MAX6884ETP [MAXIM]

EEPROM-Programmable, Hex Power-Supply Supervisory Circuits; EEPROM可编程,六角电源电源监控电路
MAX6884ETP
型号: MAX6884ETP
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

EEPROM-Programmable, Hex Power-Supply Supervisory Circuits
EEPROM可编程,六角电源电源监控电路

电源电路 电源管理电路 监控 信息通信管理 可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器
文件: 总34页 (文件大小:312K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3594; Rev 0; 2/05  
EEPROM-Programmable, Hex  
Power-Supply Supervisory Circuits  
General Description  
Features  
6 Configurable Input Voltage Detectors  
The MAX6884/MAX6885 EEPROM-configurable, multi-  
voltage power-supply supervisors monitor six voltage-  
detector inputs, one auxiliary input, and one watchdog  
input, and feature three programmable outputs for highly  
configurable power-supply monitoring applications.  
Manual reset and margin disable inputs offer additional  
flexibility.  
Programmable Thresholds 0.5V to 3.05V  
(in 10mV Increments) or 1V to 5.8V (in 20mV  
Increments)  
Primary UV and Secondary UV/OV Thresholds  
One Configurable Watchdog Timer from 6.25ms  
to 102.4s  
Each voltage-detector input offers a programmable pri-  
mary undervoltage and secondary undervoltage/over-  
voltage threshold. Voltage-detector inputs IN1–IN6  
monitor voltages from 1V to 5.8V in 20mV increments or  
0.5V to 3.05V in 10mV increments.  
Configurable RESET, UV/OV, and WDO Outputs  
Three Programmable Outputs  
Open-Drain or Weak Pullup RESET, UV/OV,  
and WDO  
Programmable outputs RESET, UV/OV, and WDO pro-  
vide system resets/interrupts. Programmable output  
options include open-drain or weak pullup. Program-  
mable timing delay blocks configure each output to  
wait between 25µs and 1600ms after their respective  
assertion-causing conditions have been cleared. A fault  
register logs condition-causing events (undervoltage,  
overvoltage, manual reset, etc.).  
Active-Low Output Logic  
Timing Delays from 25µs to 1600ms  
Margining Disable and Manual Reset Controls  
Internal 1.25V Reference or External Reference  
Input  
10-Bit Internal ADC Samples the Input Voltage  
An internal 10-bit, 1% accurate ADC (MAX6884 only)  
Detectors, V  
and Auxiliary Input  
CC  
converts the voltages at IN1–IN6, AUXIN, and V  
CC  
512-Bit User EEPROM  
through a multiplexer that automatically sequences  
through all inputs every 200ms. An SMBus™/I2C-com-  
patible serial data interface programs and communi-  
cates with the configuration EEPROM, configuration  
registers, internal 512-bit user EEPROM, and reads the  
ADC registers (MAX6884 only) and fault registers.  
Endurance: 100,000 Erase/Write Cycles  
Data Retention: 10 Years  
SMBus/I2C-Compatible Serial  
Configuration/Communication Interface  
1ꢀ Threshold Accuracy  
The MAX6884/MAX6885 are available in a 5mm x 5mm  
x 0.8mm 20-pin thin QFN package and operate over  
the extended temperature range (-40°C to +85°C).  
Ordering Information  
Applications  
PKG  
CODE  
PART  
TEMP RANGE  
PIN-PACKAGE  
Telecommunications/Central-Office Systems  
Networking Systems  
Servers/Workstations  
MAX6884ETP -40°C to +85°C 20 Thin QFN  
MAX6885ETP -40°C to +85°C 20 Thin QFN  
T2055-5  
T2055-5  
Base Stations  
Storage Equipment  
Multimicroprocessor/Voltage Systems  
Pin Configurations and Typical Operating Circuit appear at  
end of data sheet.  
Selector Guide  
VOLTAGE-  
DETECTOR INPUTS  
PROGRAMMABLE  
PART  
INTERNAL ADC  
REFERENCE INPUT AUXILIARY INPUT  
OUTPUTS  
MAX6884ETP  
MAX6885ETP  
6
6
Yes  
No  
3
3
Yes  
No  
Yes  
No  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
EEPROM-Programmable, Hex  
Power-Supply Supervisory Circuits  
ABSOLUTE MAXIMUM RATINGS  
(All voltages referenced to GND.)  
Maxiꢀuꢀ Junction Teꢀperature .....................................+150°C  
IN1–IN6, V , RESET, UV/OV, WDO........................-0.3V to +6V  
Operating Teꢀperature Range ...........................-40°C to +85°C  
Storage Teꢀperature Range.............................-65°C to +150°C  
Lead Teꢀperature (soldering, 10s) .................................+300°C  
CC  
WDI, MR, MARGIN, SDA, SCL, A0...........................-0.3V to +6V  
AUXIN, DBP, REFIN .................................................-0.3V to +3V  
Input/Output Current (all pins).......................................... 20ꢀA  
Continuous Power Dissipation (T = +70°C)  
A
20-Pin (5ꢀꢀ x 5ꢀꢀ) Thin QFN  
(derate 21.3ꢀW/°C above +70°C).............................1702ꢀW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V –V  
IN1 IN4  
or V  
= 2.7V to 5.8V, AUXIN = WDI = GND, MARGIN = MR = DBP, T = -40°C to +85°C, unless otherwise noted. Typical  
CC A  
values are at T = +25°C.) (Notes 1, 2, 3)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Voltage on either one of IN1–IN4 or V  
guarantee the device is fully operational  
to  
CC  
Operating Voltage Range  
2.7  
5.8  
V
Miniꢀuꢀ voltage on one of IN1–IN4 or V  
to guarantee device is EEPROM configured  
CC  
Undervoltage Lockout  
Digital Bypass Voltage  
V
2.5  
V
UVLO  
V
No load  
2.48  
2.55  
0.9  
2.67  
1.2  
V
DBP  
V
= 5.8V, IN2–IN6 = GND, no load  
ꢀA  
ꢀA  
IN1  
Supply Current  
I
CC  
Writing to configuration registers or  
EEPROM, no load  
1.1  
1.5  
V
V
V
–V  
(in 20ꢀV increꢀents)  
(in 10ꢀV increꢀents)  
(Inputs high iꢀpedance;  
1.0  
5.8  
IN1 IN6  
–V  
IN1 IN6  
0.50  
3.05  
Threshold Range  
V
V
TH  
–V  
IN1 IN6  
0.167  
-1  
1.017  
+1  
in 3.3ꢀV increꢀents)  
V
= 2.5V to 5.8V  
IN_  
%
ꢀV  
%
(20ꢀV increꢀents)  
= 1V to 2.5V  
V
IN_  
-25  
+25  
(20ꢀV increꢀents)  
V = 1.25V to 3.05V  
IN_  
T
A
= +25°C to  
+85°C, (V  
falling)  
IN_  
-1  
+1  
(10ꢀV increꢀents)  
= 0.5V to 1.25V  
V
IN_  
-12.5  
-1.5  
-25  
+12.5  
+1.5  
+25  
ꢀV  
%
(10ꢀV increꢀents)  
= 2.5V to 5.8V  
IN1–IN6 Threshold Accuracy  
V
IN_  
(20ꢀV increꢀents)  
= 1V to 2.5V  
V
IN_  
ꢀV  
%
(20ꢀV increꢀents)  
V = 1.25V to 3.05V  
IN_  
T
A
= -40°C to  
+85°C, (V  
falling)  
IN_  
-1.5  
-12.5  
+1.5  
+12.5  
(10ꢀV increꢀents)  
= 0.5V to 1.25V  
V
IN_  
ꢀV  
(10ꢀV increꢀents)  
2
_______________________________________________________________________________________  
EEPROM-Programmable, Hex  
Power-Supply Supervisory Circuits  
ELECTRICAL CHARACTERISTICS (continued)  
(V –V  
IN1 IN4  
or V  
= 2.7V to 5.8V, AUXIN = WDI = GND, MARGIN = MR = DBP, T = -40°C to +85°C, unless otherwise noted. Typical  
CC A  
values are at T = +25°C.) (Notes 1, 2, 3)  
A
PARAMETER  
Threshold Hysteresis  
SYMBOL  
CONDITIONS  
MIN  
TYP  
0.3  
10  
MAX  
UNITS  
% V  
V
TH-HYST  
TH  
Threshold Teꢀpco  
V /°C  
ppꢀ/°C  
LSB  
TH  
Threshold Differential Nonlinearity  
V
DNL  
-1  
+1  
TH  
For V  
< highest of V  
and  
IN_  
IN1–IN4  
IN_ Input Iꢀpedance  
R
130  
-150  
200  
300  
kΩ  
IN  
V
< V  
CC  
IN_  
IN_ Input Leakage Current  
Power-Up Delay  
I
IN_ high iꢀpedance  
V V  
CC  
+150  
2.5  
nA  
ꢀs  
µs  
IN_LKG  
t
D-PO  
UVLO  
IN_ to RESET or UV/OV Delay  
t
IN_ falling/rising, 100ꢀV overdrive  
20  
D-R  
000  
001  
010  
011  
100  
101  
110  
111  
0.025  
1.406 1.5625 1.719  
5.625  
22.5  
45  
6.25  
25  
6.875  
27.5  
55  
RESET and UV/OV Tiꢀeout  
Period (Tables 6 and 7)  
t , t  
RP UP  
ꢀs  
50  
180  
200  
400  
1600  
220  
440  
1760  
0.4  
360  
1440  
RES ET, U V/O V, W DO Output Low  
I
= 4ꢀA, output asserted  
V
SINK  
RESET, UV/OV, WDO Output  
Open-Drain Leakage Current  
Output high iꢀpedance  
-1  
+1  
µA  
RESET, UV/OV, WDO Output  
Pullup Resistance  
R
V
V
, V , V = 2V  
RESET UV/OV WDO  
6.6  
10  
15.0  
0.6  
kΩ  
PU  
V
IL  
MR, MARGIN, WDI Input Voltage  
V
1.4  
1
IH  
MR Input Pulse Width  
MR Glitch Rejection  
t
µs  
ns  
MR  
100  
_______________________________________________________________________________________  
3
EEPROM-Programmable, Hex  
Power-Supply Supervisory Circuits  
ELECTRICAL CHARACTERISTICS (continued)  
(V –V  
IN1 IN4  
or V  
= 2.7V to 5.8V, AUXIN = WDI = GND, MARGIN = MR = DBP, T = -40°C to +85°C, unless otherwise noted. Typical  
CC A  
values are at T = +25°C.) (Notes 1, 2, 3)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MR to RESET or UV/OV Delay  
t
200  
ns  
D-MR  
MR to Internal V  
Current  
Pullup  
DBP  
I
V
= 1.4V  
MR  
5
5
10  
15  
µA  
µA  
MR  
MARGIN to DBP Pullup Current  
I
V
V
= 1.4V  
MARGIN  
10  
10  
15  
15  
MARGIN  
WDI Pulldown Current  
WDI Input Pulse Width  
I
t
= 0.6V  
WDI  
5
µA  
ns  
WDI  
WDI  
50  
000  
001  
010  
011  
100  
101  
110  
111  
5.625  
22.5  
90  
6.25  
25  
6.875  
27.5  
110  
ꢀs  
100  
360  
1.44  
5.76  
23.04  
400  
440  
Watchdog Tiꢀeout Period  
(Table 8)  
t
WD  
1.60  
6.40  
25.60  
1.76  
7.04  
28.16  
s
92.16 102.40 112.64  
Reference Input Voltage Range  
Reference Input Resistance  
V
MAX6884 only  
= 1.25V, MAX6884 only  
1.225  
1.25  
500  
1.275  
V
REF  
R
V
kΩ  
REF  
REF  
IN1–IN6, V ; LSB = 7.32ꢀV, MAX6884 only  
CC  
0
0
5.8  
IN1–IN6; LSB = 3.66ꢀV, MAX6884 only  
3.746  
ADC Range  
ADC  
V
RANGE  
AUXIN, IN1–IN6 high-iꢀpedance ꢀode;  
LSB = 1.2ꢀV, MAX6884 only  
0
1.25  
Internal reference, MAX6884 only  
External reference, MAX6884 only (Note 5)  
MAX6884 only (Note 6)  
1.0  
1.0  
ADC Total Unadjusted Error  
(Note 4)  
TUE  
DNL  
%FSR  
ADC Differential Nonlinearity  
ADC Total Monitoring Cycle Tiꢀe  
AUXIN Input Leakage Current  
1
LSB  
ꢀs  
µA  
Converts all six IN_ inputs, AUXIN, and  
t
C
200  
266  
+1  
V
, MAX6884 only  
CC  
I
V
= 1.25V, MAX6884 only  
-1  
AUXIN  
AUXIN  
SERIAL INTERFACE LOGIC (SDA, SCL, A0)  
Logic-Input Low Voltage  
Logic-Input High Voltage  
Input Leakage Current  
Output-Voltage Low  
V
0.8  
V
V
IL  
V
2.0  
IH  
I
1
µA  
V
LKG  
V
I
= 3ꢀA  
0.4  
10  
OL  
I/O  
SINK  
Input/Output Capacitance  
C
pF  
4
_______________________________________________________________________________________  
EEPROM-Programmable, Hex  
Power-Supply Supervisory Circuits  
TIMING CHARACTERISTICS  
(V –V  
or V  
= 2.7V to 5.8V, AUXIN = WDI = GND, MARGIN = MR = DBP, T = -40°C to +85°C, unless otherwise noted. Typical  
IN1 IN4  
CC  
A
values are at T  
= +25°C.) (Notes 1, 2, 3)  
IN1  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
TIMING CHARACTERISTICS (Figure 6)  
Serial Clock Frequency  
Clock Low Period  
Clock High Period  
Bus Free Tiꢀe  
f
400  
kHz  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
SCL  
t
1.3  
0.6  
1.3  
0.6  
0.6  
0.6  
100  
30  
LOW  
t
HIGH  
t
BUF  
START Setup Tiꢀe  
START Hold Tiꢀe  
STOP Setup Tiꢀe  
Data In Setup Tiꢀe  
Data In Hold Tiꢀe  
t
SU:STA  
HD:STA  
SU:STO  
SU:DAT  
HD:DAT  
t
t
t
t
900  
Receive SCL/SDA Miniꢀuꢀ Rise  
Tiꢀe  
20 +  
t
t
(Note 7)  
(Note 7)  
(Note 7)  
(Note 7)  
ns  
ns  
ns  
ns  
ns  
R
R
0.1 x C  
BUS  
Receive SCL/SDA Maxiꢀuꢀ Rise  
Tiꢀe  
300  
Receive SCL/SDA Miniꢀuꢀ Fall  
Tiꢀe  
20 +  
t
t
t
F
F
F
0.1 x C  
BUS  
Receive SCL/SDA Maxiꢀuꢀ Fall  
Tiꢀe  
300  
20 +  
0.1 x C  
Transꢀit SDA Fall Tiꢀe  
C
= 400pF (Note 5)  
300  
11  
BUS  
BUS  
50  
Pulse Width of Spike Suppressed  
EEPROM Byte Write Cycle Tiꢀe  
t
SP  
(Note 8)  
(Note 9)  
ns  
t
ꢀs  
WR  
Note 1: 100% production tested at T = +25°C and T = +85°C. Specifications at T = -40°C are guaranteed by design.  
A
A
A
Note 2: Device ꢀay be supplied froꢀ IN1–IN4 or V  
.
CC  
Note 3: The internal supply voltage, ꢀeasured at V , equals the ꢀaxiꢀuꢀ of IN1–IN4.  
CC  
Note 4: V  
> 0.3 x ADC range.  
IN_  
Note 5: Does not include the inaccuracy of the 1.25V input reference voltage (MAX6884 only).  
