MAX691ACSE+T [MAXIM]

Power Supply Management Circuit, Adjustable, 1 Channel, CMOS, PDSO16, SO-16;
MAX691ACSE+T
型号: MAX691ACSE+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Power Supply Management Circuit, Adjustable, 1 Channel, CMOS, PDSO16, SO-16

光电二极管
文件: 总17页 (文件大小:204K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0094; Rev 11; 8/08  
Microprocessor Supervisory Circuits  
1693L/AX80M  
General Description  
____________________________Features  
o 200ms Power-OK/Reset Timeout Period  
The MAX691A/MAX693A/MAX800L/MAX800M micro-  
processor (µP) supervisory circuits are pin-compatible  
upgrades to the MAX691, MAX693, and MAX695. They  
improve performance with 30µA supply current, 200ms  
typ reset active delay on power-up, and 6ns chip-  
enable propagation delay. Features include write pro-  
tection of CMOS RAM or EEPROM, separate watchdog  
outputs, backup-battery switchover, and a RESET out-  
put that is valid with VCC down to 1V. The MAX691A/  
MAX800L have a 4.65V typical reset-threshold voltage,  
and the MAX693A/MAX800Ms’ reset threshold is 4.4V  
typical. The MAX800L/MAX800M guarantee power-fail  
accuracies to 2ꢀ.  
o 1µA Standby Current, 30µA Operating Current  
o On-Board Gating of Chip-Enable Signals,  
10ns max Delay  
®
o MaxCap or SuperCap Compatible  
o Guaranteed RESET Assertion to V  
= +1V  
CC  
o Voltage Monitor for Power-Fail or Low-Battery  
Warning  
o Power-Fail Accuracy Guaranteed to 2%  
(MAX800L/M)  
o Available in 16-Pin Narrow SO, Plastic  
DIP, and TSSOP Packages  
________________________Applications  
Ordering Information  
Computers  
PIN-  
PART  
TEMP RANGE  
Controllers  
PACKAGE  
Intelligent Instruments  
Automotive Systems  
Critical µP Power Monitoring  
MAX691ACUE  
MAX691ACSE  
MAX691ACWE  
MAX691ACPE  
MAX691AC/D  
MAX691AEUE  
MAX691AESE  
MAX691AEWE  
MAX691AEPE  
-0°C to +70°C  
-0°C to +70°C  
-0°C to +70°C  
-0°C to +70°C  
-0°C to +70°C  
-0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
16 TSSOP  
16 Narrow SO  
16 Wide SO  
16 Plastic DIP  
Dice*  
Typical Operating Circuit  
16 TSSOP  
5V  
REGULATOR  
16 Narrow SO  
16 Wide SO  
16 Plastic DIP  
+8V  
0.1μF  
Ordering Information continued on last page.  
3
V
5
*Dice are specified at T = +25°C, DC parameters only.  
A
1N4148  
0.47F*  
BATT ON  
CC  
2
Devices in PDIP, SO, and TSSOP packages are available in both  
leaded and lead-free packaging. Specify lead free by adding  
the + symbol at the end of the part number when ordering.  
Lead free not available for CERDIP package.  
V
OUT  
1
VBATT  
12  
CE OUT  
CE IN  
CMOS RAM  
MAX691A  
MAX693A  
MAX800L  
MAX800M  
Pin Configuration  
13  
11  
9
4
7
ADDRESS  
DECODE  
PFI  
TOP VIEW  
GND  
A0-A15  
I/O  
μP  
VBATT  
RESET  
RESET  
WDO  
CE IN  
CE OUT  
WDI  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
WDI  
PFO  
V
OUT  
OSC IN  
V
CC  
NO  
10  
15  
NMI  
CONNECTION  
GND  
MAX691A  
MAX693A  
MAX800L  
MAX800M  
8
OSC SEL  
BATT ON  
LOW LINE  
OSC IN  
RESET  
RESET  
LOW LINE WDO  
6
14  
AUDIBLE  
ALARM  
PFO  
OSC SEL  
PFI  
*MaxCap  
SYSTEM STATUS INDICATORS  
DIP/SO/TSSOP  
MaxCap is a registered trademark of Kanthal Globar, Inc.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
Microprocessor Supervisory Circuits  
ABSOLUTE MAXIMUM RATINGS  
Terminal Voltage (with respect to GND)  
Continuous Power Dissipation (T = +70°C)  
A
V
.......................................................................-0.3V to +6V  
TSSOP (derate 6.70mW/°C above +70°C) ..................533mW  
CC  
VBATT...................................................................-0.3V to +6V  
Narrow SO (derate 8.70mW/°C above +70°C) ...........696mW  
Wide SO (derate 9.52mW/°C above +70°C)...............762mW  
Plastic DIP (derate 10.53mW/°C above +70°C) ..........842mW  
CERDIP (derate 10.00mW/°C above +70°C)..............800mW  
Operating Temperature Ranges  
All Other Inputs.....................................-0.3V to (V  
Input Current  
+ 0.3V)  
OUT  
V
V
Peak...........................................................................1.0A  
Continuous.............................................................250mA  
CC  
CC  
VBATT Peak ..................................................................250mA  
VBATT Continuous..........................................................25mA  
GND, BATT ON.............................................................100mA  
All Other Outputs ............................................................25mA  
MAX69_AC_ _/MAX800_C_ _ .............................0°C to +70°C  
MAX69_AE_ _/MAX800_E_ _...........................-40°C to +85°C  
MAX69_AMJE................................................-55°C to +125°C  
Storage Temperature Range.............................-65°C to +160°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(MAX691A, MAX800L: V = +4.75V to +5.5V; MAX693A, MAX800M: V  
= +4.5V to +5.5V; VBATT = 2.8V, T = T  
to T  
,
MAX  
CC  
CC  
A
MIN  
unless otherwise noted.)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Operating Voltage Range,  
0
5.5  
V
V
CC  
, VBATT (Note 1)  
I
I
= 25mA  
V
- 0.02  
V
- 0.05  
CC  
OUT  
OUT  
CC  
MAX69_AC  
V
- 0.2  
- 0.2  
V
- 0.3  
- 0.35  
- 0.40  
- 0.3V  
CC  
CC  
CC  
CC  
CC  
MAX69_AE,  
MAX800_C/E  
= 250mA  
V
V
V
CC  
V
Output  
V
V
= 4.5V  
= 4.5V  
V
OUT  
CC  
MAX69_A/M  
MAX69_AC/AE,  
MAX800_C/E  
I
= 210mA  
V
CC  
- 0.17  
V
OUT  
MAX69_AC, MAX800_C  
MAX69_AE, MAX800_E  
0.8  
1.2  
V
CC  
-to-V  
On-Resistance  
Ω
OUT  
CC  
0.8  
0.8  
1.4  
1.6  
MAX69_A/M  
= 20mA  
VBATT = 4.5V, I  
VBATT = 2.8V, I  
VBATT = 2.0V, I  
VBATT = 4.5V  
VBATT = 2.8V  
VBATT = 2.0V  
VBATT - 0.3  
OUT  
OUT  
OUT  
V
OUT  
in Battery-Backup  
= 10mA  
VBATT - 0.25  
VBATT - 0.15  
V
Mode  
= 5mA  
1693L/AX80M  
15  
25  
30  
VBATT-to-V  
On-Resistance  
OUT  
Ω
Supply Current in  
Normal Operating Mode  
V
> VBATT - 1V  
30  
100  
µA  
µA  
CC  
(excludes I  
)
OUT  
Supply Current in  
Battery-Backup Mode  
T
T
= +25°C  
0.04  
1
5
A
V
CC  
< VBATT - 1.2V,  
VBATT = 2.8V  
= T  
+ T  
A
MIN  
MIN  
MIN  
(excludes I  
) (Note 2)  
OUT  
T
T
= +25°C  
-0.1  
-1.0  
0.02  
0.02  
VBATT Standby Current  
(Note 3)  
A
VBATT + 0.2V V  
µA  
V
CC  
= T  
+ T  
A
MIN  
Power-up  
Power-down  
VBATT + 0.3  
VBATT - 0.3  
Battery Switchover  
Threshold  
2
_______________________________________________________________________________________  
Microprocessor Supervisory Circuits  
1693L/AX80M  
ELECTRICAL CHARACTERISTICS (continued)  
unless otherwise noted.)  
(MAX691A, MAX800L: V = +4.75V to +5.5V; MAX693A, MAX800M: V  
= +4.5V to +5.5V; VBATT = 2.8V, T = T  
to T  
,
MAX  
CC  
CC  
A
MIN  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Battery Switchover  
Hysteresis  
60  
mV  
I
I
= 3.2mA  
= 25mA  
0.1  
0.7  
60  
0.4  
1.5  
BATT ON Output  
Low Voltage  
SINK  
V
SINK  
Sink current  
Source current  
mA  
µA  
BATT ON Output  
Short-Circuit Current  
1
15  
100  
RESET AND WATCHDOG TIMER  
MAX691A, MAX800L  
MAX693A, MAX800M  
MAX800L, T = +25°C, V  
4.50  
4.25  
4.55  
4.30  
4.65  
4.40  
4.75  
4.50  
4.70  
4.45  
Reset Threshold Voltage  
V
falling  
falling  
A
CC  
MAX800M, T = +25°C, V  
A
CC  
Reset Threshold Hysteresis  
15  
80  
mV  
µs  
V
CC  
to RESET Delay  
Power-down  
800  
ns  
LOW LINE-to-RESET Delay  
Reset Active Timeout Period,  
Internal Oscillator  
Power-up  
Power-up  
140  
200  
280  
ms  
Reset Active Timeout Period,  
External Clock (Note 4)  
Clock  
Cycles  
2048  
Long period  
Short period  
Long period  
Short period  
1.0  
70  
1.6  
100  
4096  
1024  
2.25  
140  
sec  
ms  
Watchdog Timeout Period,  
Internal Oscillator  
Watchdog Timeout Period,  
External Clock (Note 4)  
Clock  
Cycles  
Minimum Watchdog Input  
Pulse Width  
V
= 0.8V, V = 0.75 x V  
CC  
100  
3.5  
0.1  
ns  
V
IL  
IH  
I
I
I
= 50µA, V  
= 1V, VBATT = 0V, V  
falling  
CC  
0.004  
0.1  
0.3  
0.4  
SINK  
CC  
= 3.2mA, V  
= 4.25V  
RESET Output Voltage  
SINK  
CC  
= 1.6mA, V  
= 5V  
SOURCE  
CC  
RESET Output Short-Circuit  
Output source current  
7
20  
mA  
V
Current  
RESET Output Voltage Low  
(Note 5)  
I
= 3.2mA  
0.4  
SINK  
I
I
= 3.2mA, V  
= 4.25V  
0.4  
SINK  
CC  
V
LOW LINE Output Voltage  
= 1µA, V  
= 5V  
3.5  
1
SOURCE  
CC  
LOW LINE Output  
Short-Circuit Current  
Output source current  
15  
3
100  
0.4  
µA  
V
I
I
= 3.2mA  
SINK  
WDO Output Voltage  
= 500µA, V  
= 5V  
3.5  
SOURCE  
CC  
WDO Output  
Short-Circuit Current  
Output source current  
10  
mA  
V
V
V
0.75 x V  
-50  
WDI Threshold Voltage  
(Note 6)  
IH  
CC  
0.8  
50  
IL  
WDI = 0V  
WDI = V  
-10  
20  
WDI Input Current  
µA  
OUT  
_______________________________________________________________________________________  
3
Microprocessor Supervisory Circuits  
ELECTRICAL CHARACTERISTICS (continued)  
unless otherwise noted.)  
(MAX691A, MAX800L: V = +4.75V to +5.5V; MAX693A, MAX800M: V  
= +4.5V to +5.5V; VBATT = 2.8V, T = T  
to T  
,
MAX  
CC  
CC  
A
MIN  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER-FAIL COMPARATOR  
MAX69_AC/AE/AM, V = 5V  
1.2  
1.25  
1.25  
0.01  
1.3  
1.275  
25  
CC  
PFI Input Threshold  
PFI Leakage Current  
PFO Output Voltage  
V
nA  
V
MAX800_C/E, V  
= 5V  
1.225  
CC  
I
I
= 3.2mA  
0.4  
SINK  
= 1µA, V  
= 5V  
3.5  
1
SOURCE  
CC  
PFO Output Short-Circuit  
Current  
Output source current  
15  
100  
µA  
µs  
V
V
= -20mV, V  
= 15mV  
OD  
25  
60  
IN  
PFI-to-PFO Delay  
= 20mV, V  
= 15mV  
IN  
OD  
CHIP-ENABLE GATING  
Disable mode  
Enable mode  
0.005  
75  
1
µA  
CE IN Leakage Current  
CE IN-to-CE OUT Resistance  
(Note 7)  
150  
Ω
CE OUT Short-Circuit Current  
(Reset Active)  
0.1  
0.75  
6
2.0  
10  
mA  
ns  
Disable mode, CE OUT = 0V  
CE IN-to-CE OUT Propagation  
Delay (Note 8)  
50Ω source impedance driver, C  
= 50pF  
LOAD  
V
V
= 5V, I  
= -100µA  
OUT  
3.5  
2.7  
CC  
CE OUT Output-Voltage High  
(Reset Active)  
V
= 0V, VBATT = 2.8V, I  
= 1µA  
CC  
OUT  
Power-down  
12  
µs  
RESET-to-CE OUT Delay  
INTERNAL OSCILLATOR  
OSC IN Leakage Current  
OSC IN Input Pullup Current  
OSC SEL Input Pullup Current  
OSC IN Frequency Range  
OSC SEL = 0V  
0.10  
10  
5
µA  
µA  
OSC SEL = V  
or floating, OSC IN = 0V  
100  
100  
OUT  
OSC SEL = 0V  
OSC SEL = 0V  
10  
µA  
50  
kHz  
V
IH  
V
IL  
V
OUT  
- 0.3  
V
- 0.6  
OUT  
OSC IN External Oscillator  
Threshold Voltage  
V
3.65  
2.00  
1693L/AX80M  
OSC IN Frequency with  
External Capacitor  
OSC SEL = 0V, COSC = 47pF  
100  
kHz  
Note 1: Either V  
or VBATT can go to 0V, if the other is greater than 2.0V.  
CC  
Note 2: The supply current drawn by the MAX691A/MAX800L/MAX800M from the battery excluding I  
typically goes to 10µA  
falls through this region.  
OUT  
when (VBATT - 1V) < V  
< VBATT. In most applications, this is a brief period as V  
CC  
CC  
Note 3: “+” = battery-discharging current, “--” = battery-charging current.  
Note 4: Although presented as typical values, the number of clock cycles for the reset and watchdog timeout periods are fixed and  
do not vary with process or temperature.  
Note 5: RESET is an open-drain output and sinks current only.  
Note 6: WDI is internally connected to a voltage divider between V  
and GND. If unconnected, WDI is driven to 1.6V (typ),  
OUT  
disabling the watchdog function.  
Note 7: The chip-enable resistance is tested with V  
= +4.75V for the MAX691A/MAX800L and V  
MAX693A/MAX800M. CE IN = CE OUT = V /2.  
= +4.5V for the  
CC  
CC  
CC  
Note 8: The chip-enable propagation delay is measured from the 50% point at CE IN to the 50% point at CE OUT.  
4
_______________________________________________________________________________________  
Microprocessor Supervisory Circuits  
1693L/AX80M  
__________________________________________Typical Operating Characteristics  
(T = +25°C, unless otherwise noted.)  
A
V
SUPPLY CURRENT  
BATTERY SUPPLY CURRENT  
vs. TEMPERATURE  
(BATTERY-BACKUP MODE)  
CC  
vs. TEMPERATURE  
CHIP-ENABLE ON-RESISTANCE  
vs. TEMPERATURE  
(NORMAL OPERATING MODE)  
36  
34  
32  
30  
28  
2
1.5  
1
120  
100  
V
= 4.75V  
CC  
V
= 5V  
CC  
V
= 5V  
CC  
VBATT = 2.8V  
V
VBATT = 2.8V  
PFI, CE IN = 0V  
VBATT = 2.8V  
NO LOAD  
= V /2  
CC  
CE IN  
80  
60  
0.5  
0
26  
40  
-60 -30  
0
30  
60  
90  
120 150  
-60 -30  
0
30  
60  
90  
120 150  
-60 -30  
0
30 60 90 120 150 180  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
VBATT to V  
ON-RESISTANCE  
V
CC  
to V  
ON-RESISTANCE  
PFI THRESHOLD  
vs. TEMPERATURE  
OUT  
OUT  
vs. TEMPERATURE  
vs. TEMPERATURE  
20  
15  
10  
5
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
V
= 5V,  
CC  
VBATT = 0V  
VBATT = 2.0V  
VBATT = 2.8V  
VBATT = 4.5V  
V
= +5V,  
CC  
VBATT = 0V  
NO LOAD ON PFO  
V
= 0V  
CC  
-60 -30  
0
30  
60  
90  
120 150  
-60 -30  
0
30  
60  
90  
120 150  
-60 -30  
0
30  
60  
90  
120 150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
RESET THRESHOLD  
vs. TEMPERATURE  
RESET DELAY  
RESET OUTPUT RESISTANCE  
vs. TEMPERATURE  
vs. TEMPERATURE  
230  
220  
210  
200  
190  
180  
170  
4.75  
4.70  
4.65  
4.60  
4.55  
4.50  
4.45  
4.40  
4.35  
4.30  
600  
500  
400  
300  
VBATT = 2.8V  
V
= 0V TO 5V STEP  
CC  
VBATT = 2.8V  
V
= 5V, VBATT = 2.8V  
CC  
MAX691A  
MAX800L  
SOURCING CURRENT  
200  
100  
MAX693A  
MAX800M  
V
= 0V, VBATT = 2.8V  
CC  
SINKING CURRENT  
0
-60 -30  
0
30  
60  
90  
120 150  
-60 -30  
0
30  
60  
90  
120 150  
-60 -30  
0
30  
60  
90  
120 150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
5
Microprocessor Supervisory Circuits  
____________________________Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
BATTERY CURRENT  
WATCHDOG AND RESET TIMEOUT PERIOD  
vs. OSC IN TIMING CAPACITOR (COSC)  
CHIP-ENABLE PROPAGATION DELAY  
vs. CE OUT LOAD CAPACITANCE  
vs. INPUT SUPPLY VOLTAGE  
20  
100  
10  
1
20  
VBATT = 2.8V  
V
= 5V  
V
= 5V  
CC  
CC  
LONG WATCHDOG  
TIMEOUT PERIOD  
I
= 0A  
VBATT = 2.8V  
CE IN = 0V  
TO 5V  
DRIVER SOURCE  
OUT  
16  
12  
8
16  
12  
RESET ACTIVE  
TIMEOUT PERIOD  
8
4
0
SHORT WATCHDOG  
TIMEOUT PERIOD  
4
0
0.1  
0
1
2
3
4
5
10  
100  
COSC (pF)  
1000  
0
50  
100  
150  
200  
250  
300  
V
(V)  
C
(pF)  
CC  
LOAD  
V
to LOW LINE  
CC  
V
to V  
vs. OUTPUT CURRENT  
VBATT to V  
vs. OUTPUT CURRENT  
CC  
OUT  
OUT  
AND CE OUT DELAY  
(NORMAL OPERATING MODE)  
(BATTERY-BACKUP MODE)  
1000  
100  
10  
1000  
100  
10  
V
= 4.5V  
V
= 0V  
CC  
CC  
5V  
RESET  
THRESHOLD  
VBATT = 0V  
VBATT = 4.5V  
V
CC  
80μs  
HI  
LOW LINE  
LO  
800ns  
HI  
RESET  
LO  
SLOPE = 8Ω  
SLOPE = 0.8Ω  
HI  
CE OUT  
LO  
12μs  
1
1
1
10  
100  
1000  
1
10  
(mA)  
100  
I
(mA)  
I
OUT  
OUT  
1693L/AX80M  
6
_______________________________________________________________________________________  
Microprocessor Supervisory Circuits  
1693L/AX80M  
______________________________________________________________Pin Description  
PIN  
NAME  
FUNCTION  
Battery-Backup Input. Connect to external battery or capacitor and charging circuit. If backup battery is not  
used, connect to GND.  
1
VBATT  
Output Supply Voltage. When V  
is greater than VBATT and above the reset threshold, V  
connects to  
CC  
OUT  
2
V
OUT  
V
CC  
. When V  
falls below VBATT and is below the reset threshold, V  
connects to VBATT. Connect a 0.1µF  
CC  
OUT  
capacitor from V  
to GND. Connect V  
to V  
if no backup battery is used.  
OUT  
OUT  
CC  
3
4
V
CC  
Input Supply Voltage, 5V Input.  
GND  
Ground. 0V reference for all signals.  
Battery-On Output. When V  
goes low. Connect the base of a PNP through a current-limiting resistor to BATT ON for V  
ments greater than 250mA.  
LOW LINE output goes low when V  
the reset threshold.  
switches to VBATT, BATT ON goes high. When V  
switches to V  
BATT ON  
OUT  
OUT  
CC,  
5
6
BATT ON  
current require-  
OUT  
falls below the reset threshold. It returns high as soon as V  
rises above  
CC  
CC  
LOW LINE  
External Oscillator Input. When OSC SEL is unconnected or driven high, a 10µA pull-up connects from V  
to  
OUT  
OSC IN, the internal oscillator sets the reset and watchdog timeout periods, and OSC IN selects between fast  
and slow watchdog timeout periods. When OSC SEL is driven low, the reset and watchdog timeout periods may  
be set either by a capacitor from OSC IN to ground or by an external clock at OSC IN (Figure 3).  
Oscillator Select. When OSC SEL is unconnected or driven high, the internal oscillator sets the reset delay and  
watchdog timeout period. When OSC SEL is low, the external oscillator input (OSC IN) is enabled (Table 1).  
OSC SEL has a 10µA internal pull-up.  
7
8
OSC IN  
OSC SEL  
Power-Fail Input. This is the noninverting input to the power-fail comparator. When PFI is less than 1.25V, PFO  
9
PFI  
goes low. When PFI is not used, connect PFI to GND or V  
.
OUT  
Power-Fail Output. This is the output of the power-fail comparator. PFO goes low when PFI is less than 1.25V.  
This is an uncommitted comparator, and has no effect on any other internal circuitry.  
10  
PFO  
Watchdog Input. WDI is a three-level input. If WDI remains either high or low for longer than the watchdog time-  
out period, WDO goes low and reset is asserted for the reset timeout period. WDO remains low until the next tran-  
sition at WDI. Leaving WDI unconnected disables the watchdog function. WDI connects to an internal voltage  
11  
WDI  
divider between V  
and GND, which sets it to mid-supply when left unconnected.  
OUT  
Chip-Enable Output. CE OUT goes low only when CE IN is low and V  
low when reset is asserted, CE OUT will stay low for 15µs or until CE IN goes high, whichever occurs first.  
is above the reset threshold. If CE IN is  
CC  
12  
13  
CE OUT  
CE IN  
Chip-Enable Input. The input to chip-enable gating circuit. If CE IN is not used, connect CE IN to GND or V  
OUT.  
Watchdog Output. If WDI remains high or low longer than the watchdog timeout period, WDO goes low and reset  
is asserted for the reset timeout period. WDO returns high on the next transition at WDI. WDO remains high if  
WDI is unconnected.  
14  
WDO  
RESET Output goes low whenever V  
falls below the reset threshold. RESET will remain low typically for  
CC  
15  
16  
RESET  
200ms after V  
crosses the reset threshold on power-up.  
CC  
RESET  
RESET is an active-high output. It is open drain, and the inverse of RESET.  
guaranteed to be valid down to VCC = 1V, and an  
external 10kΩ pulldown resistor on RESET insures that  
it will be valid with VCC down to GND (Figure 1). As  
VCC goes below 1V, the gate drive to the RESET output  
switch reduces accordingly, increasing the RDS(ON)  
and the saturation voltage. The 10kΩ pulldown resistor  
insures the parallel combination of switch plus resistor  
is around 10kΩ and the output saturation voltage is  
below 0.4V while sinking 40µA. When using a 10kΩ  
external pulldown resistor, the high state for  
RESET output with VCC = 4.75V will be 4.5V typical.  
For battery voltages 2V connected to VBATT, RESET  
and RESET remain valid for VCC from 0V to 5.5V.  
_______________Detailed Description  
–————–  
RESET and RESET Outputs  
The MAX691A/MAX693A/MAX800L/MAX800M’s RESET  
and RESET outputs ensure that the µP (with reset  
inputs asserted either high or low) powers up in a  
known state, and prevents code-execution errors dur-  
ing power-down or brownout conditions.  
The RESET output is active low, and typically sinks  
3.2mA at 0.1V saturation voltage in its active state.  
When deasserted, RESET sources 1.6mA at typically  
VOUT - 0.5V. RESET output is open drain, active high,  
and typically sinks 3.2mA with a saturation voltage of  
0.1V. When no backup battery is used, RESET output is  
_______________________________________________________________________________________  
7
Microprocessor Supervisory Circuits  
WDI  
15  
RESET  
TO μP RESET  
WDO  
1kΩ  
MAX691A  
MAX693A  
t
2
RESET  
t
t
1
1
t
3
t = RESET TIMEOUT PERIOD  
1
t = NORMAL WATCHDOG TIMEOUT PERIOD  
2
t = WATCHDOG TIMEOUT PERIOD IMMEDIATELY AFTER RESET  
3
Figure 2. Watchdog Timeout Period and Reset Active Time  
Figure 1. Adding an external pulldown resistor ensures  
———–  
RESET is valid with V  
down to GND.  
CC  
Watchdog Output  
RESET and RESET are asserted when VCC falls below  
the reset threshold (4.65V for the MAX691A/MAX800L,  
4.4V for the MAX693A/MAX800M) and remain asserted  
for 200ms typ after VCC rises above the reset threshold  
on power-up (Figure 5). The devices’ battery-  
switchover comparator does not affect reset assertion.  
However, both reset outputs are asserted in battery-  
backup mode since VCC must be below the reset  
threshold to enter this mode.  
The Watchdog Output (WDO) remains high if there is a  
transition or pulse at WDI during the watchdog timeout  
period. The watchdog function is disabled and WDO is  
a logic high when VCC is below the reset threshold, bat-  
tery-backup mode is enabled, or WDI is an open circuit.  
In watchdog mode, if no transition occurs at WDI during  
the watchdog timeout period, RESET and RESET are  
asserted for the reset timeout period (200ms typical).  
WDO goes low and remains low until the next transition  
at WDI (Figure 2). If WDI is held high or low indefinitely,  
RESET and RESET will generate 200ms pulses every  
1.6s. WDO has a 2 x TTL output characteristic.  
Watchdog Function  
The watchdog monitors µP activity via the Watchdog  
Input (WDI). If the µP becomes inactive, RESET and  
RESET are asserted. To use the watchdog function,  
connect WDI to a bus line or µP I/O line. If WDI  
remains high or low for longer than the watchdog time-  
out period (1.6s nominal), WDO, RESET, and RESET  
are asserted (see RESET and RESET Outputs section,  
and the Watchdog Output discussion on this page).  
Selecting an Alternative  
Watchdog and Reset Timeout Period  
The OSC SEL and OSC IN inputs control the watchdog  
and reset timeout periods. Floating OSC SEL and OSC  
IN or tying them both to VOUT selects the nominal 1.6s  
watchdog timeout period and 200ms reset timeout peri-  
od. Connecting OSC IN to GND and floating or connect-  
ing OSC SEL to VOUT selects the 100ms normal  
watchdog timeout delay and 1.6s delay immediately  
after reset. The reset timeout delay remains 200ms  
(Figure 2). Select alternative timeout periods by con-  
necting OSC SEL to GND and connecting a capacitor  
between OSC IN and GND, or by externally driving OSC  
IN (Table 1 and Figure 3). OSC IN is internally connect-  
ed to a 100nA (typ) current source that charges and  
discharges the timing capacitor to create the oscillator  
frequency, which sets the reset and watchdog timeout  
periods (see Connecting a Timing Capacitor at OSC IN  
in the Applications Information section).  
1693L/AX80M  
Watchdog Input  
A change of state (high to low, low to high, or a mini-  
mum 100ns pulse) at the WDI during the watchdog  
period resets the watchdog timer. The watchdog  
default timeout is 1.6s.  
To disable the watchdog function, leave WDI floating.  
An internal resistor network (100kΩ equivalent imped-  
ance at WDI) biases WDI to approximately 1.6V.  
Internal comparators detect this level and disable the  
watchdog timer. When VCC is below the reset thresh-  
old, the watchdog function is disabled and WDI is dis-  
connected from its internal resistor network, thus  
becoming high impedance.  
8
_______________________________________________________________________________________  
Microprocessor Supervisory Circuits  
1693L/AX80M  
Table 1. Reset Pulse Width and Watchdog Timeout Selections  
Watchdog Timeout Period  
OSC SEL  
OSC IN  
Reset Timeout Period  
Normal  
Immediately After Reset  
Low  
Low  
External Clock Input  
External Capacitor  
Low  
1024 clks  
(600/47pF x C)ms  
100ms  
4096 clks  
(2.4/47pF x C)sec  
1.6s  
2048 clks  
(1200/47pF x C)ms  
200ms  
Floating  
Floating  
Floating  
1.6s  
1.6s  
200ms  
In the high-impedance mode, the leakage currents into  
this terminal are 1µA max over temperature. In the  
EXTERNAL  
CLOCK  
EXTERNAL  
OSCILLATOR  
low-impedance mode, the impedance of CE IN appears  
MAX691A  
MAX693A  
MAX800L  
MAX800M  
8
7
8
7
as a 75Ω resistor in series with the load at CE OUT.  
OSC SEL  
OSC SEL  
The propagation delay through the CE transmission  
gate depends on both the source impedance of the  
OSC IN  
OSC IN  
drive to CE IN and the capacitive loading on the Chip-  
50kHz  
Enable Output (CE OUT) (see Chip-Enable Propagation  
Delay vs. CE OUT Load Capacitance in the Typical  
Operating Characteristics). The CE propagation delay  
INTERNAL OSCILLATOR  
1.6s WATCHDOG  
INTERNAL OSCILLATOR  
100ms WATCHDOG  
is production tested from the 50% point of CE IN to the  
8
8
50% point of CE OUT using a 50Ω driver and 50pF of  
OSC SEL  
OSC SEL  
N.C.  
N.C.  
load capacitance (Figure 6). For minimum propagation  
delay, minimize the capacitive load at CE OUT, and  
use a low output-impedance driver.  
7
7
N.C.  
OSC IN  
OSC IN  
Chip-Enable Output  
Figure 3. Oscillator Circuits  
In the enabled mode, the impedance of CE OUT is  
equivalent to 75Ω in series with the source driving CE  
IN. In the disabled mode, the 75Ω transmission gate is  
off and CE OUT is actively pulled to VOUT. This source  
turns off when the transmission gate is enabled.  
Chip-Enable Signal Gating  
The MAX691A/MAX693A/MAX800L/MAX800M provide  
internal gating of chip-enable (CE) signals to prevent  
erroneous data from being written to CMOS RAM in the  
event of a power failure. During normal operation, the  
CE gate is enabled and passes all CE transitions. When  
reset is asserted, this path becomes disabled, prevent-  
–  
LOW LINE Output  
LOW LINE is the buffered output of the reset threshold  
comparator. LOW LINE typically sinks 3.2mA at 0.1V.  
For normal operation (VCC above the LOW LINE thresh-  
ing erroneous data from corrupting the CMOS RAM. All  
old), LOW LINE is pulled to VOUT  
.
these parts use a series transmission gate from CE IN to  
CE OUT (Figure 4).  
Power-Fail Comparator  
The power-fail comparator is an uncommitted comparator  
that has no effect on the other functions of the IC.  
Common uses include low-battery indication (Figure 7),  
and early power-fail warning (see Typical Operating  
Circuit).  
The 10ns max CE propagation delay from CE IN to CE  
OUT enables the parts to be used with most µPs.  
Chip-Enable Input  
The Chip-Enable Input (CE IN) is high impedance (dis-  
abled mode) while RESET and RESET are asserted.  
Power-Fail Input  
During a power-down sequence where V  
falls below  
CC  
Power-Fail Input (PFI) is the input to the power-fail com-  
parator. It has a guaranteed input leakage of 25nA  
max over temperature. The typical comparator delay is  
25µs from V to V (power failing), and 60µs from VIH  
to VOH (power being restored). If PFI is not used, con-  
nect it to ground.  
the reset threshold or a watchdog fault, CE IN assumes  
a high-impedance state when the voltage at CE IN  
goes high or 15µs after reset is asserted, whichever  
occurs first (Figure 5).  
IL  
OL  
During a power-up sequence, CE IN remains high  
impedance, regardless of CE IN activity, until reset is  
deasserted following the reset timeout period.  
_______________________________________________________________________________________  
9
Microprocessor Supervisory Circuits  
5
BATT ON  
4.65V*  
6
LOW LINE  
3
V
CC  
2
V
OUT  
CHIP-ENABLE  
OUTPUT  
CONTROL  
1
VBATT  
CE IN  
13  
12  
16  
CE OUT  
RESET  
MAX691A  
MAX693A  
MAX800L  
MAX800M  
RESET  
GENERATOR  
15  
RESET  
7
8
TIMEBASE FOR  
RESET AND  
OSC IN  
OSC SEL  
WATCHDOG  
WATCHDOG  
TRANSITION  
DETECTOR  
11  
9
WATCHDOG  
TIMER  
14  
10  
WDI  
PFI  
WDO  
PFO  
1.25V  
4
GND  
* 4.4V FOR THE MAX693A/MAX800M  
Figure 4. MAX691A/MAX693A/MAX800L/MAX800M Block Diagram  
5.0V  
V
CC  
RESET  
THRESHOLD  
4.0V  
5.0V  
CE IN  
1693L/AX80M  
0V  
5V  
CE OUT  
0V  
15μs  
100μs  
100μs  
5V  
RESET  
RESET  
0V  
5V  
0V  
LOGIC LEVELS SHOWN ARE FROM 0V TO 5V.  
Figure 5. Reset and Chip-Enable Timing  
10 ______________________________________________________________________________________  
Microprocessor Supervisory Circuits  
1693L/AX80M  
+5V  
+5V  
V
V
CC  
CC  
VBATT  
CE IN  
VBATT  
2.8V  
MAX691A  
MAX693A  
MAX800L  
MAX800M  
MAX691A  
MAX693A  
MAX800L  
MAX800M  
2.0V to 5.5V  
PFI  
LOW BATT  
PFO  
CE OUT  
50Ω  
OUTPUT  
GND  
GND  
C
LOAD  
IMPEDANCE  
Figure 6. CE Propagation Delay Test Circuit  
Figure 7. Low-Battery Indicator  
Power-Fail Output  
Table 2. Input and Output Status in Battery-Backup  
Mode  
The Power-Fail Output (PFO) goes low when PFI goes  
below 1.25V. It typically sinks 3.2mA with a saturation  
voltage of 0.1V. With PFI above 1.25V, PFO is actively  
PIN  
NAME  
STATUS  
1
VBATT  
Supply current is 1µA max.  
pulled to VOUT  
.
V
is connected to VBATT through an  
OUT  
2
V
OUT  
Battery-Backup Mode  
internal PMOS switch.  
Two conditions are required to switch to battery-back-  
up mode: 1) VCC must be below the reset threshold,  
and 2) VCC must be below VBATT. Table 2 lists the sta-  
tus of the inputs and outputs in battery-backup mode.  
Battery switchover comparator monitors  
3
4
5
V
CC  
V
CC  
for active switchover.  
GND  
GND 0V, 0V reference for all signals.  
Logic high. The open-circuit output is  
Battery-On Output  
The Battery-On (BATT ON) output indicates the status  
of the internal VCC/battery-switchover comparator,  
which controls the internal VCC and VBATT switches.  
For VCC greater than VBATT (ignoring the small hys-  
teresis effect), BATT ON typically sinks 3.2mA at 0.1V  
saturation voltage. In battery-backup mode, this termi-  
nal sources approximately 10µA from VOUT. Use BATT  
ON to indicate battery-switchover status or to supply  
base drive to an external pass transistor for higher-cur-  
rent applications (see Typical Operating Circuit).  
BATT ON  
equal to V  
.
OUT  
6
7
8
Logic low*  
OSC IN is ignored.  
LOWLINE  
OSC IN  
OSC SEL OSC SEL is ignored.  
The power-fail comparator remains  
9
PFI  
active in the battery-backup mode for  
VBATT - 1.2V typ.  
V
CC  
The power-fail comparator remains  
active in the battery-backup mode for  
10  
PFO  
V
CC  
VBATT - 1.2V typ. Below this volt-  
Input Supply Voltage  
The Input Supply Voltage (VCC) should be a regulated  
5V. VCC connects to VOUT via a parallel diode and a  
large PMOS switch. The switch carries the entire cur-  
rent load for currents less than 250mA. The parallel  
diode carries any current in excess of 250mA. Both the  
switch and the diode have impedances less than 1Ω  
each. The maximum continuous current is 250mA, but  
power-on transients may reach a maximum of 1A.  
age, PFO is forced low.  
11  
12  
13  
14  
WDI  
CE OUT  
CE IN  
WDO  
Watchdog is ignored.  
Logic high. The open-circuit voltage is  
equal to V  
.
OUT  
High impedance  
Logic high. The open-circuit voltage is  
equal to V  
.
OUT  
15  
16  
Logic low*  
High impedance*  
RESET  
RESET  
* V must be below the reset threshold to enter battery-backup  
CC  
mode.  
______________________________________________________________________________________ 11  
Microprocessor Supervisory Circuits  
1) Normal operating mode with all circuitry powered  
Battery-Backup Input  
The Battery-Backup Input (VBATT) is similar to the VCC  
input except the PMOS switch and parallel diode are  
much smaller. Accordingly, the on-resistances of the  
diode and the switch are each approximately 10Ω.  
Continuous current should be limited to 25mA and  
peak currents (only during power-up) limited to 250mA.  
The reverse leakage of this input is less than 1µA over  
temperature and supply voltage (Figure 8).  
up. Typical supply current from VCC is 35µA while  
only leakage currents flow from the battery.  
2) Battery-backup mode where VCC is typically within  
0.7V below VBATT. All circuitry is powered up  
and the supply current from the battery is typically  
less than 60µA.  
3) Battery-backup mode where VCC is less than  
VBATT by at least 0.7V. VBATT supply current is  
1µA max.  
Output Supply Voltage  
The Output Supply Voltage (VOUT) pin is internally con-  
nected to the substrate of the IC and supplies current  
to the external system and internal circuitry. All open-  
circuit outputs will, for example, assume the VOUT volt-  
age in their high states rather than the VCC voltage. At  
the maximum source current of 250mA, VOUT will typi-  
cally be 200mV below VCC. Decouple this terminal with  
a 0.1µF capacitor.  
Using SuperCap or MaxCap with the  
MAX691A/MAX693A/MAX800L/MAX800M  
VBATT has the same operating voltage range as VCC  
,
and the battery switchover threshold voltages are typi-  
cally 30mV centered at VBATT, allowing use of a  
SuperCap and a simple charging circuit as a backup  
source (Figure 9).  
If VCC is above the reset threshold and VBATT is 0.5V  
above VCC, current flows to VOUT and VCC from VBATT  
__________Applications Information  
The MAX691A/MAX693A/MAX800L/MAX800M are not  
short-circuit protected. Shorting VOUT to ground, other  
than power-up transients such as charging a decou-  
pling capacitor, destroys the device.  
until the voltage at VBATT is less than 0.5V above VCC.  
For example, with a SuperCap connected to VBATT and  
through a diode to VCC, if VCC quickly changes from 5.4V  
to 4.9V, the capacitor discharges through VOUT and VCC  
until VBATT reaches 5.1V typ. Leakage current through  
the SuperCap charging diode and the internal power  
diode eventually discharges the SuperCap to VCC. Also, if  
All open-circuit outputs swing between VOUT and GND  
rather than VCC and GND.  
If long leads connect to the chip inputs, insure that  
these leads are free from ringing and other conditions  
that would forward bias the chip’s protection diodes.  
VCC and VBATT start from 0.1V above the reset threshold  
and power is lost at VCC, the SuperCap on VBATT dis-  
charges through VCC until VBATT reaches the reset  
threshold; then the battery-backup mode is initiated and  
the current through VCC goes to zero.  
There are three distinct modes of operation:  
+5V  
3
V
CC  
1N4148  
0.47F*  
1693L/AX80M  
VBATT  
1
2
VBATT  
V
OUT  
MAX691A  
MAX693A  
MAX800L  
MAX800M  
V
OUT  
MAX691A  
MAX693A  
MAX800L  
MAX800M  
0.1μF  
V
CC  
GND  
4
* MaxCap  
Figure 8. V  
and VBATT to V  
Switch  
Figure 9. SuperCap or MaxCap on VBATT  
CC  
OUT  
12 ______________________________________________________________________________________  
Microprocessor Supervisory Circuits  
1693L/AX80M  
V
IN  
Rp*  
+5V  
CE  
CE  
R1  
RAM 1  
RAM 2  
V
CC  
V
OUT  
C1*  
R3  
PFI  
CE IN  
CE OUT  
CE  
CE  
MAX691A  
MAX693A  
MAX800L  
MAX800M  
MAX691A  
MAX693A  
MAX800L  
MAX800M  
R2  
CE  
CE  
PFO  
RAM 3  
RAM 4  
GND  
GND  
TO μP  
*OPTIONAL  
CE  
CE  
5V  
PFO  
0V  
0V  
V
L
V
V
V
TRIP H  
IN  
R1 + R2  
R2  
V
V
= 1.25  
TRIP  
*MAXIMUM Rp VALUE DEPENDS ON  
THE NUMBER OF RAMS.  
MINIMUM Rp VALUE IS 1kΩ.  
ACTIVE-HIGH  
CE LINES  
FROM LOGIC  
R2 I I R3  
R1 + R2 I I R3  
V - 1.25 5 - 1.25 1.25  
L
= 1.25/  
H
+
=
R1  
R3  
R2  
Figure 10. Alternate CE Gating  
Figure 11. Adding Hysteresis to the Power-Fail Comparator  
Using Separate Power Supplies  
for VBATT and V  
+5V  
CC  
If using separate power supplies for VCC and VBATT,  
VBATT must be less than 0.3V above VCC when VCC is  
above the reset threshold. As described in the previ-  
ous section, if VBATT exceeds this limit and power is  
lost at VCC, current flows continuously from VBATT to  
VCC via the VBATT-to-VOUT diode and the VOUT-to-VCC  
switch until the circuit is broken (Figure 8).  
R1  
V
CC  
PFO  
PFI  
MAX691A  
MAX693A  
MAX800L  
MAX800M  
R2  
Alternate Chip-Enable Gating  
Using memory devices with both CE and CE inputs  
allows the CE loop to be bypassed. To do this, con-  
GND  
nect CE IN to ground, pull up CE OUT to VOUT, and  
V-  
5V  
PFO  
0V  
connect CE OUT to the CE input of each memory  
device (Figure 10). The CE input of each part then  
connects directly to the chip-select logic, which does  
not have to be gated.  
V
0V  
TRIP  
V-  
Adding Hysteresis to the  
Power-Fail Comparator  
5 - 1.25 1.25 - V  
TRIP  
=
R1  
R2  
Hysteresis adds a noise margin to the power-fail com-  
parator and prevents repeated triggering of PFO when  
VIN is near the power-fail comparator trip point. Figure  
11 shows how to add hysteresis to the power-fail com-  
NOTE: V  
IS NEGATIVE.  
TRIP  
Figure 12. Monitoring a Negative Voltage  
______________________________________________________________________________________ 13  
Microprocessor Supervisory Circuits  
Backup-Battery Replacement  
The backup battery may be disconnected while VCC is  
above the reset threshold. No precautions are neces-  
sary to avoid spurious reset pulses.  
100  
80  
V
= 5V  
CC  
T = +25°C  
A
0.1μF CAPACITOR  
FROM V TO GND  
OUT  
Negative-Going V  
Transients  
CC  
While issuing resets to the µP during power-up, power-  
down, and brownout conditions, these supervisors are  
relatively immune to short-duration, negative-going VCC  
transients (glitches). It is usually undesirable to reset  
the µP when VCC experiences only small glitches.  
60  
40  
Figure 13 shows maximum transient duration vs. reset-  
comparator overdrive, for which reset pulses are not  
generated. The graph was produced using negative-  
going VCC pulses, starting at 5V and ending below the  
reset threshold by the magnitude indicated (reset com-  
parator overdrive). The graph shows the maximum  
pulse width a negative-going VCC transient may typical-  
ly have without causing a reset pulse to be issued. As  
the amplitude of the transient increases (i.e., goes far-  
ther below the reset threshold), the maximum allowable  
pulse width decreases. Typically, a VCC transient that  
goes 100mV below the reset threshold and lasts for  
40µs or less will not cause a reset pulse to be issued.  
20  
0
10  
100  
RESET COMPARATOR OVERDRIVE,  
(Reset Threshold Voltage - V ) (mV)  
1000  
10000  
CC  
Figure 13. Maximum Transient Duration without Causing a  
Reset Pulse vs. Reset Comparator Overdrive  
parator. Select the ratio of R1 and R2 such that PFI sees  
1.25V when VIN falls to the desired trip point (VTRIP).  
Resistor R3 adds hysteresis. It will typically be an order  
of magnitude greater than R1 or R2. The current  
through R1 and R2 should be at least 1µA to ensure that  
the 25nA (max) PFI input current does not shift the trip  
point. R3 should be larger than 10kΩ to prevent it from  
loading down the PFO pin. Capacitor C1 adds noise  
rejection.  
A 100nF bypass capacitor mounted close to the VCC  
pin provides additional transient immunity.  
Connecting a Timing Capacitor at OSC IN  
When OSC SEL is connected to ground, OSC IN dis-  
connects from its internal 10µA (typ) pullup and is inter-  
nally connected to a 100nA current source. When a  
capacitor is connected from OSC IN to ground (to  
select alternative reset and watchdog timeout periods),  
the current source charges and discharges the timing  
capacitor to create the oscillator that controls the reset  
and watchdog timeout period. To prevent timing errors  
or oscillator startup problems, minimize external current  
leakage sources at this pin, and locate the capacitor as  
close to OSC IN as possible. The sum of PC-board  
leakage plus OSC capacitor leakage must be small  
compared to 100nA.  
Monitoring a Negative Voltage  
The power-fail comparator can be used to monitor a  
negative supply voltage using Figure 12’s circuit. When  
the negative supply is valid, PFO is low. When the neg-  
ative supply voltage drops, PFO goes high. This cir-  
cuit’s accuracy is affected by the PFI threshold  
tolerance, the VCC voltage, and resistors R1 and R2.  
1693L/AX80M  
14 ______________________________________________________________________________________  
Microprocessor Supervisory Circuits  
1693L/AX80M  
Maximum V  
Fall Time  
CC  
The VCC fall time is limited by the propagation delay of  
the battery switchover comparator and should not  
exceed 0.03V/µs. A standard rule of thumb for filter  
capacitance on most regulators is on the order of 100µF  
per amp of current. When the power supply is shut off or  
the main battery is disconnected, the associated initial  
VCC fall rate is just the inverse or 1A/100µF = 0.01V/µs.  
The VCC fall rate decreases with time as VCC falls expo-  
nentially, which more than satisfies the maximum fall-time  
requirement.  
START  
SET  
WDI  
LOW  
Watchdog Software Considerations  
A way to help the watchdog timer keep a closer watch  
on software execution involves setting and resetting the  
watchdog input at different points in the program,  
rather than “pulsing” the watchdog input high-low-high  
or low-high-low. This technique avoids a “stuck” loop  
where the watchdog timer continues to be reset within  
the loop, keeping the watchdog from timing out. Figure  
14 shows an example flow diagram where the I/O dri-  
ving the watchdog input is set high at the beginning of  
the program, set low at the beginning of every subrou-  
tine or loop, then set high again when the program  
returns to the beginning. If the program should “hang”  
in any subroutine, the I/O is continually set low and the  
watchdog timer is allowed to time out, causing a reset  
or interrupt to be issued.  
SUBROUTINE  
OR PROGRAM LOOP  
SET WDI  
HIGH  
RETURN  
END  
Figure 14. Watchdog Flow Diagram  
______________________________________________________________________________________ 15  
Microprocessor Supervisory Circuits  
Ordering Information (continued)  
___________________Chip Topography  
V
VBATT RESET RESET  
OUT  
PIN-  
PART  
TEMP RANGE  
PACKAGE  
MAX691AEJE  
-40°C to +85°C  
-55°C to +125°C  
-55°C to +125°C  
16 CERDIP  
16 CERDIP**  
16 Wide SO**  
16 Wide SO**  
16 TSSOP  
MAX691AMJE  
MAX691AMSE/PR  
V
CC  
WDO  
MAX691AMSE/PR-T -55°C to +125°C  
CE IN  
MAX693ACUE  
MAX693ACSE  
MAX693ACWE  
MAX693ACPE  
MAX693AC/D  
MAX693AEUE  
MAX693AESE  
MAX693AEWE  
MAX693AEPE  
MAX693AEJE  
MAX693AMJE  
MAX800LCUE  
MAX800LCSE  
MAX800LCPE  
MAX800LEUE  
MAX800LESE  
MAX800LEPE  
MAX800MCUE  
MAX800MCSE  
MAX800MCPE  
MAX800MEUE  
MAX800MESE  
MAX800MEPE  
-0°C to +70°C  
-0°C to +70°C  
-0°C to +70°C  
-0°C to +70°C  
-0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
-0°C to +70°C  
-0°C to +70°C  
-0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-0°C to +70°C  
-0°C to +70°C  
-0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
GND  
CE OUT  
0.11"  
(2.794mm)  
16 Narrow SO  
16 Wide SO  
16 Plastic DIP  
Dice*  
BATT ON  
16 TSSOP  
LOW LINE  
16 Narrow SO  
16 Wide SO  
16 Plastic DIP  
16 CERDIP  
16 CERDIP  
16 TSSOP  
WDI  
PFI PFO  
OSC SEL  
OSC IN  
0.07"  
(1.778mm)  
16 Narrow SO  
16 Plastic DIP  
16 TSSOP  
SUBSTRATE CONNECTED TO V  
OUT  
16 Narrow SO  
16 Plastic DIP  
16 TSSOP  
Package Information  
For the latest package outline information and land patterns, go  
16 Narrow SO  
16 Plastic DIP  
16 TSSOP  
to www.maxim-ic.com/packages.  
PACKAGE TYPE PACKAGE CODE DOCUMENT NO.  
16 TSSOP  
U16-1  
J16-3  
S16-3  
P16-1  
W16-1  
21-0066  
21-0045  
21-0041  
21-0043  
21-0042  
16 Narrow SO  
16 Plastic DIP  
16 CERDIP  
16 Narrow SO  
16 Plastic DIP  
16 Wide SO  
*Dice are specified at T = +25°C, DC parameters only.  
A
1693L/AX80M  
**Contact factory for availability and processing to MIL-STD-883B.  
Devices in PDIP, SO and TSSOP packages are available in both  
leaded and lead-free packaging. Specify lead free by adding  
the + symbol at the end of the part number when ordering.  
Lead free not available for CERDIP package.  
16 ______________________________________________________________________________________  
Microprocessor Supervisory Circuits  
1693L/AX80M  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
DESCRIPTION  
CHANGED  
0
1
2
3
4
5
6
7
09/92  
12/92  
5/93  
Initial release  
2, 3, 4  
2, 3, 4, 9, 11  
2, 3, 4  
2, 3, 4  
10  
Update Electrical Characteristics table.  
Update Electrical Characteristics table, Tables 1 and 2.  
Update Electrical Characteristics table.  
Update Electrical Characteristics table.  
Correction to Figure 4.  
12/93  
3/94  
8/94  
1/95  
Update to new revision and correct errors.  
Update Electrical Characteristics table.  
12/96  
2, 3, 4  
Updated Ordering Information, Pin Configuration, Absolute Maximum  
Ratings, and Package Information.  
8
12/99  
1, 2, 16  
9
4/02  
11/05  
8/08  
Corrected Ordering Information.  
Added lead-free information.  
Updated Ordering Information.  
1
10  
11  
1, 16  
1, 16  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 17  
© 2008 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX691ACUE

Analog IC
MAXIM

MAX691ACUE+

Power Supply Management Circuit, Adjustable, 1 Channel, PDSO16, TSSOP-16
MAXIM

MAX691ACUE-T

Power Supply Management Circuit, Adjustable, 1 Channel, PDSO16, 4.40 MM, MO-153AB, TSSOP-16
MAXIM

MAX691ACWE

Microprocessor Supervisory Circuits
MAXIM

MAX691ACWE+

Power Supply Management Circuit, Adjustable, 1 Channel, CMOS, PDSO16, SOIC-16
MAXIM

MAX691ACWE+T

Power Supply Management Circuit, Adjustable, 1 Channel, CMOS, PDSO16, SO-16
MAXIM

MAX691ACWE-T

Power Supply Management Circuit, Adjustable, 1 Channel, CMOS, PDSO16, 0.300 INCH, MS-013AA, SOIC-16
MAXIM

MAX691AD

Microprocessor Supervisory Circuits
MAXIM

MAX691AEJE

Microprocessor Supervisory Circuits
MAXIM

MAX691AEJE+

Power Management Circuit, CDIP16
MAXIM

MAX691AEPE

Microprocessor Supervisory Circuits
MAXIM

MAX691AESE

Microprocessor Supervisory Circuits
MAXIM