MAX71637ECD+ [MAXIM]

Analog Circuit, 1 Func, BICMOS, PQFP120, ROHS COMPLIANT, LQFP-120;
MAX71637ECD+
型号: MAX71637ECD+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Analog Circuit, 1 Func, BICMOS, PQFP120, ROHS COMPLIANT, LQFP-120

信息通信管理
文件: 总34页 (文件大小:419K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
MAX71617/MAX71637  
Energy Measurement SoCs  
ARM Cortex-M3 Features  
General Description  
• 1MB Flash  
The MAX71617 is a low-power, single-phase energy mea-  
surement system-on-chip (SoC), and the MAX71637 is a  
low-power polyphase energy measurement SoC. Based  
on an ARM Cortex®-M3 core, the devices can run modern  
operating systems that monitor and report energy usage  
and implement communications stacks. In addition to the  
main administrative core, the devices include a MAXQ30  
CPU core to perform metering functions and a discrete  
compute engine for the DSP related tasks necessary for  
accurate energy monitoring and measurement, last cycle  
analysis, and FFT functions to compute the frequency  
spectra of the selected channel.  
• 64KB Code RAM  
• 64KB System RAM  
• Six UART Channels  
• Seven Timer Channels  
2
• I C Master/Slave Peripheral  
• Three SPI Peripherals  
• Smart Card Interface  
MAXQ30 Features  
• 64KB Program RAM  
• 8KB Data RAM  
• 16KB Page RAM  
The DSP core provides the following energy and power  
measurement features in registers:  
• Four Meter Pulse Outputs (Configurable)  
2
• Two I C Master/Slave Peripherals  
• SPI Master/Slave Peripheral  
• 50-Segment,ꢀ6-CommonꢀLCDꢀInterface  
Activeꢀenergyꢀandꢀpowerꢀperꢀphaseꢀandꢀsum  
Apparentꢀenergyꢀandꢀpowerꢀperꢀphaseꢀandꢀsum  
Reactiveꢀenergyꢀandꢀpowerꢀperꢀphaseꢀandꢀsum  
LineꢀvoltageꢀandꢀcurrentꢀRMS  
Security Features Reduce or Eliminate Common  
Security Threats  
• Built-In Cryptographic Modules Ensure  
Communications Are Kept Secure  
• Tamper Detect Inputs Ensure Attempts to Breach  
the Case Are Recorded and Reported  
• Two Independent Cores Ensures Compliance with  
All Current and Future Security Requirements  
NeutralꢀcurrentꢀRMS  
Currentꢀvectorꢀsum,ꢀthree-phaseꢀplusꢀneutral  
Lineꢀfrequency  
Fundamentalꢀfrequency  
Totalꢀharmonicsꢀofꢀactiveꢀpower,ꢀreactiveꢀpower,ꢀvolt-  
age, and currents  
Analog Front-End  
• Sevenꢀ(MAX71637)ꢀorꢀFourꢀ(MAX71617)ꢀ24-BitꢀΣΔ  
A/D Converters  
Securityꢀfeatures  
• Three (MAX71637) or Two (MAX71617) Voltage  
Inputs  
• Four (MAX71637) or Three (MAX71617)  
Differential Current Inputs  
Features and Benefits  
Multicore Design: ARM Cortex-M3 Application Core  
Operating at Up to 108MHz, Plus MAXQ30 32-Bit  
Core with Single-Cycle Hardware Multiply Operating  
at 36MHz, Plus a Compute Engine for DSP  
Functions  
Applications  
Smart and Secure Single-Phase Energy Meters  
Smart and Secure Polyphase Energy Meters  
Watt-Hour Accuracy of 0.1% at Up to 5,000:1  
MID/WELMEC-CompliantꢀMeters  
Dynamic Range  
SampleꢀFrequencyꢀConfigurable;ꢀΣΔꢀSampleꢀRateꢀ  
Configurable Up to 9.83MHz  
Ordering Information appears at end of data sheet.  
Flexible Analog Input Configuration Support Current  
Transformers, Shunts, or Rogowski Coils  
2.7V to 3.6V Operating Voltage  
For related parts and recommended products to use with this part, refer  
to www.maximintegrated.com/MAX71617.related.  
Single 32.768kHz Crystal Provides All Operating Clocks  
Cortex is a registered trademark of ARM Ltd.  
19-7306; Rev 0; 3/14  
MAX71617/MAX71637  
Energy Measurement SoCs  
Absolute Maximum Ratings  
(VoltageꢀonꢀallꢀpinsꢀwithꢀrespectꢀtoꢀGND.)  
XIN,ꢀXOUT............................................................-0.5V to +3.0V  
RGNDꢀandꢀAGND.................................................-0.2V to +0.2V  
SEG and SEGDIO, Configured as Digital Inputs......-0.3V to +3.6V  
V
.......................................................................-0.5V to +3.6V  
Digital Pins, Configured as Inputs.......................... -0.5V to V  
DD  
DD  
AVDD....................................................................-0.5V to +3.6V  
RVDD ...................................................................-0.5V to +3.6V  
ESD Stress on All Pins.............................................. ±2kV, HBM  
Operating Temperature Range......................... -40°C to +85°C  
Storage Temperature Range........................... -65°C to +150°C  
V
, V  
..........................................................-0.5V to +3.8V  
BAT RTC  
ADC0–ADC10 ...................................... -0.5V to (V  
+ 0.5V)  
AVDD  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
(Note 1)  
Package Thermal Characteristics  
LQFP  
Junction-to-AmbientꢀThermalꢀResistanceꢀ(θ ) ..........45°C/W  
Junction-to-CaseꢀThermalꢀResistanceꢀ(θ )...............16°C/W  
JC  
JA  
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer  
board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Electrical Characteristics  
(Limitsare100%productiontestedatꢀT ꢀ=ꢀ+22°C.ꢀLimitsꢀoverꢀtheꢀoperatingꢀtemperatureꢀrangeꢀandꢀrelevantꢀsupplyꢀvoltageꢀrangeꢀ  
A
are guaranteed by design and characterization. Typical values are not guaranteed. V  
= V  
= V = 3.0V to 3.6V, T = -40°C to  
AVDD IO A  
DD  
+85°C, unless otherwise specified.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER  
Digital Supply Voltage  
V
V
3.6  
3.6  
3.6  
3.8  
3.8  
V
V
V
V
V
DD  
RST  
Analog Supply Voltage  
V
2.7  
2.7  
2.0  
2.0  
AVDD  
Supply Voltage, Remote Interfaces  
Supply Voltage, Backup Battery  
Supply Voltage, RTC Battery  
V
RVDD  
V
BAT  
V
RTC  
1.95  
±0.05  
Reset Threshold  
V
V
V
RST  
2.07  
±0.05  
Power Fail Warning Threshold  
V
PFW  
I
I
I
I
(Noteꢀ2)  
(Noteꢀ3)  
(Noteꢀ2)  
(Noteꢀ3)  
55  
24  
19  
19  
3
mA  
mA  
mA  
mA  
mA  
µA  
DD1  
DD2  
DD1  
DD2  
Supply Current, Digital  
Supply Current, Analog  
Stop Mode Current, Digital  
Stop Mode Current, Analog  
Dynamic Current  
I
I
V
V
= V  
= V  
= 3.3V  
= 3.3V  
STOP  
STOP  
DD  
AVDD  
210  
0.98  
±25  
7
DD  
AVDD  
(Noteꢀ4)ꢀ  
mA/MHz  
nA  
MSNꢀmodeꢀ(Noteꢀ5)  
BRNꢀmodeꢀ(Noteꢀ6)  
mA  
µA  
V
Current  
Current  
I
BAT  
RTC  
VBAT  
LCD_ONLYꢀmodeꢀ(Noteꢀ7)ꢀ  
6
SLPꢀmode,ꢀV  
= 3.3V, V  
= 0V  
2
µA  
BAT  
RTC  
MSNꢀmodeꢀ(Noteꢀ5)  
SLPꢀmode,ꢀV = 0V, V  
±25  
1.6  
nA  
V
I
VRTC  
= 3.3V  
RTC  
µA  
BAT  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX71617/MAX71637  
Energy Measurement SoCs  
Electrical Characteristics (continued)  
(Limitsare100%productiontestedatꢀT ꢀ=ꢀ+22°C.ꢀLimitsꢀoverꢀtheꢀoperatingꢀtemperatureꢀrangeꢀandꢀrelevantꢀsupplyꢀvoltageꢀrangeꢀ  
A
are guaranteed by design and characterization. Typical values are not guaranteed. V  
= V  
= V = 3.0V to 3.6V, T = -40°C to  
AVDD IO A  
DD  
+85°C, unless otherwise specified.)  
PARAMETER  
CRYSTAL OSCILLATOR  
Oscillator Frequency  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
f
32768  
108  
Hz  
RTC  
NominalꢀOperatingꢀFrequency,ꢀ  
Application Core  
MHz  
NominalꢀOperatingꢀFrequency,ꢀ  
DSP Core  
36  
36  
MHz  
MHz  
NominalꢀOperatingꢀFrequency,ꢀ  
Compute Engine  
T
V
= +25°C, V  
= 0V,  
A
DD  
Frequency Variation with Voltage  
±1  
ppm  
ms  
= 2.0V to 3.8V  
RTC  
Startup Time  
900  
LOGIC LEVELS  
DigitalꢀHighꢀLevel  
V
At temp corners  
At temp corners  
2.0  
V
V
IH  
DigitalꢀLowꢀLevel  
V
0.8  
IL  
DigitalꢀHighꢀLevel,ꢀRSTN  
DigitalꢀLowꢀLevel,ꢀRSTN  
Input Hysteresis, All GPIO Pins  
InputꢀLeakage  
0.8V  
V
IO  
0.3V  
V
IO  
50  
mV  
µA  
µA  
V
V
= V  
-1  
+1  
IN  
IO  
Input Pullup Current  
DigitalꢀHigh-LevelꢀOutputꢀVoltage  
DigitalꢀLow-LevelꢀOutputꢀVoltage  
LCD  
Pullup enabled, V = 0V  
-30.0  
V - 0.4  
IO  
-1.5  
IN  
V
6mA  
6mA  
OH  
V
0.4  
7
V
OL  
V
= 3.3V,  
LCD  
V
Current  
any multiplex mode,  
noꢀoutputꢀloading,ꢀLCDꢀpinsꢀopen  
µA  
LCD  
V
REF  
NominalꢀReferenceꢀVoltage  
V
T
= +22°C  
1.195  
±1.5  
V
REF  
A
Variation with Power Supply  
V
= 3.0V to 3.6V  
mV/V  
AVDD  
Deviation from Predicted Variation  
with Temperature  
±40  
ppm/°C  
ADC  
mV  
peak  
Usable Input Range  
Input Impedance  
-250  
30  
+250  
50  
kΩ  
FIR_LENꢀ=ꢀ11,ꢀ5.46kHzꢀsampleꢀrate  
FIR_LENꢀ=ꢀ15  
92  
LSBꢀSize  
nV/LSB  
118  
FIR_LENꢀ=ꢀ11,ꢀ5.46kHzꢀsampleꢀrate  
FIR_LENꢀ=ꢀ15  
±3375000  
±2621440  
Digital Full Scale  
Input Offset  
LSB  
-10  
+10  
mV  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX71617/MAX71637  
Energy Measurement SoCs  
Electrical Characteristics (continued)  
(Limitsare100%productiontestedatꢀT ꢀ=ꢀ+22°C.ꢀLimitsꢀoverꢀtheꢀoperatingꢀtemperatureꢀrangeꢀandꢀrelevantꢀsupplyꢀvoltageꢀrangeꢀ  
A
are guaranteed by design and characterization. Typical values are not guaranteed. V  
= V  
= V = 3.0V to 3.6V, T = -40°C to  
AVDD IO A  
DD  
+85°C, unless otherwise specified.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
250mV  
-75  
THD, Voltage Channel  
(Noteꢀ8)  
P-P  
dB  
20mV  
-86  
-102  
-87  
P-P  
Preamp off, 250mV  
-90  
P-P  
THD, Current Channel  
(Noteꢀ8)  
Preamp off, 20mV  
dB  
P-P  
P-P  
Preamp on, 20mV  
-84  
Current Channel 0 Preamp Gain  
Gain Variation with Supply Voltage  
8.90  
±0.18  
V/V  
%
Preamp on  
Preamp on  
Gain Variation with Temperature  
-180  
-100  
+180  
+100  
ppm/°C  
Current Channel Phase Shift  
Phase Shift Variation  
0.03  
m°  
m°  
All channels, preamp off  
ADC0, preamp on  
900  
100  
InputꢀNoise  
nV/√Hz  
T
= +22°C, guaranteed by design,  
A
Crosstalk  
-108  
-97  
dB  
not production tested  
FLASH MEMORY (Note 9)  
t
Mass erase  
20  
20  
ms  
ms  
ME  
Flash Erase Time  
t
Page erase  
PE  
Flash Programming Time  
Endurance  
t
Per long word  
20  
µs  
PROG  
Numberꢀofꢀwrite/eraseꢀcycles  
10,000  
10  
Cycles  
Years  
Data Retention  
T = +85°C  
A
Note 2: Application core operating at 108MHz, metering core operating at 36MHz, instruction cache on, AES operating in 128 bit  
mode, one DMA channel actively copying data from application core code RAM to application core system RAM, all timers  
active and running (timer 0/1, timer 1/2, timer 2/4, timer 3/8, timer 4/16, timer 5/32, timer 6/64), random number generator  
running, application core running from flash and fetching data from flash, MAXQ30 runnning in tight loop, MAXQ30 timer  
operatingꢀinꢀtimerꢀmode,ꢀallꢀLCDꢀsegmentsꢀenabledꢀbutꢀnoꢀloadꢀonꢀLCDꢀpins,ꢀallꢀADCꢀchannelsꢀoperating,ꢀRTCꢀwatchdogꢀ  
operating, CE running, V  
= V  
= 3.3V.  
DD  
AVDD  
Note 3: Application core operating at 27MHz, metering core operating at 36MHz, instruction cache on, AES operating in 128 bit  
mode, one DMA channel actively copying data from application core code RAM to application core system RAM, all timers  
active and running (timer 0/1, timer 1/2, timer 2/4, timer 3/8, timer 4/16, timer 5/32, timer 6/64), random number generator  
running, application core running from flash and fetching data from flash, MAXQ30 running in tight loop, MAXQ30 timer  
operatingꢀinꢀtimerꢀmode,ꢀallꢀLCDꢀsegmentsꢀenabledꢀbutꢀnoꢀloadꢀonꢀLCDꢀpins,ꢀallꢀADCꢀchannelsꢀoperating,ꢀRTCꢀwatchdogꢀ  
operating, CE running, V  
= V  
= 3.3V.  
DD  
AVDD  
Note 4:  
Note 5:  
V
= V  
= 3.3V, ADC off, application core off, compute engine off, all peripherals off, computed at user core frequen-  
DD  
AVDD  
cies of 108MHz and 13.5MHz.  
f
= 108MHz; f  
= f  
= 36MHz; all peripherals and security engines disabled, all GPIO pins  
APPLICATION_CORE  
DSP_CORE  
CE  
configured for output and not externally connected. V  
= V  
= 3.3V.  
DD  
AVDD  
