MAX6675ISA [MAXIM]

Cold-Junction-Compensated K-Thermocoupleto-Digital Converter (0∑C to +1024∑C); 冷端补偿的K - Thermocoupleto数字转换器( 0ΣC至+ 1024ΣC )
MAX6675ISA
型号: MAX6675ISA
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Cold-Junction-Compensated K-Thermocoupleto-Digital Converter (0∑C to +1024∑C)
冷端补偿的K - Thermocoupleto数字转换器( 0ΣC至+ 1024ΣC )

转换器 模拟IC 信号电路 光电二极管 信息通信管理 PC
文件: 总8页 (文件大小:131K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2235; Rev 1; 3/02  
Cold-Junction-Compensated K-Thermocouple-  
to-Digital Converter (0°C to +1024°C)  
General Description  
Features  
The MAX6675 performs cold-junction compensation  
and digitizes the signal from a type-K thermocouple.  
The data is output in a 12-bit resolution, SPI™-compati-  
ble, read-only format.  
o Direct Digital Conversion of Type -K  
Thermocouple Output  
o Cold-Junction Compensation  
o Simple SPI-Compatible Serial Interface  
o 12-Bit, 0.25°C Resolution  
This converter resolves temperatures to 0.25°C, allows  
readings as high as +1024°C, and exhibits thermocou-  
ple accuracy of 8LSBs for temperatures ranging from  
0°C to +700°C.  
o Open Thermocouple Detection  
The MAX6675 is available in a small, 8-pin SO package.  
Ordering Information  
PART  
TEMP RANGE  
PIN-PACKAGE  
MAX6675ISA  
-20°C to +85°C  
8 SO  
Applications  
Pin Configuration  
Industrial  
Appliances  
HVAC  
TOP VIEW  
GND  
T-  
1
2
3
4
8
7
6
5
N.C.  
SO  
Automotive  
MAX6675  
T+  
CS  
V
SCK  
CC  
SO  
SPI is a trademark of Motorola, Inc.  
Typical Application Circuit  
Vcc  
0.1 F  
MAX6675  
MICROCONTROLLER  
68HC11A8  
GND  
MISO  
SO  
SCK  
CS  
T+  
T-  
SCK  
SSB  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Cold-Junction-Compensated K-Thermocouple-  
to-Digital Converter (0°C to +1024°C)  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage (V  
to GND) ................................ -0.3V to +6V  
Storage Temperature Range ............................-65°C to +150°C  
Junction Temperature .................................................... +150°C  
SO Package  
CC  
SO, SCK, CS, T-, T+ to GND .......................-0.3V to V  
SO Current ........................................................................ 50mA  
+ 0.3V  
CC  
ESD Protection (Human Body Model) ........................... 2000V  
Vapor Phase (60s) . .....................................................+215°C  
Infrared (15s) ..............................................................+220°C  
Lead Temperature (soldering, 10s) ............................... +300°C  
Continuous Power Dissipation (T = +70°C)  
A
8-Pin SO (derate 5.88mW/°C above +70°C) .............. 471mW  
Operating Temperature Range ..........................-20°C to +85°C  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= +3.0V to +5.5V, T = -20°C to +85°C, unless otherwise noted. Typical values specified at +25°C.) (Note 1)  
A
CC  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
-5  
TYP  
MAX  
+5  
UNITS  
V
V
V
V
= +3.3V  
= +5V  
CC  
CC  
CC  
CC  
T
= +700°C,  
THERMOCOUPLE  
T = +25°C (Note 2)  
A
-6  
+6  
= +3.3V  
= +5V  
-8  
+8  
T
= 0°C to  
THERMOCOUPLE  
+700°C, T = +25°C (Note 2)  
A
-9  
+9  
Temperature Error  
LSB  
T
= +700 C  
V
V
= +3.3V  
= +5V  
-17  
-19  
+17  
+19  
THERMOCOUPLE  
CC  
CC  
to +1000 C, T = +25 C  
A
(Note 2)  
Thermocouple Conversion  
Constant  
10.25  
µV/LSB  
V
V
= +3.3V  
= +5V  
-3.0  
-3.0  
+3.0  
+3.0  
CC  
CC  
Cold-Junction  
Compensation Error  
T = -20°C to +85°C  
A
(Note 2)  
°C  
°C  
k
Resolution  
0.25  
60  
Thermocouple Input  
Impedance  
Supply Voltage  
V
3.0  
1
5.5  
1.5  
2.5  
V
mA  
V
CC  
Supply Current  
I
0.7  
2
CC  
Power-On Reset Threshold  
Power-On Reset Hysteresis  
Conversion Time  
V
rising  
CC  
50  
mV  
s
(Note 2)  
0.17  
0.22  
SERIAL INTERFACE  
0.3 x  
Input Low Voltage  
Input High Voltage  
V
V
V
IL  
V
CC  
0.7 x  
V
IH  
V
CC  
Input Leakage Current  
Input Capacitance  
I
V
= GND or V  
CC  
5
µA  
pF  
LEAK  
IN  
C
5
IN  
2
_______________________________________________________________________________________  
Cold-Junction-Compensated K-Thermocouple-  
to-Digital Converter (0°C to +1024°C)  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +3.0V to +5.5V, T = -20°C to +85°C, unless otherwise noted. Typical values specified at +25°C.) (Note 1)  
A
CC  
PARAMETER  
SYMBOL  
CONDITIONS  
= 1.6mA  
SOURCE  
MIN  
TYP  
MAX  
UNITS  
V
-
CC  
Output High Voltage  
V
I
I
V
V
OH  
0.4  
Output Low Voltage  
TIMING  
V
= 1.6mA  
SINK  
0.4  
4.3  
OL  
Serial Clock Frequency  
SCK Pulse High Width  
SCK Pulse Low Width  
CSB Fall to SCK Rise  