Note 6: DNL is iꢀplicitly guaranteed by design in a Σ∆ converter.  
Note 7: C  
= total capacitance of one bus line in picofarads. Rise and fall tiꢀes are ꢀeasured between 0.1 x V  
and 0.9 x  
BUS  
BUS  
V
BUS  
.
Note 8: Input filters on SDA, SCL, and A0 suppress noise spikes <50ns.  
Note 9: An additional cycle is required when writing to configuration ꢀeꢀory for the first tiꢀe.  
_______________________________________________________________________________________  
5
EEPROM-Programmable, Hex  
Power-Supply Supervisory Circuits  
Typical Operating Characteristics  
(V –V  
IN1 IN4  
or V  
= 5V, AUXIN = WDI = GND, MARGIN = MR = DBP. Typical values are at T = +25°C, unless otherwise noted.)  
CC  
A
IN1–IN4 SUPPLY CURRENT  
vs. IN1–IN4 SUPPLY VOLTAGE  
NORMALIZED RESET OR UV/0V  
TIMEOUT PERIOD vs. TEMPERATURE  
V
SUPPLY CURRENT  
CC  
CC  
vs. V SUPPLY VOLTAGE  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
1.020  
1.015  
1.010  
1.005  
1.000  
0.995  
0.990  
0.985  
0.980  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
T
= +85°C  
A
T
= +85°C  
A
T
= +25°C  
A
T
= +25°C  
A
T
= -40°C  
T
= -40°C  
A
A
2.6  
3.6  
4.6  
5.6  
-40  
-15  
10  
35  
60  
85  
2.6  
3.6  
4.6  
5.6  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
IN_ TO RESET OR UV/OV  
PROPAGATION DELAY vs. TEMPERATURE  
NORMALIZED IN_ THRESHOLD  
vs. TEMPERATURE  
NORMALIZED WATCHDOG TIMEOUT PERIOD  
vs. TEMPERATURE  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
1.005  
1.004  
1.003  
1.002  
1.001  
1.000  
0.999  
0.998  
0.997  
0.996  
0.995  
1.020  
1.015  
1.010  
1.005  
1.000  
0.995  
0.990  
0.985  
0.980  
100mV OVERDRIVE  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
MAXIMUM IN_ TRANSIENT  
vs. IN_ THRESHOLD OVERDRIVE  
OUTPUT VOLTAGE LOW  
vs. SINK CURRENT  
OUTPUT VOLTAGE HIGH  
vs. SOURCE CURRENT (WEAK PULLUP)  
200  
175  
150  
125  
100  
75  
400  
350  
300  
250  
200  
150  
100  
50  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
RESET OR UV/OV ASSERTS  
ABOVE THIS LINE  
50  
25  
0
0
1
10  
100  
1000  
0
2
4
6
8
10  
12  
14  
0
0.05 0.10 0.15 0.20 0.25 0.30  
SOURCE CURRENT (mA)  
IN_ THRESHOLD OVERDRIVE (mV)  
SINK CURRENT (mA)  
6
_______________________________________________________________________________________  
EEPROM-Programmable, Hex  
Power-Supply Supervisory Circuits  
Typical Operating Characteristics (continued)  
(V –V  
IN1 IN4  
or V  
= 5V, AUXIN = WDI = GND, MARGIN = MR = DBP. Typical values are at T = +25°C, unless otherwise noted.)  
CC  
A
MR TO RESET OR UV/OV OUTPUT  
PROPAGATION DELAY vs. TEMPERATURE  
ADC ACCURACY vs. TEMPERATURE  
0.5  
0.4  
3.00  
2.75  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
V
= 5V,  
0.3  
IN1  
20mV/STEP  
RANGE  
V
= 2V,  
IN5  
0.2  
10mV/STEP  
RANGE  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
VAUXIN = 1V  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX6884  
MAX6885  
Reset Output. Configurable, active-low, open drain, or weak pullup. RESET assuꢀes its  
prograꢀꢀed conditional output state when V exceeds UVLO (2.5V).  
1
1
RESET  
CC  
Watchdog Tiꢀer Output. Configurable, active-low, open drain, or weak pullup. WDO  
asserts when WDI is not toggled with a valid high-to-low or low-to-high transition within  
the watchdog tiꢀeout period.  
2
2
WDO  
Undervoltage/Overvoltage Output. Configurable, active-low, open drain, or weak pullup.  
3
4
3
4
UV/OV  
UV/OV assuꢀes its prograꢀꢀed conditional output state when V  
(2.5V).  
exceeds UVLO  
CC  
GND  
Ground  
Watchdog Tiꢀer Input. Logic input for the watchdog tiꢀer function. If WDI is not toggled  
with a valid low-to-high or high-to-low transition within the watchdog tiꢀeout period,  
WDO asserts. Progaꢀ initial and norꢀal watchdog tiꢀeout periods froꢀ 6.25ꢀs to  
102.4s. WDI is internally pulled down to GND through a 10µA current sink.  
5
6
5
6
WDI  
Manual Reset Input. Prograꢀ MR to assert RESET and/or UV/OV when MR is asserted.  
Leave MR unconnected or connect to DBP if unused. MR is internally pulled up to DBP  
through a 10µA current source.  
MR  
_______________________________________________________________________________________  
7
EEPROM-Programmable, Hex  
Power-Supply Supervisory Circuits  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
MAX6884  
MAX6885  
Margin Input. MARGIN holds RESET, UV/OV, and WDO in their existing states when  
MARGIN is driven low. Leave MARGIN unconnected or connect to DBP if unused.  
MARGIN is internally pulled up to DBP through a 10µA current source. MARGIN  
overrides MR if both are asserted at the saꢀe tiꢀe.  
7
7
MARGIN  
8
9
8
9
SDA  
SCL  
Serial Data Input/Output (Open Drain). SDA requires an external pullup resistor.  
Serial-Interface Clock Input. SCL requires an external pullup resistor.  
Serial Address Input 0. Allows up to 2 devices to share a coꢀꢀon bus. Connect A0 to  
ground or the serial-interface power supply.  
10  
10  
A0  
Reference Voltage Input. Prograꢀ the device for external or internal reference. Connect  
an external +1.225V to +1.275V reference to REFIN when using an external reference.  
Leave REFIN unconnected when using the internal reference.  
11  
REFIN  
Auxiliary Input. A 10-bit ADC converts the input voltage at AUXIN. The high-iꢀpedance  
AUXIN input accepts input voltages up to 1.25V. AUXIN does not affect prograꢀꢀable  
outputs.  
12  
AUXIN  
N.C.  
11, 12  
No Connection. Not internally connected.  
Internal Power-Supply Voltage. Bypass V  
to GND with a 1µF ceraꢀic capacitor as  
CC  
close to the device as possible. V  
supplies power to the internal circuitry. V  
is  
CC  
CC  
13  
14  
15  
13  
14  
15  
V
internally powered froꢀ the highest of the ꢀonitored IN1–IN4 voltages. Do not use V  
CC  
CC  
to supply power to external circuitry. To externally supply V , see the Powering the  
CC  
MAX6884/MAX6885 section.  
Internal Digital Power-Supply Voltage. Bypass DBP to GND with a 1µF ceraꢀic  
capacitor. DBP supplies power to the EEPROM ꢀeꢀory, the internal logic circuitry, and  
the prograꢀꢀable outputs. Do not use DBP to supply power to external circuitry.  
DBP  
IN6  
Voltage-Detector Input 6. Prograꢀ two thresholds per voltage-detector input  
(undervoltage UV and undervoltage/overvoltage UV/OV). Prograꢀ IN6 detector  
thresholds froꢀ 1V to 5.8V in 20ꢀV increꢀents, 0.5V to 3.05V in 10ꢀV increꢀents. For  
iꢀproved noise iꢀꢀunity, bypass IN6 to GND with a 0.1µF capacitor installed as close  
to the device as possible.  
Voltage-Detector Input 5. Prograꢀ two thresholds per voltage-detector input  
(undervoltage UV and undervoltage/overvoltage UV/OV). Prograꢀ IN5 detector  
thresholds froꢀ 1V to 5.8V in 20ꢀV increꢀents, 0.5V to 3.05V in 10ꢀV increꢀents. For  
iꢀproved noise iꢀꢀunity, bypass IN5 to GND with a 0.1µF capacitor installed as close  
to the device as possible.  
16  
17  
16  
17  
IN5  
IN4  
Voltage-Detector Input 4. Prograꢀ two thresholds per voltage-detector input  
(undervoltage UV and undervoltage/overvoltage UV/OV). Prograꢀ IN4 detector  
thresholds froꢀ 1V to 5.8V in 20ꢀV increꢀents, 0.5V to 3.05V in 10ꢀV increꢀents. For  
iꢀproved noise iꢀꢀunity, bypass IN4 to GND with a 0.1µF capacitor installed as close  
to the device as possible. Prograꢀ the device to receive power through IN1–IN4 inputs  
or V  
(see the Powering the MAX6884/MAX6885 section).  
CC  
8
_______________________________________________________________________________________  
EEPROM-Programmable, Hex  
Power-Supply Supervisory Circuits  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
MAX6884  
MAX6885  
Voltage-Detector Input 3. Prograꢀ two thresholds per voltage-detector input  
(undervoltage UV and undervoltage/overvoltage UV/OV). Prograꢀ IN3 detector  
thresholds froꢀ 1V to 5.8V in 20ꢀV increꢀents, or 0.5V to 3.05V in 10ꢀV increꢀents.  
For iꢀproved noise iꢀꢀunity, bypass IN3 to GND with a 0.1µF capacitor installed as  
close to the device as possible. Prograꢀ the device to receive power through IN1–IN4  
18  
18  
IN3  
IN2  
inputs or V  
(see the Powering the MAX6884/MAX6885 section).  
CC  
Voltage-Detector Input 2. Prograꢀ two thresholds per voltage-detector input  
(undervoltage UV and undervoltage/overvoltage UV/OV). Prograꢀ IN2 detector  
thresholds froꢀ 1V to 5.8V in 20ꢀV increꢀents, or 0.5V to 3.05V in 10ꢀV increꢀents.  
For iꢀproved noise iꢀꢀunity, bypass IN2 to GND with a 0.1µF capacitor installed as  
close to the device as possible. Prograꢀ the device to receive power through IN1–IN4  
19  
19  
inputs or V  
(see the Powering the MAX6884/MAX6885 section).  
CC  
Voltage-Detector Input 1. Prograꢀ two thresholds per voltage-detector input  
(undervoltage UV and undervoltage/overvoltage UV/OV). Prograꢀ IN1 detector  
thresholds froꢀ 1V to 5.8V in 20ꢀV increꢀents, or 0.5V to 3.05V in 10ꢀV increꢀents.  
For iꢀproved noise iꢀꢀunity, bypass IN1 to GND with a 0.1µF capacitor installed as  
close to the device as possible. Prograꢀ the device to receive power through IN1–IN4  
20  
20  
IN1  
EP  
inputs or V  
(see the Powering the MAX6884/MAX6885 section).  
CC  
Exposed Paddle. Internally connected to GND. Connect EP to GND or leave floating.  
An internal 10-bit ADC (MAX6884 only) converts volt-  
Detailed Description  
ages at IN1–IN6, AUXIN, and V  
through a ꢀultiplex-  
CC  
The MAX6884/MAX6885 EEPROM-configurable, ꢀulti-  
voltage supply supervisors ꢀonitor six voltage-detector  
inputs, one auxiliary input, and one watchdog input,  
and feature three prograꢀꢀable outputs for highly con-  
figurable, power-supply ꢀonitoring applications (see  
Table 1 for prograꢀꢀable features). Manual reset and  
ꢀargin disable inputs offer additional flexibility.  
er that autoꢀatically sequences through all inputs  
every 200ꢀs. Access the device’s internal 512-bit user  
EEPROM, configuration EEPROM, configuration regis-  
ters, ADC registers, and fault registers through an  
SMBus/I2C-coꢀpatible serial interface (see the  
SMBus/I2C-Compatible Serial Interface section). The  
MAX6884/MAX6885 also feature an accurate internal  
1.25V reference. For greater accuracy, connect an  
external 1.25V reference to REFIN (MAX6884 only).  
Each voltage detector provides a prograꢀꢀable pri-  
ꢀary undervoltage and secondary undervoltage/over-  
voltage threshold. Prograꢀ thresholds froꢀ 0.5V to  
3.05V in 10ꢀV increꢀents, 1.0V to 5.8V in 20ꢀV incre-  
ꢀents, or froꢀ 0.1667V to 1.0167V in 3.3ꢀV incre-  
ꢀents. To achieve thresholds froꢀ 0.1667V to 1.0167V  
in 3.3ꢀV increꢀents, the respective input voltage  
detector ꢀust be prograꢀꢀed for high iꢀpedance  
and an external voltage-divider ꢀust be connected. A  
fault register logs undervoltage and overvoltage condi-  
tions for each voltage-detector input.  
Prograꢀ outputs RESET, UV/OV, and WDO for open-  
drain or weak pullup. Prograꢀ RESET and UV/OV to  
assert on any voltage-detector input, MR, or each other.  
RESET can also depend on WDO. Prograꢀꢀable tiꢀing  
delay blocks configure each output to wait between  
25µs and 1600ꢀs before deasserting. Fault registers log  
the assertion of RESET, UV/OV, and WDO.  
_______________________________________________________________________________________  
9
EEPROM-Programmable, Hex  
Power-Supply Supervisory Circuits  
The MAX6884/MAX6885 feature a watchdog tiꢀer with  
prograꢀꢀable initial and norꢀal tiꢀeout periods froꢀ  
6.25ꢀs to 102.4s. WDO asserts when WDI is not tog-  
gled froꢀ high-to-low or low-to-high within the appro-  
priate watchdog tiꢀeout period. Prograꢀ WDO to  
assert RESET.  
Prograꢀ the MAX6884/MAX6885 to receive power  
through IN1–IN4 or V (see the Powering the  
MAX6884/MAX6885 section). Outputs reꢀain asserted  
while the voltage that is supplying the device is below  
UVLO (2.5V) and above 1V (see Figure 1).  
CC  
Table 1. Programmable Features  
FEATURE  
DESCRIPTION  
• Priꢀary undervoltage threshold  
• Secondary undervoltage or overvoltage threshold  
• 1V to 5.8V thresholds in 20ꢀV increꢀents  
Input Voltages IN1–IN6  
• 0.5V to 3.05V thresholds in 10ꢀV increꢀents  
• 0.1667V to 1.017V thresholds in 3.3ꢀV increꢀents in high-iꢀpedance ꢀode  
• Dependency on IN1–IN6, MR, UV/OV, and/or WDO  
• Active-low, weak pullup, or open-drain output  
• Prograꢀꢀable tiꢀeout periods of 25µs, 1.5625ꢀs, 6.25ꢀs, 25ꢀs, 50ꢀs, 200ꢀs, 400ꢀs, or  
1.6s  
Prograꢀꢀable Output RESET  
Prograꢀꢀable Output UV/OV  
• Dependency on IN1–IN6, MR, and/or RESET  
• Active-low, weak pullup, or open-drain output  
• Prograꢀꢀable tiꢀeout periods of 25µs, 1.5625ꢀs, 6.25ꢀs, 25ꢀs, 50ꢀs, 200ꢀs, 400ꢀs, or  
1.6s  
Prograꢀꢀable Output WDO  
• Active-low, weak pullup, or open-drain output  
• Initial watchdog tiꢀeout period of 6.25ꢀs, 25ꢀs, 100ꢀs, 400ꢀs, 1.6s, 6.4s, 25.6s, or 102.4s  
• Norꢀal watchdog tiꢀeout period of 6.25ꢀs, 25ꢀs, 100ꢀs, 400ꢀs, 1.6s, 6.4s, 25.6s, or 102.4s  
• Watchdog enable/disable  
Watchdog Tiꢀer  
• Prograꢀs whether the device is powered froꢀ the highest IN_ input or froꢀ an external supply  
V
Power Mode  
CC  
connected to V  
CC  
Manual Reset Input MR  
• Prograꢀ RESET or UV/OV to assert while MR is asserted  
• Internal +1.25V reference voltage  
• Goes high iꢀpedance when internal reference is selected  
• External reference voltage input froꢀ 1.225V to 1.275V  
• Sets ADC voltage range  
Reference Input REFIN  
• Saꢀples voltages at IN1–IN6, AUXIN, and V  
CC  
• Coꢀpletes conversion of all eight inputs in 200ꢀs  
• Reference voltage sets ADC range  
10-Bit ADC*  
• Read ADC data froꢀ SMBus/I2C interface  
Write Disable  
• Locks user EEPROM based on RESET or UV/OV assertion  
Configuration Lock  
• Locks configuration registers and EEPROM  
*ADC does not affect programmable outputs.  
10 ______________________________________________________________________________________  
EEPROM-Programmable, Hex  
Power-Supply Supervisory Circuits  
RESET  
UV/OV  
WDO  
LOGIC NETWORK  
FOR OUTPUTS  
OUTPUT  
STAGES  
COMPARATORS  
IN_  
MR  
MARGIN  
WDI,  
RESET  
WATCHDOG  
TIMER  
(ADC MUX)  
(ADC)  
(ADC REGISTERS)  
AUXIN, V  
CC  
SDA,  
SCL  
SERIAL  
INTERFACE  
REGISTER BANK  
EEPROM  
(USER AND CONFIG)  
A0  
BOOT  
CONTROLLER  
ANALOG  
BLOCK  
DIGITAL  
BLOCK  
MAX6884  
MAX6885  
( ) MAX6884 ONLY  
Figure 1. Top-Level Block Diagram  
______________________________________________________________________________________ 11  
EEPROM-Programmable, Hex  
Power-Supply Supervisory Circuits  
Functional Diagram  
2.55V LDO  
RESET OUTPUT  
IN_  
DETECTOR  
IN1  
WEAK PULLUP OR  
OPEN-DRAIN SWITCH  
10k  
RESET  
RESET TIMING BLOCK  
IN2  
IN3  
IN4  
IN5  
IN2 DETECTOR  
IN3 DETECTOR  
IN4 DETECTOR  
IN5 DETECTOR  
IN6 DETECTOR  
UV/OV TIMING BLOCK  
UV/OV OUTPUT  
UV/OV  
WDO  
WATCHDOG TIMING BLOCK  
WDO OUTPUT  
MAIN  
OSCILLATOR  
IN6  
REFIN  
(N.C.)  
AUXIN  
(N.C.)  
ADC REGISTERS  
ADC  
ADC  
MUX  
TIMING  
IN1  
IN2  
IN3  
IN4  
IN5  
IN6  
EEPROM  
CHARGE PUMP  
ADC  
CONFIG  
REGISTERS  
CONFIG  
EEPROM  
USER  
VIRTUAL  
DIODES  
V
CC  
V
CC  
EEPROM  
AUXIN  
1µF  
1µF  
2.55V  
LDO  
1.25V  
REFERENCE  
(MAX6884 ONLY)  
SDA  
SCL  
A0  
DBP  
SERIAL  
INTERFACE  
MAX6884  
MAX6885  
( ) MAX6885 ONLY  
GND  
*SEE THE EXTERNAL VOLTAGE-DIVIDER SECTION FOR HIGH-IMPEDANCE ARCHITECTURE.  
12 ______________________________________________________________________________________  
EEPROM-Programmable, Hex  
Power-Supply Supervisory Circuits  
Powering the MAX6884/MAX6885  
ADC (MAX6884 Only)  
The MAX6884/MAX6885 derive power froꢀ the voltage-  
detector inputs: IN1–IN4 or through an externally sup-  
An internal 10-bit ADC (MAX6884 only) converts volt-  
ages at IN1–IN4, AUXIN, and V  
through a ꢀultiplexer  
CC  
plied V . A virtual diode-ORing scheꢀe selects the  
CC  
that autoꢀatically sequences through all inputs every  
200ꢀs. Registers 18h to 27h store the ADC data (see  
Table 3). Read the ADC data froꢀ the MAX6884 with  
the serial interface. The ADC has no effect on prograꢀ-  
ꢀable outputs RESET, UV/OV, or WDO.  
positive input that supplies power to the device (see the  
Functional Diagram). The highest input voltage on  
IN1–IN4 supplies power to the device. One of V –V  
IN1 IN4  
ꢀust be at least 2.7V to ensure proper operation.  
Internal hysteresis ensures that the supply input that initially  
powered the device continues to power the device when  
ꢀultiple input voltages are within 50ꢀV of each other.  
Inputs  
The MAX6884/MAX6885 offer the following inputs: volt-  
age-detector inputs IN1–IN4, auxiliary input AUXIN  
(MAX6884 only), ꢀanual reset input MR, ꢀargin input  
MARGIN, and reference input REFIN (MAX6884 only).  
V
powers the analog circuitry and is the bypass con-  
CC  
nection for the MAX6884/MAX6885 internal supply.  
Bypass V to GND with a 1µF ceraꢀic capacitor  
CC  
IN1–IN6  
The MAX6884/MAX6885 offer six voltage-detector inputs:  
IN1–IN6. Each voltage-detector input offers a prograꢀ-  
ꢀable priꢀary undervoltage threshold and a secondary  
undervoltage/overvoltage threshold. Prograꢀ thresholds  
froꢀ 0.5V to 3.05V in 10ꢀV increꢀents, 1.0V to 5.8V in  
20ꢀV increꢀents, or froꢀ 0.1667V to 1.0167V in 3.3ꢀV  
increꢀents. Use the following equations to prograꢀ  
thresholds in the appropriate registers:  
installed as close to the device as possible. The internal  
supply voltage, ꢀeasured at V , equals the ꢀaxiꢀuꢀ  
CC  
of IN1–IN4. If V  
is externally supplied, V  
ꢀust be at  
CC  
CC  
least 200ꢀV higher than any voltage applied to IN–IN4  
and V ꢀust be brought up first. V always powers  
CC  
CC  
the device when all IN_ are factory set as “ADJ.” Do not  
use the internally generated V to provide power to  
CC  
external circuitry. Externally supply power through V  
To externally supply power through V  
.
CC  
:
CC  
1) Apply a voltage to only one of V  
IN1–IN4 (2.7V to 5.8V).  
(2.7V to 5.5V) or  
CC  
V
1V  
0.02V  
TH  
X =  
2) Prograꢀ the internal/external V  
96h, Bit[5] = 1 (see Table 2).  
Power EEPROM at  
CC  
for 1V to 5.8V range in 20ꢀV increꢀents (prograꢀ bits  
R0Fh[5:0]).  
3) Power down the device.  
Subsequent power-ups and software reboots require an  
V
0.5V  
0.01V  
externally supplied V  
operational.  
to ensure the device is fully  
CC  
TH  
X =  
Table 2. Internal/External V  
for 0.5V to 3.05V range in 10ꢀV increꢀents (prograꢀ  
bits R0Fh[5:0]).  
CC  
EEPROM  
MEMORY  
ADDRESS  
REGISTER  
ADDRESS  
BIT  
RANGE  
DESCRIPTION  
V
0.1667V  
TH  
X =  
0.0033V  
1 = V  
Powered  
CC  
[5]  
0 = IN1–IN4 or V  
Powered  
for 0.1667V to 1.0167V in 3.3ꢀV increꢀents (see the  
External Voltage-Divider section).  
CC  
16h  
96h  
where V is the desired threshold voltage and X is the  
TH  
[2]  
[4]  
[6]  
Not Used  
Not Used  
Not Used  
deciꢀal code for the desired threshold (see Table 4). To  
set a threshold for the 1V to 5.8V range, X ꢀust equal 240  
or less. Set the secondary threshold for an undervoltage  
or overvoltage threshold by prograꢀꢀing bits R0Eh[5:0].  
To achieve thresholds in between the 10ꢀV and 20ꢀV  
steps or to ꢀonitor voltages higher than 5.8V, prograꢀ a  
voltage-detector input for high iꢀpedance through bits  
R10h[5:0] and add a resister voltage-divider (see the  
External Voltage-Divider section).  
The MAX6884/MAX6885 also generate a digital supply  
voltage (DBP) for the internal logic circuitry and the  
EEPROM. Bypass DBP to GND with a 1µF ceraꢀic  
capacitor installed as close to the device as possible.  
The noꢀinal DBP output voltage is 2.55V. Do not use  
DBP to provide power to external circuitry.  
______________________________________________________________________________________ 13  
EEPROM-Programmable, Hex  
Power-Supply Supervisory Circuits  
Table 3. ADC Registers (MAX6884 Only)  
REGISTER ADDRESS  
BIT RANGE  
[7:0]  
[1:0]  
[7:2]  
[7:0]  
[1:0]  
[7:2]  
[7:0]  
[1:0]  
[7:2]  
[7:0]  
[1:0]  
[7:2]  
[7:0]  
[1:0]  
[7:2]  
[7:0]  
[1:0]  
[7:2]  
[7:0]  
[1:0]  
[7:2]  
[7:0]  
[1:0]  
[7:2]  
DESCRIPTION  
ADC IN1 Conversion Result (8 MSBs)  
18h  
ADC IN1 Conversion Result (2 LSBs)  
Not Used  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
27h  
ADC IN2 Conversion Result (8 MSBs)  
ADC IN2 Conversion Result (2 LSBs)  
Not Used  
ADC IN3 Conversion Result (8 MSBs)  
ADC IN3 Conversion Result (2 LSBs)  
Not Used  
ADC IN4 Conversion Result (8 MSBs)  
ADC IN4 Conversion Result (2 LSBs)  
Not Used  
ADC IN5 Conversion Result (8 MSBs)  
ADC IN5 Conversion Result (2 LSBs)  
Not Used  
ADC IN6 Conversion Result (8 MSBs)  
ADC IN6 Conversion Result (2 LSBs)  
Not Used  
ADC AUXIN Conversion Result (8 MSBs)  
ADC AUXIN Conversion Result (2 LSBs)  
Not Used  
ADC V  
ADC V  
Conversion Result (8 MSBs)  
Conversion Result (2 LSBs)  
CC  
CC  
Not Used  
14 ______________________________________________________________________________________  
EEPROM-Programmable, Hex  
Power-Supply Supervisory Circuits  
Table 4. IN1–IN6 Threshold Register Settings  
REGISTER EEPROM MEMORY  
BIT RANGE  
DESCRIPTION  
ADDRESS  
ADDRESS  
IN1 Priꢀary Undervoltage Detector Threshold (see equations in the IN1–IN6  
section)  
00h  
80h  
[7:0]  
01h  
02h  
03h  
04h  
05h  
81h  
82h  
83h  
84h  
85h  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
IN2 Priꢀary Undervoltage Detector Threshold  
IN3 Priꢀary Undervoltage Detector Threshold  
IN4 Priꢀary Undervoltage Detector Threshold  
IN5 Priꢀary Undervoltage Detector Threshold  
IN6 Priꢀary Undervoltage Detector Threshold  
IN1 Secondary Undervoltage/Overvoltage Detector Threshold (see equations  
in the IN1–IN6 section)  
06h  
86h  
[7:0]  
07h  
08h  
09h  
0Ah  
0Bh  
87h  
88h  
89h  
8Ah  
8Bh  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
IN2 Secondary Undervoltage/Overvoltage Detector Threshold  
IN3 Secondary Undervoltage/Overvoltage Detector Threshold  
IN4 Secondary Undervoltage/Overvoltage Detector Threshold  
IN5 Secondary Undervoltage/Overvoltage Detector Threshold  
IN6 Secondary Undervoltage/Overvoltage Detector Threshold  
IN1 Secondary Undervoltage or Overvoltage Selection  
0 = Undervoltage  
[0]  
1 = Overvoltage  
[1]  
[2]  
IN2 Secondary Undervoltage or Overvoltage Selection  
IN3 Secondary Undervoltage or Overvoltage Selection  
IN4 Secondary Undervoltage or Overvoltage Selection  
IN5 Secondary Undervoltage or Overvoltage Selection  
IN6 Secondary Undervoltage or Overvoltage Selection  
Not Used  
0Eh  
8Eh  
[3]  
[4]  
[5]  
[7:6]  
IN1 Voltage Threshold Range  
0 = 1V to 5.8V (20ꢀV steps)  
1 = 0.5V to 3.05V (10ꢀV steps)  
[0]  
[1]  
[2]  
IN2 Voltage Threshold Range  
IN3 Voltage Threshold Range  
IN4 Voltage Threshold Range  
IN5 Voltage Threshold Range  
IN6 Voltage Threshold Range  
Not Used  
0Fh  
8Fh  
[3]  
[4]  
[5]  
[7:6]  
IN1 Input Iꢀpedance  
[0]  
0 = Norꢀal Mode  
1 = High-Z Mode (connect external resistor voltage-divider)  
[1]  
[2]  
IN2 Input Iꢀpedance  
IN3 Input Iꢀpedance  
IN4 Input Iꢀpedance  
IN5 Input Iꢀpedance  
IN6 Input Iꢀpedance  
Not Used  
10h  
90h  
[3]  
[4]  
[5]  
[7:6]  
______________________________________________________________________________________ 15  
EEPROM-Programmable, Hex  
Power-Supply Supervisory Circuits  
External Voltage-Divider  
MR  
Prograꢀ RESET and/or UV/OV to assert when ꢀanual  
reset input MR is brought low (see Tables 5 and 6).  
Outputs prograꢀꢀed to assert when MR is brought low  
reꢀain asserted after MR is brought high for their  
respective prograꢀꢀed tiꢀeout periods. An internal  
To achieve thresholds froꢀ 0.1667V to 1.0167V in  
3.3ꢀV increꢀents, prograꢀ the respective input voltage  
detector for high iꢀpedance and use an external volt-  
age-divider (see Figure 2). Set voltage-detector inputs  
for high iꢀpedance by prograꢀꢀing bits R10h[5:0].  
Design the resistor voltage-divider to scale the input  
voltage to between 0.1667V and 1.0167V at the input of  
the device. In this way, voltages higher than 5.8V and in  
between the 10ꢀV and 20ꢀV steps can be ꢀonitored.  
Prograꢀ R00h through R0Eh to adjust the thresholds  
between 0.1667V and 1.0167V in 3.3ꢀV steps.  
10µA current source pulls MR to V  
. Leave MR  
DBP  
unconnected or connect to DBP if unused.  
MARGIN  
MARGIN allows systeꢀ-level testing while power sup-  
plies exceed the norꢀal ranges. Drive MARGIN low to  
hold the prograꢀꢀable outputs in their existing state  
while systeꢀ-level testing occurs. Leave MARGIN  
unconnected or connect to DBP if unused. An internal  
AUXIN (MAX6884 Only)  
The AUXIN high-iꢀpedance analog input is intended to  
ꢀonitor additional systeꢀ voltages not required for  
reset purposes. The internal 10-bit ADC converts the  
voltage at AUXIN and stores the data in the ADC regis-  
ters (see Table 3). AUXIN does not affect any of the  
prograꢀꢀable outputs. The AUXIN input accepts  
power-supply voltages or other systeꢀ voltages scaled  
to the 1.25V ADC input voltage range.  
10µA current source pulls MARGIN to V  
. The inter-  
DBP  
nal ADC continues to convert voltages while MARGIN is  
low. The state of each prograꢀꢀable output does not  
change while MARGIN = GND. MARGIN overrides MR  
if both are asserted at the saꢀe tiꢀe.  
REFIN (MAX6884 Only)  
The MAX6884/MAX6885 feature an internal 1.25V volt-  
age reference. The voltage reference sets the threshold  
of the voltage detectors and provides a reference volt-  
age for the internal ADC. Prograꢀ the MAX6884 to use  
an internal or external reference by prograꢀꢀing bit  
R16h[7] (see Table 5). Leave REFIN unconnected  
when using the internal reference. REFIN accepts an  
external reference in the 1.225V to 1.275V range.  
V
IN  
MAX6884  
MAX6885  
IN_  
Table 5. Internal/External Reference  
PRIMARY REGISTER  
EEPROM  
MEMORY  
ADDRESS  
REGISTER  
ADDRESS  
BIT  
RANGE  
DESCRIPTION  
1 = Enable External  
Reference  
0 = Enable Internal  
Reference  
16h  
96h  
[7]  
SECONDARY REGISTER  
Figure 2. External Voltage-Divider Architecture  
16 ______________________________________________________________________________________  
EEPROM-Programmable, Hex  
Power-Supply Supervisory Circuits  
Programmable Outputs  
The MAX6884/MAX6885 feature three prograꢀꢀable  
active-low outputs: RESET, UV/OV, and WDO. Prograꢀ  
each output for open-drain or weak pullup. An internal  
10kresistor connected froꢀ each output to a 2.55V  
internal LDO provides a weak pullup. During power-up,  
Table 6). As an exaꢀple, RESET ꢀay depend on the  
IN3 priꢀary undervoltage threshold, MR, UV/OV, and  
WDO. Write 1’s to R11h[1:0], R11h[4], and R12h[7] to  
configure as indicated. IN3 ꢀust be above the under-  
voltage threshold, MR ꢀust be high, UV/OV ꢀust be  
deasserted, and WDO ꢀust be deasserted to be a  
logic “1,” then RESET deasserts. The logic state of  
RESET, in this exaꢀple, is equivalent to the logical  
stateꢀent:  
the outputs are held low for 1V < V  
< V  
. Any  
UVLO  
CC  
output prograꢀꢀed to depend on no condition always  
reꢀains in its active state. For exaꢀple, if the state of  
UV/OV is not prograꢀꢀed to depend on any condition,  
UV/OV will always be low. Figure 3 shows a tiꢀing dia-  
graꢀ of a typical relationship between a ꢀonitored  
input voltage and outputs RESET and UV/OV. RESET  
and UV/OV are a function of only IN1.  
IN3 · MR · UV/OV · WDO  
RESET reꢀains low for its prograꢀꢀed tiꢀeout period  
(t ) after all assertion-causing conditions are  
RP  
reꢀoved. Prograꢀ tiꢀeout periods for RESET froꢀ  
25µs to 1600ꢀs (see Table 6). Configure RESET for  
open-drain or weak pullup through bit R12h[0].  
RESET  
Prograꢀ RESET to depend on MR, UV/OV, WDO, or  
any prograꢀꢀable priꢀary voltage-detector input (see  
SECONDARY  
THRESHOLD  
(OVERVOLTAGE)  
V
IN1  
PRIMARY  
THRESHOLD  
UV/OV  
RESET  
t
UP  
t
RP  
Figure 3. Output Timing Diagram  
______________________________________________________________________________________ 17  
EEPROM-Programmable, Hex  
Power-Supply Supervisory Circuits  
Table 6. Programmable RESET Options  
EEPROM  
MEMORY  
ADDRESS  
REGISTER  
ADDRESS  
BIT RANGE  
DESCRIPTION  
1 = RESET Assertion Depends on MR  
0 = RESET Assertion Does Not Depend on MR  
[0]  
[1]  
[2]  
[3]  
[4]  
[5]  
[6]  
[7]  
1 = RESET Assertion Depends on UV/OV  
0 = RESET Assertion Does Not Depend on UV/OV  
1 = RESET Assertion Depends on IN1 Priꢀary Undervoltage  
0 = RESET Assertion Does Not Depend on IN1 Priꢀary Undervoltage  
1 = RESET Assertion Depends on IN2 Priꢀary Undervoltage  
0 = RESET Assertion Does Not Depend on IN2 Priꢀary Undervoltage  
11h  
91h  
1 = RESET Assertion Depends on IN3 Priꢀary Undervoltage  
0 = RESET Assertion Does Not Depend on IN3 Priꢀary Undervoltage  
1 = RESET Assertion Depends on IN4 Priꢀary Undervoltage  
0 = RESET Assertion Does Not Depend on IN4 Priꢀary Undervoltage  
1 = RESET Assertion Depends on IN5 Priꢀary Undervoltage  
0 = RESET Assertion Does Not Depend on IN5 Priꢀary Undervoltage  
1 = RESET Assertion Depends on IN6 Priꢀary Undervoltage  
0 = RESET Assertion Does Not Depend on IN6 Priꢀary Undervoltage  
RESET Output Type  
1 = Open Drain  
[0]  
0 = Weak Pullup  
RESET Deassertion Tiꢀe Delay  
000 = 25µs  
001 = 1.56ꢀs  
010 = 6.25ꢀs  
011 = 25ꢀs  
12h  
92h  
[3:1]  
100 = 50ꢀs  
101 = 200ꢀs  
110 = 400ꢀs  
111 = 1600ꢀs  
[6:4]  
[7]  
Not Used  
1 = RESET Assertion Depends on WDO Assertion  
0 = RESET Assertion Does Not Depend on WDO Assertion  
18 ______________________________________________________________________________________  
EEPROM-Programmable, Hex  
Power-Supply Supervisory Circuits  
UV/OV  
Prograꢀ UV/OV to depend on MR, RESET, or any pro-  
graꢀꢀable secondary voltage detector input (see Table  
7). As an exaꢀple, UV/OV ꢀay depend on the IN1 sec-  
ondary overvoltage threshold, MR, and RESET. Write 1’s  
to R13h[2:0] and R0Eh[1] to configure as indicated. IN1  
ꢀust be below the overvoltage threshold, MR ꢀust be  
high, and RESET ꢀust be deasserted to be a logic “1,”  
then UV/OV deasserts. The logic state of UV/OV, in this  
exaꢀple, is equivalent to the logical stateꢀent:  
IN1 · MR · RESET  
UV/OV reꢀains low for its prograꢀꢀed tiꢀe delay (t  
)
UP  
after all assertion-causing conditions are reꢀoved.  
Prograꢀ tiꢀe delays for UV/OV froꢀ 25µs to 1600ꢀs  
(see Table 7). Configure UV/OV for open drain or weak  
pullup through bit R14h[0].  
Table 7. Programmable UV/OV Options  
EEPROM  
MEMORY  
ADDRESS  
REGISTER  
ADDRESS  
BIT RANGE  
DESCRIPTION  
1 = UV/OV Assertion Depends on MR  
0 = UV/OV Assertion Does Not Depend on MR  
[0]  
[1]  
1 = UV/OV Assertion Depends on RESET  
0 = UV/OV Assertion Does Not Depend on RESET  
1 = UV/OV Assertion Depends on IN1 Secondary Undervoltage/Overvoltage Threshold  
0 = UV/OV Assertion Does Not Depend on IN1 Secondary Undervoltage/Overvoltage  
Threshold  
[2]  
[3]  
[4]  
[5]  
[6]  
[7]  
1 = UV/OV Assertion Depends on IN2 Secondary Undervoltage/Overvoltage Threshold  
0 = UV/OV Assertion Does Not Depend on IN2 Secondary Undervoltage/Overvoltage  
Threshold  
1 = UV/OV Assertion Depends on IN3 Secondary Undervoltage/Overvoltage Threshold  
0 = UV/OV Assertion Does Not Depend on IN3 Secondary Undervoltage/Overvoltage  
Threshold  
13h  
93h  
1 = UV/OV Assertion Depends on IN4 Secondary Undervoltage/Overvoltage Threshold  
0 = UV/OV Assertion Does Not Depend on IN4 Secondary Undervoltage/Overvoltage  
Threshold  
1 = UV/OV Assertion Depends on IN5 Secondary Undervoltage/Overvoltage Threshold  
0 = UV/OV Assertion Does Not Depend on IN5 Secondary Undervoltage/Overvoltage  
Threshold  
1 = UV/OV Assertion Depends on IN6 Secondary Undervoltage/Overvoltage Threshold  
0 = UV/OV Assertion Does Not Depend on IN6 Secondary Undervoltage/Overvoltage  
Threshold  
UV/OV Output Type  
1 = Open Drain  
[0]  
0 = Weak Pullup  
UV/OV Deassertion Tiꢀe Delay  
000 = 25µs  
001 = 1.56ꢀs  
010 = 6.25ꢀs  
011 = 25ꢀs  
100 = 50ꢀs  
101 = 200ꢀs  
14h  
94h  
[3:1]  
[7:4]  
110 = 400ꢀs  
111 = 1600ꢀs  
Unused  
______________________________________________________________________________________ 19  
EEPROM-Programmable, Hex  
Power-Supply Supervisory Circuits  
WDO  
The MAX6884/MAX6885 offer a separate output for the  
watchdog tiꢀer systeꢀ. WDO is active low and prograꢀ-  
ꢀable for open-drain or weak pullup. Prograꢀ WDO to  
assert RESET when the watchdog tiꢀer expires. See the  
Configuring the Watchdog Timer section for a coꢀplete  
description of the watchdog tiꢀer systeꢀ.  
if it stalls. The output of the watchdog tiꢀer (WDO) con-  
nects to the reset input or a nonꢀaskable interrupt of  
the µP. Prograꢀ R15h to configure the watchdog tiꢀer  
functions (see Table 8). The watchdog tiꢀer features  
independent initial and norꢀal watchdog tiꢀeout peri-  
ods between 6.25ꢀs and 102.4s (see Figure 4).  
The initial watchdog tiꢀeout period (t  
) is active  
WDI  
iꢀꢀediately after power-up, after a reset event takes  
place, after enabling the watchdog tiꢀer, or after the  
watchdog tiꢀer expires. The initial watchdog tiꢀeout  
period allows the µP to perforꢀ its initialization process.  
Configuring the Watchdog Timer  
A watchdog tiꢀer ꢀonitors ꢀicroprocessor (µP) soft-  
ware execution for a stalled condition and resets the µP  
2.5V  
V
CC  
OR IN1–IN4  
WDO  
RESET  
WDI  
t
t
RP  
*t  
WDI  
t
*t  
WDI  
D-PO  
WD  
RESET NOT DEPENDENT ON WDO  
2.5V  
V
OR IN1–IN4  
WDO  
CC  
RESET  
WDI  
t
t
*t  
WDI  
t
t
*t  
WDI  
D-PO  
RP  
WD  
RP  
WDO CONNECTED TO MR.  
*t IS THE INITIAL WATCHDOG TIMEOUT PERIOD.  
WDI  
Figure 4. Watchdog Timing Diagrams  
20 ______________________________________________________________________________________  
EEPROM-Programmable, Hex  
Power-Supply Supervisory Circuits  
The norꢀal watchdog tiꢀeout period (t ) is active  
than 5µs; see Figure 4). If WDO is not prograꢀꢀed to  
depend on RESET and the watchdog tiꢀer expires,  
WDO will reꢀain asserted until a low-to-high or high-to-  
low edge occurs on WDI. Prograꢀ WDO for open-drain  
or weak pullup (see Table 8).  
WD  
after the initial watchdog tiꢀer and continues to be  
active until the watchdog tiꢀer expires. The norꢀal  
watchdog tiꢀeout period ꢀonitors a pulsed output of  
the µP that indicates when norꢀal processor behavior  
occurs. If no pulse occurs during the norꢀal watchdog  
tiꢀeout period, this indicates that the processor has  
stopped operating or is stuck in an infinite execution  
loop and WDO asserts. Disable or enable the watch-  
dog tiꢀer through R15h[7].  
Fault Register  
Registers 28h to 2Ah store all fault conditions including  
undervoltage, overvoltage, and watchdog tiꢀer faults  
(see Table 9). Fault registers are read-only and lose  
contents upon power reꢀoval. The first read coꢀꢀand  
froꢀ the fault registers after power-up gives invalid  
data. Reading the fault register clears all fault flags in  
the register.  
If RESET is prograꢀꢀed to depend on WDO and the  
watchdog tiꢀer expires, WDO will assert for a short  
pulse, just long enough to assert RESET (typically less  
Table 8. Watchdog Register Settings  
EEPROM  
MEMORY  
ADDRESS  
REGISTER  
ADDRESS  
BIT RANGE  
DESCRIPTION  
WDO Output Type  
[0]  
1 = Open Drain  
0 = Weak Pullup  
Initial Watchdog Tiꢀeout  
000 = 6.25ꢀs  
001 = 25ꢀs  
010 = 100ꢀs  
011 = 400ꢀs  
100 = 1.6s  
[3:1]  
101 = 6.4ꢀs  
110 = 25.6s  
111 = 102.4s  
15h  
95h  
Norꢀal Watchdog Tiꢀeout  
000 = 6.25ꢀs  
001 = 25ꢀs  
010 = 100ꢀs  
011 = 400ꢀs  
1100 = 1.6s  
[6:4]  
101 = 6.4ꢀs  
110 = 25.6s  
111 = 102.4s  
Watchdog Enable  
1 = Enabled  
[7]  
0 = Disabled  
______________________________________________________________________________________ 21  
EEPROM-Programmable, Hex  
Power-Supply Supervisory Circuits  
Table 9. Fault Registers (28h–2Ah)  
REGISTER  
ADDRESS  
BIT RANGE  
DESCRIPTION  
[0]  
[1]  
1 = IN1 Voltage Falls Below Priꢀary Undervoltage Threshold  
1 = IN2 Voltage Falls Below Priꢀary Undervoltage Threshold  
1 = IN3 Voltage Falls Below Priꢀary Undervoltage Threshold  
1 = IN4 Voltage Falls Below Priꢀary Undervoltage Threshold  
1 = IN5 Voltage Falls Below Priꢀary Undervoltage Threshold  
1 = IN6 Voltage Falls Below Priꢀary Undervoltage Threshold  
Unused  
[2]  
28h  
[3]  
[4]  
[5]  
[7:6]  
[0]  
1 = IN1* Voltage Falls Below Secondary Threshold  
1 = IN2* Voltage Falls Below Secondary Threshold  
1 = IN3* Voltage Falls Below Secondary Threshold  
1 = IN4* Voltage Falls Below Secondary Threshold  
1 = IN5* Voltage Falls Below Secondary Threshold  
1 = IN6* Voltage Falls Below Secondary Threshold  
Unused  
[1]  
[2]  
29h  
2Ah  
[3]  
[4]  
[5]  
[7:6]  
[0]  
1 = UV/OV Has Been Asserted  
[1]  
[6:2]  
[7]  
1 = RESET Has Been Asserted  
Unused  
1 = WDO Has Been Asserted  
*Does not matter if set as undervoltage or overvoltage.  
Configuration Lock  
Write Disable  
A unique write disable feature protects the  
MAX6884/MAX6885 froꢀ inadvertent user EEPROM  
writes. As input voltages that power the serial interface,  
a µP, or any other writing devices fall, unintentional  
data ꢀay be written onto the data bus. The user  
EEPROM write-disable function (see Table 11) ensures  
that unintentional data does not corrupt the MAX6884/  
MAX6885 user EEPROM data.  
Lock the configuration register bank and configuration  
EEPROM contents after initial prograꢀꢀing by setting  
the lock bit high (see Table 10). Locking the configura-  
tion prevents write operations to configuration EEPROM  
and configuration registers except the configuration  
lock bit. Set the lock bit to 0 to reconfigure the device.  
Table 10. Configuration Lock Bit  
EEPROM  
MEMORY  
ADDRESS  
REGISTER  
ADDRESS  
BIT RANGE  
DESCRIPTION  
1 = Configuration Locked  
0 = Configuration Unlocked  
16h  
96h  
[3]  
22 ______________________________________________________________________________________  
EEPROM-Programmable, Hex  
Power-Supply Supervisory Circuits  
Table 11. User EEPROM Write Disable Bits  
EEPROM  
MEMORY  
ADDRESS  
REGISTER  
ADDRESS  
BIT RANGE  
DESCRIPTION  
1 = User EEPROM Writes Disabled on RESET Assertion  
0 = User EEPROM Writes Enabled on RESET Assertion  
[1]  
[0]  
16h  
96h  
1 = User EEPROM Writes Disabled on UV/OV Assertion  
0 = User EEPROM Writes Enabled on UV/OV Assertion  
configuration registers when V  
exceeds UVLO during  
exceeds  
Configuration Register Bank  
and EEPROM  
CC  
power-up or after a software reboot. After V  
CC  
UVLO, an internal 1MHz clock starts after a 5µs delay,  
and data transfer begins. Data transfer disables access  
to the configuration registers and EEPROM. The data  
transfer froꢀ EEPROM to configuration registers takes  
2.5ꢀs ꢀaxiꢀuꢀ. Read configuration EEPROM and con-  
figuration register data any tiꢀe after power-up or soft-  
ware reboot. Write coꢀꢀands to the configuration  
EEPROM and configuration registers are allowed at any  
tiꢀe after power-up or software reboot unless the config-  
uration lock bit is set (see Table 10). When the configura-  
tion lock bit is set, all write access to EEPROM and  
registers is disabled with the exception of the configura-  
tion lock bit itself. The ꢀaxiꢀuꢀ cycle tiꢀe to write a sin-  
gle byte in EEPROM is 11ꢀs (ꢀax).  
The configuration registers can be directly ꢀodified by  
the serial interface without ꢀodifying the EEPROM  
after the power-up procedure terꢀinates and the con-  
figuration EEPROM data has been loaded into the con-  
figuration register bank. Use the write byte or block  
write protocols to write directly to the configuration reg-  
isters. Changes to the configuration registers take  
effect iꢀꢀediately and are lost upon power reꢀoval.  
At device power-up, the register bank loads configura-  
tion data froꢀ the EEPROM. Configuration data ꢀay  
be directly altered in the register bank during applica-  
tion developꢀent, allowing ꢀaxiꢀuꢀ flexibility.  
Transfer the new configuration data, byte by byte, to  
the configuration EEPROM with the write byte protocol.  
The next device power-up or software reboot autoꢀati-  
cally loads the new configuration. See Table 12 for a  
coꢀplete register ꢀap.  
User EEPROM  
The 512-bit user EEPROM addresses range froꢀ 40h to  
7Fh (see Figure 11). Store revision data, board revision  
data, or other data in these registers. The ꢀaxiꢀuꢀ  
cycle tiꢀe to write a single byte is 11ꢀs (ꢀax). Disable  
writes to the user EEPROM during RESET or UV/OV  
assertion by prograꢀꢀing bit R16h[1] or R16h[0],  
respectively (see Table 11).  
Configuration EEPROM  
The configuration EEPROM addresses range froꢀ 80h to  
97h. Write data to the configuration EEPROM to set up  
the MAX6884/MAX6885 autoꢀatically upon power-up.  
Data transfers froꢀ the configuration EEPROM to the  
______________________________________________________________________________________ 23  
EEPROM-Programmable, Hex  
Power-Supply Supervisory Circuits  
Table 12. Register Map  
EEPROM  
MEMORY  
ADDRESS  
REGISTER  
ADDRESS  
READ/  
WRITE  
DESCRIPTION  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
IN1 Priꢀary Undervoltage Detector Threshold (Table 4)  
IN2 Priꢀary Undervoltage Detector Threshold (Table 4)  
IN3 Priꢀary Undervoltage Detector Threshold (Table 4)  
IN4 Priꢀary Undervoltage Detector Threshold (Table 4)  
IN5 Priꢀary Undervoltage Detector Threshold (Table 4)  
IN6 Priꢀary Undervoltage Detector Threshold (Table 4)  
IN1 Secondary Undervoltage/Overvoltage Detector Threshold (Table 4)  
IN2 Secondary Undervoltage/Overvoltage Detector Threshold (Table 4)  
IN3 Secondary Undervoltage/Overvoltage Detector Threshold (Table 4)  
IN4 Secondary Undervoltage/Overvoltage Detector Threshold (Table 4)  
IN5 Secondary Undervoltage/Overvoltage Detector Threshold (Table 4)  
IN6 Secondary Undervoltage/Overvoltage Detector Threshold (Table 4)  
Unused. Returns 0h when read.  
R
Unused. Returns 0h when read.  
R/W  
R/W  
R/W  
R/W  
Secondary Threshold Undervoltage/Overvoltage Selection (Table 4)  
Threshold Range Selection (Table 4)  
High-Z Mode Selection (Table 4)  
RESET Dependency Selection (Table 6)  
RESET Output Type, Tiꢀeout Period, and WDO Dependency Selection  
(Table 6)  
12h  
92h  
R/W  
13h  
14h  
15h  
93h  
94h  
95h  
R/W  
R/W  
R/W  
UV/OV Dependency Selection (Table 7)  
UV/OV Output Type and Tiꢀeout Period (Table 7)  
Watchdog Initial and Norꢀal Tiꢀeout Selection (Table 8)  
Internal/External V  
(Table 2), Internal/External Reference (Table 5),  
CC  
16h  
96h  
R/W  
Configuration Lock Bit (Table 10), User EEPROM Write Disable (Table 11)  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
97h  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
Unused (Table 5)  
ADC Conversion Data for IN1 (8 MSBs) (Table 3)  
ADC Conversion Data for IN1 (2 LSBs) (Table 3)  
ADC Conversion Data for IN2 (8 MSBs) (Table 3)  
ADC Conversion Data for IN2 (2 LSBs) (Table 3)  
ADC Conversion Data for IN3 (8 MSBs) (Table 3)  
ADC Conversion Data for IN3 (2 LSBs) (Table 3)  
ADC Conversion Data for IN4 (8 MSBs) (Table 3)  
ADC Conversion Data for IN4 (2 LSBs) (Table 3)  
ADC Conversion Data for IN5 (8 MSBs) (Table 3)  
ADC Conversion Data for IN5 (2 LSBs) (Table 3)  
ADC Conversion Data for IN6 (8 MSBs) (Table 3)  
ADC Conversion Data for IN6 (2 LSBs) (Table 3)  
ADC Conversion Data for AUXIN (8 MSBs) (Table 3)  
24 ______________________________________________________________________________________  
EEPROM-Programmable, Hex  
Power-Supply Supervisory Circuits  
Table 12. Register Map (continued)  
EEPROM  
MEMORY  
ADDRESS  
REGISTER  
ADDRESS  
READ/  
WRITE  
DESCRIPTION  
25h  
26h  
27h  
28h  
29h  
2Ah  
R
R
R
R
R
R
ADC Conversion Data for AUXIN (2 LSBs) (Table 3)  
ADC Conversion Data for V  
ADC Conversion Data for V  
(8 MSBs) (Table 3)  
(2 LSBs) (Table 3)  
CC  
CC  
Fault Flags for Priꢀary Voltage Detectors (Table 9)  
Fault Flags for Secondary Voltage Detectors (Table 9)  
Fault Flags for RESET, UV/OV, and WDO (Table 9)  
iꢀpedance states until the device is reconfigured by  
the user). Each device requires configuration before full  
power is applied to the systeꢀ. Below is a general  
step-by-step procedure for prograꢀꢀing the  
MAX6884/MAX6885:  
CONFIGURATION  
REGISTER BANK  
EEPROM  
USER EEPROM  
00h  
80h  
40h  
CONFIGURATION  
DATA  
1) Apply a supply voltage to IN1–IN4 or V , depend-  
CC  
(R/W)  
17h  
18h  
97h  
ing on the prograꢀꢀed configuration (see the  
Powering the MAX6884/MAX6885 section). The  
applied voltage ꢀust be 2.7V or higher.  
ADC AND FAULT  
REGISTERS  
(READ ONLY)  
2Ah  
2) Transꢀit data through the serial interface. Write to  
the configuration registers first to ensure the device  
is configured properly (see the Write Byte and  
Block Write sections).  
3) Use the read word protocol to read back the data froꢀ  
the configuration registers to verify the data was writ-  
ten (see the Receive Byte and Block Read sections).  
4) Write the saꢀe data written to the configuration reg-  
isters to the appropriate configuration EEPROM reg-  
isters. After coꢀpleting EEPROM configuration,  
apply full power to the systeꢀ to begin norꢀal oper-  
ation. The nonvolatile EEPROM stores the configura-  
tion inforꢀation while power is off.  
7Fh  
Figure 5. Memory Map  
Software Reboot  
A software reboot restores the EEPROM configuration  
to the volatile registers without cycling the power sup-  
plies. Use the send byte coꢀꢀand with data byte C4h  
to initiate a software reboot. The 2.5ꢀs (ꢀax) power-up  
delay also applies after a software reboot.  
Configuring the MAX6884/MAX6885  
The MAX6884/MAX6885 factory-default configuration  
sets all registers to 00h except for bits R91h[0],  
R92h[0], R93h[0], R94h[0], R95h[0], which are set to 1.  
This configuration sets all three prograꢀꢀable outputs  
(RESET, UV/OV, WDO) as open drain, and RESET and  
UV/OV dependent on MR (putting all outputs into high-  
______________________________________________________________________________________ 25  
EEPROM-Programmable, Hex  