Note 6:ꢀ Applicationꢀcoreꢀhalted,ꢀmeteringꢀcoreꢀrunningꢀatꢀ36MHzꢀreadingꢀdataꢀfromꢀRAM,ꢀLCDꢀoff,ꢀCEꢀoff,ꢀADCꢀoff,ꢀperipheralsꢀoff,ꢀ  
V
= V = 0V, V = V = 3.3V.  
DD  
AVDD  
BAT  
RTC  
Note 7:ꢀ Allꢀcoreꢀregulatorsꢀoff,ꢀLCDꢀoperatingꢀwithoutꢀload,ꢀV  
= 3.3V, V  
= 0.0V.  
BAT  
RTC  
Note 8: Computed using a 64k point Fast Fourier Transform, Blackman-Harris window, 65Hz input frequency.  
Note 9: must be greater than 1.8V to support flash write/erase operations.  
V
DD  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX71617/MAX71637  
Energy Measurement SoCs  
Typical Application Circuit (WYE Connected Load, Current Transformer Sensors)  
CURRENT TRANSFORMERS  
A
NEUTRAL  
B
LOAD  
C
NEUTRAL  
GND  
ADC0  
} IA  
ADC1  
ADC8 (VA)  
ADC2  
} IB  
RESISTOR  
DIVIDERS  
ADC3  
MAX71637  
ADC9 (VB)  
ADC4  
} IC  
ADC5  
ADC10 (VC)  
ADC6  
ADC7  
} IN*  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX71617/MAX71637  
Energy Measurement SoCs  
Typical Application Circuit (WYE Connected Load, Shunt Sensors)  
SHUNT CURRENT SENSORS  
C
NEUTRAL  
B
LOAD  
A
NEUTRAL  
3 x 71M6xx3  
71M6xx3  
71M6xx3  
71M6xx3  
GND  
ADC0  
} IN*  
ADC1  
RESISTOR-  
DIVIDERS  
ADC10 (VC)  
ADC6  
} IC  
ADC7  
ADC9 (VB)  
MAX71637  
ADC4  
} IB  
ADC5  
ADC8 (VA)  
ADC2  
ADC3  
} IA  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX71617/MAX71637  
Energy Measurement SoCs  
Pin Configuration  
TOP VIEW  
99 98 97 96 95 94 93 92 91  
+
1
TMPDOUT1  
TMPDOUT0  
P1.3  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
AMISOS  
V1P2  
2
3
V1P8  
P1.4  
4
P0.14  
P0.13  
P0.12  
P0.11  
P0.10  
P0.9  
P1.5  
5
6
P1.6  
7
P1.7  
P1.8  
8
P1.9  
9
P1.10  
P1.11  
VIO  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
GND  
VIO  
P0.8  
GND  
P0.7  
P1.13  
P1.14  
P1.15  
P1.16  
P1.20  
P1.19  
P1.22  
P1.21  
GND  
P0.6  
MAX71617  
MAX71637  
P0.5  
P0.4  
P0.3  
P0.2  
P0.1  
P0.0  
P1.18  
GND  
COM2  
COM0  
COM4  
VLCD  
P1.17  
COM5  
COM3  
COM1  
P1.12  
MGPIO0  
MGPIO1  
MGPIO2  
RSTN  
TMPDIN0  
TMPDIN1  
32KHZIN  
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60  
*FOR MAX71617 ONLY.  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX71617/MAX71637  
Energy Measurement SoCs  
Pin Description  
PIN  
PIN  
PRIMARY  
FUNCTION  
SECONDARY  
FUNCTION  
DESCRIPTION  
(MAX71617) (MAX71637)  
1
1
TMPDOUT1  
TMPDOUT0  
P1.3  
Tamper Detect Output 1  
2
2
Tamper Detect Output 0  
3
3
SEG35/ISORST  
SEG36/ISoCLK  
SEG37/ISOIO  
SEG38/MISO1  
SEG39/MOSI1  
SEG40/SCLK1  
SEG41/SSEL1  
SEG42/TXD3  
SEG43/RXD3  
GPIOꢀ1.3/LCDꢀSegmentꢀ35/ISOꢀUARTꢀReset  
GPIOꢀ1.4/LCDꢀSegmentꢀ36/ISOꢀUARTꢀClock  
GPIOꢀ1.5/LCDꢀSegmentꢀ37/ISOꢀUARTꢀI/O  
GPIOꢀ1.6/LCDꢀSegmentꢀ38ꢀSPIꢀPortꢀ1ꢀMISO  
GPIOꢀ1.7/LCDꢀSegmentꢀ39/SPIꢀPortꢀ1ꢀMOSI  
GPIOꢀ1.8/LCDꢀSegmentꢀ40/SPIꢀPortꢀ1ꢀSCLK  
GPIOꢀ1.9/LCDꢀSegmentꢀ41/SPIꢀPortꢀ1ꢀSSEL  
GPIOꢀ1.10/LCDꢀSegmentꢀ42/UARTꢀ3ꢀTransmitꢀData  
GPIOꢀ1.11/LCDꢀSegmentꢀ43/UARTꢀ3ꢀReceiveꢀData  
I/O Power  
4
4
P1.4  
5
5
P1.5  
6
6
P1.6  
7
7
P1.7  
8
8
P1.8  
9
10  
9
10  
P1.9  
P1.10  
P1.11  
11  
11  
12, 80, 101  
12, 80, 101  
V
IO  
13, 22, 55,  
69, 81, 93,  
102, 115  
13, 22, 55,  
69, 81, 93,  
102, 115  
GND  
Digital Ground  
14  
15  
16  
17  
14  
15  
16  
17  
P1.13  
P1.14  
P1.15  
P1.16  
SEG45  
SEG46  
SEG47  
SEG48  
GPIOꢀ1.13/LCDꢀSegmentꢀ45  
GPIOꢀ1.14/LCDꢀSegmentꢀ46  
GPIOꢀ1.15/LCDꢀSegmentꢀ47  
GPIOꢀ1.16/LCDꢀSegmentꢀ48  
GPIO 1.20/UART 2 Receive Data/Timer 1 I/O/SPI Port 0  
MOSI  
18  
19  
20  
21  
18  
19  
20  
21  
P1.20  
P1.19  
P1.22  
P1.21  
RXD2/TCLK1/MOSI0  
TXD2/TCLK0/MISO0  
RXD1/TCLK3/SSEL0  
TXD1/TCLK2/SCLK0  
GPIO 1.19/UART 2 Transmit Data/Timer 0 I/O/SPI Port 0  
MISO  
GPIO 1.22/UART 1 Receive Data/Timer 3 I/O/SPI Port 0  
SSEL  
GPIO 1.21/UART 1 Transmit Data/Timer 2 I/O/SPI Port 0  
SCLK  
23  
23  
COM2  
COM0  
COM4  
LCDꢀCommonꢀPinꢀ2  
LCDꢀCommonꢀPinꢀ0  
LCDꢀCommonꢀPinꢀ4  
LCDꢀSupply  
24  
24  
25  
25  
26  
26  
V
LCD  
27  
27  
RSTN  
TMPDIN0  
TMPDIN1  
32KHZꢀIN  
32KHZ OUT  
AGND  
Device Reset  
28  
29  
28  
29  
Tamper Detect Input 0  
Tamper Detect Input 1  
Crystal In  
30  
30  
31  
31  
Crystal Out  
32, 36, 41  
32, 36, 41  
Analog Ground  
ADC Input 0, Positive Input to Converter 0, typically Phase A  
Positive Current Input  
33  
33  
ADC0  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX71617/MAX71637  
Energy Measurement SoCs  
Pin Description (continued)  
PIN  
PIN  
PRIMARY  
FUNCTION  
SECONDARY  
FUNCTION  
DESCRIPTION  
(MAX71617) (MAX71637)  
ADCꢀInputꢀ1,ꢀNegativeꢀInputꢀtoꢀConverterꢀ0,ꢀtypicallyꢀPhaseꢀ  
AꢀNegativeꢀCurrentꢀInput  
34  
34  
ADC1  
35  
37  
35  
37  
V
Reference Voltage  
Analog Power  
REF  
AVDD  
ADC Input 8, Single-Ended Input to Converter 4, typically  
Phase A Voltage Input  
38  
39  
38  
39  
40  
ADC8  
ADC Input 9, Single-Ended Input to Converter 5, typically  
Phase B Voltage Input  
ADC9  
N.C.  
40, 50–53  
NoꢀConnection  
ADC Input 10, Single-Ended Input to Converter 6, typically  
Phase C Voltage Input  
ADC10  
42  
43  
42  
43  
V
RTC Battery Power  
RTC  
V
Primary Battery Voltage Input  
Bypass Point for Internal 3.3V Rail  
1.2V Core Voltage Bypass  
Digital Power  
BAT  
44  
44  
V
3P3D  
45, 89  
46  
45, 89  
46  
V
1P2  
V
DD  
47  
47  
RGND  
Remote Ground  
ADCꢀInputꢀ3,ꢀNegativeꢀInputꢀtoꢀConverterꢀ1,ꢀtypicallyꢀPhaseꢀ  
BꢀNegativeꢀCurrentꢀInput;ꢀRemoteꢀInterfaceꢀ0ꢀNegativeꢀ  
Input  
48  
49  
48  
49  
50  
ADC3  
RMT0N  
RMT0P  
RMT1N  
ADC Input 2, Positive Input to Converter 1, typically Phase  
B Positive Current Input; Remote Interface 0 Positive Input  
ADC2  
ADC5  
ADCꢀInputꢀ5,ꢀNegativeꢀInputꢀtoꢀConverterꢀ2,ꢀtypicallyꢀPhaseꢀ  
CꢀNegativeꢀCurrentꢀInput;ꢀRemoteꢀInterfaceꢀ1ꢀNegativeꢀ  
Input  
ADC Input 4, Positive Input to Converter 2, typically Phase  
C Positive Current Input; Remote Interface 1 Positive Input  
51  
52  
53  
ADC4  
ADC7  
ADC6  
RMT1P  
RMT2N  
RMT2P  
ADCꢀInputꢀ7,ꢀNegativeꢀInputꢀtoꢀConverterꢀ3,ꢀtypicallyꢀNeutralꢀ  
NegativeꢀCurrentꢀInput;ꢀRemoteꢀInterfaceꢀ2ꢀNegativeꢀInput  
ADCꢀInputꢀ6,ꢀPositiveꢀInputꢀtoꢀConverterꢀ3,ꢀtypicallyꢀNeutralꢀ  
Positive Current Input; Remote Interface 2 Positive Input  
54  
56  
57  
58  
59  
60  
61  
62  
54  
56  
57  
58  
59  
60  
61  
62  
RVDD  
Remote Power  
MGPIO7  
MGPIO6  
MGPIO5  
MGPIO4  
MGPIO3  
MGPIO2  
MGPIO1  
PULSEV/MP3  
PULSEW/MP2  
PULSEX/MP1  
PULSEY/MP0  
MSCL1  
MAXQ GPIO Bit 7/CE Pulse V/MAXQ Meter Pulse 3  
MAXQ GPIO Bit 6/CE Pulse W/MAXQ Meter Pulse 2  
MAXQ GPIO Bit 5/CE Pulse X/MAXQ Meter Pulse 1  
MAXQꢀGPIOꢀBitꢀ4/CEꢀPulseꢀY/MAXQꢀMeterꢀPulseꢀ0  
2
MAXQ GPIO Bit 3/MAXQ I CꢀSCL1  
2
MSDA1  
MAXQ GPIO Bit 2/MAXQ I C SDA1  
2
MSCL0  
MAXQ GPIO Bit 1/MAXQ I CꢀSCL0  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX71617/MAX71637  
Energy Measurement SoCs  
Pin Description (continued)  
PIN  
PIN  
PRIMARY  
FUNCTION  
SECONDARY  
FUNCTION  
DESCRIPTION  
(MAX71617) (MAX71637)  
2
63  
64  
65  
66  
67  
63  
64  
65  
66  
67  
MGPIO0  
P1.12  
MSDA0  
SEG44  
MAXQ GPIO Bit 0/MAXQ I C SDA0  
GPIOꢀ1.12/LCDꢀSegmentꢀ44  
LCDꢀCommonꢀPinꢀ1  
COM1  
COM3  
COM5  
LCDꢀCommonꢀPinꢀ3  
LCDꢀCommonꢀPinꢀ5  
SEG49/TXD0/  
SDA ARM  
GPIOꢀP1.17/LCDꢀSegmentꢀ49/UARTꢀ0ꢀTransmitꢀData/  
Cortex I C SDA  
68  
70  
68  
70  
P1.17  
P1.18  
2
RXD0/  
SCLꢀARM  
2
GPIO P1.18/UART 0 Receive Data/Cortex I CꢀSCL  
71  
72  
73  
74  
75  
76  
77  
78  
79  
82  
83  
84  
85  
86  
87  
88  
90  
91  
92  
94  
71  
72  
73  
74  
75  
76  
77  
78  
79  
82  
83  
84  
85  
86  
87  
88  
90  
91  
92  
94  
P0.0  
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
P0.6  
P0.7  
P0.8  
P0.9  
P0.10  
P0.11  
P0.12  
P0.13  
P0.14  
SEG0  
SEG1  
SEG2  
SEG3  
SEG4  
SEG5  
SEG6  
SEG7  
SEG8  
SEG9  
SEG10  
SEG11  
SEG12  
SEG13  
SEG14  
GPIOꢀP0.0/LCDꢀSegmentꢀ0  
GPIOꢀP0.1/LCDꢀSegmentꢀ1  
GPIOꢀP0.2/LCDꢀSegmentꢀ2  
GPIOꢀP0.3/LCDꢀSegmentꢀ3  
GPIOꢀP0.4/LCDꢀSegmentꢀ4  
GPIOꢀP0.5/LCDꢀSegmentꢀ5  
GPIOꢀP0.6/LCDꢀSegmentꢀ6  
GPIOꢀP0.7/LCDꢀSegmentꢀ7  
GPIOꢀP0.8/LCDꢀSegmentꢀ8  
GPIOꢀP0.9/LCDꢀSegmentꢀ9  
GPIOꢀP0.10/LCDꢀSegmentꢀ10  
GPIOꢀP0.11/LCDꢀSegmentꢀ11  
GPIOꢀP0.12/LCDꢀSegmentꢀ12  
GPIOꢀP0.13/LCDꢀSegmentꢀ13  
GPIOꢀP0.14/LCDꢀSegmentꢀ14  
V
1.8V Core Voltage Bypass  
1P8  
AMISOS  
AMOSIS  
ASCKS  
P0.15/SEG15  
P0.16/SEG16  
P0.17/SEG17  
P0.18/SEG18  
ARMꢀSPIꢀSlaveꢀMISO/GPIOꢀP0.15/LCDꢀSegmentꢀ15ꢀ  
ARMꢀSPIꢀSlaveꢀMOSI/GPIOꢀP0.16/LCDꢀSegmentꢀ16ꢀ  
ARMꢀSPIꢀSlaveꢀSCK/GPIOꢀP0.17/LCDꢀSegmentꢀ17ꢀ  
ARMꢀSPIꢀSlave/SSELꢀGPIOꢀP0.18/LCDꢀSegmentꢀ18ꢀ  
ASSELSꢀ  
SEG19/  
MISO MAXQ  
95  
96  
97  
98  
99  
95  
96  
97  
98  
99  
P0.19  
P0.20  
P0.21  
P0.22  
P0.23  
GPIOꢀP0.19/LCDꢀSegmentꢀ19/MAXQꢀSPIꢀMISO  
GPIOꢀP0.20/LCDꢀSegmentꢀ20/MAXQꢀSPIꢀMOSI  
GPIOꢀP0.21/LCDꢀSegmentꢀ21/MAXQꢀSPIꢀClock  
GPIOꢀP0.22/LCDꢀSegmentꢀ22/MAXQꢀSPIꢀSelect  
SEG20/  
MOSI MAXQ  
SEG21/  
SSCK MAXQ  
SEG22/  
SSELꢀMAXQ  
SEG23/TXD5/  
TMUX0  
GPIOꢀP0.23/LCDꢀSegmentꢀ23/UARTꢀ5ꢀTransmitꢀData/Testꢀ  
Multiplexer Output 0  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX71617/MAX71637  
Energy Measurement SoCs  
Pin Description (continued)  
PIN  
PIN  
PRIMARY  
FUNCTION  
SECONDARY  
FUNCTION  
DESCRIPTION  
(MAX71617) (MAX71637)  
SEG24/RXD5/  
TMUX1  
GPIOꢀP0.24/LCDꢀSegmentꢀ24/UARTꢀ5ꢀReceiveꢀData/Testꢀ  
Multiplexer Output 1  
100  
103  
100  
103  
P0.24  
P0.25  
SEG25/TXD4/  
TMUXA  
GPIOꢀP0.25/LCDꢀSegmentꢀ25/UARTꢀ4ꢀTransmitꢀData/  
Analog Test Multiplexer  
104  
105  
106  
107  
108  
109  
104  
105  
106  
107  
108  
109  
P0.26  
ATDI  
SEG26/RXD4  
P0.27/SEG27  
P0.28/SEG28  
P0.29/SEG29  
P0.30/SEG30  
P0.31/SEG31  
GPIOꢀP0.26/LCDꢀSegmentꢀ26/UARTꢀ4ꢀReceiveꢀData  
GPIOꢀP0.27/LCDꢀSegmentꢀ27/ARMꢀCortex-M3ꢀTDI  
GPIOꢀP0.28/LCDꢀSegmentꢀ28/ARMꢀCortex-M3ꢀTDO  
GPIOꢀP0.29/LCDꢀSegmentꢀ29/ARMꢀCortex-M3ꢀTMS  
GPIOꢀP0.30/LCDꢀSegmentꢀ30/ARMꢀCortex-M3ꢀTCK  
GPIOꢀP0.31/LCDꢀSegmentꢀ31/ARMꢀCortex-M3ꢀTRST  
ATDO  
ATMS  
ATCK  
ATRST  
MAXQ GPIO Bit 10/MAXQ Reset  
(enabled when MAXQ JTAG active)  
110  
110  
MRST  
MGPIO10  
111  
112  
113  
114  
116  
117  
118  
119  
120  
111  
112  
113  
114  
116  
117  
118  
119  
120  
MTDI  
MTDO  
MTMS  
MTCK  
P1.0  
MGPIO11  
MGPIO12  
MGPIO13  
MGPIO14  
SEG32  
SEG33  
SEG34  
TBA  
MAXQ JTAG TDI/MAXQ GPIO Bit 11  
MAXQ JTAG TDO/MAXQ GPIO Bit 12  
MAXQ JTAG TMS/MAXQ GPIO Bit 13  
MAXQ JTAG TCK/MAXQ GPIO Bit 14  
GPIOꢀ1.0/LCDꢀSegmentꢀ32ꢀ  
P1.1  
GPIOꢀ1.1/LCDꢀSegmentꢀ33ꢀ  
P1.2  
GPIOꢀ1.2/LCDꢀSegmentꢀ34ꢀ  
MGPIO8  
MGPIO9  
MAXQ GPIO Bit 8/Timer A Output  
MAXQ GPIO Bit 9/Timer B Output  
TBB  
Pin Description (According to Function)  
FUNCTION  
POWER  
PIN  
DESCRIPTION  
PrimaryꢀDigitalꢀPowerꢀforꢀtheꢀSoC.ꢀThisꢀpinꢀprovidesꢀpowerꢀforꢀtheꢀLCDꢀDACꢀcontrolꢀlogicꢀandꢀtheꢀ  
mainꢀclockꢀPLL,ꢀandꢀindirectlyꢀthroughꢀvoltageꢀregulatorsꢀforꢀallꢀlogic,ꢀmemoryꢀandꢀflash,ꢀotherꢀthanꢀ  
nonvolatile segments.  
V
46  
37  
DD  
Primary Analog Power for the SoC. This pin provides power for the ADC channels, the bandgap  
voltage reference and voltage comparators.  
AVDD  
RVDD  
54  
Power for the Remote Interface Drivers  
Power for Output Drivers for All Digital Pins  
V
12, 80, 101  
IO  
Bypass Point for the Internally Selected 3.3V Source. A switch in the SoC selects either V  
or  
BAT  
V
to provide power to internal logic and regulators. Attach an appropriate capacitor to ground to  
DD  
V
44  
3P3D  
this point. This pin also typically connects to the V pins to provide nonvolatile power for the digital  