CSB Fall to Output Enable  
CSB Rise to Output Disable  
f
MHz  
ns  
SCL  
t
100  
100  
100  
CH  
t
ns  
CL  
t
C = 10pF  
L
ns  
CSS  
t
C = 10pF  
L
100  
100  
ns  
DV  
t
C = 10pF  
L
ns  
TR  
SCK Fall to Output Data  
Valid  
t
C = 10pF  
L
100  
ns  
DO  
Note 1: All specifications are 100% tested at T = +25°C. Specification limits over temperature (T = T  
to T  
) are guaranteed  
MAX  
A
by design and characterization, not production tested.  
Note 2: Guaranteed by design. Not production tested.  
A
MIN  
Typical Operating Characteristics  
(V  
= +3.3V, T = +25°C, unless otherwise noted.)  
CC  
A
OUTPUT CODE ERROR  
vs. AMBIENT TEMPERATURE  
OUTPUT CODE ERROR  
vs. VOLTAGE DIFFERENTIAL  
10  
10  
8
6
4
2
5
0
-5  
0
0
15  
30  
45  
60  
75  
90  
-10  
0
10  
20  
30  
40  
50  
TEMPERATURE ( C)  
VOLTAGE DIFFERENTIAL (mV)  
_______________________________________________________________________________________  
3
Cold-Junction-Compensated K-Thermocouple-  
to-Digital Converter (0°C to +1024°C)  
Where:  
Pin Description  
V
is the thermocouple output voltage (µV).  
OUT  
PIN  
NAME  
FUNCTION  
T
is the temperature of the remote thermocouple junc-  
R
tion (°C).  
1
GND  
Ground  
T
is the ambient temperature (°C).  
AMB  
Alumel Lead of Type-K Thermocouple.  
Should be connected to ground  
externally.  
2
T-  
Cold-Junction Compensation  
The function of the thermocouple is to sense a differ-  
ence in temperature between two ends of the thermo-  
couple wires. The thermocouples hot junction can be  
read from 0°C to +1023.75°C. The cold end (ambient  
temperature of the board on which the MAX6675 is  
mounted) can only range from -20°C to +85°C. While  
the temperature at the cold end fluctuates, the  
MAX6675 continues to accurately sense the tempera-  
ture difference at the opposite end.  
3
4
T+  
Chromel Lead of Type-K Thermocouple  
Positive Supply. Bypass with a 0.1µF  
capacitor to GND.  
V
CC  
5
6
SCK  
Serial Clock Input  
Chip Select. Set CS low to enable the  
serial interface.  
CS  
7
8
SO  
Serial Data Output  
No Connection  
The MAX6675 senses and corrects for the changes in  
the ambient temperature with cold-junction compensa-  
tion. The device converts the ambient temperature  
reading into a voltage using a temperature-sensing  
diode. To make the actual thermocouple temperature  
measurement, the MAX6675 measures the voltage from  
the thermocouples output and from the sensing diode.  
The devices internal circuitry passes the diodes volt-  
age (sensing ambient temperature) and thermocouple  
voltage (sensing remote temperature minus ambient  
temperature) to the conversion function stored in the  
ADC to calculate the thermocouples hot-junction tem-  
perature.  
N.C.  
Detailed Description  
The MAX6675 is a sophisticated thermocouple-to-digi-  
tal converter with a built-in 12-bit analog-to-digital con-  
verter (ADC). The MAX6675 also contains cold-junction  
compensation sensing and correction, a digital con-  
troller, an SPI-compatible interface, and associated  
control logic.  
The MAX6675 is designed to work in conjunction with an  
external microcontroller (µC) or other intelligence in ther-  
mostatic, process-control, or monitoring applications.  
Optimal performance from the MAX6675 is achieved  
when the thermocouple cold junction and the MAX6675  
are at the same temperature. Avoid placing heat-gener-  
ating devices or components near the MAX6675  
because this may produce cold-junction-related errors.  
Temperature Conversion  
The MAX6675 includes signal-conditioning hardware to  
convert the thermocouples signal into a voltage compat-  
ible with the input channels of the ADC. The T+ and T-  
inputs connect to internal circuitry that reduces the intro-  
duction of noise errors from the thermocouple wires.  
Digitization  
The ADC adds the cold-junction diode measurement  
with the amplified thermocouple voltage and reads out  
the 12-bit result onto the SO pin. A sequence of all  
zeros means the thermocouple reading is 0°C. A  
sequence of all ones means the thermocouple reading  
is +1023.75°C.  
Before converting the thermoelectric voltages into  
equivalent temperature values, it is necessary to com-  
pensate for the difference between the thermocouple  
cold-junction side (MAX6675 ambient temperature) and  
a 0°C virtual reference. For a type-K thermocouple, the  
voltage changes by 41µV/°C, which approximates the  
thermocouple characteristic with the following linear  
equation:  
V
= (41µV / °C) (T - T  
)
AMB  
OUT  
R
4