Power-Supply Supervisory Circuits  
SMBus/I2C-Compatible Serial Interface  
The MAX6884/MAX6885 feature an I2C/SMBus-coꢀpati-  
ble 2-wire serial interface consisting of a serial data line  
(SDA) and a serial clock line (SCL). SDA and SCL facili-  
tate bidirectional coꢀꢀunication between the  
MAX6884/MAX6885 and the ꢀaster device at clock  
rates up to 400kHz. Figure 6 shows the 2-wire interface  
tiꢀing diagraꢀ. The MAX6884/MAX6885 are transꢀit/  
receive slave-only devices, relying upon a ꢀaster  
device to generate a clock signal. The ꢀaster device  
(typically a ꢀicrocontroller) initiates data transfer on the  
bus and generates SCL to perꢀit that transfer.  
fraꢀed by a START (S) or REPEATED START (SR) condi-  
tion and a STOP (P) condition. Each word transꢀitted  
over the bus is 8 bits long and is always followed by an  
acknowledge pulse.  
SCL is a logic input, while SDA is an open-drain  
input/output. SCL and SDA both require external pullup  
resistors to generate the logic-high voltage. Use 4.7kΩ  
resistors for ꢀost applications.  
Bit Transfer  
Each clock pulse transfers one data bit. The data on  
SDA ꢀust reꢀain stable while SCL is high (see Figure  
7), otherwise the MAX6884/MAX6885 register a START  
or STOP condition (see Figure 8) froꢀ the ꢀaster. SDA  
and SCL idle high when the bus is not busy.  
A ꢀaster device coꢀꢀunicates to the MAX6884/  
MAX6885 by transꢀitting the proper address followed by  
coꢀꢀand and/or data words. Each transꢀit sequence is  
SDA  
t
BUF  
t
SU:DAT  
t
SU:STA  
t
t
SU:STO  
HD:DAT  
t
t
LOW  
HD:STA  
SCL  
t
HIGH  
t
HD:STA  
t
F
t
R
START  
CONDITION  
STOP  
CONDITION  
START  
CONDITION  
REPEATED START  
CONDITION  
Figure 6. Serial Interface Timing  
SDA  
SDA  
SCL  
S
P
SCL  
START  
CONDITION  
STOP  
CONDITION  
CHANGE OF  
DATA ALLOWED  
DATA LINE STABLE,  
DATA VALID  
Figure 7. Bit Transfer  
Figure 8. Start and Stop Conditions  
26 ______________________________________________________________________________________  
EEPROM-Programmable, Hex  
Power-Supply Supervisory Circuits  
Start and Stop Conditions  
Both SCL and SDA idle high when the bus is not busy. A  
ꢀaster device signals the beginning of a transꢀission  
with a START (S) condition (see Figure 8) by transitioning  
SDA froꢀ high to low while SCL is high. The ꢀaster  
device issues a STOP (P) condition (see Figure 8) by  
transitioning SDA froꢀ low to high while SCL is high. A  
STOP condition frees the bus for another transꢀission.  
The bus reꢀains active if a REPEATED START condition  
is generated, such as in the block read protocol (see  
Figure 11).  
Acknowledge  
The acknowledge bit (ACK) is the 9th bit attached to any  
8-bit data word. The receiving device always generates  
an ACK. The MAX6884/MAX6885 generate an ACK  
when receiving an address or data by pulling SDA low  
during the 9th clock period (see Figure 9). When trans-  
ꢀitting data, such as when the ꢀaster device reads data  
back froꢀ the MAX6884/MAX6885, the MAX6884/  
MAX6885 wait for the ꢀaster device to generate an ACK.  
Monitoring ACK allows for detection of unsuccessful  
data transfers. An unsuccessful data transfer occurs if  
the receiving device is busy or if a systeꢀ fault has  
occurred. In the event of an unsuccessful data transfer,  
the bus ꢀaster should reatteꢀpt coꢀꢀunication at a  
later tiꢀe. The MAX6884/MAX6885 generate a NACK  
after the coꢀꢀand byte during a software reboot, while  
writing to the EEPROM, or when receiving an illegal  
ꢀeꢀory address.  
Early STOP Conditions  
The MAX6884/MAX6885 recognize a STOP condition at  
any point during transꢀission except if a STOP condition  
occurs in the saꢀe high pulse as a START condition.  
This condition is not a legal I2C forꢀat; at least one clock  
pulse ꢀust separate any START and STOP condition.  
Repeated START Conditions  
A REPEATED START (SR) condition ꢀay indicate a  
change of data direction on the bus. Such a change  
occurs when a coꢀꢀand word is required to initiate a  
read operation (see Figure 11). SR ꢀay also be used  
when the bus ꢀaster is writing to several I2C devices  
and does not want to relinquish control of the bus. The  
MAX6884/MAX6885 serial interface supports continu-  
ous write operations with or without an SR condition  
separating theꢀ. Continuous read operations require  
SR conditions because of the change in direction of  
data flow.  
Slave Address  
The MAX6884/MAX6885 slave address conforꢀs to the  
following table:  
SA7  
(MSB)  
SA0  
(LSB)  
SA6  
SA5  
SA4  
SA3  
SA2  
SA1  
1
0
1
0
0
A0  
X
R/W  
X = Don’t care.  
START  
CONDITION  
CLOCK PULSE FOR ACKNOWLEDGE  
8
2
1
9
SCL  
SDA BY  
TRANSMITTER  
S
SDA BY  
RECEIVER  
Figure 9. Acknowledge  
______________________________________________________________________________________ 27  
EEPROM-Programmable, Hex  
Power-Supply Supervisory Circuits  
SA7 through SA4 represent the standard 2-wire inter-  
face address (1010); for devices with EEPROM, SA2  
corresponds to the A0 address inputs of the MAX6884/  
MAX6885 (hardwired as logic-low or logic-high). SA0 is  
a read/write flag bit (0 = write, 1 = read).  
5) The addressed slave asserts an ACK on SDA.  
6) The ꢀaster sends an 8-bit data byte.  
7) The addressed slave asserts an ACK on SDA.  
8) The ꢀaster sends a STOP condition.  
The A0 address input allows up to two MAX6884/  
MAX6885s to connect to one bus. Connect A0 to GND  
or to the 2-wire serial-interface power supply (see  
Figure 10).  
To write a single byte to the register bank, only the 8-bit  
coꢀꢀand code and a single 8-bit data byte are sent.  
The coꢀꢀand code ꢀust be in the 00h to 2Fh range.  
The data byte is written to the register bank if the coꢀ-  
ꢀand code is valid. The slave generates a NACK at  
step 5 if the coꢀꢀand code is invalid or any internal  
operations are ongoing. To write a single byte of data to  
the user or configuration EEPROM, the 8-bit coꢀꢀand  
code and a single 8-bit data byte are sent.  
Send Byte  
The send byte protocol allows the ꢀaster device to send  
one byte of data to the slave device (see Figure 11). The  
send byte presets a register pointer address for a subse-  
quent read or write. The slave sends a NACK instead of  
an ACK if the ꢀaster tries to send an address that is not  
allowed or if the device is writing data to EEPROM or is  
booting. If the ꢀaster sends C0h, the data is ACK,  
because this could be the start of the block write proto-  
col, and the slave expects following data byte. If the ꢀas-  
ter sends a STOP condition, the internal address pointer  
does not change. If the ꢀaster sends C1h, this signifies  
that the block read protocol is expected, and a repeated  
START condition should follow. The device reboots if the  
ꢀaster sends C4h. The send byte procedure follows:  
Block Write  
The block write protocol allows the ꢀaster device to  
write a block of data (1 to 16 bytes) to the EEPROM or  
to the register bank (see Figure 11). The destination  
address ꢀust already be set by the send byte protocol  
and the coꢀꢀand code ꢀust be C0h. If the nuꢀber of  
bytes to be written causes the address pointer to  
exceed 2Fh for the configuration register or 9Fh for the  
configuration EEPROM, the address pointer stops  
increꢀenting, overwriting the last ꢀeꢀory address with  
the reꢀaining bytes of data. Only the last data byte  
sent is stored in 17h (as 2Fh is read only and a write  
cause no change in the content). If the nuꢀber of bytes  
to be written exceeds the address pointer 9Fh for the  
user EEPROM, the address pointer stops increꢀenting  
and continues writing exceeding data to the last  
address. Only the last data is actually written to 9Fh.  
The block write procedure follows:  
1) The ꢀaster sends a START condition.  
2) The ꢀaster sends the 7-bit slave address and a  
write bit (low).  
3) The addressed slave asserts an ACK on SDA.  
4) The ꢀaster sends an 8-bit data byte.  
5) The addressed slave asserts an ACK on SDA.  
6) The ꢀaster sends a STOP condition.  
1) The ꢀaster sends a START condition.  
2) The ꢀaster sends the 7-bit slave address and a  
write bit (low).  
Write Byte  
The write byte protocol allows the ꢀaster device to write a  
single byte in the register bank or in the EEPROM (see  
Figure 11). The write byte/word procedure follows:  
3) The addressed slave asserts an ACK on SDA.  
4) The ꢀaster sends the 8-bit coꢀꢀand code for  
block write (C0h).  
1) The ꢀaster sends a START condition.  
2) The ꢀaster sends the 7-bit slave address and a  
write bit (low).  
5) The addressed slave asserts an ACK on SDA.  
6) The ꢀaster sends the 8-bit byte count (1 to 16  
bytes) N.  
3) The addressed slave asserts an ACK on SDA.  
4) The ꢀaster sends an 8-bit coꢀꢀand code.  
7) The addressed slave asserts an ACK on SDA.  
8) The ꢀaster sends 8 bits of data.  
9) The addressed slave asserts an ACK on SDA.  
10) Repeat steps 8 and 9 N - 1 tiꢀes.  
SDA  
1
0
1
0
0
A0  
x
R/W ACK  
START  
SCL  
MSB  
LSB  
11) The ꢀaster generates a STOP condition.  
Figure 10. Slave Address  
28 ______________________________________________________________________________________  
EEPROM-Programmable, Hex  
Power-Supply Supervisory Circuits  
Read Byte  
The read byte protocol allows the ꢀaster device to  
read the register or an EEPROM location (user or con-  
figuration) content of the MAX6884/MAX6885 (see  
Figure 11). The read byte procedure follows:  
5) The active slave asserts an ACK on the data line.  
6) The ꢀaster sends a repeated start condition.  
7) The ꢀaster sends the 7-bit slave ID plus a read  
bit (high).  
8) The addressed slave asserts an ACK on the  
data line.  
1) The ꢀaster sends a START condition.  
2) The ꢀaster sends the 7-bit slave address and a  
write bit (low).  
9) The slave sends 8 data bits.  
10) The ꢀaster asserts a NACK on the data line.  
11) The ꢀaster generates a STOP condition.  
3) The addressed slave asserts an ACK on the  
data line.  
4) The ꢀaster sends 8 data bits.  
SEND BYTE FORMAT  
RECEIVE BYTE FORMAT  
S
ADDRESS WR ACK DATA  
ACK  
P
S
ADDRESS WR ACK DATA  
ACK  
P
7 BITS  
0
8 BITS  
DATA BYTE: PRESETS THE  
7 BITS  
1
8 BITS  
DATA BYTE: READS DATA FROM  
SLAVE ADDRESS:  
SLAVE ADDRESS:  
EQUIVALENT TO CHIP- INTERNAL ADDRESS POINTER  
SELECT LINE OF A 3-  
EQUIVALENT TO CHIP- THE REGISTER COMMANDED BY  
SELECT LINE OF A 3- THE LAST READ BYTE OR WRITE  
.
WIRE INTERFACE  
WIRE INTERFACE  
BYTE TRANSMISSION. ALSO  
DEPENDENT ON A SEND BYTE.  
WRITE BYTE FORMAT  
ADDRESS WR ACK  
7 BITS  
S
COMMAND  
ACK  
DATA  
ACK  
P
0
8 BITS  
8 BITS  
COMMAND BYTE:  
SELECTS REGISTER YOU  
ARE WRITING TO  
DATA BYTE: DATA GOES INTO THE  
REGISTER SET BY THE COMMAND  
BYTE IF THE COMMAND IS BELOW  
50h. IF THE COMMAND is 80h,  
81h, or 82h, THE DATA BYTE PRESETS  
THE LSB OF AN EEPROM ADDRESS.  
SLAVE ADDRESS:  
EQUIVALENT TO CHIP-  
SELECT LINE OF A 3-  
WIRE INTERFACE  
BLOCK WRITE FORMAT  
ADDRESS WR ACK COMMAND ACK  
DATA BYTE  
•••  
BYTE  
DATA BYTE  
1
DATA BYTE  
S
ACK  
ACK  
ACK  
ACK  
P
COUNT = N  
N
7 BITS  
0
8 BITS  
8 BITS  
8 BITS  
8 BITS  
8 BITS  
COMMAND BYTE:  
PREPARES DEVICE  
FOR BLOCK OPERATION  
DATA BYTE: DATA GOES INTO THE REGISTER SET BY THE  
.
SLAVE ADDRESS:  
COMMAND BYTE  
EQUIVALENT TO CHIP-  
SELECT LINE OF A 3-  
WIRE INTERFACE  
BLOCK READ FORMAT  
ADDRESS WR ACK COMMAND ACK SR ADDRESS WR ACK  
BYTE  
COUNT = 16  
DATA BYTE  
1
DATA BYTE  
•••  
DATA BYTE  
N
S
ACK  
ACK  
ACK  
ACK  
P
7 BITS  
0
8 BITS  
7 BITS  
1
10h  
8 BITS  
8 BITS  
8 BITS  
COMMAND BYTE:  
PREPARES DEVICE  
FOR BLOCK  
SLAVE ADDRESS:  
SLAVE ADDRESS:  
DATA BYTE: DATA GOES INTO THE REGISTER SET BY THE  
COMMAND BYTE  
EQUIVALENT TO CHIP-  
SELECT LINE OF A 3-  
WIRE INTERFACE  
EQUIVALENT TO CHIP-  
SELECT LINE OF A 3-  
WIRE INTERFACE  
OPERATION  
S = START CONDITON  
P = STOP CONDITION  
SHADED = SLAVE TRANSMISSION  
SR = REPEATED START CONDTION  
2
Figure 11. SMBus/I C Protocols  
______________________________________________________________________________________ 29  
EEPROM-Programmable, Hex  
Power-Supply Supervisory Circuits  
Note that once the read has been done, the internal point-  
er is increased by one, unless a ꢀeꢀory boundary is hit.  
If the device is busy or if the address is not an allowed  
one, the coꢀꢀand code is NACKed and the internal  
address pointer is not altered. The ꢀaster ꢀust then inter-  
rupt the coꢀꢀunication issuing a STOP condition.  
data bytes are being sent, these subsequent bytes  
overwrite address 2Fh repeatedly, but no data will be  
left in 2Fh as this is a read-only address.  
For the configuration EEPROM, valid address pointers  
range froꢀ 80h to 9Fh. When using the block write pro-  
tocol, the address pointer autoꢀatically increꢀents  
after each data byte, except when the address pointer  
is already at 9Fh. If the address pointer is already 9Fh,  
and ꢀore data bytes are being sent, these subsequent  
bytes overwrite address 9Fh repeatedly, leaving only  
the last data byte sent stored at this register address.  
Block Read  
The block read protocol allows the ꢀaster device to  
read a block of 16 bytes froꢀ the EEPROM or register  
bank (see Figure 11). Read fewer than 16 bytes of data  
by issuing an early STOP condition froꢀ the ꢀaster, or  
by generating a NACK with the ꢀaster. Previous actions  
through the serial interface predeterꢀine the first source  
address. It is suggested to use a send byte protocol,  
before the block read, to set the initial read address.  
The block read protocol is initiated with a coꢀꢀand  
code of C1h. The block read procedure follows:  
For the user EEPROM, valid address pointers range froꢀ  
40h to 7Fh. As for the configuration EEPROM, block write  
and block read protocols can also be used. The internal  
address pointer will autoꢀatically increꢀent up to the  
user EEPROM boundary 7Fh where the pointer ꢀoves to  
the first address of the configuration ꢀeꢀory section  
80h, as there is no forbidden address in the ꢀiddle.  
1) The ꢀaster sends a START condition.  
2) The ꢀaster sends the 7-bit slave address and a  
write bit (low).  
Applications Information  
Configuration Download at Power-Up  
The configuration of the MAX6884/MAX6885 (undervolt-  
age/overvoltage thresholds, reset tiꢀe delays, watch-  
dog behavior, prograꢀꢀable output conditions and  
configurations, etc.) at power-up depends on the con-  
tents of the EEPROM. The EEPROM is coꢀprised of  
buffered latches that store the configuration. The local  
volatile ꢀeꢀory latches lose their contents at power-  
down. Therefore, at power-up, the device configuration  
ꢀust be restored by downloading the contents of the  
EEPROM (nonvolatile ꢀeꢀory) to the local latches. This  
download occurs in a nuꢀber of steps:  
3) The addressed slave asserts an ACK on SDA.  
4) The ꢀaster sends 8 bits of the block read coꢀ-  
ꢀand (C1h).  
5) The slave asserts an ACK on SDA, unless busy.  
6) The ꢀaster generates a repeated START condition.  
7) The ꢀaster sends the 7-bit slave address and a  
read bit (high).  
8) The slave asserts an ACK on SDA.  
9) The slave sends the 8-bit byte count (16).  
10) The ꢀaster asserts an ACK on SDA.  
11) The slave sends 8 bits of data.  
1) Prograꢀꢀable outputs are high iꢀpedance with no  
power applied to the device.  
12) The ꢀaster asserts an ACK on SDA.  
13) Repeat steps 8 and 9 15 tiꢀes.  
2) When V  
or IN1–IN4 (see the Powering the  
CC  
MAX6884/MAX6885 section) exceeds +1V, all pro-  
graꢀꢀable outputs are asserted low.  
14) The ꢀaster generates a STOP condition.  
3) When V  
or IN1–IN4 exceeds UVLO (2.5V), the  
CC  
Address Pointers  
Use the send byte protocol to set the register address  
pointers before read and write operations. For the con-  
figuration registers, valid address pointers range froꢀ  
00h to 2Fh. Register addresses outside of this range  
result in a NACK being issued froꢀ the MAX6884/  
MAX6885. When using the block write protocol, the  
address pointer autoꢀatically increꢀents after each  
data byte, except when the address pointer is already  
at 2Fh. If the address pointer is already 2Fh, and ꢀore  
configuration EEPROM starts to download its con-  
tents to the volatile configuration registers. The  
download takes 2.5ꢀs (ꢀax). The prograꢀꢀable  
outputs assuꢀe their prograꢀꢀed conditional out-  
put state when V  
or IN1–IN4 exceeds the UVLO  
CC  
(see the Powering the MAX6884/MAX6885 section).  
4) Any atteꢀpt to coꢀꢀunicate with the device prior  
to this download coꢀpletion results in a NACK  
being issued froꢀ the MAX6884/MAX6885.  
30 ______________________________________________________________________________________  
EEPROM-Programmable, Hex  
Power-Supply Supervisory Circuits  
Layout and Bypassing  
For better noise iꢀꢀunity, bypass each of the voltage-  
detector inputs to GND with a 0.1µF capacitor installed  
Configuration Latency Period  
A delay of less than 5µs occurs between writing to the  
configuration registers and the tiꢀe when these  
changes actually take place, except when changing  
one of the voltage-detector thresholds. Changing a  
voltage-detector threshold typically takes 150µs. When  
changing EEPROM contents, a software reboot or  
cycling of power is required for these changes to trans-  
fer to volatile ꢀeꢀory.  
as close to the device as possible. Bypass V  
and  
CC  
DBP to GND with 1µF capacitors installed as close to  
the device as possible. V (when not externally sup-  
CC  
plied) and DBP are internally generated voltages and  
should not be used to supply power to external circuitry.  
Typical Operating Circuit  
12V  
5V  
12V  
DC-DC  
1
DC-DC  
2
3.3V  
2.5V  
DC-DC  
3
DC-DC  
1.8V  
4
DC-DC  
5
1.5V  
1.2V  
DC-DC  
6
R
PU  
R
PU  
IN1  
IN2  
IN3  
IN4  
IN5  
IN6  
SDA  
SCL  
SDA  
3.3V ALWAYS ON  
µP  
V
CC  
SCL  
RESET  
WDI  
RESET  
LOGIC OUTPUT  
LOGIC INPUT  
LOGIC INPUT  
MAX6884  
MAX6885  
DBP  
WDO  
UV/OV  
MR  
MARGIN  
*AUXIN  
*REFIN  
A0  
GND  
TEMP  
SENSOR  
*MAX6884 ONLY  
______________________________________________________________________________________ 31  
EEPROM-Programmable, Hex  
Power-Supply Supervisory Circuits  
Pin Configurations  
TOP VIEW  
20  
19  
18  
17  
16  
20  
19  
18  
17  
16  
15  
14 DBP  
15  
RESET  
WDO  
UV/OV  
GND  
IN6  
RESET  
WDO  
UV/OV  
GND  
IN6  
1
2
3
4
5
1
2
3
4
5
14 DBP  
13  
13  
12  
11  
V
V
CC  
CC  
MAX6884  
MAX6885  
12  
11  
AUXIN  
REFIN  
N.C.  
N.C.  
*EXPOSED PAD  
*EXPOSED PAD  
WDI  
WDI  
6
7
8
9
10  
6
7
8
9
10  
THIN QFN  
THIN QFN  
*EXPOSED PAD CONNECTED TO GND.  
*EXPOSED PAD CONNECTED TO GND.  
Chip Information  
PROCESS: BiCMOS  
32 ______________________________________________________________________________________  
EEPROM-Programmable, Hex  
Power-Supply Supervisory Circuits  
Package Information  
(The package drawing(s) in this data sheet ꢀay not reflect the ꢀost current specifications. For the latest package outline inforꢀation  
go to www.maxim-ic.com/packages.)  
D2  
D
b
0.10 M  
C A B  
C
L
D2/2  
D/2  
k
L
MARKING  
XXXXX  
E/2  
E2/2  
C
(NE-1) X  
e
L
E2  
E
PIN # 1 I.D.  
0.35x45  
DETAIL A  
e
PIN # 1  
I.D.  
(ND-1) X  
e
DETAIL B  
e
L
C
C
L
L1  
L
L
L
e
e
0.10  
C
A
0.08  
C
C
A3  
A1  
PACKAGE OUTLINE,  
16, 20, 28, 32L THIN QFN, 5x5x0.8mm  
1
-DRAWING NOT TO SCALE-  
21-0140  
G
2
______________________________________________________________________________________ 33  
EEPROM-Programmable, Hex  
Power-Supply Supervisory Circuits  
Package Information (continued)  
(The package drawing(s) in this data sheet ꢀay not reflect the ꢀost current specifications. For the latest package outline inforꢀation  
go to www.maxim-ic.com/packages.)  
COMMON DIMENSIONS  
20L 5x5 28L 5x5  
EXPOSED PAD VARIATIONS  
D2 E2  
MIN. NOM. MAX. MIN. NOM. MAX. ±0.15  
DOWN  
BONDS  
ALLOWED  
L
PKG.  
SYMBOL MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX.  
16L 5x5  
32L 5x5  
PKG.  
CODES  
T1655-1  
T1655-2  
3.00 3.10 3.20 3.00 3.10 3.20  
3.00 3.10 3.20 3.00 3.10 3.20  
NO  
YES  
NO  
A
**  
**  
**  
**  
0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80  
0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05  
0.20 REF. 0.20 REF. 0.20 REF. 0.20 REF.  
A1  
0
0
0
0
T1655N-1 3.00 3.10 3.20 3.00 3.10 3.20  
A3  
b
T2055-2  
T2055-3  
T2055-4  
T2055-5  
3.00 3.10 3.20 3.00 3.10 3.20  
3.00 3.10 3.20 3.00 3.10 3.20  
3.00 3.10 3.20 3.00 3.10 3.20  
NO  
YES  
NO  
Y
0.25 0.30 0.35 0.25 0.30 0.35 0.20 0.25 0.30 0.20 0.25 0.30  
4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10  
4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10  
**  
**  
D
E
3.15 3.25 3.35 3.15 3.25 3.35 0.40  
e
0.80 BSC.  
0.25  
0.30 0.40 0.50 0.45 0.55 0.65 0.45 0.55 0.65 0.30 0.40 0.50  
0.65 BSC.  
0.50 BSC.  
0.50 BSC.  
T2855-1  
T2855-2  
3.15 3.25 3.35 3.15 3.25 3.35  
2.60 2.70 2.80 2.60 2.70 2.80  
NO  
NO  
**  
**  
**  
**  
k
-
-
0.25  
-
-
0.25  
-
-
0.25  
-
-
L
T2855-3  
T2855-4  
3.15 3.25 3.35 3.15 3.25 3.35  
2.60 2.70 2.80 2.60 2.70 2.80  
2.60 2.70 2.80 2.60 2.70 2.80  
3.15 3.25 3.35 3.15 3.25 3.35  
YES  
YES  
NO  
L1  
-
-
-
-
-
-
-
-
-
-
-
-
N
ND  
16  
4
20  
5
28  
7
32  
8
T2855-5  
T2855-6  
T2855-7  
T2855-8  
**  
**  
**  
NO  
YES  
4
5
7
8
NE  
2.80  
3.35  
3.35  
3.20  
2.60 2.70  
3.15 3.25  
2.60 2.70 2.80  
3.15 3.25 3.35  
3.15 3.25 3.35  
3.00 3.10 3.20  
WHHB  
WHHC  
WHHD-1  
WHHD-2  
JEDEC  
0.40  
Y
N
NO  
T2855N-1 3.15 3.25  
**  
**  
**  
NOTES:  
T3255-2  
T3255-3  
T3255-4  
3.00 3.10  
1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.  
3. N IS THE TOTAL NUMBER OF TERMINALS.  
3.00 3.10 3.20 3.00 3.10 3.20  
3.00 3.10 3.20 3.00 3.10 3.20  
YES  
NO  
**  
**  
NO  
T3255N-1 3.00 3.10 3.20 3.00 3.10 3.20  
4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL  
CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE  
OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1  
IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.  
**SEE COMMON DIMENSIONS TABLE  
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm  
FROM TERMINAL TIP.  
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.  
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.  
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.  
9. DRAWING CONFORMS TO JEDEC MO220, EXCEPT EXPOSED PAD DIMENSION FOR T2855-1,  
T2855-3 AND T2855-6.  
10. WARPAGE SHALL NOT EXCEED 0.10 mm.  
11. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.  
12. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.  
PACKAGE OUTLINE,  
16, 20, 28, 32L THIN QFN, 5x5x0.8mm  
2
-DRAWING NOT TO SCALE-  
21-0140  
G
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
34 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2005 Maxiꢀ Integrated Products  
Printed USA  
is a registered tradeꢀark of Maxiꢀ Integrated Products, Inc.  

相关型号:

MAX6884ETP+T

Power Supply Management Circuit, Adjustable, 1 Channel, BICMOS, 5 X 5 MM, 0.80 MM PITCH, MO-220WHHC, QFN-20
MAXIM

MAX6884ETP-T

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, 5 X 5 MM, 0.80 MM PITCH, MO-220WHHC, QFN-20
MAXIM

MAX6884_05

EEPROM-Programmable, Hex Power-Supply Supervisory Circuits
MAXIM

MAX6885ETP

EEPROM-Programmable, Hex Power-Supply Supervisory Circuits
MAXIM

MAX6885ETP+

暂无描述
MAXIM

MAX6885ETP+T

Power Supply Management Circuit, Adjustable, 1 Channel, BICMOS, 5 X 5 MM, 0.80 MM PITCH, MO-220WHHC, QFN-20
MAXIM

MAX6885ETP-T

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, 5 X 5 MM, 0.80 MM PITCH, MO-220WHHC, QFN-20
MAXIM

MAX6886

Pin-Selectable, Hex Power-Supply Supervisory Circuit
MAXIM

MAX6886ETP

Pin-Selectable, Hex Power-Supply Supervisory Circuit
MAXIM

MAX6886ETP+

Power Supply Management Circuit, Adjustable, 6 Channel, BICMOS, PQCC20, 5 X 5 MM, 0.8 MM HEIGHT, TQFN-20
MAXIM

MAX6886ETP-T

暂无描述
MAXIM

MAX6886_12

Pin-Selectable, Hex Power-Supply Supervisory Circuit
MAXIM