MAX6887KETE+ [MAXIM]

Power Supply Management Circuit, Adjustable, 6 Channel, BICMOS, 5 X 5 MM, 0.80 MM HEIGHT, ROHS COMPLIANT, MO-220WHHB, TQFN-16;
MAX6887KETE+
型号: MAX6887KETE+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Power Supply Management Circuit, Adjustable, 6 Channel, BICMOS, 5 X 5 MM, 0.80 MM HEIGHT, ROHS COMPLIANT, MO-220WHHB, TQFN-16

输入元件 信息通信管理
文件: 总13页 (文件大小:127K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0291; Rev 2; 2/10  
Hex/Quad, Power-Supply Supervisory Circuits  
7/MAX68  
General Description  
Features  
The MAX6887/MAX6888 multivoltage supply supervi-  
sors provide several voltage-detector inputs, one watch-  
dog input, and three outputs. Each voltage-detector  
input offers a factory-set undervoltage and overvoltage  
threshold. Manual reset and margin disable inputs offer  
additional flexibility.  
o Hex/Quad Voltage Detectors  
o Undervoltage and Overvoltage Thresholds  
o 1% Threshold Accuracy  
o Margining Disable and Manual Reset Input  
o Watchdog Timer  
o Open-Drain RESET, OV, and WDO Outputs  
o 180ms (min) Reset Timeout Period  
o Few External Components  
The MAX6887 offers six voltage-detector inputs, while  
the MAX6888 offers four inputs. Output RESET asserts  
when any input voltage drops below its respective  
undervoltage threshold or manual reset MR is asserted.  
Output OV asserts when any input voltage exceeds its  
respective overvoltage threshold. Monitor standard  
supply voltages listed in the Selector Guide.  
o Small 5mm x 5mm, 16-Pin Thin QFN Packages  
The MAX6887/MAX6888 offer a watchdog timer with an  
initial and normal timeout periods of 102.4s and 1.6s,  
respectively. Watchdog output WDO asserts when the  
watchdog timer expires. Connect WDO to manual reset  
input MR to generate resets when the watchdog timer  
expires. RESET, OV, and WDO are active-low, open-  
drain outputs.  
Ordering Information  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
16 Thin QFN-EP*  
16 Thin QFN-EP*  
MAX6887_ETE+  
MAX6888_ETE+  
The MAX6887/MAX6888 are available in a 5mm x 5mm  
x 0.8mm, 16-pin thin QFN package and operate over  
the extended -40°C to +85°C temperature range.  
Note: Insert the desired letter from the Selector Guide into the  
blank to complete the part number.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
Applications  
Multivoltage Systems  
Telecom  
Networking  
Pin Configurations and Typical Operating Circuit appear at  
end of data sheet.  
Servers/Workstations/Storage Systems  
Selector Guide  
NOMINAL INPUT VOLTAGE (V)*  
TOL  
NOMINAL INPUT VOLTAGE (V)*  
TOL  
PART  
PART  
MAX6887IETE 5.0  
(%)  
(%)  
IN1 IN2  
IN3  
2.5  
2.5  
1.8  
1.8  
1.8  
1.5  
Adj  
Adj  
Adj  
IN4  
1.8  
Adj  
Adj  
1.5  
Adj  
Adj  
Adj  
Adj  
Adj  
IN5  
Adj  
Adj  
Adj  
Adj  
Adj  
Adj  
Adj  
Adj  
Adj  
IN6  
Adj  
Adj  
Adj  
Adj  
Adj  
Adj  
Adj  
Adj  
Adj  
IN1 IN2  
IN3  
2.5  
2.5  
1.8  
1.8  
1.8  
1.5  
Adj  
Adj  
Adj  
IN4  
1.8  
Adj  
Adj  
1.5  
Adj  
Adj  
Adj  
Adj  
Adj  
IN5  
Adj  
Adj  
Adj  
Adj  
Adj  
Adj  
Adj  
Adj  
Adj  
IN6  
Adj  
Adj  
Adj  
Adj  
Adj  
Adj  
Adj  
Adj  
Adj  
MAX6887AETE 5.0  
3.3  
3.3  
3.3  
2.5  
2.5  
2.5  
2.5  
1.8  
5
5
5
5
5
5
5
5
5
3.3  
3.3  
3.3  
2.5  
2.5  
2.5  
2.5  
1.8  
10  
10  
10  
10  
10  
10  
10  
10  
10  
MAX6887BETE 5.0  
MAX6887CETE 5.0  
MAX6887DETE 3.3  
MAX6887EETE 3.3  
MAX6887FETE 3.3  
MAX6887GETE 3.3  
MAX6887HETE 3.3  
MAX6887JETE 5.0  
MAX6887KETE 5.0  
MAX6887LETE 3.3  
MAX6887METE 3.3  
MAX6887NETE 3.3  
MAX6887OETE 3.3  
MAX6887PETE 3.3  
MAX6887QETE Adj Adj  
MAX6887RETE Adj Adj  
*See thresholds options tables (Tables 1 and 2) for actual undervoltage and overvoltage thresholds.  