_______________________________________________________________________________________  
Cold-Junction-Compensated K-Thermocouple-  
to-Digital Converter (0°C to +1024°C)  
mounting technique, and the effects of airflow. Use a  
Applications Information  
large ground plane to improve the temperature mea-  
Serial Interface  
The Typical Application Circuit shows the MAX6675  
interfaced with a microcontroller. In this example, the  
MAX6675 processes the reading from the thermocou-  
ple and transmits the data through a serial interface.  
Force CS low and apply a clock signal at SCK to read  
the results at SO. Forcing CS low immediately stops  
any conversion process. Initiate a new conversion  
process by forcing CS high.  
surement accuracy of the MAX6675.  
The accuracy of a thermocouple system can also be  
improved by following these precautions:  
Use the largest wire possible that does not shunt  
heat away from the measurement area.  
If small wire is required, use it only in the region of  
the measurement and use extension wire for the  
region with no temperature gradient.  
Force CS low to output the first bit on the SO pin. A  
complete serial interface read requires 16 clock cycles.  
Read the 16 output bits on the falling edge of the clock.  
The first bit, D15, is a dummy sign bit and is always  
zero. Bits D14D3 contain the converted temperature in  
the order of MSB to LSB. Bit D2 is normally low and  
goes high when the thermocouple input is open. D1 is  
low to provide a device ID for the MAX6675 and bit D0  
is three-state.  
Avoid mechanical stress and vibration, which could  
strain the wires.  
When using long thermocouple wires, use a twisted-  
pair extension wire.  
Avoid steep temperature gradients.  
Try to use the thermocouple wire well within its tem-  
perature rating.  
Use the proper sheathing material in hostile environ-  
ments to protect the thermocouple wire.  
Figure 1a is the serial interface protocol and Figure 1b  
shows the serial interface timing. Figure 2 is the SO out-  
put.  
Use extension wire only at low temperatures and  
only in regions of small gradients.  
Open Thermocouple  
Bit D2 is normally low and goes high if the thermocou-  
ple input is open. In order to allow the operation of the  
open thermocouple detector, T- must be grounded.  
Make the ground connection as close to the GND pin  
as possible.  
Keep an event log and a continuous record of ther-  
mocouple resistance.  
Reducing Effects of Pick-Up Noise  
The input amplifier (A1) is a low-noise amplifier  
designed to enable high-precision input sensing. Keep  
the thermocouple and connecting wires away from  
electrical noise sources.  
Noise Considerations  
The accuracy of the MAX6675 is susceptible to power-  
supply coupled noise. The effects of power-supply  
noise can be minimized by placing a 0.1µF ceramic  
bypass capacitor close to the supply pin of the device.  
Chip Information  
TRANSISTOR COUNT: 6720  
PROCESS: BiCMOS  
Thermal Considerations  
Self-heating degrades the temperature measurement  
accuracy of the MAX6675 in some applications. The  
magnitude of the temperature errors depends on the  
thermal conductivity of the MAX6675 package, the  
_______________________________________________________________________________________  
5
Cold-Junction-Compensated K-Thermocouple-  
to-Digital Converter (0°C to +1024°C)  
CS  
SCK  
D0  
SO  
D15  
D14  
D13  
D12  
D7  
D6  
D4  
D2  
D11  
D10  
D9  
D8  
D5  
D3  
D1  
Figure 1a. Serial Interface Protocol  
t
CSS  
CS  
t
t
CL  
CH  
SCK  
SO  
t
DV  
t
DO  
t
TR  
D15  
D3  
D2  
D1  
D0  
Figure 1b. Serial Interface Timing  
DUMMY  
BIT  
12-BIT  
TEMPERATURE READING  
THERMOCOUPLE DEVICE  
STATE  
SIGN BIT  
INPUT  
ID  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Three-  
state  
0
MSB  
LSB  
0
Figure 2. SO Output  
6
_______________________________________________________________________________________  
Cold-Junction-Compensated K-Thermocouple-  
to-Digital Converter (0°C to +1024°C)  
Block Diagram  
V
CC  
0.1 F  
4
DIGITAL  
CONTROLLER  
COLD-JUNCTION  
COMPENSATION  
DIODE  
S5  
5
SCK  
300k  
ADC  
7
6
30k  
30k  
S3  
T+  
T-  
SO  
CS  
1M  
3
2
S2  
A2  
A1  
S4  
S1  
20pF  
MAX6675  
300k  
REFERENCE  
VOLTAGE  
1
GND  
_______________________________________________________________________________________  
7
Cold-Junction-Compensated K-Thermocouple-  
to-Digital Converter (0°C to +1024°C)  
Package Information  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
8 _____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2002 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX6675ISA+

Analog Circuit, 1 Func, BICMOS, PDSO8, 0.150 INCH, SOIC-8
MAXIM

MAX6675ISA+T

Analog Circuit, 1 Func, BICMOS, PDSO8, 0.150 INCH, SOIC-8
MAXIM

MAX6676

Low-Voltage, 1.8kHz PWM Output Temperature Sensors
MAXIM

MAX6676-MAX6677

Low-Voltage, 1.8kHz PWM Output Temperature Sensors
MAXIM

MAX6676AUT3

Low-Voltage, 1.8kHz PWM Output Temperature Sensors
MAXIM

MAX6676AUT3+

Analog Circuit
MAXIM

MAX6676AUT3+T

Analog Voltage Output Sensor, PLASTIC, SOT-23, 6 PIN
MAXIM

MAX6676AUT3-T

Low-Voltage, 1.8kHz PWM Output Temperature Sensors
MAXIM

MAX6676AUT5

Low-Voltage, 1.8kHz PWM Output Temperature Sensors
MAXIM

MAX6676AUT5-T

Low-Voltage, 1.8kHz PWM Output Temperature Sensors
MAXIM

MAX6677

Low-Voltage, 1.8kHz PWM Output Temperature Sensors
MAXIM

MAX6677AUT3

Low-Voltage, 1.8kHz PWM Output Temperature Sensors
MAXIM