IO  
I/O section.  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX71617/MAX71637  
Energy Measurement SoCs  
Pin Description (According to Function) (continued)  
FUNCTION  
PIN  
DESCRIPTION  
Primary Backup Battery Power. An internal switch selects this input to provide power to the digital  
logic section and main voltage regulators when V is unavailable.  
V
43  
BAT  
DD  
BackupꢀPowerꢀforꢀNonvolatileꢀSection.ꢀThisꢀbatteryꢀisꢀselectedꢀtoꢀprovideꢀpowerꢀtoꢀtheꢀRTC,ꢀLCDꢀ  
RAM and the tamper detection subsystem should both V and V fail.  
V
42  
45, 89  
88  
RTC  
DD  
BAT  
Bypass Point for the Internal 1.2V Core Regulator. Connect a good quality 0.1µF capacitor to each  
of these pins. Do not connect any load to this point.  
V
V
1P2  
1P8  
Bypass Point for the Internal 1.8V Regulator for the Flash Memory Array. Connect a good quality  
0.1µF capacitor to this pin. Do not connect any load to this point.  
BypassꢀPointꢀforꢀInternalꢀLCDꢀVoltageꢀ(ifꢀtheꢀInternalꢀLCDꢀDACꢀisꢀSelected).ꢀIfꢀexternalꢀpowerꢀisꢀ  
selected,ꢀthisꢀpinꢀisꢀtheꢀinputꢀpointꢀforꢀpowerꢀtoꢀtheꢀLCDꢀwaveformꢀgenerators.ꢀTheꢀvoltageꢀappliedꢀ  
V
LCD  
26  
to this pin should be no greater than V  
, and in any event, no greater than 3.6V.  
3P3D  
13, 22, 55,  
69, 81, 93,  
102, 115  
GND  
Digital Ground. Return point for all digital I/O.  
AGND  
RGND  
32, 36, 41  
47  
Analog Ground. Reference point for all analog inputs.  
Remote Ground. Return point for remote drivers.  
CLOCK  
32KHZ OUT  
32KHZꢀIN  
ANALOG  
31  
30  
OscillatorꢀOutput.ꢀConnectꢀaꢀ32.768kHzꢀtuningꢀforkꢀcrystalꢀbetweenꢀthisꢀpinꢀandꢀtheꢀ32KHZꢀINꢀpin.  
Oscillator Input. Connect a 32.768kHz tuning fork crystal between this pin and the 32KHZ OUT pin.  
ADC Input 0, Positive Input to Converter 0, typically Phase A Positive Current Input. When using  
remoteꢀsensors,ꢀtypicallyꢀNeutralꢀPositiveꢀCurrentꢀInput.  
ADC0  
ADC1  
33  
34  
ADCꢀInputꢀ1,ꢀNegativeꢀInputꢀtoꢀConverterꢀ0,ꢀtypicallyꢀPhaseꢀAꢀNegativeꢀCurrentꢀInput.ꢀWhenꢀusingꢀ  
remoteꢀsensors,ꢀtypicallyꢀNeutralꢀPositiveꢀCurrentꢀInput.  
ADC2  
ADC3  
ADC4  
ADC5  
ADC6  
ADC7  
ADC8  
ADC9  
ADC10  
49  
48  
51  
50  
53  
52  
38  
39  
40  
ADC Input 2, Positive Input to Converter 1, typically Phase B Positive Current Input  
ADCꢀInputꢀ3,ꢀNegativeꢀInputꢀtoꢀConverterꢀ1,ꢀtypicallyꢀPhaseꢀBꢀNegativeꢀCurrentꢀInput  
ADC Input 4, Positive Input to Converter 2, typically Phase C Positive Current Input  
ADCꢀInputꢀ5,ꢀNegativeꢀInputꢀtoꢀConverterꢀ2,ꢀtypicallyꢀPhaseꢀCꢀNegativeꢀCurrentꢀInput  
ADCꢀInputꢀ6,ꢀPositiveꢀInputꢀtoꢀConverterꢀ3,ꢀtypicallyꢀNeutralꢀPositiveꢀCurrentꢀInput  
ADCꢀInputꢀ7,ꢀNegativeꢀInputꢀtoꢀConverterꢀ3,ꢀtypicallyꢀNeutralꢀNegativeꢀCurrentꢀInput  
ADC Input 8, Single-Ended Input to Converter 4, typically Phase A Voltage Input  
ADC Input 9, Single-Ended Input to Converter 5, typically Phase B Voltage Input  
ADC Input 10, Single-Ended Input to Converter 6, typically Phase C Voltage Input  
RemoteꢀInterfaceꢀ0ꢀPositiveꢀInput.ꢀTheꢀRMT0PꢀandꢀRMT0Nꢀpinsꢀconnectꢀtoꢀtheꢀprimaryꢀsideꢀofꢀaꢀ  
pulse transformer to couple power and data to a 71M6xxx-type remote interface device. These pins  
typically connect to a current sensor on phase A of a polyphase system.  
RMT0P  
RMT0N  
RMT1P  
49  
48  
51  
RemoteꢀInterfaceꢀ0ꢀNegativeꢀInput.ꢀTheꢀRMT0PꢀandꢀRMT0Nꢀpinsꢀconnectꢀtoꢀtheꢀprimaryꢀsideꢀofꢀaꢀ  
pulse transformer to couple power and data to a 71M6xxx-type remote interface device. These pins  
typically connect to a current sensor on phase A of a polyphase system.  
RemoteꢀInterfaceꢀ1ꢀPositiveꢀInput.ꢀTheꢀRMT1PꢀandꢀRMT1Nꢀpinsꢀconnectꢀtoꢀtheꢀprimaryꢀsideꢀofꢀaꢀ  
pulse transformer to couple power and data to a 71M6xxx-type remote interface device. These pins  
typically connect to a current sensor on phase B of a polyphase system.  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX71617/MAX71637  
Energy Measurement SoCs  
Pin Description (According to Function) (continued)  
FUNCTION  
PIN  
DESCRIPTION  
RemoteꢀInterfaceꢀ1ꢀNegativeꢀInput.ꢀTheꢀRMT1PꢀandꢀRMT1Nꢀpinsꢀconnectꢀtoꢀtheꢀprimaryꢀsideꢀofꢀaꢀ  
pulse transformer to couple power and data to a 71M6xxx-type remote interface device. These pins  
typically connect to a current sensor on phase B of a polyphase system.  
RMT1N  
50  
RemoteꢀInterfaceꢀ2ꢀPositiveꢀInput.ꢀTheꢀRMT2PꢀandꢀRMT2Nꢀpinsꢀconnectꢀtoꢀtheꢀprimaryꢀsideꢀofꢀaꢀ  
pulse transformer to couple power and data to a 71M6xxx-type remote interface device. These pins  
typically connect to a current sensor on phase C of a polyphase system.  
RMT2P  
53  
52  
35  
RemoteꢀInterfaceꢀ2ꢀNegativeꢀInput.ꢀTheꢀRMT2PꢀandꢀRMT2Nꢀpinsꢀconnectꢀtoꢀtheꢀprimaryꢀsideꢀofꢀaꢀ  
pulse transformer to couple power and data to a 71M6xxx-type remote interface device. These pins  
typically connect to a current sensor on phase C of a polyphase system.  
RMT2N  
Bypass Point for Internal Voltage Regulator. This pin should be connected only to a good quality  
0.1µF capacitor and to no other node. In particular, it is recommended that this pin not be used to  
supply reference voltage to other devices.  
V
REF  
SYSTEM  
Active-LowꢀSystemꢀReset.ꢀAssertingꢀaꢀlowꢀlevelꢀonꢀthisꢀpinꢀresetsꢀtheꢀentireꢀSoC.ꢀConnectꢀthisꢀpinꢀ  
RSTN  
27  
to a reset controller if one is used in the system; otherwise, connect the pin to V  
external reset is required; the device has an internal reset controller.  
.ꢀNoteꢀthatꢀnoꢀ  
3P3D  
ATRST  
ATCK  
ATMS  
ATDO  
ATDI  
109  
108  
107  
106  
105  
114  
113  
112  
111  
JTAG TAP Controller Reset for the ARM Cortex-M3 core.  
JTAG Test Clock for the ARM Cortex-M3 core.  
JTAG Test Mode Select for the ARM Cortex-M3 core.  
JTAG Test Data Out for the ARM Cortex-M3 core.  
JTAG Test Data In for the ARM Cortex-M3 core.  
JTAG Test Clock for the MAXQ30 core.  
MTCK  
MTMS  
MTDO  
MTDI  
JTAG Test Mode Select for the MAXQ30 core.  
JTAG Test Data Out for the MAXQ30 core.  
JTAG Test Data In for the MAXQ30 core.  
MAXQ30 Core Reset. This input is active only if the JTAG interface is enabled (TAP bit in the SC  
register). When asserted, program execution is forced to restart at 0x80 0000 in the utility RAM  
space.  
MRST  
110  
GPIO  
P0.0  
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
P0.6  
P0.7  
P0.8  
P0.9  
P0.10  
71  
72  
73  
74  
75  
76  
77  
78  
79  
82  
83  
ARM Cortex-M3 GPIO Port 0 Bit 0  
ARM Cortex-M3 GPIO Port 0 Bit 1  
ARM Cortex-M3 GPIO Port 0 Bit 2  
ARM Cortex-M3 GPIO Port 0 Bit 3  
ARM Cortex-M3 GPIO Port 0 Bit 4  
ARM Cortex-M3 GPIO Port 0 Bit 5  
ARM Cortex-M3 GPIO Port 0 Bit 6  
ARM Cortex-M3 GPIO Port 0 Bit 7  
ARM Cortex-M3 GPIO Port 0 Bit 8  
ARM Cortex-M3 GPIO Port 0 Bit 9  
ARM Cortex-M3 GPIO Port 0 Bit 10  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX71617/MAX71637  
Energy Measurement SoCs  
Pin Description (According to Function) (continued)  
FUNCTION  
P0.11  
P0.12  
P0.13  
P0.14  
P0.15  
P0.16  
P0.17  
P0.18  
P0.19  
P0.20  
P0.21  
P0.22  
P0.23  
P0.24  
P0.25  
P0.26  
P0.27  
P0.28  
P0.29  
P0.30  
P0.31  
P1.0  
PIN  
84  
85  
86  
87  
90  
91  
92  
94  
95  
96  
97  
98  
99  
100  
103  
104  
105  
106  
107  
108  
109  
116  
117  
118  
3
DESCRIPTION  
ARM Cortex-M3 GPIO Port 0 Bit 11  
ARM Cortex-M3 GPIO Port 0 Bit 12  
ARM Cortex-M3 GPIO Port 0 Bit 13  
ARM Cortex-M3 GPIO Port 0 Bit 14  
ARM Cortex-M3 GPIO Port 0 Bit 15  
ARM Cortex-M3 GPIO Port 0 Bit 16  
ARM Cortex-M3 GPIO Port 0 Bit 17  
ARM Cortex-M3 GPIO Port 0 Bit 18  
ARM Cortex-M3 GPIO Port 0 Bit 19  
ARM Cortex-M3 GPIO Port 0 Bit 20  
ARM Cortex-M3 GPIO Port 0 Bit 21  
ARM Cortex-M3 GPIO Port 0 Bit 22  
ARM Cortex-M3 GPIO Port 0 Bit 23  
ARM Cortex-M3 GPIO Port 0 Bit 24  
ARM Cortex-M3 GPIO Port 0 Bit 25  
ARM Cortex-M3 GPIO Port 0 Bit 26  
ARM Cortex-M3 GPIO Port 0 Bit 27  
ARM Cortex-M3 GPIO Port 0 Bit 28  
ARM Cortex-M3 GPIO Port 0 Bit 29  
ARM Cortex-M3 GPIO Port 0 Bit 30  
ARM Cortex-M3 GPIO Port 0 Bit 31  
ARM Cortex-M3 GPIO Port 1 Bit 0  
ARM Cortex-M3 GPIO Port 1 Bit 1  
ARM Cortex-M3 GPIO Port 1 Bit 2  
ARM Cortex-M3 GPIO Port 1 Bit 3  
ARM Cortex-M3 GPIO Port 1 Bit 4  
ARM Cortex-M3 GPIO Port 1 Bit 5  
ARM Cortex-M3 GPIO Port 1 Bit 6  
ARM Cortex-M3 GPIO Port 1 Bit 7  
ARM Cortex-M3 GPIO Port 1 Bit 8  
ARM Cortex-M3 GPIO Port 1 Bit 9  
ARM Cortex-M3 GPIO Port 1 Bit 10  
ARM Cortex-M3 GPIO Port 1 Bit 11  
ARM Cortex-M3 GPIO Port 1 Bit 12  
ARM Cortex-M3 GPIO Port 1 Bit 13  
ARM Cortex-M3 GPIO Port 1 Bit 14  
ARM Cortex-M3 GPIO Port 1 Bit 15  
ARM Cortex-M3 GPIO Port 1 Bit 16  
ARM Cortex-M3 GPIO Port 1 Bit 17  
P1.1  
P1.2  
P1.3  
P1.4  
4
P1.5  
5
P1.6  
6
P1.7  
7
P1.8  
8
P1.9  
9
P1.10  
P1.11  
P1.12  
P1.13  
P1.14  
P1.15  
P1.16  
P1.17  
10  
11  
64  
14  
15  
16  
17  
68  
Maxim Integrated  
14  
www.maximintegrated.com  
MAX71617/MAX71637  
Energy Measurement SoCs  
Pin Description (According to Function) (continued)  
FUNCTION  
P1.18  
PIN  
70  
DESCRIPTION  
ARM Cortex-M3 GPIO Port 1 Bit 18  
ARM Cortex-M3 GPIO Port 1 Bit 19  
ARM Cortex-M3 GPIO Port 1 Bit 20  
ARM Cortex-M3 GPIO Port 1 Bit 21  
ARM Cortex-M3 GPIO Port 1 Bit 22  
MAXQ30 GPIO Bit 0  
P1.19  
19  
P1.20  
18  
P1.21  
21  
P1.22  
20  
MGPIO0  
MGPIO1  
MGPIO2  
MGPIO3  
MGPIO4  
MGPIO5  
MGPIO6  
MGPIO7  
MGPIO8  
MGPIO9  
MGPIO10  
MGPIO11  
MGPIO12  
MGPIO13  
MGPIO14  
63  
62  
MAXQ30 GPIO Bit 1  
61  
MAXQ30 GPIO Bit 2  
60  
MAXQ30 GPIO Bit 3  
59  
MAXQ30 GPIO Bit 4  
58  
MAXQ30 GPIO Bit 5  
57  
MAXQ30 GPIO Bit 6  
56  
MAXQ30 GPIO Bit 7  
119  
120  
110  
111  
112  
113  
114  
MAXQ30 GPIO Bit 8  
MAXQ30 GPIO Bit 9  
MAXQ30 GPIO Bit 10  
MAXQ30 GPIO Bit 11  
MAXQ30 GPIO Bit 12  
MAXQ30 GPIO Bit 13  
MAXQ30 GPIO Bit 14  
ARM CORTEX-M3 PERIPHERALS  
UART  
TxD0  
RxD0  
TxD1  
RxD1  
TxD2  
RxD2  
TxD3  
RxD3  
TxD4  
RxD4  
TxD5  
RxD5  
68  
70  
UART Channel 0 Transmit Data  
UART Channel 0 Receive Data  
UART Channel 1 Transmit Data  
UART Channel 1 Receive Data  
UART Channel 2 Transmit Data  
UART Channel 2 Receive Data  
UART Channel 3 Transmit Data  
UART Channel 3 Receive Data  
UART Channel 4 Transmit Data  
UART Channel 4 Receive Data  
UART Channel 5 Transmit Data  
UART Channel 5 Receive Data  
21  
20  
19  
18  
10  
11  
103  
104  
99  
100  
SMART CARD INTERFACE  
SCIO  
5
4
3
Smart Card I/O  
SCCLK  
SCRST  
Smart Card Data Clock  
Smart Card Reset  
Maxim Integrated  
15  
www.maximintegrated.com  
MAX71617/MAX71637  
Energy Measurement SoCs  
Pin Description (According to Function) (continued)  
FUNCTION  
PIN  
DESCRIPTION  
2
I C PORT  
ASDA  
ASCL  
68  
70  
ARM Cortex-M3 I2C Serial Data Circuit  
ARM Cortex-M3 I2C Serial Clock Circuit  
SPI PORTS  
AMOSI0  
AMISO0  
ASSEL0  
ASCLK0  
AMOSI1  
AMISO1  
ASSEL1  
ASCLK1  
AMOSIS  
AMISOS  
ASSELS  
ASCLKS  
TIMERS  
ATCLK0  
ATCLK1  
ATCLK2  
ATCLK3  
18  
19  
20  
21  
7
ARM Cortex-M3 SPI port 0—Master Out Slave In  
ARM Cortex-M3 SPI port 0—Master In Slave Out  
ARM Cortex-M3 SPI port 0—Slave Select  
ARM Cortex-M3 SPI port 0—Serial Clock  
ARM Cortex-M3 SPI port 1—Master Out Slave In  
ARM Cortex-M3 SPI port 1—Master In Slave Out  
ARM Cortex-M3 SPI port 1—Slave Select  
ARM Cortex-M3 SPI port 1—Serial Clock  
ARM Cortex-M3 SPI port 2—Master Out Slave In  
ARM Cortex-M3 SPI port 2—Master In Slave Out  
ARM Cortex-M3 SPI port 2—Slave Select  
ARM Cortex-M3 SPI port 2—Serial Clock  
6
9
8
91  
90  
94  
92  
19  
18  
21  
20  
ARM Cortex-M3 Timer 0 I/O Pin  
ARM Cortex-M3 Timer 1 I/O Pin  
ARM Cortex-M3 Timer 2 I/O Pin  
ARM Cortex-M3 Timer 3 I/O Pin  
MAXQ30 PERIPHERALS  
LCD  
LCDꢀCommonꢀOutputꢀ0.ꢀIfꢀtheꢀLCDꢀisꢀenabledꢀinꢀanyꢀmode,ꢀthisꢀpinꢀformsꢀoneꢀofꢀtheꢀcommonꢀ  
element drivers.  
COM0  
COM1  
COM2  
COM3  
COM4  
COM5  
24  
65  
23  
66  
25  
67  
LCDꢀCommonꢀOutputꢀ1.ꢀIfꢀtheꢀLCDꢀisꢀenabledꢀinꢀ/2ꢀmodeꢀorꢀgreater,ꢀthisꢀpinꢀformsꢀoneꢀofꢀtheꢀ  
common element drivers.  
LCDꢀCommonꢀOutputꢀ2.ꢀIfꢀtheꢀLCDꢀisꢀenabledꢀinꢀ/3ꢀmodeꢀorꢀgreater,ꢀthisꢀpinꢀformsꢀoneꢀofꢀtheꢀ  
common element drivers.  
LCDꢀCommonꢀOutputꢀ3.ꢀIfꢀtheꢀLCDꢀisꢀenabledꢀinꢀ/4ꢀmodeꢀorꢀgreater,ꢀthisꢀpinꢀformsꢀoneꢀofꢀtheꢀ  
common element drivers.  
LCDꢀCommonꢀOutputꢀ4.ꢀIfꢀtheꢀLCDꢀisꢀenabledꢀinꢀ/6ꢀmode,ꢀthisꢀpinꢀformsꢀoneꢀofꢀtheꢀcommonꢀ  
element drivers.  
LCDꢀCommonꢀOutputꢀ5.ꢀIfꢀtheꢀLCDꢀisꢀenabledꢀinꢀ/6ꢀmode,ꢀthisꢀpinꢀformsꢀoneꢀofꢀtheꢀcommonꢀ  
element drivers.  
SEG0  
SEG1  
SEG2  
SEG3  
71  
72  
73  
74  
LCDꢀSegmentꢀDriverꢀ0  
LCDꢀSegmentꢀDriverꢀ1  
LCDꢀSegmentꢀDriverꢀ2  
LCDꢀSegmentꢀDriverꢀ3  
Maxim Integrated  
16  
www.maximintegrated.com  
MAX71617/MAX71637  
Energy Measurement SoCs  
Pin Description (According to Function) (continued)  
FUNCTION  
SEG4  
PIN  
75  
76  
77  
78  
79  
82  
83  
84  
85  
86  
87  
90  
91  
92  
94  
95  
96  
97  
98  
99  
100  
103  
104  
105  
106  
107  
108  
109  
116  
117  
118  
3
DESCRIPTION  
LCDꢀSegmentꢀDriverꢀ4  
LCDꢀSegmentꢀDriverꢀ5  
LCDꢀSegmentꢀDriverꢀ6  
LCDꢀSegmentꢀDriverꢀ7  
LCDꢀSegmentꢀDriverꢀ8  
LCDꢀSegmentꢀDriverꢀ9  
LCDꢀSegmentꢀDriverꢀ10  
LCDꢀSegmentꢀDriverꢀ11  
LCDꢀSegmentꢀDriverꢀ12  
LCDꢀSegmentꢀDriverꢀ13  
LCDꢀSegmentꢀDriverꢀ14  
LCDꢀSegmentꢀDriverꢀ15  
LCDꢀSegmentꢀDriverꢀ16  
LCDꢀSegmentꢀDriverꢀ17  
LCDꢀSegmentꢀDriverꢀ18  
LCDꢀSegmentꢀDriverꢀ19  
LCDꢀSegmentꢀDriverꢀ20  
LCDꢀSegmentꢀDriverꢀ21  
LCDꢀSegmentꢀDriverꢀ22  
LCDꢀSegmentꢀDriverꢀ23  
LCDꢀSegmentꢀDriverꢀ24  
LCDꢀSegmentꢀDriverꢀ25  
LCDꢀSegmentꢀDriverꢀ26  
LCDꢀSegmentꢀDriverꢀ27  
LCDꢀSegmentꢀDriverꢀ28  
LCDꢀSegmentꢀDriverꢀ29  
LCDꢀSegmentꢀDriverꢀ30  
LCDꢀSegmentꢀDriverꢀ31  
LCDꢀSegmentꢀDriverꢀ32  
LCDꢀSegmentꢀDriverꢀ33  
LCDꢀSegmentꢀDriverꢀ34  
LCDꢀSegmentꢀDriverꢀ35  
LCDꢀSegmentꢀDriverꢀ36  
LCDꢀSegmentꢀDriverꢀ37  
LCDꢀSegmentꢀDriverꢀ38  
LCDꢀSegmentꢀDriverꢀ39  
LCDꢀSegmentꢀDriverꢀ40  
LCDꢀSegmentꢀDriverꢀ41  
SEG5  
SEG6  
SEG7  
SEG8  
SEG9  
SEG10  
SEG11  
SEG12  
SEG13  
SEG14  
SEG15  
SEG16  
SEG17  
SEG18  
SEG19  
SEG20  
SEG21  
SEG22  
SEG23  
SEG24  
SEG25  
SEG26  
SEG27  
SEG28  
SEG29  
SEG30  
SEG31  
SEG32  
SEG33  
SEG34  
SEG35  
SEG36  
SEG37  
SEG38  
SEG39  
SEG40  
SEG41  
4
5
6
7
8
9
Maxim Integrated  
17  
www.maximintegrated.com  
MAX71617/MAX71637  
Energy Measurement SoCs  
Pin Description (According to Function) (continued)  
FUNCTION  
SEG42  
SEG43  
SEG44  
SEG45  
SEG46  
SEG47  
SEG48  
SEG49  
PIN  
10  
11  
DESCRIPTION  
LCDꢀSegmentꢀDriverꢀ42  
LCDꢀSegmentꢀDriverꢀ43  
LCDꢀSegmentꢀDriverꢀ44  
LCDꢀSegmentꢀDriverꢀ45  
LCDꢀSegmentꢀDriverꢀ46  
LCDꢀSegmentꢀDriverꢀ47  
LCDꢀSegmentꢀDriverꢀ48  
LCDꢀSegmentꢀDriverꢀ49  
64  
14  
15  
16  
17  
68  
2
I C PORTS  
MSDA0  
MSCL0  
MSDA1  
MSCL1  
SPI PORT  
MMOSI  
MMISO  
MSSEL  
MSCLK  
63  
62  
61  
60  
MAXQ30 I2C Channel 0 Serial Data Circuit  
MAXQ30 I2C Channel 0 Serial Clock Circuit  
MAXQ30 I2C Channel 1 Serial Data Circuit  
MAXQ30 I2C Channel 1 Serial Clock Circuit  
96  
95  
98  
97  
MAXQ30 SPI Master Out Slave In  
MAXQ30 SPI Master In Slave Out  
MAXQ30 SPI Slave Select  
MAXQ30 SPI Serial Clock  
METER PULSE OUTPUTS  
Meter Pulse W Output. Typically used for real energy output (Watts). Can be directly generated from  
compute engine or by the MAXQ30 core.  
WPULSE  
VPULSE  
XPULSE  
YPULSE  
57  
56  
58  
59  
Meter Pulse V Output. Typically used for reactive energy output (VARs). Can be directly generated  
from compute engine or by the MAXQ30 core.  
Meter Pulse X Output. Typically used to indicate a zero-crossing event on a voltage input. Can be  
directly generated from compute engine or by the MAXQ30 core.  
MeterꢀPulseꢀYꢀOutput.ꢀTypicallyꢀusedꢀtoꢀindicateꢀvoltageꢀsagꢀonꢀoneꢀofꢀtheꢀvoltageꢀinputs.ꢀCanꢀbeꢀ  
directly generated from compute engine or by the MAXQ30 core.  
TAMPER DETECTION  
TMPDOUT0  
TMPDIN0  
TMPDOUT1  
TMPDIN1  
TIMER  
2
28  
1
Tamper Detect Channel 0 Output  
Tamper Detect Channel 0 Input  
Tamper Detect Channel 1 Output  
Tamper Detect Channel 1 Input  
29  
MAXQ30ꢀTimerꢀI/OꢀPinꢀA.ꢀWhenꢀconfiguredꢀasꢀanꢀinput,ꢀthisꢀpinꢀprovidesꢀaꢀclockꢀthatꢀcanꢀbeꢀusedꢀtoꢀ  
incrementꢀtheꢀcounterꢀonꢀeachꢀselectedꢀclockꢀedge.ꢀWhenꢀconfiguredꢀasꢀanꢀoutput,ꢀthisꢀpinꢀcanꢀbeꢀ  
used to generate a square wave that toggles on each timer match.  
TBA  
TBB  
119  
120  
MAXQ30 Timer I/O Pin B. This pin is an input to the timer module used for multiple purposes,  
dependingꢀonꢀtheꢀtimerꢀconfiguration.ꢀItꢀcanꢀbeꢀusedꢀtoꢀreloadꢀtheꢀcounter,ꢀtoꢀreverseꢀtheꢀdirectionꢀofꢀ  
count or to trigger an interrupt. In PWM modes, this pin outputs the PWM signal.  
Maxim Integrated  
18  
www.maximintegrated.com  
MAX71617/MAX71637  
Energy Measurement SoCs  
Functional Diagram  
REAL-TIME CLOCK  
TAMPER DETECT  
MAX71617  
MAX71637  
VREF  
7x  
ADCs  
+
7x  
DECIMATORS  
INPUT  
ASSIGNMENT  
2
I C (STORAGE)  
DATA RAM  
2K x 32  
COMPUTE  
ENGINE  
2
I C (STORAGE)  
CE RAM  
16K x 8  
TEMPERATURE  
PROGRAMMABLE  
PULSE GENERATOR  
PROGRAMMABLE  
FLASH  
MAXQ30 36MHz  
32 x 32 MULTIPLY  
50 x 6 LCD  
CONTROLLER  
CRYPTO  
DES  
AES  
DUAL-PORT  
RAM  
PROGRAM RAM  
32K x 16  
MAILBOX  
MAA  
TRNG  
SHA  
6x UART  
DATA RAM  
32K x 32  
ARM CORTEX-M3 108MHz  
2
PROGRAM FLASH  
256K x 32  
I C  
AHB-APB  
BRIDGE  
AHB  
APB  
SPI (SLAVE)  
ISO UART  
TIMER x 7  
SPI (MASTER)  
Maxim Integrated  
19  
www.maximintegrated.com  
MAX71617/MAX71637  
Energy Measurement SoCs  
The ARM Cortex-M3 core communicates with the  
MAXQ30 metering core by means of a mailbox scheme  
by which it can leave messages for and retrieve data from  
the metering core. Additionally, the cores can exchange  
bulk data by means of a 4KB shared RAM block.  
Detailed Description  
Description  
The MAX71617/MAX71637 are systems-on-chip (SoCs)  
for next-generation electricity meters placed on the smart  
grid. The MAX71617/MAX71637 provide three high-  
performance computing cores: an industry-standard ARM  
Cortex-M3 core for handling communication and other  
supervisory functions, a 32-bit MAXQ30 core for general  
metering functions, and a programmable compute engine  
(CE) to handle signal processing tasks.  
Noteꢀ thatꢀ thereꢀ isꢀ noꢀ directꢀ hardwareꢀ controlꢀ ofꢀ theꢀ  
MAXQ30 metering core by the ARM Cortex-M3 applica-  
tion core. The application core can only request services  
from the metering core, and service requests are rejected  
unless they are properly formatted. This reduces the likeli-  
hood of rogue code running in the ARM Cortex-M3, cor-  
rupting the operation of critical metering functions being  
performed in the MAXQ30 core.  
The use of multiple cores in this way makes it easy  
to separate metering and billing functions that can be  
regulated by local or national authorities from the admin-  
istrative and communications functions that typically are  
unregulated. The MAXQ30 core receives data from the  
compute engine and manages the energy accumulation  
process,ꢀtheꢀLCDꢀandꢀtheꢀmeterꢀpulseꢀoutputs,ꢀwhileꢀtheꢀ  
ARM core handles bulk storage and communications over  
the various UART channels.  
MAXQ30 Core  
The 32-bit MAXQ30 core is a Harvard architecture micro-  
controller core well-suited for low-power signal process-  
ing. Because the instruction bus is separate from the data  
bus, most instructions execute in one cycle.  
The MAXQ30 core is coupled to a single-cycle 32-bit mul-  
tiply/accumulate unit. Because of the transfer-triggered  
nature of the MAXQ30 core, the DSP core is completely  
static and only the active modules of the core consume  
power when operating. When the core is idle, it can be  
unclocked and draws only leakage current.  
ARM Core Overview  
The ARM Cortex-M3 core is a low-power 32-bit RISC  
core, widely used for embedded applications. In the  
MAX71617/MAX71637, the application core is coupled  
to 1MB of flash memory, 128KB of static RAM (two 64KB  
blocks), and a number of peripherals for communication  
and external device control.  
The MAXQ30 core contains no ROM or flash memory.  
Instead, the program store is implemented as fast static  
RAM. This means that the MAXQ30 core cannot begin  
running code before the ARM core has loaded its pro-  
gram store. See the Security section for details on this  
mechanism.  
The ARM Cortex-M3 core provides services such as  
communication management and usage reporting. The  
MAX71617/MAX71637 are designed to allow this core  
(the application core) to manage relatively risky opera-  
tions such as communication over an insecure link, while  
permitting the more sensitive operations, such as energy  
measurement and accumulation, to proceed on a more  
secure microcontroller (the metering core).  
The purpose of the MAXQ30 core is to isolate criti-  
cal metering functions into a separate core that does  
not directly communicate over potentially unsecured  
communication channels. Since programs running on  
the MAXQ30 core can choose how to respond (or not  
respond) to messages arriving from the ARM Cortex-M3  
application core, the likelihood of hacking by outside  
threats is reduced.  
The ARM Cortex-M3 core controls the following  
peripherals:  
●ꢀ Upꢀtoꢀ55ꢀGPIOꢀpins  
●ꢀ Upꢀtoꢀsixꢀfull-duplexꢀUARTs  
The MAXQ30 core manages the following peripherals:  
●ꢀ Sevenconfigurablegeneral-purposetimers,fourwithꢀ  
●ꢀ Upꢀtoꢀ14ꢀGPIOꢀpins  
optional output pins  
●ꢀ Theꢀ LCDꢀ controllerꢀ capableꢀ ofꢀ controllingꢀ upꢀ toꢀ 300ꢀ  
2
●ꢀ OneꢀI C port, configurable as a master or slave  
segments (6 x 50).  
●ꢀ Threeꢀ SPIꢀ ports:ꢀ twoꢀ configurableꢀ asꢀ aꢀ masterꢀ orꢀ  
●ꢀ Aꢀtime-of-dayꢀclockꢀwithꢀalarmꢀfunctions  
slave, and one permanently configured as a slave  
2
●ꢀ TwoI C ports. These ports can be used for any pur-  
2
●ꢀ Oneꢀsmartꢀcardꢀinterface  
pose, but typically are configured so that one I C port  
manages external nonvolatile storage for measured  
energy while the other I C port might be configured for  
●ꢀ Aꢀblockꢀofꢀcryptographicꢀperipherals  
2
managementꢀofꢀanꢀexternalꢀLCDꢀcontroller,ꢀifꢀneeded.  
Maxim Integrated  
20  
www.maximintegrated.com  
MAX71617/MAX71637  
Energy Measurement SoCs  
●ꢀ OneꢀSPIꢀmaster/slave  
ADC  
TheꢀMAX71637ꢀprovidesꢀsevenꢀ24-bitꢀΔΣꢀADCꢀchannels,ꢀ  
and the MAX71617 provides four ADC channels.  
●ꢀ Fourꢀprogrammableꢀmeterꢀpulseꢀgenerators  
●ꢀ Oneꢀprogrammableꢀtimer  
In the MAX71637, the channels can be dynamically con-  
figured into multiple arrangements so that external pins  
can be flexibly routed to particular ADC channels. By  
default, the ADCs are arranged so that the three current  
inputs drive dedicated ADC channels, and the neutral  
current input drives its own dedicated ADC channel.  
The three voltage inputs are sensed by the remaining  
three ADC channels. Further arrangements are possible,  
including routing all signals to a single multiplexed ADC  
channel and turning off all other ADC channels.  
In addition, the MAXQ30 core configures and manages  
the AFE. It also controls the compute engine, although this  