Selector Guides continued at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
Hex/Quad, Power-Supply Supervisory Circuits  
ABSOLUTE MAXIMUM RATINGS  
(All voltages referenced to GND.)  
Maximum Junction Temperature .....................................+150°C  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
IN1–IN6, V , RESET, OV, WDO .............................-0.3V to +6V  
CC  
WDI, MR, MARGIN ...................................................-0.3V to +6V  
BP.............................................................................-0.3V to +3V  
Input/Output Current (all pins).......................................... 20mA  
Continuous Power Dissipation (T = +70°C)  
A
16-Pin 5mm x 5mm Thin QFN  
(derate 20.8mW/°C above +70°C)..............................1667mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
= 2.7V to 5.8V, WDI = GND, MARGIN = MR = BP, T = -40°C to +85°C, unless otherwise noted. Typical values are  
CC A  
(V –V  
IN1 IN4  
or V  
at T = +25°C.) (Notes 1, 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
7/MAX68  
Operating Voltage Range  
(Note 3)  
Voltage on either one of IN1–IN4 or V  
guarantee the part is fully operational  
to  
CC  
2.7  
5.8  
Supply Current  
I
V
= 5.8V, IN2–IN6 = GND, no load  
IN1  
0.9  
1.2  
+1  
mA  
CC  
IN1–IN6, IN_ falling, T = +25°C to +85°C  
-1  
A
Threshold Accuracy  
(See the Selector Guide)  
V
% V  
TH  
TH  
IN1–IN6, IN_ falling, T = -40°C to +85°C  
-1.5  
+1.5  
A
Threshold Hysteresis  
Threshold Tempco  
V
0.3  
10  
% V  
TH-HYST  
TH  
V /°C  
ppm/°C  
TH  
For V  
< highest V  
and  
IN_  
IN1IN4  
< V (not ADJ), thresholds are not set  
CC  
IN_ Input Impedance  
R
V
130  
200  
300  
kΩ  
IN  
IN_  
as adjustable  
IN5, IN6 (MAX6887 only)  
IN_ Input Leakage Current  
I
-150  
+150  
2.5  
nA  
IN  
IN1–IN4 set as adjustable thresholds  
Power-Up Delay  
t
V
2.5V  
CC  
ms  
µs  
D-PO  
IN_ to RESET or OV Delay  
RESET Timeout Period  
OV Timeout Period  
t
IN_ falling/rising, 100mV overdrive  
20  
200  
25  
D-R  
t
180  
-1  
220  
ms  
µs  
RP  
OP  
t
RESET, OV, and WDO Output  
Low  
V
I
= 4mA, output asserted  
0.4  
+1  
V
OL  
SINK  
RESET, OV, and WDO Output  
Open-Drain Leakage Current  
I
Output high impedance  
µA  
LKG  
2
_______________________________________________________________________________________  
Hex/Quad, Power-Supply Supervisory Circuits  
7/MAX68  
ELECTRICAL CHARACTERISTICS (continued)  
= 2.7V to 5.8V, WDI = GND, MARGIN = MR = BP, T = -40°C to +85°C, unless otherwise noted. Typical values are  
CC A  
(V –V  
IN1 IN4  
or V  
at T = +25°C.) (Notes 1, 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
0.6  
IL  
IH  
MR, MARGIN, WDI Input Voltage  
V
V
1.4  
1
MR Input Pulse Width  
t
µs  
ns  
ns  
µA  
MR  
MR Glitch Rejection  
100  
200  
10  
MR to RESET or OV Delay  
MR to Internal BP Pullup Current  
t
D-MR  
I
V
V
V
= 1.4V  
5
5
15  
15  
15  
MR  
MR  
MARGIN to Internal BP Pullup  
Current  
I
= 1.4V  
= 0.6V  
WDI  
10  
10  
µA  
MARGIN  
MARGIN  
WDI Pulldown Current  
WDI Input Pulse Width  
I
t
5
µA  
ns  
WDI  
50  
Initial  
92.16  
1.44  
102.4 112.64  
1.6 1.76  
WDI  
Watchdog Timeout Period  
s
t
Normal  
WD  
Note 1: 100% production tested at T = +25°C and T = +85°C. Specifications at T = -40°C are guaranteed by design.  
A
A
A
Note 2: Device may be supplied from any one of IN1–IN4 or V  
.
CC  
Note 3: The internal supply voltage, measured at V , equals the maximum of IN1–IN4.  
CC  
Note 4: Versions Q and R require that power be applied through V  
.
CC  
Typical Operating Characteristics  
(V –V  
IN1 IN4  
or V  
= 5V, WDI = GND, MARGIN = MR = BP, T = +25°C, unless otherwise noted.)  
