MAX6782 [MAXIM]

Low-Power, 1% Accurate, Dual-/Triple-/Quad-Level Battery Monitors in Small TDFN and TQFN Packages; 低功耗, 1 %精度,双/三/四电平电池监视器小TDFN和TQFN封装
MAX6782
型号: MAX6782
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Low-Power, 1% Accurate, Dual-/Triple-/Quad-Level Battery Monitors in Small TDFN and TQFN Packages
低功耗, 1 %精度,双/三/四电平电池监视器小TDFN和TQFN封装

电池 监视器
文件: 总20页 (文件大小:653K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0541; Rev 1; 10/06  
Low-Power, 1% Accurate, Dual-/Triple-/Quad-Level  
Battery Monitors in Small TDFN and TQFN Packages  
82–MAX6790  
General Description  
Features  
The MAX6782–MAX6790 are low-power, 1% accurate,  
dual-/triple-/quad-level battery monitors offered in small  
TDFN and TQFN packages. These devices are ideal for  
monitoring single lithium-ion (Li+) cells, or multicell alka-  
line/NiCd/NiMH power sources. These devices feature  
fixed and adjustable hysteresis options to eliminate out-  
put chattering associated with battery-voltage monitors.  
o
1% Accurate Threshold Specified Over Full  
Temperature Range  
o
o
o
o
o
o
Dual-/Triple-/Quad, Low-Battery Output Options  
Low 5.7µA Battery Current  
Open-Drain or Push-Pull Outputs  
Fixed or Adjustable Hysteresis  
Low Input Bias Current  
The MAX6782/MAX6783 offer four battery monitors in a  
single package with factory-set (0.5%, 5%, 10%) or  
adjustable hysteresis. The MAX6784/MAX6785 provide  
three battery monitors with factory-set (0.5%, 5%, 10%)  
or adjustable hysteresis. The MAX6786/MAX6787/  
MAX6788 offer two battery monitors with external inputs  
for setting the rising and falling thresholds, allowing  
external hysteresis control. The MAX6789/MAX6790 fea-  
ture quad-level overvoltage detectors with complemen-  
tary outputs.  
Guaranteed Valid Low-Battery-Output Logic State  
Down to V  
= 1.05V  
BATT  
Reverse-Battery Protection  
o
o
o
o
Immune to Short Battery Transients  
Fully Specified from -40°C to +85°C  
Small TDFN and TQFN Packages  
The MAX6782–MAX6790 are offered with either open-drain  
or push-pull outputs. The MAX6782/MAX6784/MAX6786/  
MAX6789 are available with push-pull outputs while the  
MAX6783/MAX6785/MAX6787/MAX6790 are available with  
open-drain outputs. The MAX6788 is available with one  
open-drain output and one push-pull output (see the  
Selector Guide). This family of devices is offered in space-  
saving TDFN and TQFN packages and is fully specified  
over the -40°C to +85°C extended temperature range.  
Ordering Information  
PIN-  
PACKAGE  
PKG  
CODE  
PART  
TEMP RANGE  
MAX6782TE_+  
MAX6783TE_+  
MAX6784TC_+  
MAX6785TC_+  
-40°C to +85°C 16 TQFN-EP* T1633-4  
-40°C to +85°C 16 TQFN-EP* T1633-4  
-40°C to +85°C 12 TQFN-EP* T1233-1  
-40°C to +85°C 12 TQFN-EP* T1233-1  
Ordering Information continued at end of data sheet.  
+Denotes lead-free package.  
Applications  
Battery-Powered Systems  
(Single-Cell Li+ or  
Multicell NiMH, NiCd,  
Alkaline)  
Cell Phones/Cordless  
Phones  
Pagers  
Portable Medical Devices  
PDAs  
Electronic Toys  
MP3 Players  
*EP = Exposed paddle.  
The MAX6782/MAX6783/MAX6784/MAX6785 are available with  
factory-trimmed hysteresis. Specify trim by replacing “_” with  
“A” for 0.5%, “B” for 5%, or “C” for 10% hysteresis.  
Pin Configuration and Typical Operating Circuit appear at  
end of data sheet.  
Selector Guide  
PART  
MONITOR LEVEL  
LBO OUTPUT  
Quad  
Quad  
Triple  
Triple  
Dual  
OV  
OV  
OUTPUT TYPE  
Push-Pull  
HYSTERESIS  
Fixed/Adj  
Fixed/Adj  
Fixed/Adj  
Fixed/Adj  
Adj  
MAX6782TE_+  
MAX6783TE_+  
MAX6784TC_+  
MAX6785TC_+  
MAX6786TA+  
MAX6787TA+  
MAX6788TA+  
MAX6789TB+  
MAX6790TB+  
4
4
3
3
2
2
2
4
4
Open Drain  
Push-Pull  
Open Drain  
Push-Pull  
Dual  
Open Drain  
Push-Pull/Open Drain  
Push-Pull  
Adj  
Dual  
Adj  
Single  
Single  
Single  
Single  
Open Drain  
Note: All devices are available in tape and reel in 2.5k increments. For tape and reel orders, add a “T” after the “+” to complete the part  
number.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Low-Power, 1% Accurate, Dual-/Triple-/Quad-Level  
Battery Monitors in Small TDFN and TQFN Packages  
ABSOLUTE MAXIMUM RATINGS  
(All voltages referenced to GND.)  
Continuous Power Dissipation (T = +70°C)  
A
BATT.........................................................................-0.3V to +6V  
IN1–IN4, LBH1, LBL1,  
8-Pin TDFN (derate 23.8mW/°C above +70°C) ..........1905mW  
10-Pin TDFN (derate 24.4mW/°C above +70°C) ........1951mW  
12-Pin Thin QFN (derate 16.7mW/°C above +70°C) ..1333mW  
16-Pin Thin QFN (derate 20.8mW/°C above +70°C) ..1667mW  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature……………………………………+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
LBH2, LBL2..................-0.3V to Min ((V  
HADJ1–HADJ4, REF .......-0.3V to Min ((V  
LBO1LBO4 (push-pull)..-0.3V to Min ((V  
+ 0.3V) and +6V)  
+ 0.3V) and +6V)  
+ 0.3V) and +6V)  
BATT  
BATT  
BATT  
LBO1LBO4 (open drain).........................................-0.3V to +6V  
Input Current (all pins) ........................................................20mA  
Output Current (all pins) .....................................................20mA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= 1.6V to 5.5V, T = -40°C to +85°C, unless otherwise specified. Typical values are at T = +25°C.) (Note 1)  
A A  
BATT  
PARAMETER  
SYMBOL  
CONDITIONS  
= 0°C to +70°C  
MIN  
1.05  
1.2  
TYP  
MAX  
5.5  
UNITS  
82–MAX6790  
T
T
A
Operating Voltage Range  
(Note 2)  
V
V
BATT  
= -40°C to +85°C  
5.5  
A
V
V
V
= 3.7V, no load  
6.3  
5.7  
10  
µA  
µA  
ms  
BATT  
BATT  
BATT  
Supply Current  
I
Q
= 1.8V, no load  
Startup Time (Note 3)  
rising from 0 to 1.6V  
5
MAX6782/MAX6783/MAX6784/MAX6785  
0.5% hysteresis (A version)  
5% hysteresis (B version)  
10% hysteresis (C version)  
0.5994 0.6055 0.6115  
0.5723 0.5781 0.5839  
0.5422 0.5477 0.5531  
0.6024 0.6085 0.6146  
IN_ Falling Threshold (Note 4)  
V
V
INF  
IN_ Rising Threshold (Note 4)  
V
V
INR  
IN_, HADJ_ Input Leakage  
Current  
V
V
0.3V  
5
nA  
IN_, HADJ_  
Reference Output  
V
0.6024 0.6085 0.6146  
0.3  
V
REF  
Reference Load Regulation  
I
= 0 to 1mA  
mV/mA  
REF  
Reference Temperature  
Coefficient  
TEMPCO  
15  
20  
ppm/°C  
Reference Short-Circuit Current  
Hysteresis Adjustment Range  
Hysteresis Adjustment Logic Low  
mA  
V
0.4  
V
REF  
V
0.07  
V
HALL  
Hysteresis Adjustment Logic  
High  
V
0.17  
V
HALH  
MAX6786/MAX6787/MAX6788  
LBL_, LBH_ Threshold  
V
0.6024 0.6085 0.6146  
5
V
TH  
LBL_, LBH_ Input Leakage  
Current  
V
, V  
0.3V  
nA  
LBL LBH_  
2
_______________________________________________________________________________________  
Low-Power, 1% Accurate, Dual-/Triple-/Quad-Level  
Battery Monitors in Small TDFN and TQFN Packages  
82–MAX6790  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 1.6V to 5.5V, T = -40°C to +85°C, unless otherwise specified. Typical values are at T = +25°C.) (Note 1)  
A A  
BATT  
PARAMETER  
MAX6782–MAX6788  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
LBO_ Propagation Delay  
t
100mV overdrive  
30  
µs  
V
PD  
V
V
V
1.2V, I  
2.7V, I  
4.5V, I  
= 100µA  
= 1.2mA  
= 3.2mA  
0.3  
0.3  
0.4  
BATT  
BATT  
BATT  
SINK  
SINK  
SINK  
LBO_ Output Low Voltage (Push-  
Pull or Open Drain)  
V
V
OL  
V
0.8 x  
V
V
V
1.6V, I  
2.7V, I  
4.5V, I  
= 10µA  
V
V
BATT  
BATT  
BATT  
SOURCE  
SOURCE  
SOURCE  
V
BATT  
LBO_ Output High Voltage  
(Push-Pull) (Note 5)  
0.8 x  
V
= 500µA  
= 800µA  
OH  
V
BATT  
0.8 x  
V
V
BATT  
LBO_ Output Leakage Current  
(Open Drain)  
Output not asserted, V  
= 0 or 5V  
500  
nA  
LBO_  
MAX6789/MAX6790  
IN_ Rising Threshold  
IN_ Hysteresis  
V
0.6024 0.6085 0.6146  
V
TH+  
31  
mV  
nA  
µs  
IN_ Input Leakage Current  
OV, OV Delay Time  
V
V
0.3V  
5
IN_  
t
100mV overdrive  
30  
PD  
1.6V, I  
= 100µA, output  
= 1.2mA, output  
= 3.2mA, output  
BATT  
SINK  
0.3  
0.3  
asserted  
V 2.7V, I  
BATT  
OV Output Low Voltage (Push-  
Pull or Open Drain)  
SINK  
V
V
OL  
asserted  
V
4.5V, I  
BATT  
SINK  
0.4  
asserted  
V
1.2V, I  
= 10µA, output not  
= 500µA, output not  
0.8 x  
V
BATT  
BATT  
SOURCE  
asserted  
OV Output High Voltage (Push-  
Pull) (Note 5)  
V
2.7V, I  
0.8 x  
BATT  
SOURCE  
V
V
nA  
V
OH  
asserted  
V
BATT  
V
4.5V, I  
= 800µA, output not  
SINK  
0.8 x  
V
BATT  
BATT  
asserted  
OV Output Leakage Current  
(Open Drain)  
Output not asserted, V , V = 0 or 5V  
500  
0.3  
0.3  
0.4  
OV OV  
V
1.2V, I  
= 100µA, output not  
= 1.2mA, output not  
= 3.2mA, output not  
BATT  
SINK  
SINK  
SINK  
asserted  
V 2.7V, I  
BATT  
OV Output Low Voltage  
(Push-Pull or Open Drain)  
V
OL  
asserted  
V
4.5V, I  
BATT  
asserted  
_______________________________________________________________________________________  
3
Low-Power, 1% Accurate, Dual-/Triple-/Quad-Level  
Battery Monitors in Small TDFN and TQFN Packages  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 1.6V to 5.5V, T = -40°C to +85°C, unless otherwise specified. Typical values are at T = +25°C.) (Note 1)  
A A  
BATT  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
1.6V, I  
= 10µA, output  
0.8 x  
BATT  
SOURCE  
SOURCE  
SOURCE  
asserted  
V
BATT  
OV Output High Voltage (Push-  
Pull ) (Note 5)  
V
2.7V, I  
= 500µA, output  
= 800µA, output  
0.8 x  
BATT  
V
V
OH  
asserted  
V
BATT  
V
4.5V, I  
0.8 x  
BATT  
asserted  
V
BATT  
OV Output Leakage Current  
(Open Drain)  
Output asserted, V = 0 or 5V  
500  
nA  
V
OV  
0.3 x  
CLEAR Input Low Voltage  
CLEAR Input High Voltage  
V
IL  
V
BATT  
0.7 x  
V
V
IH  
V
BATT  
82–MAX6790  
CLEAR Pullup Resistance  
CLEAR Minimum Pulse Width  
CLEAR Delay Time  
25  
80  
kΩ  
µs  
ns  
1
t
300  
CLD  
Note 1: Devices are tested at T = +25°C and guaranteed by design for T = T  
to T  
as specified.  
MAX  
A
A
MIN  
Note 2: Operating voltage range ensures low battery output is in the correct state. Minimum battery voltage for electrical specifica-  
tion is 1.6V.  
Note 3: Reference and threshold accuracy is only guaranteed after the startup time. Startup time is guaranteed by design.  
Note 4: The rising threshold is guaranteed to be higher than the falling threshold.  
Note 5: The source current is the total source current from all outputs.  
4
_______________________________________________________________________________________  
Low-Power, 1% Accurate, Dual-/Triple-/Quad-Level  
Battery Monitors in Small TDFN and TQFN Packages  
82–MAX6790  
Typical Operating Characteristics  
(V  
= 3.6V, T = +25°C, unless otherwise noted.)  
A
BATT  
PROPAGATION DELAY  
vs. TEMPERATURE  
SUPPLY CURRENT  
vs. TEMPERATURE  
70  
MAXIMUM TRANSIENT DURATION  
vs. THRESHOLD OVERDRIVE  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
V
= 5V  
BATT  
V
=
100mV OVERDRIVE  
OUTPUT ASSERTED ABOVE THIS LINE  
IN_  
V
= 3.6V  
BATT  
60  
50  
40  
30  
20  
10  
0
V
= 1.8V  
60  
BATT  
-40  
-15  
10  
35  
85  
-40  
-15  
10  
35  
60  
85  
1
10  
100  
1000  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
THRESHOLD OVERDRIVE (mV)  
NORMALIZED THRESHOLD VOLTAGES  
vs. TEMPERATURE (MAX6782TEA)  
NORMALIZED THRESHOLD VOLTAGES  
vs. TEMPERATURE (MAX6782TEB)  
NORMALIZED THRESHOLD VOLTAGES  
vs. TEMPERATURE (MAX6782TEC)  
1.005  
1.004  
1.003  
1.002  
1.001  
1.000  
0.999  
0.998  
0.997  
0.996  
0.995  
1.005  
1.004  
1.003  
1.002  
1.001  
1.000  
0.999  
0.998  
0.997  
0.996  
0.995  
1.005  
1.004  
1.003  
1.002  
1.001  
1.000  
0.999  
0.998  
0.997  
0.996  
0.995  
NORMALIZED AT T = +25°C  
NORMALIZED AT T = +25°C  
NORMALIZED AT T = +25°C  
A
A
A
FALLING  
RISING  
RISING  
FALLING  
FALLING  
RISING  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
5
Low-Power, 1% Accurate, Dual-/Triple-/Quad-Level  
Battery Monitors in Small TDFN and TQFN Packages  
Typical Operating Characteristics (continued)  
(V  
= 3.6V, T = +25°C, unless otherwise noted.)  
A
BATT  
LBO OUTPUT VOLTAGE LOW  
vs. SINK CURRENT  
5.5  
LBO OUTPUT VOLTAGE HIGH  
vs. SOURCE CURRENT  
REFERENCE VOLTAGE  
vs. TEMPERATURE  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.620  
0.616  
0.612  
0.608  
0.604  
0.600  
MAX6782TEA  
V
= 1.8V  
BATT  
V
= 3.3V  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
BATT  
V
= 5.0V  
BATT  
V
= 3.3V  
BATT  
V
= 5.0V  
BATT  
V
= 1.8V  
BATT  
PUSH-PULL  
VERSIONS  
0
3
6
9
12  
15  
0
1
2
3
4
5
-40  
-15  
10  
35  
60  
85  
82–MAX6790  
SINK CURRENT (mA)  
SOURCE CURRENT (mA)  
TEMPERATURE (°C)  
REFERENCE VOLTAGE  
vs. REFERENCE CURRENT  
REFERENCE VOLTAGE  
vs. SUPPLY VOLTAGE  
CLEAR LATCH CIRCUIT  
MAX6782 toc12  
0.65  
0.64  
0.63  
0.62  
0.61  
0.60  
0.59  
0.58  
0.57  
0.56  
0.55  
0.6095  
0.6094  
0.6093  
0.6092  
0.6091  
0.6090  
0.6089  
0.6088  
0.6087  
0.6086  
0.6085  
MAX6782TEB  
MAX6782TEB  
IN_  
5V/div  
CLEAR  
5V/div  
OV  
5V/div  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
REFERENCE CURRENT (mA)  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
SUPPLY VOLTAGE (V)  
100µs/div  
6
_______________________________________________________________________________________  
Low-Power, 1% Accurate, Dual-/Triple-/Quad-Level  
Battery Monitors in Small TDFN and TQFN Packages  
82–MAX6790  
Pin Description  
MAX6782/MAX6783/MAX6784/MAX6785  
PIN  
NAME  
FUNCTION  
MAX6782/  
MAX6783  
MAX6784/  
MAX6785  
Battery Monitor Input 2. Connect to an external resistive divider to set the trip  
threshold for monitor 2.  
1
2
3
4
1
2
IN2  
IN3  
IN4  
REF  
Battery Monitor Input 3. Connect to an external resistive divider to set the trip  
threshold for monitor 3.  
Battery Monitor Input 4. Connect to an external resistive divider to set the trip  
threshold for monitor 4.  
3
Reference Output. REF can source up to 1mA. REF does not require an external  
bypass capacitor for stability. Keep the capacitance from REF to GND below 50pF.  
Hysteresis Adjustment Input 1.  
Connect HADJ1 to GND to select an internal preset hysteresis option.  
Connect a resistive divider from REF to HADJ1 and to GND to externally adjust the  
hysteresis for IN1 from its internal preset hysteresis (see Figure 6).  
5
6
7
8
4
5
HADJ1  
HADJ2  
HADJ3  
HADJ4  
Hysteresis Adjustment Input 2.  
Connect HADJ2 to GND to select an internal preset hysteresis option.  
Connect a resistive divider from REF to HADJ2 and to GND to externally adjust the  
hysteresis for IN2 from its internal preset hysteresis (see Figure 6).  
Hysteresis Adjustment Input 3.  
Connect HADJ3 to GND to select an internal preset hysteresis option.  
Connect a resistive divider from REF to HADJ3 and to GND to externally adjust the  
hysteresis for IN3 from its internal preset hysteresis (see Figure 6).  
6
Hysteresis Adjustment Input 4.  
Connect HADJ4 to GND to select an internal preset hysteresis option.  
Connect a resistive divider from REF to HADJ4 and to GND to externally adjust the  
hysteresis for IN4 from its internal preset hysteresis (see Figure 6).  
Active-Low, Low-Battery Output 4. LBO4 asserts when V  
falls below the falling  
IN4  
9
7
LBO4  
LBO3  
LBO2  
LBO1  
BATT  
threshold voltage. LBO4 deasserts when V  
exceeds the rising threshold voltage.  
IN4  
Active-Low, Low-Battery Output 3. LBO3 asserts when V  
falls below the falling  
IN3  
10  
11  
12  
13  
threshold voltage. LBO3 deasserts when V  
exceeds the rising threshold voltage.  
IN3  
Active-Low, Low-Battery Output 2. LBO2 asserts when V  
falls below the falling  
IN2  
8
threshold voltage. LBO2 deasserts when V  
exceeds the rising threshold voltage.  
IN2  
Active-Low, Low-Battery Output 1. LBO1 asserts when V  
falls below the falling  
IN1  
9
threshold voltage. LBO1 deasserts when V  
exceeds the rising threshold voltage.  
IN1  
Battery Input. Power supply to the device. For better noise immunity, bypass BATT  
to GND with a 0.1µF capacitor as close to the device as possible.  
10  
14  
15  
11  
GND  
N.C.  
Ground  
No Connection. Not internally connected.  
Battery Monitor Input 1. Connect to an external resistive divider to set the trip  
threshold for monitor 1.  
16  
12  
IN1  
_______________________________________________________________________________________  
7
Low-Power, 1% Accurate, Dual-/Triple-/Quad-Level  
Battery Monitors in Small TDFN and TQFN Packages  
Pin Description (continued)  
MAX6786/MAX6787/MAX6788  
PIN  
1
NAME  
LBL1  
LBH1  
LBL2  
LBH2  
GND  
FUNCTION  
Falling Trip Level Input 1. Connect to an external resistive divider to set the falling trip level.  
Rising Trip Level Input 1. Connect to an external resistive divider to set the rising trip level.  
Falling Trip Level Input 2. Connect to an external resistive divider to set the falling trip level.  
Rising Trip Level Input 2. Connect to an external resistive divider to set the rising trip level.  
Ground  
2
3
4
5
Active-Low, Low-Battery Output 2. LBO2 asserts when V  
falls below the falling threshold voltage. LBO2  
LBL2  
6
7
8
LBO2  
LBO1  
BATT  
deasserts when V  
exceeds the rising threshold voltage.  
LBH2  
Active-Low, Low-Battery Output 1. LBO1 asserts when V  
deasserts when V  
falls below the falling threshold voltage. LBO1  
LBL1  
exceeds the rising threshold voltage.  
LBH1  
Battery Input. Power supply to the device. For better noise immunity, bypass BATT to GND with a 0.1µF  
capacitor as close to the device as possible.  
82–MAX6790  
MAX6789/MAX6790  
PIN  
1
NAME  
IN1  
FUNCTION  
Overvoltage Monitor Input 1  
Overvoltage Monitor Input 2  
Overvoltage Monitor Input 3  
Overvoltage Monitor Input 4  
Ground  
2
IN2  
3
IN3  
4
IN4  
5
GND  
Active-Low Clear Input. OV and OV do not latch when an overvoltage fault is detected if CLEAR is held low.  
CLEAR has an internal pullup resistor to BATT.  
6
7
CLEAR  
N.C.  
No Connection. Not internally connected.  
Active-Low Overvoltage Output. When any of the inputs (V ) exceeds its respective rising threshold  
IN_  
8
OV  
voltage, OV asserts and stays asserted until CLEAR is pulled low or the power to the device is cycled. OV  
does not latch when an overvoltage fault is detected if CLEAR is held low.  
9
OV  
Active-High Overvoltage Output. Inverse of OV.  
Battery Input. Power supply to the device. For better noise immunity, bypass BATT to GND with a 0.1µF  
capacitor as close to the device as possible.  
10  
BATT  
lighter loads. The MAX6782–MAX6785 also feature ref-  
erence outputs that can source up to 1mA.  
Detailed Description  
The MAX6782–MAX6788 are designed to monitor two  
to four battery levels (1% accuracy) and assert an  
active-low output indicator when the monitored voltage  
level falls below the user-set threshold. Each battery  
level is associated with an independent open-drain or  
push-pull output. Each of these independent outputs  
can be used to provide low battery warnings at differ-  
ent voltage levels. Each of these monitored levels offers  
fixed or adjustable hysteresis in order to prevent the  
output from chattering as the battery recovers from the  
The MAX6789/MAX6790 monitor four overvoltage con-  
ditions and assert the complementary overvoltage out-  
puts when any voltage at the inputs exceeds its  
respective threshold. The MAX6789/MAX6790 allow  
each trip threshold to be set with external resistors.  
These devices also feature a latch and a clear function.  
Figures 1, 2, and 3 show the simplified block diagrams  
for the MAX6782–MAX6790. See the Selector Guide.  
8
_______________________________________________________________________________________  
Low-Power, 1% Accurate, Dual-/Triple-/Quad-Level  
Battery Monitors in Small TDFN and TQFN Packages  
82–MAX6790  
BATT  
REF  
IN1  
COMPARATOR  
SECTION 1  
REFERENCE  
HADJ1  
LBO1  
IN2  
COMPARATOR  
SECTION 2  
HADJ2  
LBO2  
INTERNAL  
HYSTERESIS  
LADDER  
IN3  
COMPARATOR  
SECTION 3  
HADJ3  
LBO3  
MAX6782  
MAX6783  
MAX6784  
MAX6785  
IN4  
COMPARATOR  
SECTION 4  
HADJ4  
LBO4  
HYSTERESIS  
SELECT  
GND  
(
) MAX6782/MAX6783 ONLY  
Figure 1. MAX6782–MAX6785 Block Diagram  
BATT  
MAX6786  
MAX6787  
MAX6788  
REF  
R
1
LBO_  
LBL_  
LBH_  
R
HYST  
R
2
GND  
Figure 2. MAX6786/MAX6787/MAX6788 Block Diagram  
_______________________________________________________________________________________  
9
Low-Power, 1% Accurate, Dual-/Triple-/Quad-Level  
Battery Monitors in Small TDFN and TQFN Packages  
BATT  
IN_  
MAX6789  
MAX6790  
REF  
OV  
LATCH  
CONTROL  
CLEAR  
82–MAX6790  
GND  
Figure 3. MAX6789/MAX6790 Block Diagram  
Low-Battery/Overvoltage Output  
Hysteresis  
All devices are offered with either push-pull or open-  
drain outputs (see the Selector Guide). The MAX6788  
has one push-pull output and one open-drain output,  
configured as shown in Table 1.  
Input hysteresis defines two thresholds, separated by  
the hysteresis voltage, configured so the output asserts  
when the input falls below the falling threshold, and  
deasserts only when the input rises above the rising  
threshold. Figures 4 and 5 show this graphically.  
Hysteresis removes, or greatly reduces, the possibility  
of the output changing state in response to noise or  
battery-terminal voltage recovery after load removal.  
Table 1. MAX6788 Outputs  
DEVICE  
LBO1  
LBO2  
MAX6788  
Push-Pull  
Open Drain  
All open-drain outputs require an external pullup resis-  
tor. The open-drain pullup resistor may be connected  
to an external voltage up to +6V, regardless of the volt-  
age at BATT.  
10 ______________________________________________________________________________________  
Low-Power, 1% Accurate, Dual-/Triple-/Quad-Level  
Battery Monitors in Small TDFN and TQFN Packages  
82–MAX6790  
V
V
INR  
INTERNAL HYSTERESIS  
INF  
IN_  
V
HALL  
V
HADJ_  
t
PD  
t
PD  
LBO_  
A) NORMAL OPERATION FOR V  
< V  
HALL  
.
HADJ_  
V
INR  
INTERNAL HYSTERESIS  
V
INF  
IN_  
V
HADJ_  
V
HALH  
t
PD  
t
PD  
LBO_  
B) NORMAL OPERATION FOR V  
> V  
HALH  
.
HADJ_  
Figure 4. MAX6782–MAX6785 Timing  
______________________________________________________________________________________ 11  
Low-Power, 1% Accurate, Dual-/Triple-/Quad-Level  
Battery Monitors in Small TDFN and TQFN Packages  
V
TH+  
V
TH-  
IN_  
CLEAR  
OV  
OV  
t
PD  
t
CLD  
82–MAX6790  
Figure 5. MAX6789/MAX6790 Timing  
Externally Adjusted Hysteresis  
The MAX6782–MAX6785 can also be configured for  
externally adjustable hysteresis. Connect a resistive  
divider from REF to HADJ_ and to GND (Figure 6) to set  
the hysteresis voltage. The hysteresis adjustment range  
MAX6782–MAX6785 Hysteresis  
Factory-Set Hysteresis  
The MAX6782–MAX6785 have factory-set hysteresis for  
ease of use and reduced external parts count. For  
these devices the absolute hysteresis voltage is a per-  
centage of the internally generated reference. The  
amount depends on the device option. “A” devices  
have 0.5% hysteresis, “B” devices have 5% hysteresis,  
and “C” devices have 10% hysteresis. Table 2 presents  
the threshold voltages for devices with factory-set hys-  
teresis. For factory-set hysteresis, connect HADJ_ to  
GND.  
is from 0.4V to V  
, and the voltage at HADJ_  
REF  
(V  
) must be set higher than Hysteresis  
Adjustment Logic High (V  
is lower than Hysteresis Adjustment Logic Low  
), these devices switch back to the internal fac-  
tory-set hysteresis (Figure 4a).  
HADJ_  
) (Figure 4b). Note that if  
HALH  
V
HADJ_  
(V  
HALL  
MAX6786/MAX6787/MAX6788 Adjustable  
Hysteresis  
Table 2. Typical Falling and Rising  
Thresholds for MAX6782–MAX6785  
(HADJ_ = GND)  
The MAX6786/MAX6787/MAX6788 offer external hystere-  
sis control through the resistive divider that monitors bat-  
tery voltage. Figure 2 shows the connections for external  
hysteresis. See Calculating an External Hysteresis  
Resistive Divider (MAX6786/MAX6787/MAX6788) section  
for more information.  
PERCENT  
FALLING  
RISING  
DEVICE  
OPTION  
HYSTERESIS THRESHOLD  
THRESHOLD  
(%)  
(V ) (V)  
INF  
(V ) (V)  
INR  
A
B
C
0.5  
5
0.6055  
0.5781  
0.5477  
0.6085  
0.6085  
0.6085  
10  
12 ______________________________________________________________________________________  
Low-Power, 1% Accurate, Dual-/Triple-/Quad-Level  
Battery Monitors in Small TDFN and TQFN Packages  
82–MAX6790  
old (V ) on the associated IN_ (the rising threshold  
INF  
Reference Output  
The reference output can provide up to 1mA of output  
current. The output is not buffered. Excessive loading  
affects the accuracy of the thresholds. An external  
capacitor is not required for stability and is stable for  
capacitive loads up to 50pF. In applications where the  
load or the supply can experience step changes, a  
capacitor reduces the amount of overshoot (under-  
shoot) and improves the circuit’s transient response.  
Place the capacitor as close to the device as possible  
for best performance.  
(V ) is fixed). See Table 2. Calculate R using:  
INR  
3
e
× V  
REF  
A
R =  
3
I
L
where e is the fraction of the maximum acceptable  
A
absolute resistive divider error attributable to the input  
leakage current (use 0.01 for 1%), V  
is the refer-  
REF  
ence output voltage, and I is the worst-case HADJ_  
L
leakage current. Calculate R using:  
4
V
×R  
3
INF  
Applications Information  
R
=
4
V
V  
REF  
INF  
Resistor-Value Selection  
Choosing the proper external resistors is a balance  
between accuracy and power use. The input to the volt-  
age monitor, while high impedance, draws a small cur-  
rent, and that current travels through the resistive  
divider, introducing error. If extremely high resistor val-  
ues are used, this current introduces significant error.  
With extremely low resistor values, the error becomes  
negligible, but the resistive divider draws more power  
from the battery than necessary, and shortens battery  
life. See Figure 6 and calculate the optimum value for  
R1 using:  
where V  
is the desired falling voltage threshold. To  
INF  
calculate the percent hysteresis, use:  
V
V  
INF  
INR  
V
Hysteresis % = 100 ×  
(
)
INR  
where V  
is the rising voltage.  
INR  
Calculating an External  
Hysteresis Resistive Divider  
(MAX6786/MAX6787/MAX6788)  
Setting the hysteresis externally requires calculating  
three resistor values, as indicated in Figure 2. First cal-  
e
× V  
BATT  
A
culate R using:  
1
R =  
1
I
L
e
× V  
BATT  
A
R =  
1
where e is the fraction of the maximum acceptable  
A
absolute resistive divider error attributable to the input  
I
L
leakage current (use 0.01 for 1%), V  
is the battery  
BATT  
and R using:  
20  
voltage at which LBO should activate, and I is the  
L
worst-case IN_ leakage current, from the Electrical  
Characteristics. For example, for 0.5% error, a 2.8V  
V
×R  
1
TH  
R
=
(as in the above example)  
20  
V
V  
BATT  
TH  
battery minimum, and 5nA leakage, R = 2.80M.  
1
Calculate R using:  
2
where R = R + R determine the total resistive-  
HYST  
divider current, I  
20  
2
, at the trip voltage using:  
TOTAL  
V
×R  
1
INF  
R =  
2
V
V  
BATT  
INF  
V
BATT  
I
=
TOTAL  
R +R  
1
20  
where V  
is the falling threshold voltage from Table 2.  
INF  
Continuing the above example, and selecting V  
=
INF  
Then, determine R  
using:  
HYST  
0.5477V (10% hysteresis device), R = 681k. There  
2
are other sources of error for the battery threshold,  
including resistor and input monitor tolerances.  
V
HYST  
R
=
HYST  
I
TOTAL  
Calculating an External Hysteresis  
Resistive Divider (MAX6782–MAX6785)  
To set the hysteresis, place a resistive divider from REF  
to HADJ_ as shown in Figure 6. The resistive divider  
sets voltage on HADJ_, which controls the falling thresh-  
where V  
is the required hysteresis voltage.  
HYST  
Finally, determine R using:  
2
R = R - R  
HYST  
2
20  
______________________________________________________________________________________ 13  
Low-Power, 1% Accurate, Dual-/Triple-/Quad-Level  
Battery Monitors in Small TDFN and TQFN Packages  
Monitoring a Battery Voltage Higher  
than the Allowable V  
For monitoring higher voltages, supply a voltage to BATT,  
which is within the specified supply range, and power the  
input resistive divider from the high voltage to be moni-  
tored. Do not exceed the Absolute Maximum Ratings.  
Adding External Capacitance to Reduce  
Noise and Transients  
If monitoring voltages in a noisy environment, add a  
bypass capacitor of 0.1µF from BATT to GND as close  
as possible to the device. For systems with large tran-  
sients, additional capacitance may be required.  
BATT  
Maintaining Reference Accuracy  
Since the ground connection of the MAX6782–MAX6790  
has a small series resistance, any current flowing into an  
output flows to ground and causes a small voltage to  
develop from the internal ground to GND. This has the  
effect of slightly increasing the reference voltage. To mini-  
mize the effect on the reference voltage, keep the total  
output sink current below 3mA.  
Reverse-Battery Protection  
To prevent damage to the device during a reverse-battery  
condition, connect the MAX6782–MAX6785 in the configu-  
ration shown in Figure 6a or 6b. For the internal reverse-  
battery protection to function correctly on the MAX6782–  
MAX6790, several conditions must be satisfied:  
• The connections to IN_/LBL_/LBH_ must be made to  
the center node of a resistive divider going from  
BATT to GND. The Thevenin equivalent impedance  
of the resistive divider must not fall below 1kin  
order to limit the current.  
• HADJ_ (MAX6782–MAX6785 only) must either be  
connected to GND or to the center node of a resis-  
tive divider going from REF to GND.  
BATT  
82–MAX6790  
R
R
1
IN_  
LBO_  
• The outputs may only be connected to devices pow-  
ered by the same battery as the MAX6782–  
MAX6790.  
2
MAX6782  
MAX6783  
MAX6784  
MAX6785  
REF  
Note that the MAX6782–MAX6790 will not protect other  
devices in the circuit.  
HADJ_  
Additional Application Circuit  
Figure 7 shows the MAX6786/MAX6787/MAX6788 in a  
typical two-battery-level monitoring circuit.  
GND  
A) FACTORY PRESET HYSTERESIS CONNECTION  
BATT  
LBL1  
1
BATT  
R
R
1
LBO1  
LBH1  
IN_  
REF  
LBO_  
MAX6786  
MAX6787  
MAX6788  
2
MAX6782  
MAX6783  
MAX6784  
MAX6785  
R
R
LBL2  
3
HADJ_  
LBO2  
LBH2  
4
GND  
GND  
B) EXTERNAL HYSTERESIS ADJUST CONNECTION  
Figure 6. Internal Preset or Externally Adjusted Hysteresis  
Connection  
Figure 7. Two-Battery-Level Monitor Configuration  
14 ______________________________________________________________________________________  
Low-Power, 1% Accurate, Dual-/Triple-/Quad-Level  
Battery Monitors in Small TDFN and TQFN Packages  
82–MAX6790  
Typical Operating Circuit  
BATT  
IN1  
LBO1  
LBO2  
LBO3  
DEAD BATTERY  
BACKUP MEMORY  
IN2  
IN3  
MAX6782  
MAX6783  
SHUT DOWN  
SUBSYSTEM  
SLOW DOWN  
PROCESSOR SPEED  
LBO4  
REF  
IN4  
HADJ_  
GND  
Ordering Information (continued)  
Top Marks  
PIN-  
PACKAGE  
PKG  
CODE  
PART  
MAX6782TEA+  
TOP MARK  
+AEG  
+AEH  
+AEI  
PART  
TEMP RANGE  
MAX6786TA+T  
MAX6787TA+T  
MAX6788TA+T  
MAX6789TB+T  
MAX6790TB+T  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
8 TDFN-EP*  
8 TDFN-EP*  
8 TDFN-EP*  
T833-3  
T833-3  
T833-3  
MAX6782TEB+  
MAX6782TEC+  
MAX6783TEA+  
MAX6783TEB+  
MAX6783TEC+  
MAX6784TCA+  
MAX6784TCB+  
MAX6784TCC+  
MAX6785TCA+  
MAX6785TCB+  
MAX6785TCC+  
MAX6786TA+  
MAX6787TA+  
MAX6788TA+  
MAX6789TB+  
MAX6790TB+  
+AEJ  
-40°C to +85°C 10 TDFN-EP* T1033-1  
-40°C to +85°C 10 TDFN-EP* T1033-1  
+AEK  
+AEL  
+Denotes lead-free package.  
*EP = Exposed paddle.  
+AAV  
+AAW  
+AAX  
+AAY  
+AAZ  
+ABA  
+APU  
+APV  
+APW  
+AQI  
The MAX6782/MAX6783/MAX6784/MAX6785 are available with  
factory-trimmed hysteresis. Specify trim by replacing “_” with  
“A” for 0.5%, “B” for 5%, or “C” for 10% hysteresis.  
+AQJ  
______________________________________________________________________________________ 15  
Low-Power, 1% Accurate, Dual-/Triple-/Quad-Level  
Battery Monitors in Small TDFN and TQFN Packages  
Pin Configurations  
TOP VIEW  
9
8
7
12  
11  
10  
9
HADJ4  
8
7
6
5
BATT 13  
GND 14  
HADJ3  
HADJ2  
HADJ1  
6
5
10  
11  
BATT  
GND  
IN1  
HADJ3  
HADJ2  
HADJ1  
MAX6784  
MAX6785  
MAX6782  
MAX6783  
N.C.  
IN1  
15  
16  
12  
4
+
+
1
2
3
1
2
3
4
82–MAX6790  
THIN QFN  
THIN QFN  
8
7
6
5
10  
9
8
7
6
MAX6786  
MAX6787  
MAX6788  
MAX6789  
MAX6790  
+
+
1
2
3
4
1
2
3
4
5
TDFN  
TDFN  
Chip Information  
PROCESS: BiCMOS  
16 ______________________________________________________________________________________  
Low-Power, 1% Accurate, Dual-/Triple-/Quad-Level  
Battery Monitors in Small TDFN and TQFN Packages  
82–MAX6790  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
______________________________________________________________________________________ 17  
Low-Power, 1% Accurate, Dual-/Triple-/Quad-Level  
Battery Monitors in Small TDFN and TQFN Packages  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
82–MAX6790  
18 ______________________________________________________________________________________  
Low-Power, 1% Accurate, Dual-/Triple-/Quad-Level  
Battery Monitors in Small TDFN and TQFN Packages  
82–MAX6790  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE, 6,8,10 & 14L,  
TDFN, EXPOSED PAD, 3x3x0.80 mm  
1
H
21-0137  
2
______________________________________________________________________________________ 19  
Low-Power, 1% Accurate, Dual-/Triple-/Quad-Level  
Battery Monitors in Small TDFN and TQFN Packages  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
PACKAGE VARIATIONS  
COMMON DIMENSIONS  
MIN. MAX.  
SYMBOL  
PKG. CODE  
T633-1  
N
6
D2  
1.50±0.10 2.30±0.10 0.95 BSC  
1.50±0.10 2.30±0.10  
E2  
e
JEDEC SPEC  
MO229 / WEEA  
MO229 / WEEA  
MO229 / WEEC  
MO229 / WEEC  
MO229 / WEEC  
b
[(N/2)-1] x e  
1.90 REF  
1.90 REF  
1.95 REF  
1.95 REF  
1.95 REF  
2.00 REF  
2.00 REF  
2.40 REF  
2.40 REF  
0.40±0.05  
0.40±0.05  
0.30±0.05  
0.30±0.05  
0.30±0.05  
A
0.70  
2.90  
2.90  
0.00  
0.20  
0.80  
3.10  
3.10  
0.05  
0.40  
T633-2  
6
D
E
0.95 BSC  
T833-1  
8
1.50±0.10 2.30±0.10 0.65 BSC  
1.50±0.10 2.30±0.10 0.65 BSC  
1.50±0.10 2.30±0.10 0.65 BSC  
T833-2  
8
A1  
L
T833-3  
8
T1033-1  
T1033-2  
T1433-1  
T1433-2  
10  
10  
14  
14  
1.50±0.10 2.30±0.10 0.50 BSC MO229 / WEED-3 0.25±0.05  
k
0.25 MIN.  
0.20 REF.  
1.50±0.10 2.30±0.10  
0.25±0.05  
0.20±0.05  
0.20±0.05  
A2  
0.50 BSC MO229 / WEED-3  
1.70±0.10 2.30±0.10 0.40 BSC  
1.70±0.10 2.30±0.10 0.40 BSC  
- - - -  
- - - -  
82–MAX6790  
PACKAGE OUTLINE, 6,8,10 & 14L,  
TDFN, EXPOSED PAD, 3x3x0.80 mm  
2
-DRAWING NOT TO SCALE-  
H
21-0137  
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
20 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2006 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX6782TE

Low-Power, 1% Accurate, Dual-/Triple-/Quad-Level Battery Monitors in Small TDFN and TQFN Packages
MAXIM

MAX6782TE+

Low-Power, 1% Accurate, Dual-/Triple-/Quad-Level Battery Monitors in Small TDFN and TQFN Packages
MAXIM

MAX6782TEA+

Low-Power, 1% Accurate, Dual-/Triple-/Quad-Level Battery Monitors in Small TDFN and TQFN Packages
MAXIM

MAX6782TEB+

Low-Power, 1% Accurate, Dual-/Triple-/Quad-Level Battery Monitors in Small TDFN and TQFN Packages
MAXIM

MAX6782TEC+

Low-Power, 1% Accurate, Dual-/Triple-/Quad-Level Battery Monitors in Small TDFN and TQFN Packages
MAXIM

MAX6782TE_+

Low-Power, 1% Accurate, Dual-/Triple-/Quad-Level Battery Monitors in Small TDFN and TQFN Packages
MAXIM

MAX6782_10

Low-Power, 1% Accurate, Dual-/Triple-/Quad-Level Battery Monitors in Small TDFN and TQFN Packages
MAXIM

MAX6783

Low-Power, 1% Accurate, Dual-/Triple-/Quad-Level Battery Monitors in Small TDFN and TQFN Packages
MAXIM

MAX6783TE

Low-Power, 1% Accurate, Dual-/Triple-/Quad-Level Battery Monitors in Small TDFN and TQFN Packages
MAXIM

MAX6783TE+

Low-Power, 1% Accurate, Dual-/Triple-/Quad-Level Battery Monitors in Small TDFN and TQFN Packages
MAXIM

MAX6783TEA+

Low-Power, 1% Accurate, Dual-/Triple-/Quad-Level Battery Monitors in Small TDFN and TQFN Packages
MAXIM

MAX6783TEB+

Low-Power, 1% Accurate, Dual-/Triple-/Quad-Level Battery Monitors in Small TDFN and TQFN Packages
MAXIM