control is typically limited to setting up the AFE and the  
compute engine such that the compute engine runs when-  
ever a new set of samples are available in the CE RAM.  
Intercore Communications  
The application core and the MAXQ30 metering core  
must communicate with one another to transfer configura-  
tion data as well as metrology results. This communica-  
tion is handled by a small block of memory that appears  
as registers to the MAXQ30 processor and as standard  
RAM to the application core. A larger block of memory  
is reserved to transfer complete vectors of acquired  
samples from any input channel.  
In the MAX71617, two input are dedicated to current  
channels (for line and neutral current to support tamper  
detection) and two channels are dedicated to two phase  
voltages. This arrangement permits the single-phase  
version of the SoC to operate in standard single-phase  
(equation 0), split-phase (equation 1) and applications  
with two independent voltages (equation 2).  
The application core typically starts a transfer by writing a  
code to the MREQ (Master REQuest) register. This action  
sets a flag toward the MAXQ30 core that can serve as an  
interrupt source. The MAXQ30 core performs the request-  
ed action and loads the results into the SRSP (Slave  
ReSPonse) register, setting a bit toward the application  
core. The application core can then retrieve the results.  
In the MAX71637, the connections between the eleven  
input pins and the actual inputs to the ADC channels  
are made through input multiplexers attached to each  
ADC channel. Additionally, the multiplex connections can  
be optionally configured on a time-slot basis if it is not  
desired to use dedicated ADCs. Input assignments are  
configurable and depend on code running on the compute  
engine to determine how inputs are assigned to ADC  
channels.  
For results that occupy more than the 32-bits available in  
the slave response register, the MAX71617/MAX71637  
provide a 4KB buffer that can be assigned to either the  
application core or the metering core at any particular  
time. The MAXQ30 metering core controls the owner-  
ship of the RAM block. In typical use, the application  
core makes a request for bulk data, the metering core  
populates the buffer and transfer control to the application  
core before loading a status value in the slave response  
register. Once the application core has recovered the  
data, the buffer ownership can be transferred back to the  
metering core.  
Remote Interfaces  
The MAX71637 provides three analog input pin pairs  
(ADC0-1, ADC2-3, and ADC4-5), and the MAX71617  
provides two analog input pin pairs (ADC0-1 and ADC2-3)  
that are configurable to support remote interfaces.  
The MAX71617/MAX71637 metering SoC devices sup-  
port 71M6000 series single-channel remote interfaces.  
The 71M6000 remote interface permits the connection of  
nonisolated current sensors (such as resistive shunts) to  
the SoC. In a typical usage scenario, the MAX71637 is ref-  
erenced to the neutral point in a three-phase wye system,  
with voltage monitored by means of conventional resistive  
divider networks on each phase and current monitored  
by means of shunts connected through three 71M6000-  
series interfaces and their associated pulse transformers.  
In addition to metrology results, intercore communica-  
tions are also used to transfer cryptographic blocks from  
the MAXQ30 metering core and the ARM Cortex-M3  
application core. The actual crypto hardware is physically  
in the domain of the application core. When the meter-  
ing core requires cryptographic services, it can place a  
request in the mailbox to request encryption services of  
the application core.  
Maxim Integrated  
21  
www.maximintegrated.com  
MAX71617/MAX71637  
Energy Measurement SoCs  
The 71M6000 interfaces receive power from the SoC by  
means of power pulses that are inserted into the data  
stream. These current pulses are coupled to the remote  
interfaces by means of a pulse transformer that also  
provides isolation to the circuit. Data from the 71M6000  
is coupled back to the SoC by means of the same trans-  
former. The MAX71617/MAX71637 SoCs contain a set of  
FIR decimation filters that convert the bit stream from the  
remote interfaces into usable current samples.  
LCD  
The MAX71617/MAX71637 provide a 50-segment,  
6-commonꢀLCDꢀcontrollerꢀperipheral.  
A display is essential to an electricity meter. Also under  
many regulatory structures, the display must be logically  
separate from the communications process to prevent  
malicious attacks that might cause the meter to display  
incorrect information.  
TheꢀLCDꢀcontrollerꢀisꢀmanagedꢀbyꢀtheꢀMAXQ30ꢀmeteringꢀ  
processor. Since the MAXQ30 processor has no direct  
connectionꢀtoꢀtheꢀcommunicationsꢀmechanisms,ꢀtheꢀLCDꢀ  
is guaranteed to be logically separated at all times from  
the network.  
Refer to the 71M6103/71M6113/71M6201/71M6203/71M  
71M6601/71M6603 data sheet for more information about  
the remote interfaces and how to use them.  
Compute Engine  
The MAX71617/MAX71637 provide a dedicated, 32-bit  
fixed-point compute engine to perform the initial process-  
ing of received samples and to convert them into incre-  
ments of real and reactive energy. The compute engine  
runs every time the ADC deposits a set of samples into  
CE RAM. From time to time (typically once per second)  
the CE notifies the MAXQ30 core that it should retrieve  
data for long-term accumulation. The compute engine  
also calculates ancillary values such as per-phase RMS  
voltage and current, line frequencies, and phasor angles  
between phases.  
For applications that do not require strict separation  
between communications and display, a small piece of  
software can be loaded into the MAXQ30 core that allows  
the ARM core to directly write display contents to memory.  
The data thus written is then picked up by the MAXQ30  
core and directly transferred to the display controller.  
Real-Time Clock  
LiketheLCD,thereal-timeclockisconsideredacriticalꢀ  
component that must be segregated from the communi-  
cations media. The real-time clock is a peripheral of the  
MAXQ30 core and is managed by sending commands  
from the application core to software running on the  
MAXQ30 core. The software can validate the commands  
before making changes to the time-of-day clock.  
The code for compute engine is stored in volatile RAM  
during operation. On power-up, the RAM must be loaded  
by the ARM Cortex-M3 application core prior to releasing  
the compute engine to run.  
To ensure the integrity of the code running on the com-  
pute engine, the MAXQ30 metering core can periodically  
perform a verification of the compute engine code base.  
This involves no performance penalty since the compute  
engine, the MAXQ30 core and the AFE share access to  
the common memory block on a time-interleaved basis.  
Code running on the MAXQ30 can be checked by rou-  
tines in the utility RAM.  
The clock itself uses a standard tuning-fork crystal as its  
timebase. The crystal is always allowed to operate at its  
natural frequency. Corrections to the timebase are applied  
digitally by inserting or deleting half-cycles of the crystal’s  
natural frequency to achieve a long-term average of a  
32,768Hz nominal frequency.  
UART  
The MAX71617/MAX71637 provide six UART peripherals.  
Each UART is connected into the application core in order  
to maintain the segregation of functional elements between  
the application core and the metering core. Each UART  
has its own baud rate generator based around the principle  
of the phase accumulator. This type of baud rate generator  
assures the most accurate timing at high baud rates.  
Maxim provides CE code for most common configura-  
tions of load connections, pulse generation schemes,  
harmonic analysis and current and voltage sensors.  
Alternately, the compute engine can be completely dis-  
abled and the MAXQ30 core can provide per sample  
processing services.  
Temperature Sensor  
The primary UART channel includes hardware to assist  
with amplitude modulated infrared (IR) based readers.  
The UART contains an independent timer that generates  
a carrier signal in the range of 10kHz to 500kHz. The car-  
rier signal can be transmitted during either mark or space  
times, with the alternate signal level being represented by  
either a 1 or a 0 level.  
The MAX71617/MAX71637 provide a built-in temperature  
sensor that determines the temperature of the semicon-  
ductor die. This temperature sensor is periodically con-  
nected to one of the ADC channels to record the die tem-  
perature. The value determined by the ADC is then used  
to compensate the on-chip bandgap voltage reference for  
variations due to temperature.  
Maxim Integrated  
22  
www.maximintegrated.com  
MAX71617/MAX71637  
Energy Measurement SoCs  
2
serpentine mesh, the signal returns to an input that  
compares the received signal to the transmitted signal.  
If the signals differ, a tamper event is declared and the  
MAXQ30 metrology processor is interrupted.  
I C  
The application core of the MAX71617/MAX71637 pro-  
vide one I C peripheral, and the MAXQ30 metering core  
provides two I C peripherals.  
2
2
This scheme differs from simply assigning a GPIO port  
for tamper detection because it resists simply pulling the  
pin high or low to force the processor to ignore a tamper  
event. Two separate circuits provide the possibility to  
issue a warning when the first seal is breached, and a  
higher alert level when a further breach has occurred.  
2
I C is frequently used to control external memory devices  
2
and display drivers. All I C peripherals in the MAX71617/  
MAX71637 support master and slave mode, and obey  
standard protocol practices such as clock stretching.  
2
The two I C ports on the MAXQ30 core can be used for  
any purpose, but are recommended as connections to  
external flash memory for storage of metrology values and  
for an external display controller. Two ports are provided  
so that a single failure cannot disable both peripherals.  
On either tamper detection event, the MAXQ30 metering  
core can be interrupted. The metering core can then send  
a signal to the application core so that the tamper event  
can be logged and reported. The tamper detect circuitry  
operates on the nonvolatile power domain, so that tamper  
events can be configured to wake the metering core even  
when the device is in sleep mode.  
SPI  
The MAX71617/MAX71637 provide four SPI peripherals:  
three on the ARM Cortex-M3 application core, and one on  
the MAXQ30 metering core.  
Timers  
Two of the three application-core SPI channels serve as a  
master or slave. SPI masters generate the SPI clock and  
driveꢀtheꢀslaveꢀselectꢀ(SSEL)ꢀcircuit.ꢀWhenꢀconfiguredꢀasꢀ  
a slave, the SPI channels expect an external master to  
provideꢀtheꢀclockꢀandꢀtoꢀdriveꢀtheꢀSSELꢀcircuit.ꢀTheꢀthirdꢀ  
SPI channel is configured as slave only.  
The ARM Cortex-M3 application core provides seven  
programmable timers. These timers are uncommitted and  
can be used for any purpose, including the support of  
multitasking operating systems. Four of the timers have  
outputs that can be routed to external pins.  
In addition to the timers attached to the application core,  