CC A  
IN1–IN4 SUPPLY CURRENT  
vs. IN1–IN4 SUPPLY VOLTAGE  
V
SUPPLY CURRENT  
CC  
RESET TIMEOUT PERIOD  
vs. TEMPERATURE  
CC  
vs. V SUPPLY VOLTAGE  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
220  
215  
210  
205  
200  
195  
190  
185  
180  
T
A
= +85°C  
T
= +85°C  
A
T
A
= +25°C  
T
A
= +25°C  
T
A
= -40°C  
T
A
= -40°C  
2.6  
3.6  
4.6  
5.6  
2.6  
3.6  
4.6  
5.6  
-40  
-15  
10  
35  
60  
85  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
3
Hex/Quad, Power-Supply Supervisory Circuits  
Typical Operating Characteristics (continued)  
(V –V  
IN1 IN4  
or V  
= 5V, WDI = GND, MARGIN = MR = BP, T = +25°C, unless otherwise noted.)  
A
CC  
IN_ TO RESET OR OV  
PROPAGATION DELAY vs. TEMPERATURE  
WATCHDOG TIMEOUT PERIOD  
vs. TEMPERATURE  
NORMALIZED IN_ THRESHOLD  
vs. TEMPERATURE  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
1.700  
1.675  
1.650  
1.625  
1.600  
1.575  
1.550  
1.525  
1.500  
1.005  
1.004  
1.003  
1.002  
1.001  
1.000  
0.999  
0.998  
0.997  
0.996  
0.995  
100mV OVERDRIVE  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
7/MAX68  
MAXIMUM IN_ TRANSIENT  
vs. IN_THRESHOLD OVERDRIVE  
MR TO RESET OUTPUT PROPAGATION  
DELAY vs. TEMPERATURE  
OUTPUT-VOLTAGE LOW vs. SINK CURRENT  
200  
175  
150  
125  
100  
75  
400  
350  
300  
250  
200  
150  
100  
50  
3.00  
2.75  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
PO_ ASSERTION OCCURS  
ABOVE THIS LINE  
50  
25  
0
0
1
10  
100  
1000  
0
2
4
6
8
10  
12  
14  
-40  
-15  
10  
35  
60  
85  
IN_ THRESHOLD OVERDRIVE (mV)  
SINK CURRENT (mA)  
TEMPERATURE (°C)  
Pin Description  
PIN  
MAX6887 MAX6888  
NAME  
FUNCTION  
Open-Drain, Active-Low Reset Output. RESET asserts when any input voltage falls below its  
undervoltage threshold or when MR is pulled low. RESET remains low for 200ms after all  
assertion-causing conditions are cleared. An external pullup resister is required.  
1
2
1
2
RESET  
Open-Drain, Active-Low Watchdog Timer Output. Logic output for the watchdog timer function.  
WDO goes low when WDI is not strobed high-to-low or low-to-high within the watchdog timeout  
period.  
WDO  
Open-Drain Active-Low Overvoltage Output. OV asserts when any input voltage exceeds its  
3
4
3
4
OV  
overvoltage threshold. OV remains low for 25µs after all overvoltage conditions are cleared.  
An external pullup resistor is required.  
GND  
Ground  
4
_______________________________________________________________________________________  
Hex/Quad, Power-Supply Supervisory Circuits  
7/MAX68  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
MAX6887 MAX6888  
Manual Reset Input. Pull MR low to assert RESET. Connect MR to WDO to generate resets  
when the watchdog timer expires. Leave MR unconnected or connect to DBP if unused. MR is  
internally pulled up to BP through a 10µA current source.  
5
5
MR  
Margin Input. When MARGIN is pulled low, RESET is held in its existing state independent of  
subsequent changes in monitored input voltages or the watchdog timer expiration. MARGIN is  
internally pulled up to BP through a 10µA current source. Leave MARGIN unconnected or  
connect to BP if unused. MARGIN overrides MR if both are asserted at the same time.  
6
6
MARGIN  
Watchdog Timer Input. Logic input for the watchdog timer function. If WDI is not strobed with a  
valid low-to-high or high-to-low transition within the selected watchdog timeout period, WDO  
asserts. WDI is internally pulled down to GND through a 10µA current sink.  
7
8
7
8
WDI  
I.C.  
Internal Connection. Leave unconnected.  
Internal Power-Supply Voltage. Bypass V  
to GND with a 1µF ceramic capacitor as close to  
CC  
the device as possible. V  
from the highest of the monitored IN1–IN4 voltages. Do not use V  
supplies power to the internal circuitry. V is internally powered  
CC  
CC  
9
9
V
CC  
to supply power to external  
CC  
circuitry. To externally supply V , see the Powering the MAX6887/MAX6888 section.  
CC  
Bypass Voltage. The internally generated voltage at BP supplies power to internal logic and  
output RESET. Connect a 1µF capacitor from BP to GND as close to the device as possible. Do  
not use BP to supply power to external circuitry.  
10  
11  
10  
BP  
Input Voltage Detector 6. IN6 monitors both undervoltage and overvoltage conditions. See the  
thresholds options (Tables 1 and 2) for available thresholds. IN6 cannot power the device. For  
improved noise immunity, bypass IN6 to GND with a 0.1µF capacitor installed as close to the  
device as possible.  
IN6  
IN5  
IN4  
IN3  
IN2  
IN1  
Input Voltage Detector 5. IN5 monitors both undervoltage and overvoltage conditions. See the  
thresholds options (Tables 1 and 2) for available thresholds. IN5 cannot power the device. For  
improved noise immunity, bypass IN5 to GND with a 0.1µF capacitor installed as close to the  
device as possible.  
12  
13  
14  
15  
16  
13  
14  
15  
16  
Input Voltage Detector 4. IN4 monitors both undervoltage and overvoltage conditions. See the  
thresholds options (Tables 1 and 2) for available thresholds. Power the device through IN1–IN4  
or V  
(see the Powering the MAX6887/MAX6888 section). For improved noise immunity,  
CC  
bypass IN4 to GND with a 0.1µF capacitor installed as close to the device as possible.  
Input Voltage Detector 3. IN3 monitors both undervoltage and overvoltage conditions. See the  
thresholds options (Tables 1 and 2) for available thresholds. Power the device through IN1–IN4  
or V  
(see the Powering the MAX6887/MAX6888 section). For improved noise immunity,  
CC  
bypass IN3 to GND with a 0.1µF capacitor installed as close to the device as possible.  
Input Voltage Detector 2. IN2 monitors both undervoltage and overvoltage conditions. See the  
thresholds options (Tables 1 and 2) for available thresholds. Power the device through IN1–IN4  
or V  
(see the Powering the MAX6887/MAX6888 section). For improved noise immunity,  
CC  
bypass IN2 to GND with a 0.1µF capacitor installed as close to the device as possible.  
Input Voltage Detector 1. IN1 monitors both undervoltage and overvoltage conditions. See the  
thresholds options (Tables 1 and 2) for available thresholds. Power the device through IN1–IN4  
or V  
(see the Powering the MAX6887/MAX6888 section). For improved noise immunity,  
CC  
bypass IN1 to GND with a 0.1µF capacitor installed as close to the device as possible.  
11, 12  
N.C.  
EP  
No Connection. Not internally connected.  
Exposed Paddle. Internally connected to GND. Connect EP to GND or leave unconnected.  
_______________________________________________________________________________________  
5
Hex/Quad, Power-Supply Supervisory Circuits  
Functional Diagram  
WDI  
*IN_  
DETECTOR  
IN1  
MARGIN  
MR  
RESET  
RESET TIMING BLOCK  
IN2  
IN3  
IN4  
IN2 DETECTOR  
IN3 DETECTOR  
IN4 DETECTOR  
IN5 DETECTOR  
7/MAX68  
OV  
IN5  
(N.C.)  
OV TIMING BLOCK  
IN6  
(N.C.)  
IN6 DETECTOR  
WDO  
WDO TIMING BLOCK  
V
CC  
REFERENCE  
1µF  
2.55V  
LDO  
MAX6887  
MAX6888  
BP  
1µF  
( ) MAX6888 ONLY  
GND  
*FOR ADJUSTABLE INPUTS REFER TO THE ADJUSTABLE THRESHOLD INPUTS SECTION.  
6
_______________________________________________________________________________________  
Hex/Quad, Power-Supply Supervisory Circuits  
7/MAX68  
The MAX6887/MAX6888 generate a supply voltage at  
Detailed Description  
BP for the internal logic circuitry. Bypass BP to GND with  
The MAX6887/MAX6888 provide several supply-detector  
a 1µF ceramic capacitor installed as close to the device  
inputs, one watchdog input, and three outputs for power-  
as possible. The nominal BP output voltage is +2.55V.  
supply monitoring applications. The MAX6887 offers six  
Do not use BP to provide power to external circuitry.  
voltage-detector inputs, while the MAX6888 offers four.  
Each voltage-detector input offers both an undervoltage  
and overvoltage threshold.  
Inputs  
The MAX6887 offers six voltage-detector inputs, while  
the MAX6888 offers four voltage-detector inputs. Each  
voltage-detector input offers an undervoltage and over-  
voltage threshold set at the factory to monitor standard  
supply voltages (see the Selector Guide). The 5% and  
10% tolerances are based on maximum and minimum  
threshold values. Actual thresholds for the  
MAX6887/MAX6888 are shown in Tables 1 and 2.  
Inputs in the Selector Guide listing “Adj” allow an exter-  
nal voltage-divider to be connected to set a user-  
defined threshold.  
The undervoltage and overvoltage thresholds are facto-  
ry-set for monitoring standard supply voltages (see the  
Selector Guide). Inputs in the Selector Guide that con-  
tain “Adj” allow an external voltage-divider to be con-  
nected to set a user-defined threshold.  
RESET goes low when any input voltage drops below  
its undervoltage threshold or when MR is brought low.  
RESET stays low for 200ms after all assertion-causing  
conditions have been cleared. OV goes low when an  
input voltage rises above its overvoltage threshold. OV  
typically stays low for 25µs (typ) after all inputs fall  
back under their overvoltage thresholds.  
Adjustable Threshold Inputs  
Inputs listed in the Selector Guide containing “Adj” for  
inputs allow external resistor voltage-dividers to be  
connected at the voltage-detector inputs. These inputs  
monitor any voltage supply higher than 0.6V (see  
Figure 1). Use the following equation to set a voltage-  
The MAX6887/MAX6888 offer a watchdog timer with  
initial and normal timeout periods of 102.4s and 1.6s,  
respectively. WDO goes low when the watchdog timer  
expires and deasserts when WDI transitions from low-  
to-high or high-to-low.  
Powering the MAX6887/MAX6888  
The MAX6887/MAX6888 derive power from the voltage-  
detector inputs IN1–IN4 or through an externally sup-  
V
IN  
plied V . A virtual diode-ORing scheme selects the  
CC  
MAX6887  
MAX6888  
R1  
R2  
positive input that supplies power to the device (see  
the Functional Diagram). The highest input voltage on  
IN1–IN4 supplies power to the device. One of IN1–IN4  
must be at least 2.7V to ensure proper operation.  
IN_  
Internal hysteresis ensures that the supply input that  
initially powered the device continues to power the  
device when multiple input voltages are within 50mV of  
each other.  
*V  
REFUV  
V
powers the analog circuitry and is the bypass con-  
CC  
nection for the MAX6887/MAX6888 internal supply.  
Bypass V to GND with a 1µF ceramic capacitor  
CC  
installed as close to the device as possible. The inter-  
nal supply voltage, measured at V , equals the maxi-  
CC  
*V  
REFOV  
mum of IN1–IN4. If V  
is externally supplied, V  
CC  
CC  
must be at least 200mV higher than any voltage  
applied to IN1–IN4 and V must be brought up first.  
CC  
V
CC  
always powers the device when all IN_ are factory  
set as “Adj.” Do not use the internally generated V  
provide power to external circuitry.  
to  
CC  
*V  
REFOV  
AND V  
ARE REFERENCED  
REFUV  
TO 0.6V ACCORDING TO THE DEVICE'S TOLERANCE  
Figure 1. Adjusting the Monitored Threshold  
_______________________________________________________________________________________  
7
Hex/Quad, Power-Supply Supervisory Circuits  
detector input (IN1–IN6) to monitor a user-defined sup-  
ply voltage:  
V
and V  
are the undervoltage and overvolt-  
REFOV  
REFUV  
age thresholds listed in Tables 1 and 2 that allow  
adjustable thresholds. Their values are based on toler-  
ances of 7.5% and 12.5% from a 0.6V reference.  
See the Selector Guide to find which thresholds in  
Tables 1 and 2 are adjustable.  
R2  
0.6V = V  
×
MON  
R1+R2  
where V  
is the desired voltage to be monitored.  
Manual Reset (MR)  
Many µP-based products require manual reset capability  
to allow an operator or external logic circuitry to initiate a  
reset. The manual reset input (MR) can be connected  
directly to a switch without an external pullup resistor or  
debouncing network. MR is internally pulled up to BP.  
Leave unconnected if not used. MR is internally pulled  
up to BP through a 10µA current source. MR is designed  
to reject fast, falling transients (typically 100ns pulses)  
and MR must be held low for a minimum of 1µs to assert  
RESET. Connect a 0.1µF capacitor from MR to ground to  
provide additional noise immunity. After MR transitions  
from low to high, RESET remains asserted for the dura-  
tion of its time delay.  
MON  
Use the following procedure to design the proper volt-  
age-divider and calculate thresholds:  
1) Pick a value for R2. Use the equation above with  
the desired supply voltage to be monitored and  
solve for R1. Use high-value resistors R1 and R2 to  
minimize current consumption due to low leakage  
currents.  
2) To find the actual undervoltage and overvoltage  
thresholds, use the following equations:  
7/MAX68  
V
REFUV  
V
= V  
×
×
ACTUALUV  
MON  
0.6V ⎠  
V
Margin Output Disable (MARGIN)  
MARGIN allows system-level testing while power sup-  
plies exceed the normal operating ranges. Drive  
MARGIN low to hold RESET, OV, and WDO in their  
REFOV  
0.6V  
V
= V  
MON  
ACTUALOV  
Table 1. MAX6887 Threshold Options  
UV THRESHOLDS (V)  
PART  
OV THRESHOLDS (V)  
IN1  
IN2  
IN3  
IN4  
IN5  
IN6  
IN1  
IN2  
IN3  
IN4  
IN5  
IN6  
MAX6887AETE  
MAX6887BETE  
MAX6887CETE  
MAX6887DETE  
MAX6887EETE  
MAX6887FETE  
MAX6887GETE  
MAX6887HETE  
MAX6887QETE  
MAX6887IETE  
MAX6887JETE  
MAX6887KETE  
MAX6887LETE  
MAX6887METE  
MAX6887NETE  
MAX6887OETE  
MAX6887PETE  
MAX6887RETE  
4.620  
4.620  
4.620  
3.060  
3.060  
3.060  
3.060  
3.060  
0.557  
4.380  
4.380  
4.380  
2.880  
2.880  
2.880  
2.880  
2.880  
0.527  
3.060  
3.060  
3.060  
2.310  
2.310  
2.310  
2.310  
1.670  
0.557  
2.880  
2.880  
2.880  
2.190  
2.190  
2.190  
2.190  
1.580  
0.527  
2.310  
2.310  
1.670  
1.670  
1.670  
1.390  
0.557  
0.557  
0.557  
2.190  
2.190  
1.580  
1.580  
1.580  
1.310  
0.527  
0.527  
0.527  
1.670  
0.557  
0.557  
1.390  
0.557  
0.557  
0.557  
0.557  
0.557  
1.580  
0.527  
0.527  
1.310  
0.527  
0.527  
0.527  
0.527  
0.527  
0.557  
0.557  
0.557  
0.557  
0.557  
0.557  
0.557  
0.557  
0.557  
0.527  
0.557  
0.557  
0.557  
0.557  
0.557  
0.557  
0.557  
0.527  
0.557  
0.557  
0.557  
0.557  
0.557  
0.557  
0.557  
0.557  
0.557  
0.527  
0.557  
0.557  
0.557  
0.557  
0.557  
0.557  
0.557  
0.527  
5.360  
5.360  
5.360  
3.540  
3.540  
3.540  
3.540  
3.540  
0.643  
5.620  
5.620  
5.620  
3.700  
3.700  
3.700  
3.700  
3.700  
0.673  
3.540  
3.540  
3.540  
2.680  
2.680  
2.680  
2.680  
1.930  
0.643  
3.700  
3.700  
3.700  
2.810  
2.810  
2.810  
2.810  
2.020  
0.673  
2.680  
2.680  
1.930  
1.930  
1.930  
1.610  
0.643  
0.643  
0.643  
2.810  
2.810  
2.020  
2.020  
2.020  
1.680  
0.673  
0.673  
0.673  
1.930  
0.643  
0.643  
1.610  
0.643  
0.643  
0.643  
0.643  
0.643  
2.020  
0.673  
0.673  
1.680  
0.673  
0.673  
0.673  
0.673  
0.673  
0.643  
0.643  
0.643  
0.643  
0.643  
0.643  
0.643  
0.643  
0.643  
0.673  
0.673  
0.673  
0.673  
0.673  
0.673  
0.673  
0.673  
0.673  
0.643  
0.643  
0.643  
0.643  
0.643  
0.643  
0.643  
0.643  
0.643  
0.673  
0.673  
0.673  
0.673  
0.673  
0.673  
0.673  
0.673  
0.673  
8
_______________________________________________________________________________________  
Hex/Quad, Power-Supply Supervisory Circuits  
7/MAX68  
Table 2. MAX6888 Threshold Options  
UV THRESHOLDS (V)  
OV THRESHOLDS (V)  
PART  
IN1  
IN2  
IN3  
IN4  
IN1  
IN2  
IN3  
IN4  
MAX6888AETE  
MAX6888BETE  
MAX6888CETE  
MAX6888DETE  
MAX6888EETE  
MAX6888FETE  
MAX6888GETE  
MAX6888HETE  
MAX6888QETE  
MAX6888IETE  
MAX6888JETE  
MAX6888KETE  
MAX6888LETE  
MAX6888METE  
MAX6888NETE  
MAX6888OETE  
MAX6888PETE  
MAX6888RETE  
4.620  
4.620  
4.620  
3.060  
3.060  
3.060  
3.060  
3.060  
0.557  
4.380  
4.380  
4.380  
2.880  
2.880  
2.880  
2.880  
2.880  
0.527  
3.060  
3.060  
3.060  
2.310  
2.310  
2.310  
2.310  
1.670  
0.557  
2.880  
2.880  
2.880  
2.190  
2.190  
2.190  
2.190  
1.580  
0.527  
2.310  
2.310  
1.670  
1.670  
1.670  
1.390  
0.557  
0.557  
0.557  
2.190  
2.190  
1.580  
1.580  
1.580  
1.310  
0.527  
0.527  
0.527  
1.670  
0.557  
0.557  
1.390  
0.557  
0.557  
0.557  
0.557  
0.557  
1.580  
0.527  
0.527  
1.310  
0.527  
0.527  
0.527  
0.527  
0.527  
5.360  
5.360  
5.360  
3.540  
3.540  
3.540  
3.540  
3.540  
0.643  
5.620  
5.620  
5.620  
3.700  
3.700  
3.700  
3.700  
3.700  
0.673  
3.540  
3.540  
3.540  
2.680  
2.680  
2.680  
2.680  
1.930  
0.643  
3.700  
3.700  
3.700  
2.810  
2.810  
2.810  
2.810  
2.020  
0.673  
2.680  
2.680  
1.930  
1.930  
1.930  
1.610  
0.643  
0.643  
0.643  
2.810  
2.810  
2.020  
2.020  
2.020  
1.680  
0.673  
0.673  
0.673  
1.930  
0.643  
0.643  
1.610  
0.643  
0.643  
0.643  
0.643  
0.643  
2.020  
0.673  
0.673  
1.680  
0.673  
0.673  
0.673  
0.673  
0.673  
existing state while system-level testing occurs. Leave  
MARGIN unconnected or connect to BP if unused. An  
internal 10µA current source pulls MARGIN to BP.  
MARGIN overrides MR if both are asserted at the  
same time. The state of RESET, OV, and WDO does not  
change while MARGIN = GND.  
RESET asserts when any monitored input is below its  
undervoltage threshold or MR is asserted. RESET  
remains asserted for 200ms after all assertion-causing  
conditions have been cleared. Configure RESET to  
assert when the watchdog timer expires by connecting  
WDO to MR. RESET requires a pullup resistor.  
WDO asserts when the watchdog timer expires. See  
the Configuring the Watchdog Timer section for a com-  
plete description. WDO requires a pullup resistor.  
RESET, OV, and WDO Outputs  
The MAX6887/MAX6888 feature three active-low open-  
drain outputs: RESET, OV, and WDO. After power-up or  
overvoltage/undervoltage conditions, RESET and OV  
remain in their active states until their timeout periods  
expire and no undervoltage/overvoltage conditions are  
present (see Figure 2).  
Configuring the Watchdog Timer  
A watchdog timer monitors microprocessor (µP) soft-  
ware execution for a stalled condition and resets the µP  
if it stalls. Connect the watchdog timer output WDO to  
the reset input or a nonmaskable interrupt of the µP.  
The watchdog timer features independent initial and  
normal watchdog timeout periods of 102.4s and 1.6s,  
respectively.  
OV asserts when any monitored input is above its over-  
voltage threshold and remains asserted until all inputs  
are below their thresholds and its respective 25µs time-  
out period expires. Connect OV to MR to bring RESET  
low during an overvoltage condition. OV requires a  
pullup resistor (unless connected to MR).  
_______________________________________________________________________________________  
9
Hex/Quad, Power-Supply Supervisory Circuits  
OVERVOLTAGE  
THRESHOLD  
V
IN  
PRIMARY  
THRESHOLD  
OV  
t
OP  
7/MAX68  
RESET  
t
RP  
Figure 2. Output Timing Diagram  
2.5V  
.
2.5V  
V
CC  
OR IN1–IN4  
V
CC  
OR IN1–IN4  
WDO  
WDO  
RESET  
WDI  
RESET  
WDI  
t
t
RP  
*t  
WDI  
t
t
RP  
*t  
DWI  
D-PO  
WD  
t
t
RP  
*t  
WDI  
t
*t  
WDI  
D-PO  
WD  
WDO CONNECTED TO MR  
WDO NOT CONNECTED TO MR  
*t IS THE INITIAL WATCHDOG TIMER PERIOD  
WDI  
Figure 3. Watchdog, Reset, and Power-Up Timing Diagram  
10 ______________________________________________________________________________________  
Hex/Quad, Power-Supply Supervisory Circuits  
7/MAX68  
At power-up, WDO goes high after t  
(see Figure 3).  
) applies imme-  
Selector Guide (continued)  
D-PO  
The initial watchdog timeout period (t  
WDI  
NOMINAL INPUT  
diately after WDO is high. The initial watchdog timeout  
TOLERANCE  
VOLTAGE (V)*  
PART  
period allows the µP to perform its initialization process.  
(%)  
A normal watchdog timeout period (t ) applies when-  
WD  
IN1  
5.0  
5.0  
5.0  
3.3  
3.3  
3.3  
3.3  
3.3  
Adj  
5.0  
5.0  
5.0  
3.3  
3.3  
3.3  
3.3  
3.3  
Adj  
IN2  
3.3  
3.3  
3.3  
2.5  
2.5  
2.5  
2.5  
1.8  
Adj  
3.3  
3.3  
3.3  
2.5  
2.5  
2.5  
2.5  
1.8  
Adj  
IN3  
2.5  
2.5  
1.8  
1.8  
1.8  
1.5  
Adj  
Adj  
Adj  
2.5  
2.5  
1.8  
1.8  
1.8  
1.5  
Adj  
Adj  
Adj  
IN4  
1.8  
Adj  
Adj  
1.5  
Adj  
Adj  
Adj  
Adj  
Adj  
1.8  
Adj  
Adj  
1.5  
Adj  
Adj  
Adj  
Adj  
Adj  
ever WDI transitions from high to low after the initial  
watchdog timeout period occurs. WDI monitors the tog-  
gling output of the µP, indicating normal processor  
behavior. If WDI does not toggle during the normal  
MAX6888AETE  
MAX6888BETE  
MAX6888CETE  
MAX6888DETE  
MAX6888EETE  
MAX6888FETE  
MAX6888GETE  
MAX6888HETE  
MAX6888QETE  
MAX6888IETE  
MAX6888JETE  
MAX6888KETE  
MAX6888LETE  
MAX6888METE  
MAX6888NETE  
MAX6888OETE  
MAX6888PETE  
MAX6888RETE  
5
5
5
watchdog timeout period (t  
), indicating that the  
5
WD  
processor has stopped operating or is stuck in an infinite  
execution loop, WDO goes low. WDO stays low until the  
next transition on WDI. An initial watchdog timeout peri-  
5
5
5
od (t ) starts when WDO goes high.  
WDI  
5
If WDO is connected to MR, the WDO will assert for a  
short duration (~5µs), long enough to assert the RESET  
output. Asserting RESET clears the watchdog timer and  
WDO goes high. The reset output will remain asserted  
for its timeout period after a watchdog fault. The watch-  
dog timer stays cleared as long as RESET is low.  
5
10  
10  
10  
10  
10  
10  
10  
10  
10  
Applications Information  
Layout and Bypassing  
For better noise immunity, bypass each of the voltage-  
detector inputs to GND with 0.1µF capacitors installed  
as close to the device as possible. Bypass V  
and BP  
CC  
to GND with 1µF capacitors installed as close to the  
device as possible. V (when not externally supplied)  
CC  
*See thresholds options tables (Tables 1 and 2) for actual under-  
voltage and overvoltage thresholds.  
and BP are internally generated voltages and should  
not be used to supply power to external circuitry.  
Package Information  
Chip Information  
For the latest package outline information and land patterns, go  
to www.maxim-ic.com/packages. Note that a "+", "#", or "-" in  
the package code indicates RoHS status only. Package draw-  
ings may show a different suffix character, but the drawing per-  
tains to the package regardless of RoHS status.  
PROCESS: BiCMOS  
PACKAGE TYPE  
PACKAGE CODE  
DOCUMENT NO.  
21-0140  
16-TQFN-EP  
T1655+2  
______________________________________________________________________________________ 11  
Hex/Quad, Power-Supply Supervisory Circuits  
Pin Configurations  
TOP VIEW  
12  
11  
10  
9
12  
11  
10  
9
IN4  
13  
13  
14  
15  
16  
IN4  
8
7
6
5
I.C.  
8
7
6
5
I.C.  
IN3 14  
IN3  
IN2  
WDI  
WDI  
MAX6888  
MAX6887  
15  
IN2  
MARGIN  
MR  
MARGIN  
MR  
16  
IN1  
*EXPOSED PAD  
*EXPOSED PAD  
IN1  
1
2
3
4
1
2
3
4
7/MAX68  
THIN QFN  
THIN QFN  
*EXPOSED PAD CONNECTED TO GND.  
*EXPOSED PAD CONNECTED TO GND.  
Typical Operating Circuit  
12V  
5V  
12V  
DC-DC  
1
DC-DC  
2
3.3V  
2.5V  
DC-DC  
3
DC-DC  
1.8V  
4
1.5V  
1.2V  
IN1  
IN2  
IN3  
IN4  
IN5*  
IN6*  
V
CC  
LOGIC INPUT  
OV  
V
CC  
WDO  
LOGIC INPUT  
µP  
RESET  
WDI  
BP  
RESET  
MAX6887  
MAX6888  
LOGIC OUTPUT  
GND  
MARGIN  
MR  
GND  
*MAX6887 ONLY  
12 ______________________________________________________________________________________  
Hex/Quad, Power-Supply Supervisory Circuits  
7/MAX68  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
CHANGED  
DESCRIPTION  
0
1
2
5/05  
3/07  
1/10  
Initial release  
1, 5, 14  
1, 9  
Revised Pin Description.  
Revised Ordering Information to add lead-free information and revised Table 2.  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 13  
© 2010 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY