolytic thru-hole  
Sanyo MV-GX  
(619) 661-6835  
Series  
Aluminum elec-  
trolytic SMT  
Sanyo CV-GX  
(619) 661-6835  
Series  
Aluminum elec-  
trolytic thru-hole  
Nichicon PL  
(847) 843-7500  
Series  
Low-ESR  
tantalum SMT  
United Chemi-Con  
(847) 696-2000  
(Marcon)  
(847) 696-9278 Ceramic SMT  
(847) 390-4428 Ceramic SMT  
TDK  
(847) 390-4373  
R
(of MAX660)  
OUT  
R
OUT  
=
n (NUMBER OF DEVICES)  
+V  
IN  
+V  
IN  
8
8
5
8
8
2
3
4
2
R
L
2
3
4
2
MAX660  
3
MAX660  
"1"  
C1n  
5
C1  
MAX660  
"1"  
MAX660  
"n"  
3
4
"n"  
C1n  
C1  
4
5
5
V
OUT  
C2n  
V
OUT  
= -nV  
IN  
C2  
C2  
Figure 3. Cascading MAX660s to Increase Output Voltage  
Figure 4. Paralleling MAX660s to Reduce Output Resistance  
8
_______________________________________________________________________________________  
CMOS Mo n o lit h ic Vo lt a g e Co n ve rt e r  
MAX60  
Co m b in e d P o s it ive S u p p ly Mu lt ip lic a t io n  
1M  
1M  
a n d Ne g a t ive Vo lt a g e Co n ve rs io n  
This dual function is illustrated in Figure 5. In this cir-  
c uit, c a pa c itors C1 a nd C3 pe rform the p ump a nd  
reservoir functions respectively for generation of the  
negative voltage. Capacitors C2 and C4 are respec-  
tively pump and reservoir for the multiplied positive  
voltage. This circuit configuration, however, leads to  
higher source impedances of the generated supplies.  
This is due to the finite impedance of the common  
charge-pump driver.  
OPEN-DRAIN  
LOW-BATTERY OUTPUT  
3V LITHIUM BATTERY  
DURACELL DL123A  
LBI  
5V/100mA  
150µF  
3
2
7
1
8
8
IN  
OUT  
2
MAX667  
LBO  
DD  
MAX660  
150  
µF  
620k  
220k  
6
4
150µF  
1M  
6
SET  
GND SHDN  
5
4
5
+V  
IN  
8
NOTE: ALL 150µF CAPACITORS ARE MAXC001, AVAILABLE FROM MAXIM.  
D1  
D1, D2 = 1N4148  
V
2
3
MAX660  
Figure 6. MAX660 generates a +5V regulated output from a 3V  
lithium battery and operates for 16 hours with a 40mA load.  
5
6
= -V  
IN  
OUT  
C1  
C2  
4
D2  
V
OUT  
= (2V ) -  
IN  
(V ) - (V  
)
FD1  
FD2  
C4  
C3  
Figure 5. Combined Positive Multiplier and Negative Converter  
_______________________________________________________________________________________  
9
CMOS Mo n o lit h ic Vo lt a g e Co n ve rt e r  
___________________Ch ip To p o g ra p h y  
V+  
FC  
MAX60  
CAP+  
0.120"  
(3.05mm)  
GND  
OSC  
LV  
CAP-  
OUT  
0.073"  
(1.85mm)  
TRANSISTOR COUNT = 89  
SUBSTRATE CONNECTED TO V+.  
10 ______________________________________________________________________________________  
CMOS Mo n o lit h ic Vo lt a g e Co n ve rt e r  
MAX60  
________________________________________________________P a c k a g e In fo rm a t io n  
INCHES  
MILLIMETERS  
DIM  
E
MIN  
MAX  
0.200  
MIN  
MAX  
5.08  
A
E1  
D
A1 0.015  
A2 0.125  
A3 0.055  
0.38  
3.18  
1.40  
0.41  
1.14  
0.20  
0.13  
7.62  
6.10  
2.54  
7.62  
0.175  
0.080  
0.022  
0.065  
0.012  
0.080  
0.325  
0.310  
4.45  
2.03  
0.56  
1.65  
0.30  
2.03  
8.26  
7.87  
A3  
A2  
A1  
A
L
B
0.016  
B1 0.045  
0.008  
D1 0.005  
0.300  
E1 0.240  
0.100  
eA 0.300  
C
0° - 15°  
E
C
e
e
B1  
eA  
eB  
B
eB  
L
0.400  
0.150  
10.16  
3.81  
0.115  
2.92  
D1  
INCHES  
MILLIMETERS  
PKG. DIM  
PINS  
Plastic DIP  
PLASTIC  
DUAL-IN-LINE  
PACKAGE  
(0.300 in.)  
MIN  
MAX MIN  
MAX  
8
P
P
P
P
P
N
D
D
D
D
D
D
0.348 0.390 8.84  
9.91  
14  
16  
18  
20  
24  
0.735 0.765 18.67 19.43  
0.745 0.765 18.92 19.43  
0.885 0.915 22.48 23.24  
1.015 1.045 25.78 26.54  
1.14 1.265 28.96 32.13  
21-0043A  
INCHES  
MILLIMETERS  
DIM  
MIN  
0.053  
MAX  
0.069  
0.010  
0.019  
0.010  
0.157  
MIN  
1.35  
0.10  
0.35  
0.19  
3.80  
MAX  
1.75  
0.25  
0.49  
0.25  
4.00  
A
D
A1 0.004  
B
C
E
e
0.014  
0.007  
0.150  
0°-8°  
A
0.101mm  
0.004in.  
0.050  
1.27  
e
H
L
0.228  
0.016  
0.244  
0.050  
5.80  
0.40  
6.20  
1.27  
A1  
C
B
L
INCHES  
MILLIMETERS  
DIM PINS  
Narrow SO  
SMALL-OUTLINE  
PACKAGE  
MIN MAX  
MIN  
MAX  
5.00  
8.75  
8
0.189 0.197 4.80  
D
D
D
E
H
14 0.337 0.344 8.55  
16 0.386 0.394 9.80 10.00  
21-0041A  
(0.150 in.)  
______________________________________________________________________________________ 11  
CMOS Mo n o lit h ic Vo lt a g e Co n ve rt e r  
___________________________________________P a c k a g e In fo rm a t io n (c o n t in u e d )  
INCHES  
MIN  
MILLIMETERS  
DIM  
MAX  
0.200  
0.023  
0.065  
0.015  
0.310  
0.320  
MIN  
MAX  
5.08  
0.58  
1.65  
0.38  
7.87  
8.13  
E1  
E
A
B
0.014  
0.36  
0.97  
0.20  
5.59  
7.37  
D
B1 0.038  
A
MAX60  
C
E
0.008  
0.220  
E1 0.290  
e
L
0.100  
2.54  
0.125  
0.150  
0.015  
0.200  
3.18  
3.81  
0.38  
5.08  
0°-15°  
C
Q
L1  
Q
S
L
L1  
0.070  
0.098  
1.78  
2.49  
e
B1  
S1 0.005  
0.13  
B
S1  
S
INCHES  
MILLIMETERS  
DIM PINS  
MIN  
MAX MIN MAX  
CERDIP  
D
D
D
D
D
D
8
0.405  
0.785  
0.840  
0.960  
1.060  
1.280  
10.29  
19.94  
21.34  
24.38  
26.92  
CERAMIC DUAL-IN-LINE  
PACKAGE  
14  
16  
18  
20  
24  
(0.300 in.)  
32.51  
21-0045A  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 ____________________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600  
© 1996 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX660CSA-T

暂无描述
MAXIM

MAX660EPA

CMOS Monolithic Voltage Converter
MAXIM

MAX660EPA+

Switched Capacitor Converter, 0.12A, 80kHz Switching Freq-Max, CMOS, PDIP8, 0.300 INCH, PLASTIC, DIP-8
MAXIM

MAX660ESA

CMOS Monolithic Voltage Converter
MAXIM

MAX660ESA+

Switched Capacitor Converter, 0.12A, 80kHz Switching Freq-Max, CMOS, PDSO8, 0.150 INCH, SOP-8
MAXIM

MAX660ESA+T

Switched Capacitor Converter, 0.12A, 80kHz Switching Freq-Max, CMOS, PDSO8, 0.150 INCH, SOP-8
MAXIM

MAX660ESA-T

Switched Capacitor Converter, 0.12A, 80kHz Switching Freq-Max, CMOS, PDSO8, 0.150 INCH, SOP-8
MAXIM

MAX660M

Switched Capacitor Voltage Converter
NSC

MAX660M

10kHz/80kHz 开关电容器电压转换器 | D | 8
TI

MAX660M/NOPB

Switched Capacitor Voltage Converter
TI

MAX660MJA

CMOS Monolithic Voltage Converter
MAXIM

MAX660MJA/883B

Switched Capacitor Converter, 0.12A, 80kHz Switching Freq-Max, CMOS, CDIP8, CERDIP-8
MAXIM