MAX6849KAYD3+T [MAXIM]

Power Supply Support Circuit, Adjustable, 1 Channel, +2.188VV, BICMOS, PDSO8, LEAD FREE, MO-178, SOT-23, 8 PIN;
MAX6849KAYD3+T
型号: MAX6849KAYD3+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Power Supply Support Circuit, Adjustable, 1 Channel, +2.188VV, BICMOS, PDSO8, LEAD FREE, MO-178, SOT-23, 8 PIN

信息通信管理 光电二极管
文件: 总12页 (文件大小:251K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2947; Rev 1; 11/05  
Low-Power, Adjustable Battery Monitors with  
Hysteresis and Integrated µP Reset  
General Description  
Features  
The MAX6846–MAX6849 are a family of ultra-low-power  
battery monitors with integrated microprocessor (µP)  
supervisors. The user-adjustable battery monitors are  
offered with single or dual low-battery output options that  
can be used to signal when the battery is OK (enabling  
full system operation), when the battery is low (for low-  
power system operation), and when the battery is dead  
(to disable system operation). These devices also have  
User-Adjustable Thresholds for Monitoring  
Single-Cell Li+ or Multicell Alkaline/NiCd/NiMH  
Applications  
Single and Dual Low-Battery Output Options  
Independent µP Reset with Manual Reset  
Factory-Set Reset Thresholds for Monitoring 1.8V  
an independent µP supervisor that monitors V  
and  
to 3.3V Systems  
CC  
provides an active-low reset output. A manual reset  
function is available to reset the µP with a pushbutton.  
Available with 150ms (min) or 1.2s (min) V  
CC  
Reset Timeout Period Options  
The MAX6846–MAX6849 are ideal for single-cell lithium-  
ion (Li+) or multicell alkaline/NiCd/NiMH applications.  
When the battery voltage drops below each adjusted low  
threshold, the low-battery outputs are asserted to alert  
the system. When the voltage rises above the adjusted  
high thresholds, the outputs are deasserted after a  
150ms minimum timeout period, ensuring the voltages  
have stabilized before power circuitry is activated or pro-  
viding microprocessor reset timing.  
150ms (min) LBO Timeout Period  
Immune to Short-Battery Voltage Transients  
Low Current (2.5µA, typ at 3.6V)  
-40°C to +85°C Operating Temperature Range  
Small 8-Pin SOT23 Packages  
Ordering Information  
These devices have user-adjustable battery threshold  
voltages, providing a wide hysteresis range to prevent  
chattering that can result due to battery recovery after  
load removal. Single low-battery outputs are supplied  
by the MAX6846/MAX6847 and dual low-battery out-  
puts are supplied by the MAX6848/MAX6849. All bat-  
tery monitors have open-drain low-battery outputs.  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
8 SOT23-8  
8 SOT23-8  
8 SOT23-8  
8 SOT23-8  
MAX6846KA_D_-T  
MAX6847KA_D_-T  
MAX6848KA_D_-T  
MAX6849KA_D_-T  
Note: The first “_” is the V  
The MAX6846–MAX6849 monitor system voltages  
(V ) from 1.8V to 3.3V with seven fixed reset threshold  
CC  
options. Each device is offered with two minimum reset  
timeout periods of 150ms or 1200ms. The MAX6846/  
MAX6848 are offered with an open-drain RESET output  
and the MAX6847/MAX6849 are offered with a push-  
pull RESET output.  
reset threshold level, suffix found  
CC  
in Table 1. The “_” after the D is a placeholder for the reset  
timeout period suffix found in Table 2. All devices are available  
in tape-and-reel only. There is a 2500 piece minimum order  
increment for standard versions (see Standard Versions table).  
Sample stock is typically held on standard versions only. Non-  
standard versions require a minimum order increment of  
10,000 pieces. Contact factory for availability.  
The MAX6846–MAX6849 are offered in a SOT23 pack-  
age and are fully specified over a -40°C to +85°C temp-  
erature range.  
Devices are available in both leaded and lead-free packaging.  
Specify lead-free by replacing “-T” with “+T” when ordering.  
Applications  
Pin Configurations  
Battery-Powered Systems (Single-Cell Li+ or  
Multicell NiMH, NiCd, Alkaline)  
TOP VIEW  
Cell Phones/Cordless Phones  
Portable Medical Devices  
Digital Cameras  
Pagers  
V
1
2
3
4
8
7
6
5
V
V
1
2
3
4
8
7
6
5
V
CC  
DD  
CC  
DD  
GND  
LTHIN  
LBO  
HTHIN  
MR  
GND  
LTHIN  
LBOL  
HTHIN  
LBOH  
RESET  
MAX6846  
MAX6847  
MAX6848  
MAX6849  
PDAs  
RESET  
MP3 Players  
SOT23  
SOT23  
Electronic Toys  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Low-Power, Adjustable Battery Monitors with  
Hysteresis and Integrated µP Reset  
ABSOLUTE MAXIMUM RATINGS  
DD CC  
V
, V  
to GND....................................................-0.3V to +6V*  
Continuous Power Dissipation (T = +70°C)  
A
Open-Drain LBO, LBOH, LBOL to GND .................-0.3V to +6V*  
Open-Drain RESET to GND ....................................-0.3V to +6V*  
8-Pin SOT23 (derate 8.9mW/°C above +70°C)............714mW  
Operating Temperature Range .......................... -40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Push-Pull RESET to GND............................-0.3V to (V  
HTHIN, LTHIN to GND................................-0.3V to (V  
MR to GND .................................................-0.3V to (V  
+ 0.3V)  
+ 0.3V)  
+ 0.3V)  
CC  
DD  
CC  
Input/Output Current, All Pins .............................................20mA  
*Applying 7V for a duration of 1ms does not damage the device.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = 1.6V to 5.5V, V = 1.2V to 5.5V, T = -40°C to +85°C, unless otherwise specified. Typical values are at T = +25°C.) (Note 1)  
DD  
CC  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
1.6  
1.0  
1.2  
TYP  
MAX  
5.5  
5.5  
5.5  
7
UNITS  
V
Operating Voltage Range  
V
V
DD  
CC  
CC  
DD  
T
T
= 0°C to +85°C  
A
V
Operating Voltage Range  
V
V
CC  
= -40°C to +85°C  
= 3.6V, V = 3.3V, no load (Note 2)  
A
V
+ V  
Supply Current  
I
+ I  
V
2.5  
µA  
DD  
CC  
DD  
DD  
CC  
MAX6846/MAX6847 V  
THRESHOLDS  
DD  
HTHIN rising, LBO is deasserted when  
HTHIN rises above V  
HTHIN Threshold  
V
600  
600  
615  
615  
630  
630  
mV  
mV  
HTH  
HTH  
LTHIN falling, LBO is asserted when LTHIN  
falls below V  
LTHIN Threshold  
V
LTH  
LTH  
MAX6848/MAX6849 V  
HTHIN+ Threshold  
THRESHOLDS  
DD  
HTHIN rising, LBOH is deasserted when  
HTHIN rises above V  
V
600  
567  
600  
567  
615  
582  
615  
582  
630  
597  
630  
597  
mV  
mV  
mV  
mV  
HTH+  
HTH+  
HTHIN falling, LBOH is asserted when  
HTHIN falls below V  
HTHIN- Threshold  
LTHIN+ Threshold  
V
HTH-  
LTH+  
HTH-  
LTHIN rising, LBOL is deasserted when  
LTHIN rises above V  
V
LTH+  
LTHIN falling, LBOL is asserted when  
LTHIN falls below V  
LTHIN- Threshold  
V
LTH-  
LTH-  
MAX6846–MAX6849  
HTHIN/LTHIN Leakage Current  
LBO , LBO L, LBO H Timeout Period  
LBO, LBOL, LBOH Delay Time  
I
V
or V  
400mV  
LTHIN  
20  
nA  
ms  
µs  
LKG  
HTHIN  
t
HTHIN/LTHIN rising above threshold  
HTHIN/LTHIN falling below threshold  
150  
225  
100  
300  
LBOP  
LBOD  
t
(V  
low  
or V ) 1.2V, I  
= 50µA, asserted  
DD  
CC  
SINK  
SINK  
SINK  
SINK  
0.3  
0.3  
0.3  
0.3  
(V  
DD  
or V ) 1.6V, I  
= 100µA,  
CC  
asserted low  
LBO, LBOL, LBOH Output Low  
V
V
OL  
(V or V ) 2.7V, I  
= 1.2mA,  
DD  
CC  
asserted low  
(V or V ) 4.5V, I  
= 3.2mA,  
DD  
CC  
asserted low  
2
_______________________________________________________________________________________  
Low-Power, Adjustable Battery Monitors with  
Hysteresis and Integrated µP Reset  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 1.6V to 5.5V, V = 1.2V to 5.5V, T = -40°C to +85°C, unless otherwise specified. Typical values are at T = +25°C.) (Note 1)  
DD  
CC  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
LBO, LBOL, LBOH Output  
Open-Drain Leakage Current  
Output deasserted  
500  
nA  
MAX68_ _ _ _ T  
MAX68_ _ _ _ S  
MAX68_ _ _ _ R  
MAX68_ _ _ _ Z  
MAX68_ _ _ _ Y  
MAX68_ _ _ _ W  
MAX68_ _ _ _ V  
3.000  
2.850  
2.550  
2.250  
2.125  
1.620  
1.530  
3.075  
2.925  
2.625  
2.313  
2.188  
1.665  
1.575  
0.3  
3.150  
3.000  
2.700  
2.375  
2.250  
1.710  
1.620  
V
Reset Threshold  
V
V
CC  
TH  
V
V
Reset Hysteresis  
%
CC  
CC  
V
falling at 10mV/µs from (V + 100mV)  
TH  
CC  
to RESET Delay  
t
50  
µs  
RD  
to (V - 100mV)  
TH  
MAX68_ _ _ _ _ D3  
MAX68_ _ _ _ _ D7  
150  
225  
300  
V
to RESET Timeout Period  
t
ms  
V
CC  
RP  
1200  
1800  
2400  
V
0.3 x V  
CC  
IL  
MR Input Voltage  
V
0.7 x V  
1
IH  
CC  
MR Minimum Pulse Width  
MR Glitch Rejection  
t
µs  
ns  
ns  
ms  
MPW  
100  
200  
225  
1500  
225  
MR to RESET Delay  
MR Reset Timeout Period  
MR Pullup Resistance  
MR Rising Debounce Period  
t
150  
750  
150  
300  
2250  
300  
MRP  
MR to V  
CC  
t
(Note 3)  
ms  
DEB  
V
1.53V, I  
= 100µA, RESET  
= 500µA, RESET  
CC  
SOURCE  
SOURCE  
0.8 x V  
0.8 x V  
CC  
CC  
deasserted  
RESET Output High  
(Push-Pull)  
V
V
OH  
V
2.55V, I  
CC  
deasserted  
V
V
V
1.0V, I  
1.2V, I  
= 50µA, RESET asserted  
= 100µA, RESET asserted  
0.3  
0.3  
CC  
CC  
SINK  
SINK  
RESET Output Low  
V
V
OL  
2.12V, I  
= 1.2mA, RESET  
CC  
SINK  
0.3  
asserted  
RESET Output Leakage Current  
(Open Drain)  
RESET deasserted  
500  
nA  
Note 1: Production testing done at T = +25°C; limits over temperature guaranteed by design only.  
A
Note 2: The device is powered up by the highest voltage between V  
and V  
.
DD  
CC  
Note 3: MR input ignores falling input pulses, which occur within the MR debounce period (t  
) after a valid MR reset assertion.  
DEB  
This prevents invalid reset assertion due to switch bounce.  
_______________________________________________________________________________________  
3
Low-Power, Adjustable Battery Monitors with  
Hysteresis and Integrated µP Reset  
Typical Operating Characteristics  
(V  
= 3.6V, V  
= 3.3V, unless otherwise specified. Typical values are at T = +25°C.)  
