MAX6753KA46 [MAXIM]

UP Reset Circuits with Capacitor-Adjustable Reset/Watchdog Timeout Delay; 上电复位电路,带有电容可调的复位/看门狗超时周期
MAX6753KA46
型号: MAX6753KA46
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

UP Reset Circuits with Capacitor-Adjustable Reset/Watchdog Timeout Delay
上电复位电路,带有电容可调的复位/看门狗超时周期

电源电路 电源管理电路 复位电路 光电二极管 信息通信管理
文件: 总14页 (文件大小:213K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2530; Rev 2; 8/03  
µP Reset Circuits with Capacitor-Adjustable  
Reset/Watchdog Timeout Delay  
General Description  
Features  
The MAX6746–MAX6753 low-power microprocessor  
(µP) supervisory circuits monitor single/dual system  
supply voltages from 1.575V to 5V and provide maxi-  
mum adjustability for reset and watchdog functions.  
Factory-Set Reset Threshold Options from 1.575V  
to 5V in ~100mV Increments  
Adjustable Reset Threshold Options  
Single/Dual Voltage Monitoring  
These devices assert a reset signal whenever the V  
CC  
supply voltage or RESET IN falls below its reset thresh-  
old or when manual reset is pulled low. The reset output  
Capacitor-Adjustable Reset Timeout  
Capacitor-Adjustable Watchdog Timeout  
Min/Max (Windowed) Watchdog Option  
Manual Reset Input Option  
remains asserted for the reset timeout period after V  
CC  
and RESET IN rise above the reset threshold. The reset  
function features immunity to power-supply transients.  
The MAX6746–MAX6753 have ±±2 factory-trimmed  
reset threshold voltages in approximately 100mV incre-  
ments from 1.575V to 5.0V and/or adjustable reset  
threshold voltages using external resistors.  
Guaranteed RESET Valid for V  
3.7µA Supply Current  
1V  
CC  
The reset and watchdog delays are adjustable with  
external capacitors. The MAX6746–MAX6751 contain a  
watchdog select input that extends the watchdog time-  
out period by 1±8x. The MAX675±/MAX6753 contain a  
window watchdog timer that looks for activity outside an  
expected window of operation.  
Push-Pull or Open-Drain RESET Output Options  
Power-Supply Transient Immunity  
Small 8-Pin SOT23 Packages  
Ordering Information  
The MAX6746–MAX6753 are available with a push-pull  
or open-drain active-low RESET output. The MAX6746–  
MAX6753 are available in an 8-pin SOT±3 package and  
are fully specified over the automotive temperature  
range (-40°C to +1±5°C).  
PART  
TEMP RANGE  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
PIN-PACKAGE  
8 SOT23-8  
8 SOT23-8  
8 SOT23-8  
8 SOT23-8  
8 SOT23-8  
8 SOT23-8  
8 SOT23-8  
8 SOT23-8  
MAX6746KA_ _-T  
MAX6747KA_ _-T  
MAX6748KA-T  
Applications  
MAX6749KA-T  
MAX6750KA_ _-T  
MAX6751KA_ _-T  
MAX6752KA_ _-T  
MAX6753KA_ _-T  
Medical Equipment  
Automotive  
Embedded Controllers  
Critical µP Monitoring  
Set-Top Boxes  
Intelligent Instruments  
Portable Equipment  
Computers  
Note: “_ _” represents the two number suffix needed when  
ordering the reset threshold voltage value for the  
Battery-Powered  
Computers/Controllers  
MAX6746/MAX6747 and MAX6750–MAX6753. The reset  
threshold voltages are available in approximately 100mV incre-  
ments. Table 2 contains the suffix and reset factory-trimmed  
voltages. All devices are available in tape-and-reel only. There  
is a 2500-piece minimum order increment for standard ver-  
sions (see Table 3). Sample stock is typically held on standard  
versions only. Nonstandard versions require a minimum order  
increment of 10,000 pieces. Contact factory for availability.  
Pin Configurations  
TOP VIEW  
RESET IN (MR)  
SWT  
1
2
3
4
8
7
6
5
V
CC  
RESET  
WDI  
MAX6746–  
MAX6751  
SRT  
GND  
WDS  
Selector Guide appears at end of data sheet.  
Typical Operating Circuit appears at end of data sheet.  
SOT23-8  
( ) ARE FOR MAX6746 AND MAX6747 ONLY.  
Pin Configurations continued at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
µP Reset Circuits with Capacitor-Adjustable  
Reset/Watchdog Timeout Delay  
ABSOLUTE MAXIMUM RATINGS  
CC  
V
to GND...........................................................-0.3V to +6.0V  
Continuous Power Dissipation (T = +70°C)  
A
SRT, SWT, SET0, SET1, RESET IN, WDS, MR,  
WDI, to GND .......................................-0.3V to (V  
RESET (Push-Pull) to GND......................-0.3V to (V  
RESET (Open Drain) to GND.............................-0.3V to +6.0V  
Input Current (All Pins) ..................................................... 20ꢀA  
Output Current (RESET) ................................................... 20ꢀA  
8-Pin SOT23 (derate 8.9ꢀW/°C above +70°C)............714ꢀW  
Operating Teꢀperature Range .........................-40°C to +125°C  
Storage Teꢀperature Range ............................-65°C to +150°C  
Junction Teꢀperature......................................................+150°C  
Lead Teꢀperature (soldering, 10s) .................................+300°C  
+ 0.3V)  
+ 0.3V)  
CC  
CC  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= +1.2V to +5.5V, T = T  
A
to T  
, unless otherwise specified. Typical values are at V  
= +5V and T = +25°C.) (Note 1)  
CC A  
CC  
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
= 0°C to +125°C  
MIN  
1.0  
TYP  
MAX  
5.5  
5.5  
10  
9
UNITS  
T
T
A
Supply Voltage  
V
V
CC  
= -40°C to 0°C  
1.2  
A
V
V
V
5.5V  
3.3V  
2.0V  
5
CC  
CC  
CC  
Supply Current  
I
µA  
4.2  
3.7  
CC  
8
See V  
selection table  
V
2%  
-
V
2%  
+
TH  
TH  
TH  
V
Reset Threshold  
V
T = -40°C to+125°C  
A
V
CC  
TH  
Hysteresis  
to Reset Delay  
V
0.8  
20  
%
µs  
HYST  
V
falling froꢀ V + 100ꢀV to V  
-
CC  
TH  
TH  
V
CC  
100ꢀV at 1ꢀV/µs  
C
C
= 1500pF  
5.692  
7.590  
0.506  
250  
9.487  
SRT  
SRT  
SRT  
Reset Tiꢀeout Period  
t
ꢀs  
RP  
= 100pF  
SRT Raꢀp Current  
I
V
= 0 to 1.23V; V  
= 1.6V to 5V  
200  
300  
nA  
V
RAMP  
CC  
SRT Raꢀp Threshold  
V
V
= 1.6V to 5V (V  
= 1500pF  
= 100pF  
rising)  
RAMP  
1.173  
5.692  
1.235  
7.590  
0.506  
1.297  
9.487  
RAMP  
CC  
C
C
C
C
C
C
SWT  
SWT  
SWT  
SWT  
SWT  
SWT  
Norꢀal Watchdog Tiꢀeout Period  
(MAX6746MAX6751)  
t
t
ꢀs  
ꢀs  
ꢀs  
WD  
= 1500pF  
= 100pF  
728.6  
728.6  
971.5 1214.4  
64.77  
Extended Watchdog Tiꢀeout  
(MAX6746MAX6751)  
WD  
= 1500pF  
= 100pF  
971.5 1214.4  
64.77  
Slow Watchdog Period  
(MAX6752/MAX6753)  
t
WD2  
WD1  
Fast Watchdog Tiꢀeout Period,  
SET Ratio = 8,  
(MAX6752/MAX6753)  
C
C
C
C
= 1500pF  
= 100pF  
= 1500pF  
= 100pF  
91.08 121.43 151.80  
8.09  
SWT  
SWT  
SWT  
SWT  
t
ꢀs  
ꢀs  
Fast Watchdog Tiꢀeout Period,  
SET Ratio = 16,  
(MAX6752/MAX6753)  
45.53  
60.71  
4.05  
75.89  
t
WD1  
2
_______________________________________________________________________________________  
µP Reset Circuits with Capacitor-Adjustable  
Reset/Watchdog Timeout Delay  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +1.2V to +5.5V, T = T  
A
to T  
, unless otherwise specified. Typical values are at V  
= +5V and T = +25°C.) (Note 1)  
CC A  
CC  
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
= 1500pF  
MIN  
TYP  
MAX  
UNITS  
Fast Watchdog Tiꢀeout Period,  
SET Ratio = 64,  
(MAX6752/MAX6753)  
C
C
11.38  
15.18  
18.98  
SWT  
SWT  
t
ꢀs  
WD1  
= 100pF  
1.01  
Fast Watchdog Miniꢀuꢀ Period  
(MAX6752/MAX6753)  
2000  
ns  
SWT Raꢀp Current  
I
V
V
V
V
V
V
V
V
= 0 to 1.23V, V = 1.6V to 5V  
200  
250  
300  
1.297  
0.3  
nA  
V
RAMP  
SWT  
CC  
SWT Raꢀp Threshold  
V
= 1.6V to 5V (V  
rising)  
1.173  
1.235  
RAMP  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
RAMP  
1.0V, I  
2.7V, I  
4.5V, I  
1.8V, I  
= 50µA  
SINK  
SINK  
SINK  
RESET Output Voltage LOW  
Open-Drain, Push-Pull  
(Asserted)  
V
= 1.2ꢀA  
= 3.2ꢀA  
0.3  
V
OL  
0.4  
= 200µA  
0.8 x V  
0.8 x V  
0.8 x V  
SOURCE  
CC  
CC  
CC  
RESET Output Voltage HIGH,  
Push-Pull (Not Asserted)  
V
2.25V, I  
= 500µA  
V
OH  
SOURCE  
4.5V, I  
= 800µA  
SOURCE  
RESET Output Leakage Current,  
Open Drain  
V
V
> V , reset not asserted,  
CC TH  
I
1.0  
0.8  
µA  
LKG  
= 5.5V  
RESET  
DIGITAL INPUTS (MR, SET0, SET1, WDI, WDS)  
V
IL  
V
V
4.0V  
CC  
CC  
V
2.4  
IH  
Input Logic Levels  
V
V
< 4.0V  
0.3 x V  
CC  
IL  
V
0.7 x V  
1
IH  
CC  
MR Miniꢀuꢀ Pulse Width  
MR Glitch Rejection  
µs  
ns  
ns  
kΩ  
ns  
100  
200  
20  
MR to RESET Delay  
MR Pullup Resistance  
WDI Miniꢀuꢀ Pulse Width  
RESET IN  
Pullup to V  
12  
28  
CC  
300  
RESET IN Threshold  
RESET IN Leakage Current  
RESET IN to RESET Delay  
V
T
= -40°C to +125°C  
A
1.216  
-50  
1.235  
1
1.254  
+50  
V
RESET IN  
I
nA  
µs  
RESET IN  
RESET IN falling at 1ꢀV/µs  
20  
Note 1: Production testing done at T = +25°C. Over teꢀperature liꢀits are guaranteed by design.  
A
_______________________________________________________________________________________  
3
µP Reset Circuits with Capacitor-Adjustable  
Reset/Watchdog Timeout Delay  
Typical Operating Characteristics  
(V  
= +5V, T = +25°C, unless otherwise noted.)  
A
CC  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
RESET TIMEOUT PERIOD vs. C  
WATCHDOG TIMEOUT PERIOD vs. C  
SRT  
SWT  
6
10,000  
1000  
100  
10  
100,000  
10,000  
1000  
100  
MAX6746–MAX6751  
5
4
3
EXTENDED MODE  
NORMAL MODE  
2
1
10  
1
1
0
0.1  
0.1  
1
2
3
4
5
6
100  
1000  
10,000  
100,000  
100  
1000  
10,000  
100,000  
SUPPLY VOLTAGE (V)  
C
SRT  
(pF)  
C
SWT  
(pF)  
NORMALIZED RESET TIMEOUT PERIOD  
vs. TEMPERATURE  
NORMALIZED WATCHDOG TIMEOUT PERIOD  
vs. TEMPERATURE  
MAXIMUM TRANSIENT DURATION  
vs. RESET THRESHOLD OVERDRIVE  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
175  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
150  
125  
100  
75  
C
SRT  
= 100pF  
C
= 100pF  
SWT  
RESET OCCURS  
ABOVE THE CURVE  
C
SWT  
= 1500pF  
C
SRT  
= 1500pF  
50  
25  
V
TH  
= 2.92V  
800  
0
-50 -25  
0
25  
50  
75 100 125  
0
200  
400  
600  
1000  
-50 -25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
RESET THRESHOLD OVERDRIVE (mV)  
TEMPERATURE (°C)  
NORMALIZED RESET IN THRESHOLD VOLTAGE  
vs. TEMPERATURE  
RESET IN THRESHOLD  
vs. SUPPLY VOLTAGE  
SUPPLY CURRENT  
vs. TEMPERATURE  
1.010  
1.008  
1.006  
1.004  
1.002  
1.000  
0.998  
0.996  
0.994  
0.992  
1.240  
1.239  
1.238  
1.237  
1.236  
1.235  
6
5
4
3
V
CC  
= 5V  
V
CC  
= 5V  
V
CC  
= 1.8V  
V
CC  
= 3.3V  
2
1
0.990  
0
-50 -25  
0
25  
50  
75 100 125  
1
2
3
4
5
6
-50 -25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
4
_______________________________________________________________________________________  
µP Reset Circuits with Capacitor-Adjustable  
Reset/Watchdog Timeout Delay  
Typical Operating Characteristics (continued)  
(V  
= +5V, T = +25°C, unless otherwise noted.)  
A
CC  
RESET AND WATCHDOG  
TIMEOUT PERIOD vs. V  
V
TO RESET DELAY  
RESET AND WATCHING TIMEOUT  
CC  
vs. TEMPERATURE (V FALLING)  
PERIOD vs. V  
CC  
CC  
CC  
27.0  
0.60  
0.56  
0.52  
0.48  
0.44  
0.40  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
C
SWT  
= C = 100pF  
SRT  
V
FALLING AT 1mV/µs  
C
= C = 1500pF  
SRT  
CC  
SWT  
26.6  
26.2  
25.8  
25.4  
25.0  
RESET  
WATCHDOG  
-50 -25  
0
25  
50  
75 100 125  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
(V)  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
(V)  
TEMPERATURE (°C)  
V
CC  
V
CC  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX6746  
MAX6747  
MAX6748–  
MAX6751  
MAX6752  
MAX6753  
Manual Reset Input. Pull MR low to ꢀanually reset the device. Reset  
reꢀains asserted for the reset tiꢀeout period after MR is released.  
1
1
MR  
Reset Input. High-iꢀpedance input to the adjustable reset coꢀparator.  
RESET IN Connect RESET IN to the center point of an external resistor-divider to  
set the threshold of the externally ꢀonitored voltage.  
1
Logic Input. SET0 selects watchdog window ratio or disables the  
watchdog tiꢀer. See Table 1.  
SET0  
Watchdog Tiꢀeout Input.  
MAX6746MAX6751: Connect a capacitor between SWT and ground to  
set the basic watchdog tiꢀeout period (t ). Deterꢀine the period by  
WD  
the forꢀula t  
= 5.06 x 106 x C  
with t  
in seconds and C  
in  
SWT  
WD  
SWT  
WD  
Farads. Extend the basic watchdog tiꢀeout period by using the WDS  
input. Connect SWT to ground to disable the watchdog tiꢀer function.  
2
2
2
SWT  
MAX6752/MAX6753: Connect a capacitor between SWT and ground to  
set the slow watchdog tiꢀeout period (t  
). Deterꢀine the slow  
WD2  
watchdog period by the forꢀula: t  
= 0.65 x 109 x C  
with t  
in  
WD2  
SWT  
WD2  
seconds and C  
in Farads. The fast watchdog tiꢀeout period is set  
SWT  
by pinstrapping SET0 and SET1 (Connect SET0 high and SET1 low to  
disable the watchdog tiꢀer function.) See Table 1.  
Reset Tiꢀeout Input. Connect a capacitor froꢀ SRT to GND to select  
3
4
3
4
3
4
SRT  
the reset tiꢀeout period. Deterꢀine the period as follows: t = 5.06 x  
RP  
106 x C  
with t in seconds and C  
in Farads.  
SRT  
SRT  
RP  
GND  
Ground  
_______________________________________________________________________________________  
5
µP Reset Circuits with Capacitor-Adjustable  
Reset/Watchdog Timeout Delay  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
MAX6746  
MAX6747  
MAX6748–  
MAX6751  
MAX6752  
MAX6753  
Watchdog Select Input. WDS selects the watchdog ꢀode. Connect  
WDS to ground to select norꢀal ꢀode and the watchdog tiꢀeout  
5
5
WDS  
SET1  
period. Connect WDS to V  
basic tiꢀeout period by a factor of 128. A change in the state of WDS  
clears the watchdog tiꢀer.  
to select extended ꢀode, ꢀultiplying the  
CC  
Logic Input. SET1 selects the watchdog window ratio or disables the  
watchdog tiꢀer. See Table 1.  
5
Watchdog Input.  
MAX6746MAX6751: A falling transition ꢀust occur on WDI within the  
selected watchdog tiꢀeout period or a reset pulse occurs. The  
watchdog tiꢀer clears when a transition occurs on WDI or whenever  
RESET is asserted. Connect SWT to ground to disable the watchdog  
tiꢀer function.  
6
6
6
WDI  
MAX6752/MAX6753: WDI falling transitions within periods shorter than  
t
or longer than t  
force RESET to assert low for the reset tiꢀeout  
WD2  
WD1  
period. The watchdog tiꢀer begins to count after RESET is deasserted.  
The watchdog tiꢀer clears when a valid transition occurs on WDI or  
whenever RESET is asserted. Connect SET0 high and SET1 low to  
disable the watchdog tiꢀer function. See the Watchdog Timer section.  
Push/Pull or Open-Drain Reset Output. RESET asserts whenever V  
or  
CC  
RESET IN drops below the selected reset threshold voltage (V or  
TH  
V
, respectively) or ꢀanual reset is pulled low. RESET reꢀains  
RESET IN  
7
8
7
8
7
8
RESET  
low for the reset tiꢀeout period after all reset conditions are deasserted,  
and then goes high. The watchdog tiꢀer triggers a reset pulse (t  
whenever a watchdog fault occurs.  
)
RP  
Supply Voltage. V  
threshold V ꢀonitor.  
is the power-supply input and the input for fixed  
CC  
V
CC  
CC  
6
_______________________________________________________________________________________  
µP Reset Circuits with Capacitor-Adjustable  
Reset/Watchdog Timeout Delay  
t
(MIN)  
t
(MAX)  
t
(MIN)  
t (MAX)  
WD2  
WD1  
WD1  
WD2  
GUARANTEED  
TO ASSERT  
RESET  
GUARANTEED TO  
NOT ASSERT  
GUARANTEED TO  
ASSERT  
RESET  
RESET  
*UNDETERMINED  
*UNDETERMINED  
WDI CONDITION 1  
WDI CONDITION 2  
FAST FAULT  
NORMAL OPERATION  
SLOW FAULT  
WDI CONDITION 3  
*UNDETERMINED STATES MAY OR MAY NOT GENERATE A FAULT CONDITION  
Figure 1. MAX6752/MAX6753 Detailed Watchdog Input Timing Relationship  
RESET is guaranteed to be in the correct logic state for  
greater than 1V. For applications requiring valid  
Detailed Description  
V
CC  
The MAX6746MAX6753 assert a reset signal whenever  
reset logic when V  
is less than 1V, see the section  
CC  
the V  
supply voltage or RESET IN falls below its reset  
CC  
Ensuring a Valid RESET Output Down to V  
= 0V.  
CC  
threshold. The reset output reꢀains asserted for the  
reset tiꢀeout period after V and RESET IN rise above  
CC  
RESET IN Threshold  
its respective reset threshold. A watchdog tiꢀer triggers  
a reset pulse whenever a watchdog fault occurs.  
The MAX6748MAX6751 ꢀonitor the voltage on RESET IN  
using an adjustable reset threshold (V ) set with  
RESET IN  
an external resistor voltage-divider (Figure 2). Use the  
following forꢀula to calculate the externally ꢀonitored  
The reset and watchdog delays are adjustable with  
external capacitors. The MAX6746MAX6751 contain a  
watchdog select input that extends the watchdog tiꢀe-  
out period to 128x.  
voltage (V  
):  
MON_TH  
V
= V  
x (R1 + R2) / R2  
MON_TH  
RESET IN  
The MAX6752 and MAX6753 have a sophisticated  
watchdog tiꢀer that detects when the processor is run-  
ning outside an expected window of operation. The  
watchdog signals a fault when the input pulses arrive too  
V
MON_TH  
early (faster that the selected t  
late (slower than the selected t  
Figure 1).  
tiꢀeout period) or too  
WD2  
WD1  
tiꢀeout period) (see  
R1  
R2  
V
CC  
V
CC  
Reset Output  
RESET IN  
GND  
The reset output is typically connected to the reset input  
of a µP. A µPs reset input starts or restarts the µP in a  
known state. The MAX6746MAX6753 µP supervisory  
circuits provide the reset logic to prevent code-execu-  
tion errors during power-up, power-down, and  
brownout conditions (see theTypical Operating Circuit).  
RESET changes froꢀ high to low whenever the ꢀoni-  
MAX6748  
MAX6749  
MAX6750  
MAX6751  
tored voltage, RESET IN and/or V  
drop below the  
CC  
V
= 1.235 x (R1 + R2) / R2  
MON_TH  
reset threshold voltages. Once V  
and/or V  
CC  
RESET IN  
exceeds its respective reset threshold voltage(s),  
RESET reꢀains low for the reset tiꢀeout period, then  
goes high.  
Figure 2. Calculating the Monitored Threshold Voltage  
(V  
)
MON_TH  
_______________________________________________________________________________________  
7
µP Reset Circuits with Capacitor-Adjustable  
Reset/Watchdog Timeout Delay  
guarantee RESET IN threshold accuracy and tiꢀing  
V
MON_TH  
perforꢀance. The MAX6748 and MAX6749 can be con-  
figured to ꢀonitor V  
V
voltage by connecting V  
to  
CC  
CC  
MON_TH.  
Dual-Voltage Monitoring  
(MAX6750/MAX6751)  
R1  
V
CC  
The MAX6750 and MAX6751 contain both factory-  
triꢀꢀed threshold voltages and an adjustable reset  
threshold input, allowing the ꢀonitoring of two voltages,  
V
CC  
RESET IN  
GND  
V
and V  
(see Figure 2). RESET is asserted  
MON_TH  
when either of the voltages falls below it respective  
threshold voltages.  
CC  
MAX6748  
MAX6749  
MAX6750  
MAX6751  
R2  
Manual Reset (MAX6746/MAX6747)  
Many µP-based products require ꢀanual reset capabil-  
ity, to allow an operator or external logic circuitry to initi-  
ate a reset. The ꢀanual reset input (MR) can connect  
directly to a switch without an external pullup resistor or  
debouncing network. MR is internally pulled up to V  
CC  
and, therefore, can be left unconnected if unused.  
Figure 3. Adding an External Manual Reset Function to the  
MAX6748MAX6751  
MR is designed to reject fast, falling transients (typically  
100ns pulses) and it ꢀust be held low for a ꢀiniꢀuꢀ of  
1µs to assert the reset output. A 0.1µF capacitor froꢀ  
MR to ground provides additional noise iꢀꢀunity. After  
MR transitions froꢀ low to high, reset reꢀains asserted  
for the duration of the reset tiꢀeout period.  
where V  
is the desired reset threshold voltage  
MON_TH  
and V is the reset input threshold (1.235V). Resistors  
TH  
R1 and R2 can have very high values to ꢀiniꢀize cur-  
rent consuꢀption due to low leakage currents. Set R2  
to soꢀe conveniently high value (500k, for exaꢀple)  
and calculate R1 based on the desired reset threshold  
voltage, using the following forꢀula:  
A ꢀanual reset option can easily be iꢀpleꢀented  
with the MAX6748MAX6751 by connecting a norꢀally  
open ꢀoꢀentary switch in parallel with R2 (Figure 3).  
When the switch is closed, the voltage on RESET IN  
goes to zero, initiating a reset. Siꢀilar to the MAX6746/  
MAX6747 ꢀanual reset, reset reꢀains asserted while  
the voltage at RESET IN is zero and for the reset tiꢀe-  
out period after the switch is opened.  
R1 = R2 x (V  
/V  
- 1) ()  
MON_TH RESET IN  
The MAX6748 and MAX6749 do not ꢀonitor V  
ply voltage, therefore, V  
sup-  
CC  
ꢀust be greater than 1.5V to  
CC  
V
CC  
t
t
RP  
WD  
WDI  
OV  
V
CC  
RESET  
OV  
NORMAL MODE (WDS = GND)  
Figure 4a. Watchdog Timing Diagram, WDS = GND  
8
_______________________________________________________________________________________  
µP Reset Circuits with Capacitor-Adjustable  
Reset/Watchdog Timeout Delay  
V
CC  
t
RP  
t
x 128  
WD  
WDI  
OV  
V
CC  
RESET  
OV  
EXTENDED MODE (WDS = V  
)
CC  
Figure 4b. Watchdog Timing Diagram, WDS = V  
CC  
Watchdog Timer  
Table 1. Min/MAX Watchdog Setting  
MAX6746–MAX6751  
The watchdogs circuit ꢀonitors the µPs activity. It the  
µP does not toggle the watchdog input (WDI) within  
SET0  
LOW  
LOW  
HIGH  
HIGH  
SET1  
LOW  
HIGH  
LOW  
HIGH  
RATIO  
8
t
(user-selected), RESET asserts for the reset tiꢀe-  
WD  
16  
out period. The internal watchdog tiꢀer is cleared by  
any event that asserts RESET, by a falling transition at  
WDI (which can detect pulses as short as 300ns) or by  
a transition at WDS. The watchdog tiꢀer reꢀains  
cleared while reset is asserted; as soon as reset is  
released, the tiꢀer starts counting.  
Watchdog Disabled  
64  
where HIGH is V  
trates the SET0 and SET1 configuration for the 8, 16,  
and 64 window ratio ( t /t ).  
and LOW is GND. Table 1 illus-  
CC  
WD2 WD1  
The MAX6746MAX6751 feature two ꢀodes of watch-  
dog operation: norꢀal ꢀode and extended ꢀode. In nor-  
ꢀal ꢀode (Figure 4a), the watchdog tiꢀeout period is  
deterꢀined by the value of the capacitor connected  
between SWT and ground. In extended ꢀode (Figure  
4b), the watchdog tiꢀeout period is ꢀultiplied by 128.  
For exaꢀple, in extended ꢀode, a 0.1µF capacitor gives  
a watchdog tiꢀeout period of 65s (see the Extended-  
For exaꢀple, if C  
low, then t  
is 1500pF, and SET0 and SET1 are  
SWT  
is 975ꢀs (typ) and t  
is 122ꢀs (typ).  
WD2  
WD1  
RESET asserts if the watchdog input has two falling  
edges too close to each other (faster than t ) (Figure  
WD1  
5a) or falling edges that are too far apart (slower than  
) (Figure 5b). Norꢀal watchdog operation is dis-  
t
WD2  
played in (Figure 5c). The internal watchdog tiꢀer is  
cleared when a WDI falling edge is detected within the  
valid watchdog window or when RESET is deasserted.  
All WDI inputs are ignored while RESET is asserted.  
Mode Watchdog Tiꢀeout Period vs. C  
graph in the  
SWT  
Typical Operating Characteristics). To disable the watch-  
dog tiꢀer function, connect SWT to ground.  
MAX6752/MAX6753  
The MAX6752 and MAX6753 have a windowed watch-  
dog tiꢀer that asserts RESET for the adjusted reset  
tiꢀeout period when the watchdog recognizes a fast  
The watchdog tiꢀer begins to count after RESET is  
deasserted. The watchdog tiꢀer clears and begins to  
count after a valid WDI falling logic input. WDI falling  
transitions within periods shorter than t  
or longer  
WD1  
watchdog fault (t  
< t  
), or a slow watchdog fault  
than t  
force RESET to assert low for the reset tiꢀe-  
WDI  
WD1  
WD2  
(period > t  
). The reset tiꢀeout period is adjusted  
independently of the watchdog tiꢀeout period.  
out period. WDI falling transitions within the t  
and  
WD1  
WD2  
t
window do not assert RESET. WDI transitions  
WD2  
between t  
and t  
or t  
and  
WD2(ꢀin)  
WD1(ꢀin)  
WD1(ꢀax)  
The slow watchdog period, t is calculated as follows:  
WD2  
t
are not guaranteed to assert or deassert the  
WD2(ꢀax)  
t
= 0.65 x 109 x C  
SWT  
WD2  
RESET. To guarantee that the window watchdog does  
not assert the RESET, strobe WDI between t  
WD1(ꢀax)  
with t  
in seconds and C  
in Farads.  
WD2  
SWT  
and t  
. The watchdog tiꢀer is cleared when  
WD2(ꢀin)  
The fast watchdog period, t  
, is selectable as a ratio  
WD1  
RESET is asserted or after a falling transition on WDI or  
after a state change on SET0 or SET1. Disable the  
watchdog tiꢀer by connecting SET0 high and SET1 low.  
froꢀ the slow watchdog fault period (t  
). Select the  
WD2  
fast watchdog period by pinstrapping SET0 and SET1,  
_______________________________________________________________________________________  
9
µP Reset Circuits with Capacitor-Adjustable  
Reset/Watchdog Timeout Delay  
t
< t  
(MIN)  
WDI WD1  
5V  
3.3V  
V
CC  
100kΩ  
WDI  
MAX6747  
MAX6749  
MAX6451  
MAX6753  
RESET  
V
CC  
RESET  
(a) FAST FAULT  
µP  
RESET  
N
t
> t  
(MAX)  
WDI WD2  
GND  
GND  
WDI  
Figure 6. Interfacing to Other Voltage Levels  
RESET  
norꢀal ꢀode operation, calculate the watchdog tiꢀe-  
out capacitor as follows:  
(b) SLOW FAULT  
(MAX) < t < t  
C
SWT  
= t /(5.06 x 106),  
WD  
t
(MIN)  
WDI WD2  
WD1  
with t in seconds and C  
in Farads.  
RP  
SRT  
For the MAX6752 and MAX6753 windowed watchdog  
function, calculate the slow watchdog period, t  
follows:  
as  
WD2  
WDI  
t
= 0.65 x 109 x C  
RESET  
WD2  
SWT  
C
and C  
ꢀust be a low-leakage (<10nA) type  
SWT  
SRT  
capacitor. Ceraꢀic capacitors are recoꢀꢀended.  
(c) NORMAL OPERATION (NO PULSING, OUTPUT STAYS HIGH)  
Transient Immunity  
In addition to issuing a reset to the µP during power-up,  
power-down, and brownout conditions, these supervi-  
sors are relatively iꢀꢀune to short-duration supply tran-  
sients (glitches). The Maxiꢀuꢀ Transient Duration vs.  
Reset Threshold Overdrive graph in the Typical  
Operating Characteristics shows this relationship.  
Figure 5. MAX6752/MAX6753 Window Watchdog Diagram  
Applications Information  
Selecting Reset/Watchdog  
Timeout Capacitor  
The reset tiꢀeout period is adjustable to accoꢀꢀodate  
a variety of µP applications. Adjust the reset tiꢀeout  
The area below the curves of the graph is the region  
in which these devices typically do not generate a reset  
pulse. This graph was generated using a falling pulse  
period (t ) by connecting a capacitor (C  
) between  
SRT  
RP  
SRT and ground. Calculate the reset tiꢀeout capacitor  
as folllows:  
applied to V , starting above the actual reset threshold  
CC  
(V ) and ending below it by the ꢀagnitude indicated  
TH  
C
SRT  
= t / (5.06 x 106),  
RP  
(reset-threshold overdrive). As the ꢀagnitude of the tran-  
sient increases (farther below the reset threshold), the  
ꢀaxiꢀuꢀ allowable pulse width decreases. Typically, a  
with t in seconds and C  
in Farads.  
RP  
SRT  
The watchdog tiꢀeout period is adjustable to accoꢀ-  
ꢀodate a variety of µP applications. With this feature,  
the watchdog tiꢀeout can be optiꢀized for software  
execution. The prograꢀꢀer can deterꢀine how often  
the watchdog tiꢀer should be serviced. Adjust the  
V
transient that goes 100ꢀV below the reset threshold  
CC  
and lasts 50µs or less does not cause a reset pulse to be  
issued.  
watchdog tiꢀeout period (t ) by connecting a specif-  
WD  
ic value capacitor (C  
) between SWT and GND. For  
SWT  
10 ______________________________________________________________________________________  
µP Reset Circuits with Capacitor-Adjustable  
Reset/Watchdog Timeout Delay  
Interfacing to Other Voltages for  
Logic Compatibility  
The open-drain RESET output can be used to interface  
to a µP with other logic levels. As shown in Figure 6, the  
open-drain output can be connected to voltages froꢀ 0  
to 6V.  
Ensuring a Valid RESET Down to V  
= 0V  
CC  
(Push-Pull RESET)  
When V falls below 1V, RESET current sinking capabil-  
CC  
ities decline drastically. The high-iꢀpedance CMOS-  
logic inputs connected to RESET can drift to undeter-  
ꢀined voltages. This presents no probleꢀs in ꢀost  
applications, since ꢀost µPs and other circuitry do not  
Generally, the pullup resistor connected to the RESET  
operate with V  
below 1V.  
connects to the supply voltage that is being ꢀonitored  
CC  
at the ICs V  
pin. However, soꢀe systeꢀs can use  
CC  
In those applications where RESET ꢀust be valid down  
to 0V, add a pulldown resistor between RESET and  
GND for the MAX6746/MAX6748/MAX6750/MAX6752  
push/pull outputs. The resistor sinks any stray leakage  
currents, holding RESET low (Figure 7). The value of the  
pulldown resistor is not critical; 100kis large enough  
not to load RESET and sꢀall enough to pull RESET to  
ground. The external pulldown can not be used with  
the open-drain reset outputs.  
the open-drain output to level-shift froꢀ the ꢀonitored  
supply to reset circuitry powered by soꢀe other supply.  
Keep in ꢀind that as the supervisors V  
decreases  
CC  
towards 1V, so does the ICs ability to sink current at  
RESET. Also, with any pullup resistor, RESET is pulled  
high as V  
decays toward zero. The voltage where  
this occurs depends on the pullup resistor value and  
the voltage to which it is connected.  
CC  
V
CC  
V
CC  
MAX6746  
MAX6748  
MAX6450  
MAX6752  
RESET  
100kΩ  
GND  
Figure 7. Ensuring RESET Valid to V  
= 0  
CC  
______________________________________________________________________________________ 11  
µP Reset Circuits with Capacitor-Adjustable  
Reset/Watchdog Timeout Delay  
Table 2. Reset Threshold Voltage Suffix  
(T = -40°C to +125°C)  
Table 3. Standard Version Table  
A
PART  
TOP MARK  
AEDI  
MAX6746KA16  
MAX6746KA23  
MAX6746KA26  
MAX6746KA29  
MAX6746KA46  
MAX6747KA16  
MAX6747KA23  
MAX6747KA26  
MAX6747KA29  
MAX6747KA46  
MAX6748KA  
SUFFIX  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
MIN  
TYP  
MAX  
5.100  
4.998  
4.896  
4.794  
4.718  
4.590  
4.463  
4.386  
4.284  
4.182  
4.080  
3.978  
3.876  
3.774  
3.672  
3.570  
3.468  
3.366  
3.264  
3.137  
3.060  
2.984  
2.856  
2.754  
2.678  
2.550  
2.448  
2.359  
2.232  
2.142  
2.040  
1.938  
1.836  
1.698  
1.607  
AEDJ  
AEDK  
AALN  
AEDL  
AALO  
AEDM  
AEDN  
AEDO  
AEDP  
AALP  
AALQ  
AEDQ  
AALR  
AEDR  
AEDS  
AEDT  
AEDU  
AEDV  
AEDW  
AEDX  
AEDY  
AEDZ  
AEEA  
AALT  
4.900  
4.802  
4.704  
4.606  
4.533  
4.410  
4.288  
4.214  
4.116  
4.018  
3.920  
3.822  
3.724  
3.626  
3.528  
3.430  
3.332  
3.234  
3.136  
3.014  
2.940  
2.867  
2.744  
2.646  
2.573  
2.450  
2.352  
2.267  
2.144  
2.058  
1.960  
1.862  
1.764  
1.632  
1.544  
5.000  
4.900  
4.800  
4.700  
4.625  
4.500  
4.375  
4.300  
4.200  
4.100  
4.000  
3.900  
3.800  
3.700  
3.600  
3.500  
3.400  
3.300  
3.200  
3.075  
3.000  
2.925  
2.800  
2.700  
2.625  
2.500  
2.400  
2.313  
2.188  
2.100  
2.000  
1.900  
1.800  
1.665  
1.575  
MAX6749KA  
MAX6750KA16  
MAX6750KA23  
MAX6750KA26  
MAX6750KA29  
MAX6750KA46  
MAX6751KA16  
MAX6751KA23  
MAX6751KA26  
MAX6751KA29  
MAX6751KA46  
MAX6752KA16  
MAX6752KA23  
MAX6752KA26  
MAX6752KA29  
MAX6752KA46  
MAX6753KA16  
MAX6753KA23  
MAX6753KA26  
MAX6753KA29  
MAX6753KA46  
AEEB  
AEEC  
AEED  
AEEE  
AEEF  
AEEG  
AEEH  
Note: Standard versions are shown in bold. There is a 2500-  
piece minimum order increment for standard versions.  
Sample stock is typically held on standard versions only.  
Nonstandard versions require a minimum order increment of  
10,000 pieces. Contact factory for availability.  
12 ______________________________________________________________________________________  
µP Reset Circuits with Capacitor-Adjustable  
Reset/Watchdog Timeout Delay  
Selector Guide  
FIXED V  
RESET  
THRESHOLD  
ADJUSTABLE  
RESET  
THRESHOLD  
STANDARD  
WATCHDOG WATCHDOG  
MIN/MAX  
MANUAL  
RESET  
INPUT  
CC  
PUSH/ PULL OPEN-DRAIN  
PART  
RESET  
RESET  
TIMER  
TIMER  
MAX6746  
MAX6747  
MAX6748  
MAX6749  
MAX6750  
MAX6751  
MAX6752  
MAX6753  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
Typical Operating Circuit  
Pin Configurations (continued)  
V
IN  
TOP VIEW  
MAX6749  
MAX4751  
V
CC  
SET0  
SWT  
SRT  
1
2
3
4
8
7
6
5
V
CC  
R1  
R2  
RESET  
WDI  
MAX6752  
MAX6753  
RESET IN  
V
CC  
µP  
GND  
SET1  
MAX6748  
MAX6749  
MAX6750  
MAX6751  
RESET  
RESET  
GND  
SOT23-8  
SRT  
C
SRT  
I/O  
WDI  
Chip Information  
SWT  
WDS  
C
SWT  
TRANSISTOR COUNT: 1100  
PROCESS: BiCMOS  
WDS = 0 FOR NORMAL MODE  
WDS = V FOR EXTENDED MODE  
CC  
______________________________________________________________________________________ 13  
µP Reset Circuits with Capacitor-Adjustable  
Reset/Watchdog Timeout Delay  
Package Information  
(The package drawing(s) in this data sheet ꢀay not reflect the ꢀost current specifications. For the latest package outline inforꢀation,  
go to www.maxim-ic.com/packages.)  
SEE DETAIL "A"  
SYMBOL  
MIN  
MAX  
e
b
A
0.90  
0.00  
0.90  
0.28  
0.09  
2.80  
2.60  
1.50  
0.30  
1.45  
0.15  
1.30  
0.45  
0.20  
3.00  
3.00  
1.75  
0.60  
C
L
A1  
A2  
b
C
D
E
C
C
L
E1  
L
E
E1  
L
0.25 BSC.  
L2  
e
PIN 1  
I.D. DOT  
(SEE NOTE 6)  
0.65 BSC.  
1.95 REF.  
e1  
0
0
8
e1  
D
C
C
L
L2  
A2  
A
GAUGE PLANE  
A1  
SEATING PLANE  
C
0
L
NOTE:  
1. ALL DIMENSIONS ARE IN MILLIMETERS.  
2. FOOT LENGTH MEASURED FROM LEAD TIP TO UPPER RADIUS OF  
HEEL OF THE LEAD PARALLEL TO SEATING PLANE C.  
DETAIL "A"  
3. PACKAGE OUTLINE EXCLUSIVE OF MOLD FLASH & METAL BURR.  
4. PACKAGE OUTLINE INCLUSIVE OF SOLDER PLATING.  
5. COPLANARITY 4 MILS. MAX.  
6. PIN 1 I.D. DOT IS 0.3 MM MIN. LOCATED ABOVE PIN 1.  
PROPRIETARY INFORMATION  
TITLE:  
7. SOLDER THICKNESS MEASURED AT FLAT SECTION OF LEAD  
BETWEEN 0.08mm AND 0.15mm FROM LEAD TIP.  
8. MEETS JEDEC MO178.  
PACKAGE OUTLINE, SOT-23, 8L BODY  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0078  
D
1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
14 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2003 Maxiꢀ Integrated Products  
Printed USA  
is a registered tradeꢀark of Maxiꢀ Integrated Products.  

相关型号:

MAX6753KA46+

Power Management Circuit, Adjustable, 1 Channel, BICMOS, PDSO8, LEAD FREE, SOT-23, 8 PIN
MAXIM

MAX6753KA46+T

Power Supply Management Circuit, Adjustable, 1 Channel, BICMOS, PDSO8, ROHS COMPLIANT, SOT-23, 8 PIN
MAXIM

MAX6753KA46-T

Power Supply Management Circuit, Adjustable, 1 Channel, BICMOS, PDSO8, SOT-23, 8 PIN
MAXIM

MAX6753KA46/V+T

Power Supply Management Circuit, Adjustable, 1 Channel, BICMOS, PDSO8, SOT-23, 8 PIN
MAXIM

MAX6753KA47

Power Management Circuit, Adjustable, 1 Channel, BICMOS, PDSO8, MO-178BA, SOT-23, 8 PIN
MAXIM

MAX6753KA47+

Power Management Circuit, Adjustable, 1 Channel, BICMOS, PDSO8, LEAD FREE, MO-178BA, SOT-23, 8 PIN
MAXIM

MAX6753KA47+T

Power Supply Management Circuit, Adjustable, 1 Channel, BICMOS, PDSO8, ROHS COMPLIANT, SOT-23, 8 PIN
MAXIM

MAX6753KA49

Power Management Circuit, Adjustable, 1 Channel, BICMOS, PDSO8, MO-178BA, SOT-23, 8 PIN
MAXIM

MAX6753KA50

Power Management Circuit, Adjustable, 1 Channel, BICMOS, PDSO8, MO-178BA, SOT-23, 8 PIN
MAXIM

MAX6754

Low-Power, Single/Dual-Voltage Window Detectors
MAXIM

MAX6754UKLD0

1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO5, MO-178AA, SOT-23, 5 PIN
ROCHESTER

MAX6754UKLD0+

1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO5, MO-178AA, SOT-23, 5 PIN
ROCHESTER