one programmable timer is attached to the MAXQ30 core  
for general use, including PWM applications.  
The SPI controller on the MAXQ30 metering core can be  
configured as master or slave, and can be configured for  
eight-bit or sixteen-bit operation.  
Meter Pulse Generation  
Smart Card  
Meter pulse generation is a critical function during calibra-  
tion and, in some cases, to support the metering function  
itself. The MAX71617/MAX71637 provide four program-  
mable precision pulse generators to provide pulse gen-  
eration services independent of either the application core  
or the metering core.  
The MAX71617/MAX71637 provide an ISO7816-  
compatible UART that supports an interface to a smart  
card. If a 3.3V-compatible card is used, the pins may be  
able to be used directly (with appropriate protection for  
ESD). The port can also be used with smart card interface  
ICs that provide level shifting and circuit protection.  
While there are four pulse outputs, there are actually eight  
pulse generators. Four of these programmable pulse gen-  
erators are built into the compute engine and are active  
when the CE is used to perform the basic metrology  
tasks. When operating in this mode, the metering core  
only manages pulse configuration and meter constants.  
Contact your Maxim Integrated representative for appro-  
priate smart card interface devices that can be used with  
the MAX71617/MAX71637.  
Tamper Detection  
The MAX71617/MAX71637 provide two active tamper  
detection channels.  
When the CE is disabled and the MAXQ30 core is han-  
dling DSP tasks, the set of programmable pulse genera-  
tors assigned to the MAXQ30 are used. In any event, the  
pulse outputs are always mapped to the same set of  
external pins.  
Active tamper detection means that the device gener-  
ates a pseudo-random bit sequence and drives that  
bit sequence through external circuitry. After passing  
through external switches or perhaps through a metal foil  
Maxim Integrated  
23  
www.maximintegrated.com  
MAX71617/MAX71637  
Energy Measurement SoCs  
DES: DES is a block cipher, published in 1977,  
that although still in wide use is now largely dep-  
recated. It has a 56-bit key and a 64 bit cipher  
block size. DES is provided in the MAX71617/  
MAX71637 to support legacy applications; its  
56-bit key is considered too short for modern  
cryptographic security and the US government  
has withdrawn the single-key version of DES  
as a standard as of 2005. Triple-DES (3DES),  
which encrypts data with three rounds of the  
DES algorithm using two or three 56-bit keys  
is still considered secure, but not as secure as  
AES. Both two-key and three-key 3DES are fully  
supported in the MAX71617/MAX71637.  
Security  
Security in the MAX71617/MAX71637 SoC means sev-  
eral things:  
●ꢀ Communications security: messages transmitted by  
the SoC cannot be intercepted by others. Messages to  
the SoC cannot be forged by an impostor.  
2
●ꢀ Data security: Data stored in external media (e.g., I C  
or SPI connected EEPROM) is stored in such a way  
that even if the device is removed from the meter, the  
data stored on the device cannot be used. Conversely,  
billing data stored in an external EEPROM is encrypt-  
ed and authenticated to prevent attackers from install-  
ing devices preloaded with fraudulent data.  
●ꢀ Software security: Software loaded onto the ARM  
Cortex-M3 core is executed only if it is appropriately  
signed by a party with a secret key corresponding to  
a public key stored in the SoC. The secret key can  
be loaded by the customer using Maxim-provided  
software, or can be loaded by Maxim at final test. And  
since the ARM core loads the MAXQ30 core on each  
reset event, the software for the MAXQ30 core and the  
compute engine is implicitly protected.  
●ꢀ Secure hash: The MAX71617/MAX71637 provide a  
secure hash generator that is compatible with SHA-1  
to SHA-512 standards. The secure hash engine pro-  
vides a 160- to 512-bit message digest of a data set in  
such a way that it is infeasible to create a second data  
set that produces an identical hash.  
●ꢀ Modular arithmetic accelerator: The MAX71617/  
MAX71637 provide a modular arithmetic accelerator  
(MAA). The MAA provides hardware acceleration for  
popular cryptosystems such as elliptic-curve cryptog-  
raphy (ECC) and asymmetric-key cryptosystems such  
as RSA. Many modern encryption algorithms work  
by operating over a finite integer field. Performing  
computations in a large finite field is difficult and time-  
consuming for general purpose microcontrollers.. The  
MAA computes the result of common arithmetic func-  
tions (sum, additive inverse, product, multiplicative  
inverse, exponentiation) in an integer field of size up  
to 2,048 bits.  
●ꢀ Metrology security: Accumulated energy usage and  
other metrology results can be embedded in a security  
envelope. This envelope can be passed through the  
communication protocol layers so that the end recipi-  
ent can be sure the results are authentic.  
●ꢀ Physical security: A dynamic tamper detection sys-  
tem ensures that if the meter is tampered with, the  
SoC records the event and takes appropriate counter-  
measures. These can include everything from alerting  
an operator to destroying cryptographic keys to render  
the meter inert.  
●ꢀ True random number generator: The MAX71617/  
MAX71637 provide a true random number generator  
which is used to generate one-time keys that secure  
communications sessions. The entropy source of the  
true random number generator is derived from the  
outputs of three unsynchronized counters that are  
non-linearly mixed to produce an output that is verifi-  
ably random.  
To support these security features, the MAX71617/  
MAX71637 provide the following cryptographic and secu-  
rity-related resources:  
●ꢀ Encryption engines: MAX71617/MAX71637 provide  
DES, 3DES, and AES encryption engines. These facil-  
ities provide fast encryption and decryption services  
for either communication security or protection of data  
stored in external memory devices.  
●ꢀ Tamper detection: The MAX71617/MAX71637 pro-  
vide four tamper detect pins (two input/output pairs)  
protect the physical security of the meter. The output  
pin of each pin pair presents a pseudo-random bit  
sequence that is hard for an observer to predict. The  
input pin of each pin pair presents the detected sig-  
nal to internal logic. This internal logic compares the  
received signal to the signal presented on the output  
pin, and provides an alert if the signals significantly  
AES: AES is a modern block cipher that uses a  
128-bit or 256-bit key and operates on a 128-bit  
cipher block. AES combines four logical opera-  
tions that involve mixing and substitution over  
14-18 rounds to convert a plain-text block to a  
cipher block under control of the key. At the time  
of this writing, AES is considered secure.  
Maxim Integrated  
24  
www.maximintegrated.com  
MAX71617/MAX71637  
Energy Measurement SoCs  
differ from each other. Each tamper detection pair can  
be configured to provide a response to a confirmed  
tamper event that may range from latching an output  
to illuminate a tamper indicator, to sending a message  
to the network, to making a log entry all the way to  
destroying the keys and becoming inert.  
by user code to perform in-system updates to the flash  
program,ꢀifꢀdesired.ꢀLikeꢀallꢀperipherals,ꢀtheꢀflashꢀcontrol-  
ler can be protected by the RPU so that only authorized  
software can perform flash upgrades.  
The 128KB of RAM is provided as two blocks: one 64K  
block of code RAM and a second 64K block of system  
RAM. The system RAM block has a bit-band alias to sup-  
port RAM bit operations.  
●ꢀ Resource Protection Unit (RPU): Resources on the  
peripheral bus of the ARM Cortex-M3 are protected by  
hardware. The RPU implements a protection matrix  
that defines which peripheral or resource can be used  
by a particular process.  
In addition to the code RAM and system RAM, the  
application core has conditional access to four addi-  
tional memory blocks: the MAXQ30 program RAM, the  
MAXQ30 page RAM, the CE RAM, and a shared RAM  
block. The MAXQ30 program RAM and page RAM are  
used to contain software for the MAXQ30 metering core.  
The 64KB program RAM block is loaded once by the  
application core, then assigned for exclusive access to  
the MAXQ30 core; the 16KB page RAM can be loaded  
and reloaded by the application core as requirements  
change. The CE RAM is also loaded by the application  
core and is assigned to shared access by the MAXQ30  
metering core and the compute engine. Finally, the  
shared RAM block is used to communicate data blocks  
between the metering core and the application core as an  
adjunct to the mailbox system.  
ARM Cortex-M3 Details  
The ARM Cortex-M3 application core is a 32-bit RISC  
microcontroller that supports the widely-used ARM  
instruction set. In the MAX71617/MAX71637, the ARM  
Cortex-M3 operates at a nominal frequency of 108MHz.  
The processor clock to the ARM Cortex-M3 can be divid-  
ed by 1, 2, 4, and 8 to provide effective clock frequencies  
of 108MHz, 54MHz, 27MHz, and 13.5MHz.  
The application core has access to 1MB of flash memory  
and 128KB of RAM for its own use, with other memory  
blocks shared with the other processor cores.  
The 1MB flash memory block appears to the processor  
as 256K x 32. Internally, the flash memory is organized  
as 64K x 128, but it supports programming one longword  
(32 bits) at a time. The flash controller can be accessed  
See Table 1 for all addresses and lengths, which are  
expressed in bytes.  
Table 1. ARM Cortex-M3 Memory Map  
LOCATION  
MEMORY SEGMENT  
0x0000 0000  
LENGTH  
NAME  
DESCRIPTION  
1M  
64K  
64K  
32M  
Code Flash  
Primary code memory for the ARM Cortex-M3  
0x0040 0000  
Code SRAM  
System SRAM  
0x2000 0000  
0x2200 0000  
Bit Band Alias for System SRAM  
PERIPHERAL SEGMENT  
0x4000 0000  
4K  
4K  
4K  
4K  
4K  
4K  
4K  
4K  
4K  
GPIO 0  
GPIO 1  
Timer 0  
Timer 1  
Timer 2  
Timer 3  
Timer 4  
Timer 5  
Timer 6  
0x4000 1000  
0x4001 0000  
General-purpose 32-bit timer  
General-purpose 32-bit timer  
General-purpose 32-bit timer  
General-purpose 32-bit timer  
General-purpose 32-bit timer  
General-purpose 32-bit timer  
General-purpose 32-bit timer  
0x4001 1000  
0x4001 2000  
0x4001 3000  
0x4001 4000  
0x4001 5000  
0x4001 6000  
Maxim Integrated  
25  
www.maximintegrated.com  
MAX71617/MAX71637  
Energy Measurement SoCs  
Table 1. ARM Cortex-M3 Memory Map (continued)  
LOCATION  
0x4002 0000  
0x4002 1000  
0x4002 2000  
0x4002 3000  
0x4002 4000  
0x4002 5000  
0x4002 8000  
0x4002 9000  
0x4003 0000  
0x4003 8000  
0x4004 0000  
0x4006 0000  
0x4006 1000  
0x4006 2000  
0x4006 4000  
0x4007 0000  
0x4007 1000  
0x4007 2000  
0x400A 0000  
0x400A 1000  
0x400A 2000  
0x400A 3000  
LENGTH  
4K  
NAME  
DESCRIPTION  
UART 0  
UART 1  
UART 2  
UART 3  
UART 4  
UART 5  
SPI 0  
UART with IR modulator  
4K  
General purpose UART  
General purpose UART  
General purpose UART  
General purpose UART  
General purpose UART with debug capability  
SPI Master  
4K  
4K  
4K  
4K  
4K  
4K  
SPI 1  
SPI Master  
2
2
4K  
I C 0  
I C Master  
4K  
Smart Card  
4K  
Watchdog Timer  
4K  
DMA Controller  
4K  
Flash Controller  
4K  
Cache Controller  
4K  
Mailbox  
ARM-MAXQ30 communications  
4K  
Crypto Engine  
4K  
TrueꢀRandomꢀNumberꢀGenerator  
Modular Arithmetic Accelerator  
Global control  
4K  
4K  
4K  
Resource Protection Unit  
System Initialization  
CRC/Checksum  
4K  
4K  
Shared RAM segment for MAXQ30-ARM Cortex  
M3 coordination.  
0x4010 0000  
0x4011 0000  
0x4012 0000  
4K  
MAXQ30 Shared RAM  
MAXQ30 Page RAM  
MAXQ30 Program RAM  
Swappable code segment to allow MAXQ30 core to  
page in new code.  
16K  
64K  
Primary MAXQ30 code space. Read/write by ARM  
Cortex M3 when MAXQ30 core is held at reset.  
Primary compute engine memory segment.  
Writable by ARM Cortex M3 only when MAXQ30  
core is held at reset.  
0x4013 0000  
0x4200 0000  
16K  
32M  
CE RAM  
Bit Band Alias for Peripheral  
Segment  
Maxim Integrated  
26  
www.maximintegrated.com  
MAX71617/MAX71637  
Energy Measurement SoCs  
MAXQ30 Core Details  
MAXQ30 Core Peripherals  
The MAXQ30 core in the MAX71617/MAX71637 man-  
ages sensitive peripherals, executes signal-processing  
related tasks, and performs general metering-related  
housekeeping functions.  
Unlike the ARM architecture, peripheral devices in the  
MAXQ30 do not reside in the general memory map.  
Instead, peripheral devices are first-class data objects  
and reside in register modules along with CPU registers,  
accumulators, and other core components of the micro-  
controller.  
The MAXQ30 core is a 32-bit RISC core running at  
36MHz. In addition to its rich peripheral complement, the  
MAXQ30 core also manages a number of RAM blocks.  
Table 2 provides information about the peripheral comple-  
ment available to the MAXQ30 core. For details about  
these peripherals, how to set them up, and how to use  
them, refer to the MAX71617/MAX71637 User’s Guide.  
Table 2. RAM Block Management  
RAM BLOCK  
SIZE  
DESCRIPTION  
This is the general-purpose working RAM block for the MAXQ30 core. It appears at 0x00  
0000 in the data space map and is automatically mapped into code space at 0xA0 0000.  
Data Memory  
8KB  
The page memory is an auxiliary program segment for the MAXQ30 core. The ARM  
Cortex-M3 can load specialized, transient subroutines in this memory segment and then  
remove them as required. If assigned to the MAXQ30 core, it appears in the program space  
at location 0x00 8000.  
Page Memory  
16KB  
The shared memory is a region that can be arbitrarily handed between the ARM Cortex-M3  
application core and the MAXQ30 metering core. The MAXQ30 core controls the ownership  
ofꢀtheꢀmemory.ꢀNoteꢀthatꢀthisꢀisꢀnotꢀtrueꢀdual-portꢀmemory,ꢀsinceꢀonlyꢀoneꢀcoreꢀatꢀaꢀtimeꢀhasꢀ  
read-write privilege to the memory segment. If mapped to the MAXQ30 core, it appears in  
data space at byte address 0x00 2000.  
Shared Memory  
Program Memory  
CE Memory  
4KB  
64KB  
16KB  
This is the primary code memory for the MAXQ30 core. It is loaded by the ARM Cortex-M3  
core at startup, and then is locked to the MAXQ30 core so that code can run from the  
memory segment. It appears in code space at address 0x00 0000.  
The CE memory block is initially loaded by the ARM Cortex-M3 core at startup. It contains  
the CE program (generally provided by Maxim) and is accessible on a time-interleaved  
basis to the compute engine, the MAXQ30 core and the ADC block. The CE acts as a  
coprocessor and converts raw ADC samples to energy units for the MAXQ30 core to further  
accumulate and process.  
Theꢀutilityꢀmemoryꢀblockꢀcontainsꢀutilityꢀfunctionsꢀthatꢀsupportꢀtheꢀpseudo-VonꢀNeumannꢀ  
architecture of the MAXQ30 core, debug functions and other ancillary functions. Once  
loaded, the utility memory behaves as ROM, blocking all write attempts to the memory  
segment. It appears in code space at address 0x80 0000.  
Utility Memory  
8KB  
Maxim Integrated  
27  
www.maximintegrated.com  
MAX71617/MAX71637  
Energy Measurement SoCs  
Table 3. Peripherals Available to the MAXQ30 Core  
MODULE 0  
MODULE 1  
2
2
I C 0 (STORAGE)  
I C 1 (DISPLAY)  
REG  
0
REG NAME  
DESCRIPTION  
REG  
REG NAME  
I2C1CN  
DESCRIPTION  
2
2
I2C0CN  
I2C0INT  
I C Control  
0
1
I C Control  
2
2
1
I CꢀInterruptꢀConfigurationꢀ  
I2C1INT  
I2C1ST  
I CꢀInterruptꢀConfigurationꢀ  
2
2
2
I2C0ST  
I C Status  
2
I C Status  
2
2
3
I2C0DATA  
I2C0MCN  
I2C0RX  
I C Data  
3
I2C1DATA  
I2C1MCN  
I2C1RX  
I C Data  
2
2
4
I CꢀMasterꢀConfigurationꢀ  
4
I CꢀMasterꢀConfigurationꢀ  
2
2
8
I C Receive  
8
I C Receive Data  
2
2
9
I2C0RXCFG  
I2C0TX  
I CꢀReceiveꢀConfigurationꢀ  
9
I2C1RXCFG  
I2C1TX  
I CꢀReceiveꢀConfigurationꢀ  
2
2
10  
11  
12  
13  
14  
I C Transmit  
10  
11  
12  
13  
14  
I C Transmit Data  
2
2
I2C0TXCFG  
I2C0SLA  
I2C0CKH  
I2C0CKL  
I CꢀTransmitꢀConfigurationꢀ  
I2C1TXCFG  
I2C1SLA  
I2C1CKH  
I2C1CKL  
I CꢀTransmitꢀConfigurationꢀ  
2
2
I C Slave Address  
I C Slave Address  
2
2
I C Clock Divide High  
I C Clock Divide High  
2
2
I CꢀClockꢀDivideꢀLow  
I CꢀClockꢀDivideꢀLow  
2
2
I C High-Speed Clock  
I C High-Speed Clock  
15  
I2C0HSCK  
15  
I2C1HSCK  
Configurationꢀ  
Configurationꢀ  
2
2
16  
17  
I2C0TO  
I C Timeout Counter  
16  
I2C1TO  
I C Timeout Counter  
2
2
I2C0FIFO  
I C FIFO Control  
17  
I2C1FIFO  
I C FIFO Control  
SPI  
REG  
5
TIMER B  
REG NAME  
SPICN  
SPIST  
DESCRIPTION  
SPI Control  
REG  
REG NAME  
TB0CN  
TB0V  
DESCRIPTION  
TimerꢀBꢀConfigurationꢀ  
Timer B Value  
5
6
7
6
SPI Status  
7
SPIB  
SPI Data Buffer  
SPIꢀConfigurationꢀ  
SPI Clock  
TB0R  
Timer B Reload  
18  
SPICF  
MODULE 2  
MULTIPLY-ACCUMULATE UNIT  
19  
SPICK  
TEST  
REG  
31  
REG  
REG NAME  
MCNT  
MA  
DESCRIPTION  
Multiplier Control  
REG NAME  
DESCRIPTION  
0
TM  
Reserved (system register)  
1
Multiplier Operand A  
JTAG  
REG  
24  
2
MB  
Multiplier Operand B  
REG NAME  
ICDT0  
ICDT1  
ICDC  
DESCRIPTION  
In-Circuit Debug Temporary 0  
In-Circuit Debug Temporary 1  
In-Circuit Debug Control  
In-Circuit Debug Flag  
8
MC0  
Accumulator bits 31–0  
Accumulator bits 63–32  
Result bits 31–0 (read only)  
Result bits 63–32 (read only)  
9
11  
MC1  
25  
MC0R  
MC1R  
26  
12  
27  
ICDF  
PULSE  
REG  
3
28  
ICDB  
In-Circuit Debug Buffer  
In-Circuit Debug Address  
In-Circuit Debug Data  
REG NAME  
CFCN  
DESCRIPTION  
MeterꢀPulseꢀConfigurationꢀ  
Meter Pulse Increment 0  
29  
ICDA  
30  
ICDD  
4
CFINC0  
Maxim Integrated  
28  
www.maximintegrated.com  
MAX71617/MAX71637  
Energy Measurement SoCs  
Table 3. Peripherals Available to the MAXQ30 Core (continued)  
PULSE  
REAL-TIME MONITOR  
REG  
5
REG NAME  
CFINC1  
CFINC2  
CFINC3  
CFACT0  
CFACT1  
CFACT2  
CFACT3  
DESCRIPTION  
Meter Pulse Increment 1  
Meter Pulse Increment 2  
Meter Pulse Increment 3  
Meter Pulse Active Period 0  
Meter Pulse Active Period 1  
Meter Pulse Active Period 2  
Meter Pulse Active Period 3  
REG  
24  
REG NAME  
RTM0  
DESCRIPTION  
Real-Time Monitor Channel 0  
Real-Time Monitor Channel 1  
Real-Time Monitor Channel 2  
Real-Time Monitor Channel 3  
6
25  
RTM1  
7
26  
RTM2  
14  
15  
16  
17  
27  
RTM3  
MODULE 4  
LCD  
REG  
REG NAME  
DESCRIPTION  
LCDꢀConfigurationꢀ  
LCDꢀSegmentꢀBlinkꢀMask  
LCDꢀAddressꢀ  
MODULE 3  
0
LCDCFG  
LCDBLINK  
LCDADDR  
LCDSEG  
LCDCN  
COMPUTE ENGINE  
1
REG  
REG NAME  
CEI  
DESCRIPTION  
Compute Engine Interrupt  
Compute Engine Pulse Control  
Compute Engine Control  
2
5
7
3
LCDꢀSegmentꢀDataꢀ  
LCDꢀControlꢀRegister  
LCDꢀSegmentꢀMapꢀ0  
LCDꢀSegmentꢀMapꢀ1  
LCDꢀSegmentꢀMapꢀ2  
CEPCN  
CECN  
8
8
9
LCDMAP0  
LCDMAP1  
LCDMAP2  
REMOTE  
REG  
1
10  
REG NAME  
RMTCN  
DESCRIPTION  
11  
IsolatedꢀRemoteꢀConfiguration  
Command sent to Isolated Remote  
Isolated Remote Error Status  
Isolated Remote Data  
MAILBOX  
2
RMTCMD  
RMTERR  
RMTDATA  
REG  
4
REG NAME  
SRSP0  
DESCRIPTION  
Mailbox Slave Response 0  
Mailbox Slave Response 1  
Mailbox Master Request 0  
Mailbox Master Request 1  
Mailbox Master Request 2  
6
9
5
SRSP1  
ADC  
REG  
3
18  
19  
20  
GPIO  
REG  
6
MREQ0  
MREQ1  
MREQ2  
REG NAME  
ADCN  
DESCRIPTION  
ADC Control  
4
ADCFG  
ADCLK  
ADCꢀConfigurationꢀ  
10  
11  
ADC Clock  
REG NAME  
PO2  
DESCRIPTION  
GPIO Port 2 Output  
ADMUX0  
ADMUX1  
ADMUX2  
ADMUX3  
ADMUX4  
ADMUX5  
ADMUX6  
FIRLEN  
SLEN  
ADC Multiplexer Select 0  
ADC Multiplexer Select 1  
ADC Multiplexer Select 2  
ADC Multiplexer Select 3  
ADC Multiplexer Select 4  
ADC Multiplexer Select 5  
ADC Multiplexer Select 6  
ADCꢀFIRꢀFilterꢀLength  
ADCꢀLengthꢀofꢀSꢀState  
ADC Delay from S State  
ADC Delay from V State  
ADCꢀNumberꢀofꢀZeroꢀVoltꢀSamples  
ADCꢀMultiplexerꢀConfiguration  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
7
EIF2  
GPIO Port 2 Interrupt Flag  
GPIO Port 2 Input  
14  
15  
16  
17  
PI2  
PD2  
GPIO Port 2 Direction  
EIE2  
GPIO Port 2 Interrupt Enable  
GPIO Port 2 Interrupt Edge Select  
EIES2  
MODULE 5  
REAL-TIME CLOCK  
REG  
2
REG NAME  
RTCI  
DESCRIPTION  
RTC Interrupt  
SDLY  
VDLY  
10  
11  
RTCSTAT  
RTCCN  
RTC Status  
VZERO  
MUXCN  
RTC Control  
12  
RTCSBSC  
RTC Subsecond Counter  
Maxim Integrated  
29  
www.maximintegrated.com  
MAX71617/MAX71637  
Energy Measurement SoCs  
Table 3. Peripherals Available to the MAXQ30 Core (continued)  
REAL-TIME CLOCK  
SECURITY MONITOR  
REG  
13  
REG NAME  
RTCTIME  
RTCDATE  
RTCALRM  
RTCCAL  
DESCRIPTION  
REG  
0
REG NAME  
EXTSST  
DESCRIPTION  
External Sensor Status  
RTC Time  
RTC Date  
14  
6
EXTSINT  
External Sensor Interrupt  
External Sensor Control  
15  
RTC Alarm  
8
EXTSCN  
16  
RTC Calibration  
9
EXTSCFG  
EXTSINTCN  
ExternalꢀSensorꢀConfigurationꢀ  
External Sensor Interrupt Control  
17  
RTCTCA  
RTCꢀTemperatureꢀCoefficientꢀA  
RTCꢀTemperatureꢀCoefficientꢀB  
23  
18  
RTCTCB  
MEMORY CONTROL  
19  
RTCMISC  
RTCBTM  
REG  
REG NAME  
DESCRIPTION  
20  
7
MEMCTL  
Memory Control  
V
: This is the primary backup power connection. In  
Using the MAX71617/MAX71637  
Power  
The MAX71617/MAX71637 require a single 3.3V supply  
to operate. However, in an electricity metering environ-  
ment continuity of measured values and nominal opera-  
tion in the absence of line power is a critical requirement.  
BAT  
most cases, a relatively high-capacity primary battery is  
connected to this pin (often, a 1.1Ah lithium thionyl cell).  
When V  
falls below the power fail threshold, a switch  
DD  
automatically selects V  
instead of V  
as the primary  
BAT  
DD  
power supply. When this occurs, it is the responsibility of  
software to switch to a low-power mode to minimize the  
drain on the backup battery.  
There are ten power connections that, together with asso-  
ciated grounds, assure the integrity and continuity of the  
power supply to the MAX71617/MAX71637.  
V
: This pin is an output, driven by the selected pri-  
3P3D  
mary power input: either V  
or V . Frequently, it is  
BAT  
DD  
directly connected to the I/O power input (V ) to provide  
power for I/O pins in the event of a brownout event.  
AVDD: This input provides power to the ADC converter  
array, the bandgap voltage reference and voltage com-  
parators. It is generally connected to a 3.3V supply driven  
from line power. While this input can be battery-backed by  
means of an external connection, it is most often unnec-  
essary to do this: in the absence of line power, the ADC  
converters have nothing to measure. Currents into AVDD  
returnꢀthroughꢀAGND.  
IO  
V
: This pin is a bypass point for the core power supply.  
1P2  
An internal regulator reduces the 3.3V supply to the 1.2V  
required by internal logic. Connect an appropriate bypass  
capacitor to this pin.  
V
: This pin is a bypass point for the flash memory  
1P8  
power supply. An internal regulator reduces the 3.3V  
supply to the 1.8V required by the flash memory array.  
An appropriate bypass capacitor should be connected to  
this pin.  
RVDD: This power input supplies the remote interface  
driver. It is provided as a separate input (and ground  
return) to isolate the fast rise time, high-current pulses  
that provide power to the remote ADC interfaces. As  
with AVDD, it is typically not battery backed, since in the  
absence of line power there is nothing to measure.  
V
: This is the power input for the I/O pad ring. When  
IO  
configured as outputs, I/O pins use this supply to source  
high logic-level output voltage and current. It can be con-  
nected to any available source of 3.3V power, but is most  
V
LCD  
: This connection can serve as an input or output. If  
V
is internally generated, the pin is a bypass point for  
LCD  
frequently connected to the V  
output pin.  
3P3D  
LCDꢀvoltage.ꢀIfꢀexternalꢀV  
is selected, this pin serves  
LCD  
V
RTC  
: This is the power connection for the real-time  
asꢀtheꢀsupplyꢀpinꢀforꢀtheꢀLCD.ꢀNoteꢀthatꢀthisꢀpinꢀsuppliesꢀ  
the waveform generator and the contrast DAC, but does  
notꢀsupplyꢀtheꢀLCDꢀdataꢀregisters.ꢀTheꢀdataꢀregistersꢀareꢀ  
maintained on a nonvolatile supply.  
clock and other nonvolatile circuits. In most cases, a low-  
capacity primary battery (often a coin cell) is attached  
to this pin. Unlike V  
, the supply attached to this pin  
BAT  
cannot drive the primary logic voltage regulator. Instead,  
if V and V both fail, V maintains the integrity of  
V
DD  
: This is the main digital power input to the device. In  
DD  
BAT  
RTC  
normal operation, the application circuit supplies 3.3V to  
this pin. If power is removed, internal logic automatically  
theꢀclockꢀandꢀotherꢀcriticalꢀfunctions,ꢀsuchꢀasꢀLCDꢀregis-  
ters, tamper detect circuitry and I/O cells attached to the  
MAXQ30 metering core.  
switches power to the V  
input. This pin supplies the  
BAT  
primary core regulator that drives all logic in the device. It  
also nominally supplies power to the control logic for the  
LCDꢀcontrastꢀDAC.  
Maxim Integrated  
30  
www.maximintegrated.com  
MAX71617/MAX71637  
Energy Measurement SoCs  
Power Diagram  
3.3V  
ADC CONVERTERS,  
VOLTAGE REFERENCE,  
AND COMPARATORS  
AVDD  
REMOTE INTERFACE  
LINEAR SECTION  
A
V3P3R  
LCD VOLTAGE WAVEFORM  
GENERATORS CONTRAST DAC  
R
VLCD  
VDD  
S1  
S2  
LCD DAC CONTROL  
VBAT  
PLL  
V3P3D  
MAXQ30, ARM CORTEX-M3 CORES COMPUTE ENGINE  
AND DECIMATORS ALL RAM BLOCKS AND PERIPHERALS  
LOGIC FOR FLASH ARRAY  
1.2V REGULATOR  
V1P2  
1.8V REGULATOR  
FLASH ARRAY  
V1P8  
DIGITAL I/O PINS  
VIO  
REAL-TIME CLOCK LCD REGISTERS  
MAXQ I/O LOGIC TAMPER DETECT  
VRTC  
S3  
NONVOLATILE REGULATOR  
CRYSTAL OSCILLATOR  
There are three internal switches that select power for  
the devices:  
external event to wake the processor and switch S1  
back to either V or V  
.
BAT  
DD  
●ꢀ S1ꢀselectsꢀwhetherꢀV  
or V  
provides power to the  
●ꢀ S2selectswhetherV  
or V  
provides power for  
BAT  
DD  
BAT  
DD  
logic and flash memory voltage regulators. Additionally,  
softwareꢀcanꢀforceꢀS1ꢀintoꢀSLEEPꢀmodeꢀtoꢀdisconnectꢀ  
the regulators completely from any source of power.  
This mode is the lowest power mode, but requires an  
theꢀ LCDꢀ DACꢀ controlꢀ logic.ꢀ Thisꢀ isꢀ aꢀ blockꢀ ofꢀ low-  
power, 3.3V logic that manages the operation of the  
LCDꢀDAC.  
Maxim Integrated  
31  
www.maximintegrated.com  
MAX71617/MAX71637  
Energy Measurement SoCs  
●ꢀ S3ꢀselectsꢀtheꢀsourceꢀforꢀnonvolatileꢀpower.ꢀItꢀoperatesꢀ  
Other Power Considerations  
automatically and does not require software interven-  
To conserve power and still maintain full operational capa-  
bility, both cores support a stop mode. When either the  
application core or the metering core is in stop mode, the  
core is halted and there is no dynamic power consump-  
tion in the core itself. There is still static power consump-  
tion, and peripherals can still operate. In most systems,  
it is wise to maintain the cores in stop mode for as much  
of the time as possible to minimize power consumption.  
tion. If V  
is available, nonvolatile power is derived  
DD  
from that source; otherwise, nonvolatile power is  
derived from V . If neither V nor V are avail-  
BAT  
BAT  
DD  
able, V  
is the power source.  
RTC  
These automatic mechanisms, combined with software  
controlled switches, provide several operating modes:  
Mission mode: When V  
and AVDD are available, the  
DD  
The ARM Cortex-M3 application core contains a clock  
divider that can provide 108MHz, 54MHz, 27MHz, or  
13.5MHz as the main CPU clock. The MAXQ30 metering  
core always runs at 36MHz.  
device is considered to be in mission mode. In this mode,  
the 1.2V core regulator and the 1.8V flash regulator are  
turned on, the core is capable of running at full speed, and  
the AFE is processing samples and accumulating data.  
This is also the highest power mode.  
Software Development  
The MAX71617/MAX71637 typically require at least three  
software modules. The first is the CE module, provided  
by Maxim. This module provides the low-level DSP func-  
tions, and periodically reports the usage over a brief  
period of time (by default one second) to software run-  
ning on the MAXQ30 metering core. Contact Maxim for  
information about obtaining loadable files for use with the  
MAX71617/MAX71637.  
Brownout mode: When AVDD and V  
available, the device switches automatically to derive  
are no longer  
DD  
core power from V . This mode is considered brownout  
BAT  
mode. In this mode, the core can still run at full speed, but  
because AVDD is not available the AFE is not active. In  
brownout mode, the full power for the core is provided by  
the V  
battery, so it is important for system software to  
BAT  
quickly reduce power consumption.  
Software on the MAXQ30 core is tasked with managing  
long-term accumulation of results from the CE module  
and managing the external storage and the display  
subsystems, among other tasks. Maxim provides sev-  
eral versions of the MAXQ30 code to serve as samples;  
alternately, MAXQ30 code can be developed directly by  
the meter designer. Contact Maxim to determine what  
MAXQ30 modules are available.  
Sleep mode: The lowest-power mode. In sleep mode,  
S1 is in the off position, and the voltage regulators are  
effectively turned off. That means that power is removed  
fromꢀallꢀCPUꢀcoresꢀandꢀmemoryꢀblocksꢀandꢀthatꢀtheꢀPLLꢀ  
clock multiplier is turned off. Only the nonvolatile bus is  
powered.  
Sleep mode can actually be enabled at any time, whether  
V
is available or not. If V  
is not available, V  
sup-  
DD  
DD  
BAT  
If the designer elects to develop the MAXQ30 operating  
code, a development environment is needed. If develop-  
ment is occurring in assembly language, use the free  
MAX-IDE software development kit. MAX-IDE is a com-  
plete toolkit that includes assembler, editor and debug-  
ger. For C development, Maxim recommends the Rowley  
CrossWorks compiler and IDE. Contact Maxim for details  
about how to obtain a license for this tool.  
plies the nonvolatile power bus; if neither V  
are available, V  
nor V  
DD  
BAT  
supplies the nonvolatile power bus.  
RTC  
Waking from sleep mode involves a cold restart of the  
application core, and reloading the program RAM for the  
MAXQ30 metering core as well as the compute engine  
RAM block.  
LCD Only mode: This is a special version of sleep mode  
inwhichtheregulatorsaredisabled,buttheLCDisstillꢀ  
activeꢀandꢀdrivingꢀaꢀdisplayꢀglass.ꢀInꢀLCDꢀOnlyꢀmode,ꢀS2ꢀ  
selects either V  
DACꢀcontrolꢀregisters.ꢀTheꢀactualꢀinputꢀforꢀtheꢀLCDꢀDACꢀ  
(and thus the primary power to the waveform generators)  
is provided on the V  
maintained in the nonvolatile power domain and so do not  
lose their contents even in sleep mode.  
Finally, a software module for the ARM Cortex-M3 must  
be provided. This module typically takes results from the  
MAXQ30 core, format them as required and transmit  
them through communication facilities attached to the  
ARM Cortex-M3. Additionally, software running on the  
application core frequently formats messages for the  
metering core to control the peripherals under its control,  
suchꢀasꢀtheꢀLCDꢀandꢀtheꢀmetrologyꢀsubsystem.  
or V  
ꢀtoꢀprovideꢀpowerꢀtoꢀtheꢀLCDꢀ  
DD  
BAT  
ꢀpin.ꢀTheꢀLCDꢀdataꢀregistersꢀareꢀ  
LCD  
There are many development toolkits available for the  
ARM architecture, in both freely available and paid  
versions. A reference meter is available from Maxim  
Integrated that includes source code for the ARM core  
and that demonstrates the interaction between the vari-  
ous cores. Contact your Maxim Integrated representative  
for availability information.  
LCDOnlymodeprovidesmostofthepowerbenefitsofꢀ  
sleepꢀmodeꢀwhileꢀcontinuingꢀtoꢀdriveꢀtheꢀLCD.  
Maxim Integrated  
32  
www.maximintegrated.com  
MAX71617/MAX71637  
Energy Measurement SoCs  
Ordering Information/Selector Guide  
PROGRAM  
MEMORY  
ARM CORTEX-M3  
FLASH (MB)  
DATA  
MEMORY ARM  
CORTEX-M3  
(KB)  
OPERATING  
VOLTAGE (V)  
METROLOGY PIN-  
PART  
TEMP RANGE  
CHANNELS  
PACKAGE  
*
MAX71617ECD+  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
+2.7 to +3.6  
+2.7 to +3.6  
+2.7 to +3.6  
+2.7 to +3.6  
1
1
1
1
128  
128  
128  
128  
4
4
7
7
120ꢀLQFP  
120ꢀLQFP  
120ꢀLQFP  
120ꢀLQFP  
*
MAX71617ECD+T  
MAX71637ECD+  
MAX71637ECD+T  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*Future product—contact factory for availability.  
T = Tape and reel.  
Chip Information  
PROCESS: BiCMOS  
Package Information  
For the latest package outline information and land patterns  
(footprints), go to www.maximintegrated.com/packages.ꢀNoteꢀ  
that a “+”, “#”, or “-” in the package code indicates RoHS status  
only. Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE  
NO.  
LAND  
PATTERN NO.  
120ꢀLQFP  
C120L+1  
21-0684  
90-0421  
Maxim Integrated  
33  
www.maximintegrated.com  
MAX71617/MAX71637  
Energy Measurement SoCs  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
0
3/14  
Initial release  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2014 Maxim Integrated Products, Inc.  
34  

相关型号:

MAX71637ECD+T

Analog Circuit, 1 Func, BICMOS, PQFP120, ROHS COMPLIANT, LQFP-120
MAXIM

MAX716C/D

Multiple Regulator Circuit
MAXIM

MAX716CPI

Multiple Regulator Circuit
MAXIM

MAX716CWI

Multiple Regulator Circuit
MAXIM

MAX716EPI

Multiple Regulator Circuit
MAXIM

MAX716EWI

Multiple Regulator Circuit
MAXIM

MAX716MJI

Multiple Regulator Circuit
MAXIM

MAX716PI

Power Supply Support Circuit, Fixed, CMOS, PDIP16, PLASTIC, DIP-16
MAXIM

MAX716WI

Power Supply Support Circuit, Fixed, CMOS, PDSO16, 0.300 INCH, SOIC-16
MAXIM

MAX717

PALMTOP COMPUTER AND FLASH MEMORY POWER SUPPLY REGULATORS
MAXIM

MAX717-721

Palmtop Computer and Flash Memory Power-supply Regulators
MAXIM

MAX717C

PALMTOP COMPUTER AND FLASH MEMORY POWER SUPPLY REGULATORS
MAXIM