CC A  
DD  
SUPPLY CURRENT  
vs. TEMPERATURE  
NORMALIZED RESET TIMEOUT PERIOD  
vs. TEMPERATURE  
NORMALIZED LBO TIMEOUT PERIOD  
vs. TEMPERATURE  
4
1.100  
1.050  
1.000  
0.950  
0.900  
1.10  
1.05  
1.00  
0.95  
0.90  
V
= 3.3V, V = 3.6V  
DD  
CC  
3
2
1
0
TOTAL  
DD  
I
I
CC  
-40 -20  
0
20  
40  
60  
80  
-40 -20  
0
20  
40  
60  
80  
-40 -20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
MAXIMUM V /V  
TRANSIENT DURATION  
MAXIMUM V TRANSIENT DURATION  
CC  
LTH HTH  
vs. THRESHOLD OVERDRIVE  
vs. THRESHOLD OVERDRIVE  
120  
110  
100  
90  
100  
90  
80  
70  
60  
50  
40  
30  
20  
LBO ASSERTS ABOVE THIS LINE  
RESET OCCURS ABOVE THIS LINE  
80  
70  
60  
10  
100  
1000  
10  
100  
1000  
THRESHOLD OVERDRIVE (mV)  
THRESHOLD OVERDRIVE (mV)  
4
_______________________________________________________________________________________  
Low-Power, Adjustable Battery Monitors with  
Hysteresis and Integrated µP Reset  
Typical Operating Characteristics (continued)  
(V  
= 3.6V, V  
= 3.3V, unless otherwise specified. Typical values are at T = +25°C.)  
CC A  
DD  
NORMALIZED UPPER AND LOWER LBO TRIP  
VOLTAGES vs. TEMPERATURE  
NORMALIZED RESET THRESHOLD  
vs. TEMPERATURE  
LBO OUTPUT  
vs. SINK CURRENT  
1.050  
1.025  
1.000  
0.975  
0.950  
1.050  
1.025  
1.000  
0.975  
0.950  
120  
100  
80  
60  
40  
20  
0
V
= V = 3.3V  
DD  
CC  
-40 -20  
0
20  
40  
60  
80  
-40 -20  
0
20  
40  
60  
80  
0
2
4
I
6
8
10  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
(mA)  
SINK  
RESET OUTPUT  
vs. SINK CURRENT  
RESET OUTPUT  
vs. SOURCE CURRENT  
140  
120  
100  
80  
3.50  
V
= 2.1V, V = 3.6V  
DD  
CC  
V
= 3.3V, V = 3.6V  
DD  
CC  
3.25  
3.00  
2.75  
2.50  
60  
40  
20  
0
0
2
4
6
8
10  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5  
(mA)  
I
(mA)  
I
SOURCE  
SINK  
_______________________________________________________________________________________  
5
Low-Power, Adjustable Battery Monitors with  
Hysteresis and Integrated µP Reset  
Pin Description  
PIN  
NAME  
FUNCTION  
Supply. Device power supply if V is greater than V  
MAX6846/MAX6847 MAX6848/MAX6849  
1
2
1
2
V
V
.
CC  
DD  
DD  
DD  
GND  
Ground  
LTH Threshold Monitor Input. A resistor-divider network sets the low  
threshold associated with LBOL and LBO.  
3
3
LTHIN  
Low-Battery Output, Active-Low, Open-Drain. LBO is asserted when LTHIN  
4
LBO  
drops below the V  
specification and remains asserted until HTHIN rises  
LTH  
above the V  
specification for at least 150ms.  
HTH  
Reset Output, Active-Low, Push-Pull, or Open-Drain. RESET goes from high  
to low when the V input drops below the selected reset threshold and  
CC  
remains low for the V  
reset timeout period after V  
exceeds the reset  
CC  
CC  
threshold. RESET is one-shot edge-trigger pulsed low for the MR reset  
timeout period when the MR input is pulled low. RESET is an open-drain  
output for the MAX6846/MAX6848, and a push-pull output for the  
5
6
5
RESET  
MAX6847/MAX6849. The push-pull outputs are referenced to V . RESET  
CC  
is guaranteed to be in the correct logic state for V  
or V  
10V.  
CC  
DD  
Manual Reset Input, Active-Low, Internal 1.5kPullup to V . Pull MR low  
CC  
to assert a one-shot reset output pulse for the MR reset timeout period.  
MR  
Leave unconnected or connect to V  
if unused. The MR input is  
CC  
debounced for MR rising edges to prevent false reset events.  
HTH Threshold Monitor Input. A resistor-divider network sets the high  
threshold associated with LBOH and LBO.  
7
8
7
8
HTHIN  
V
Voltage Input. Input for V  
reset threshold monitor and device power  
.
CC  
CC  
V
CC  
supply if V  
is greater than V  
DD  
CC  
Low-Battery Output High, Active-Low, Open-Drain. LBOH is asserted when  
6
4
LBOH HTHIN drops below the V  
specification. LBOH is deasserted when  
specification for at least 150ms.  
HTH-  
HTHIN rises above the V  
HTH+  
Low-Battery Output Low, Active-Low, Open-Drain. LBOL is asserted when  
LTHIN drops below the V  
specification. LBOL is deasserted when  
LBOL  
LTH-  
LTHIN rises above the V  
specification for at least 150ms.  
LTH+  
adjustable thresholds are ideal for monitoring single-  
cell Li+ or multicell alkaline/NiCd/NiMH power supplies.  
Detailed Description  
The MAX6846–MAX6849 family is available with several  
monitoring options. The MAX6846/MAX6847 have single  
low-battery outputs and the MAX6848/MAX6849 have  
dual low-battery outputs (see Figures 1a and 1b).  
When the power-supply voltage drops below the speci-  
fied low threshold, the low-battery output asserts. When  
the voltage rises above the specified high threshold fol-  
lowing a 150ms (min) timeout period, the low-battery  
output is deasserted. This ensures the supply voltage  
has stabilized before power-converter or microproces-  
sor activity is enabled.  
The MAX6846–MAX6849 combine a 615mV reference  
with two comparators, logic, and timing circuitry to pro-  
vide the user with information about the charge state of  
the power-supply batteries. The MAX6848/MAX6849  
monitor separate high-voltage and low-voltage thresh-  
olds to determine battery status. The output(s) can be  
used to signal when the battery is charged, when the  
battery is low, and when the battery is empty. User-  
These devices also have an independent µP supervisor  
that monitors V  
and provides an active-low reset out-  
CC  
put. A manual reset function is available to allow the  
user to reset the µP with a pushbutton.  
6
_______________________________________________________________________________________  
Low-Power, Adjustable Battery Monitors with  
Hysteresis and Integrated µP Reset  
V
DD  
V
DD  
LTHIN  
MAX6847  
MAX6848  
LTHIN  
LTH  
DETECT  
LTH  
DETECT  
LBOL  
LBOH  
HTHIN  
R
Q
Q
5%  
HYST  
HTHIN  
S
LBO  
TIMEOUT  
PERIOD  
LBO  
HTH  
DETECT  
LBO TIMEOUT  
PERIOD  
HTH  
DETECT  
5%  
HYST  
615mV  
615mV  
V
CC  
V
CC  
V
CC  
RESET  
RESET  
TIMEOUT  
PERIOD  
V
TH  
DETECT  
RESET  
RESET  
TIMEOUT  
PERIOD  
V
TH  
DETECT  
V
CC  
1.23V  
1.23V  
MR  
Figure 1a. MAX6847 Functional Diagram  
Figure 1b. MAX6848 Functional Diagram  
Low-Battery Output  
The low-battery outputs are available in active-low  
(LBO, LBOL, LBOH), open-drain configurations. The  
low-battery outputs can be pulled to a voltage indepen-  
rises above V  
. LBOL asserts when LTHIN drops  
HTH+  
below V  
and remains asserted for at least 150ms  
LTH-  
after LTHIN rises above V  
(see Figure 3). For fast-  
LTH+  
rising V  
input, the LBOL timeout period must com-  
DD  
dent of V  
or V , up to 5.5V. This allows the device  
DD  
plete before the LBOH timeout period begins.  
CC  
to monitor and operate from direct battery voltage while  
interfacing to higher voltage microprocessors.  
Reset Output  
The MAX6846–MAX6849 provide an active-low reset  
The MAX6846/MAX6847 single-output voltage monitors  
provide a single low-battery output, LBO. LBO asserts  
output (RESET). RESET is asserted when the voltage at  
V
falls below the reset threshold level. Reset remains  
CC  
when LTHIN drops below V  
and remains asserted  
LTH  
asserted for the reset timeout period after V  
exceeds  
CC  
for at least 150ms after HTHIN rises above V  
(see  
HTH  
the threshold. If V  
goes below the reset threshold  
CC  
Figure 2). The MAX6848/MAX6849 dual-output voltage  
before the reset timeout period is completed, the inter-  
nal timer restarts (see Figure 4). The MAX6846/  
MAX6848 have open-drain reset outputs, while the  
MAX6847/MAX6849 have push-pull reset outputs.  
monitors provide two low-battery outputs: LBOH and  
LBOL. LBOH asserts when HTHIN drops below V  
HTH-  
and remains asserted for at least 150ms after HTHIN  
_______________________________________________________________________________________  
7
Low-Power, Adjustable Battery Monitors with  
Hysteresis and Integrated µP Reset  
V
MONITORED  
HTHIN = 615mV  
V
TRIPHIGH HTH  
V
HYST  
LTHIN = 615mV  
V
TRIPLOW LTH  
t
t
t
LBOP  
LBOP  
LBOD  
LBO  
= HYSTERESIS  
V
HYST  
Figure 2. Single Low-Battery Output Timing  
V
MONITORED  
HTHIN = 615mV  
HTHIN = 582mV  
(V  
+5%) HTH+  
HTH-  
TRIPHIGH  
V
V
= 5%  
= 5%  
HYST  
V
TRIPHIGH  
LTHIN = 615mV  
LTHIN = 582mV  
(V  
+5%)  
LTH+  
LTH-  
TRIPLOW  
HYST  
V
TRIPLOW  
t
LBOD  
LBOL  
t
t
LBOP  
LBOP  
t
t
LBOP  
LBOD  
LBOH  
= HYSTERESIS  
t
LBOP  
V
HYST  
Figure 3. Dual Low-Battery Output Timing  
V
CC  
V
TH  
GND  
MR  
SWITCH  
BOUNCE  
SWITCH  
BOUNCE  
SWITCH  
BOUNCE  
SWITCH  
BOUNCE  
GND  
RESET  
GND  
t
t
t
RP  
MRP  
MRP  
t
t
DEB  
DEB  
t
t
MPW  
MPW  
Figure 4. RESET Timing Diagram  
8
_______________________________________________________________________________________  
Low-Power, Adjustable Battery Monitors with  
Hysteresis and Integrated µP Reset  
Manual Reset  
Many microprocessor-based products require manual  
LBO*  
V
V
DD  
reset capability, allowing the operator, a test technician,  
or external logic circuitry to initiate a reset while the  
monitored supplies remain above their reset thresholds.  
These devices have a dedicated active-low MR pin.  
When MR is pulled low, RESET asserts a one-shot low  
pulse for the MR reset timeout period. The MR input has  
DD  
R1  
MAX6846  
MAX6847  
MAX6848  
MAX6849  
LTHIN  
HTHIN  
(LBOH)  
(LBOL)  
an internal 1.5kpullup resistor to V  
and can be left  
CC  
R2  
R3  
unconnected if not used. MR can be driven with CMOS-  
logic levels, open-drain/open-collector outputs, or a  
momentary pushbutton switch to GND (the MR function  
GND  
is internally debounced for the t  
timeout period) to  
DEB  
create a manual reset function. If MR is driven from long  
cables, or if the device is used in a noisy environment,  
connect a 0.1µF capacitor from MR to GND to provide  
additional noise immunity (see Figure 4).  
* FOR THE MAX6846/MAX6847.  
) FOR THE MAX6848/MAX6849.  
(
Hysteresis  
Hysteresis increases the comparator’s noise margin by  
increasing the upper threshold or decreasing the lower  
threshold. The hysteresis prevents the output from  
oscillating (chattering) when monitor input is near the  
low-battery threshold. This is especially important for  
applications where the load on the battery creates sig-  
nificant fluctuations in battery voltages (see Figures 2  
and 3).  
Figure 5. Adjustable Threshold Selection  
2) Calculate R3 based on R  
and the desired  
TOTAL  
upper trip point:  
615mV × R  
TOTAL  
R3 =  
V
TRIPHIGH  
3) Calculate R2 based on R  
lower trip point:  
, R3, and the desired  
For the MAX6846/MAX6847, hysteresis is set using three  
external resistors (see Figure 5). The MAX6848/MAX6849  
have dual, low-battery input levels. Each input level has a  
5% (typ) hysteresis.  
TOTAL  
615mV × R  
TOTAL  
R2 =  
- R3  
V
TRIPLOW  
Applications Information  
4) Calculate R1 based on R  
, R3, and R2:  
TOTAL  
Resistor-Value Selection (Programming  
the Adjustable Thresholds)  
R1 = R  
- R2 - R3  
TOTAL  
MAX6846/MAX6847  
MAX6848/MAX6849  
V
= V  
= 615mV  
V
= V  
= 582mV  
LTH  
HTH  
LTH-  
HTH-  
LBOL low-trip level:  
= V ×  
LTH-  
R1+ R2 + R3  
R2 + R3  
V
= V  
×
×
TRIPLOW  
LTH  
R1+ R2 + R3  
R2 + R3  
V
R1 + R2 + R3  
TRIPLOW  
V
= V  
HTH  
TRIPHIGH  
R3  
LBOH low-trip level:  
R
= R1+ R2 + R3  
TOTAL  
R1+ R2 + R3  
Use the following steps to determine values for R1, R2,  
and R3 of Figure 5.  
V
R
= V  
×
HTH-  
TRIPHIGH  
R3  
1) Choose a value for R , the sum of R1, R2, and  
TOTAL  
= R1+ R2 + R3  
TOTAL  
R3. Because the MAX6846/MAX6847 have very high  
input impedance, R can be up to 500k.  
TOTAL  
Use the following steps to determine values for R1, R2,  
and R3 of Figure 5.  
_______________________________________________________________________________________  
9
Low-Power, Adjustable Battery Monitors with  
Hysteresis and Integrated µP Reset  
1) Choose a value for RTOTAL, the sum of R1, R2, and  
R3. Because the MAX6848/MAX6849 have very high  
input impedance, RTOTAL can be up to 500k.  
2) Calculate R3 based on RTOTAL and the desired  
upper trip point:  
to three alkaline/NiCd/NiMH cells. The LBOH output  
indicates that the battery voltage is weak, and is used  
to warn the microprocessor of potential problems.  
Armed with this information, the microprocessor can  
reduce system power consumption. The LBOL output  
indicates the battery is empty and system power should  
be disabled. By connecting LBOL to the SHDN pin of the  
DC-DC converter, power to the microprocessor is  
removed. Microprocessor power does not return until the  
582mV × R  
TOTAL  
R3 =  
V
TRIPHIGH  
battery has recharged to a voltage greater than V  
LTH+  
3) Calculate R2 based on R  
lower trip point:  
, R3, and the desired  
TOTAL  
(see Figure 7).  
Table 1. Factory-Trimmed V  
Threshold Levels  
Reset  
CC  
582mV × R  
TOTAL  
R2 =  
- R3  
V
TRIPLOW  
PART NO.  
SUFFIX  
( _ )  
V
NOMINAL  
RESET  
CC  
4) Calculate R1 based on R  
, R3, and R2:  
TOTAL  
THRESHOLD (V)  
R1 = R  
- R2 - R3  
TOTAL  
T
S
3.075  
2.925  
2.625  
2.313  
2.188  
1.665  
1.575  
5) LBOL high-trip level:  
R
Z
V
1.05  
1.05  
TRIPLOW  
6) LBOH high-trip level:  
Y
V
TRIPHIGH  
W
V
Monitoring Multicell Battery Applications  
For monitoring multicell Li+ (or a higher number of alka-  
line/NiCd/NiMH cells), connect VDD to a supply voltage  
between 1.6V to 5.5V. Figure 6 shows VDD connected  
directly to VCC. To calculate the values of R1, R2, and  
R3, see the Resistor-Value Selection section.  
Table 2. V  
Guide  
Reset Timeout Period Suffix  
CC  
ACTIVE TIMEOUT PERIOD (ms)  
TIMEOUT  
PERIOD SUFFIX  
DC-DC Converter Application  
The MAX6848/MAX6849 dual battery monitors can be  
used in conjunction with a DC-DC converter to power  
microprocessor systems using a single Li+ cell or two  
MIN  
150  
MAX  
300  
D3  
D7  
1200  
2400  
V
CC  
IN  
OUT  
DC-DC  
V
V
SHDN  
DD  
CC  
V
Li+  
3.6V  
MONITORED  
R1  
LBO*  
V
V
DD  
LBOL  
V
CC  
CC  
MAX6846  
MAX6847  
MAX6848  
MAX6849  
LBOH  
NMI  
LTHIN  
HTHIN  
(LBOL)  
(LBOH)  
GND  
LTHIN  
R2  
R3  
µP  
MAX6848  
MAX6849  
RESET  
RESET  
HTHIN  
GND  
GND  
* FOR THE MAX6846/MAX6847.  
) FOR THE MAX6848/MAX6849.  
(
Figure 6. Monitoring Multicell Li+ Applications  
10 ______________________________________________________________________________________  
Figure 7. DC-DC Converter Application  
Low-Power, Adjustable Battery Monitors with  
Hysteresis and Integrated µP Reset  
Selector Guide  
OPEN-DRAIN  
SINGLE LOW-  
BATTERY OUTPUT  
DUAL LOW-BATTERY  
OUTPUT  
PART  
PUSH-PULL RESET  
RESET  
MAX6846  
MAX6847  
MAX6848  
MAX6849  
X
X
X
X
X
X
X
X
Typical Application Circuit  
Standard Versions Table  
PART  
TOP MARK  
AEJI  
MAX6846KARD3  
MAX6846KASD3  
MAX6846KAWD3  
MAX6846KAZD3  
MAX6847KARD3  
MAX6847KASD3  
MAX6847KAWD3  
MAX6847KAZD3  
MAX6848KARD3  
MAX6848KASD3  
MAX6848KAWD3  
MAX6848KAZD3  
MAX6849KARD3  
MAX6849KASD3  
MAX6849KAWD3  
MAX6849KAZD3  
DC-DC  
AEJD  
AEJK  
AEJJ  
Li+  
3.6V  
V
V
CC  
CC  
LBO  
MR  
NMI  
AEJE  
AEJL  
MAX6846  
MAX6847  
V
DD  
µP  
AEJN  
AEJM  
AEJP  
AEJO  
AEJR  
AEJQ  
AEJT  
RESET  
RESET  
LTHIN  
HTHIN  
AEJS  
AEJV  
AEJU  
GND  
GND  
Chip Information  
TRANSISTOR COUNT: 1478  
PROCESS: BiCMOS  
______________________________________________________________________________________ 11  
Low-Power, Adjustable Battery Monitors with  
Hysteresis and Integrated µP Reset  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
SEE DETAIL "A"  
SYMBOL  
MIN  
MAX  
e
b
A
0.90  
0.00  
0.90  
0.28  
0.09  
2.80  
2.60  
1.50  
0.30  
1.45  
0.15  
1.30  
0.45  
0.20  
3.00  
3.00  
1.75  
0.60  
C
L
A1  
A2  
b
C
D
E
C
C
L
E1  
L
E
E1  
L
0.25 BSC.  
L2  
e
PIN 1  
I.D. DOT  
(SEE NOTE 6)  
0.65 BSC.  
1.95 REF.  
0  
e1  
0
8∞  
e1  
D
C
C
L
L2  
A2  
A
GAUGE PLANE  
A1  
SEATING PLANE  
C
0
L
NOTE:  
1. ALL DIMENSIONS ARE IN MILLIMETERS.  
2. FOOT LENGTH MEASURED FROM LEAD TIP TO UPPER RADIUS OF  
HEEL OF THE LEAD PARALLEL TO SEATING PLANE C.  
DETAIL "A"  
3. PACKAGE OUTLINE EXCLUSIVE OF MOLD FLASH & METAL BURR.  
4. PACKAGE OUTLINE INCLUSIVE OF SOLDER PLATING.  
5. COPLANARITY 4 MILS. MAX.  
6. PIN 1 I.D. DOT IS 0.3 MM ÿ MIN. LOCATED ABOVE PIN 1.  
PROPRIETARY INFORMATION  
TITLE:  
7. SOLDER THICKNESS MEASURED AT FLAT SECTION OF LEAD  
BETWEEN 0.08mm AND 0.15mm FROM LEAD TIP.  
PACKAGE OUTLINE, SOT-23, 8L BODY  
8. MEETS JEDEC MO178.  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0078  
D
1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2005 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY