MAX7387AVWB [MAXIM]

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, PDSO10, 3 X 3 MM, MO-187CBA, MICRO, SOP-10;
MAX7387AVWB
型号: MAX7387AVWB
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, PDSO10, 3 X 3 MM, MO-187CBA, MICRO, SOP-10

信息通信管理 光电二极管
文件: 总14页 (文件大小:680K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3896; Rev 1; 1/06  
System Monitoring Oscillator with  
Watchdog and Power Fail  
General Description  
Features  
The MAX7387/MAX7388 replace ceramic resonators,  
crystals, and supervisory functions for microcontrollers  
in 3.3V and 5V applications.  
Robust Microcontroller Clock and Supervisor in a  
Single Package  
Integrated Reset, Watchdog, and Power-Fail  
The MAX7387/MAX7388 provide a clock source together  
with integrated reset, watchdog, and power-fail func-  
tions. The watchdog timer is pin programmable and  
provides watchdog timeout values in the 16ms to  
2048ms range. The power-fail output provides early  
warning of power failure. The power-fail threshold on the  
MAX7388 is internally set. The MAX7387 also provides  
a separate watchdog output that is used as a status  
indicator or to control safety-critical system elements.  
Functions  
Pin-Programmable Watchdog Timeout  
+2.7V to +5.5V Operation  
Factory-Trimmed Oscillator  
Reset Valid Down to 1.1V Supply Voltage  
±1ꢀmꢁ Clock-Output Drive Current  
±±4 Total ꢁccuracy ꢂor -±ꢀ0C to +1250C  
±2.754 Total ꢁccuracy ꢂor ꢀ0C to +ꢃ50C  
-±ꢀ0C to +1250C Temperature Range  
The MAX7387/MAX7388 clock outputs are factory pro-  
grammed to a frequency in the 1MHz to 16MHz range.  
Four standard frequencies are available. Other frequen-  
cies are available upon request. The maximum operating  
supply current is 5.5mA (max) with a clock frequency of  
12MHz.  
ꢃ- and 1ꢀ-Pin µMꢁX Surꢂace-Mount Packages  
5.5mꢁ Operating Current (12MHz)  
Unlike typical crystal and ceramic resonator oscillator  
circuits, the MAX7387/MAX7388 are resistant to EMI  
and vibration, and operate reliably at high tempera-  
tures. The high-output drive current and absence of  
high-impedance nodes make the oscillator invulnerable  
to dirty or humid operating conditions.  
1MHz to 16MHz Factory Preset Frequency  
Ordering Information  
PꢁRT  
TEMP RꢁNGE PIN-PꢁCKꢁGE PKG CODE  
MꢁX73ꢃ7srff -40oC to +125oC 10 µMAX  
MꢁX73ꢃꢃsrff -40oC to +125oC 8 µMAX  
U10-2  
U8-1  
The MAX7387/MAX7388 are available in 10-pin and 8-pin  
µMAX® packages, respectively. The MAX7387/MAX7388  
standard operating temperature range is from -40°C to  
+125°C.  
Note: “s” is a placeholder for the reset output type. Insert the  
symbol found in Table 3 in the place of “s.” “r” is a placeholder  
for the power-on reset (POR) voltage. Insert the symbol found in  
Table 2 in the place of “r.” “ff” is a placeholder for the nominal  
output frequency. Insert the symbol found in Table 4 in the  
place of “ff.” For example, MAX7387CMTP describes a device  
with 4.38V reset level, open-collector RST output, and a clock  
output frequency of 8MHz.  
Applications  
White Goods  
Automotive  
Handheld Products  
Portable Equipment  
Appliances and Controls Microcontroller Systems  
Typical Application Circuit, Functional Diagram, and Selector  
Guide appear at end of data sheet.  
µMAX is a registered trademark of Maxim Integrated Products, Inc.  
Pin Configurations  
TOP VIEW  
TOP VIEW  
PFI  
1
2
3
4
5
10 CLOCK  
V
1
2
3
4
8
7
6
5
CLOCK  
RST/RST  
WDI  
CC  
V
CC  
9
8
7
6
RST/RST  
WDI  
WDS1  
WDS2  
GND  
MAX7387  
MAX7388  
WDS1  
WDS2  
GND  
PFO  
PFO  
WDO  
µMꢁX  
µMꢁX  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
System Monitoring Oscillator with  
Watchdog and Power Fail  
ꢁBSOLUTE MꢁXIMUM RꢁTINGS  
CC  
All Other Pins to GND ................................-0.3V to (V  
CLOCK, PFO Output Current, RST/RST, WDO................. 50mA  
V
to GND...........................................................-0.3V to +6.0V  
Operating Temperature Range .........................-40°C to +125°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
+ 0.3V)  
CC  
Continuous Power Dissipation (T = +70°C)  
A
10-Pin µMAX (derate 5.6mW/°C over +70°C)..............444mW  
8-Pin µMAX (derate 4.5mW/°C over +70°C) ................362mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICꢁL CHꢁRꢁCTERISTICS  
(Typical Application Circuit, V  
= +2.7V to +5.5V, T = -40°C to +125°C, 1MHz to 16MHz output frequency range, typical values at  
CC  
A
V
= +5.0V, T = +25°C, unless otherwise noted.) (Note 1)  
CC  
A
PꢁRꢁMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MꢁX  
UNITS  
POWER REQUIREMENTS  
Operating Supply Voltage  
V
2.7  
5.5  
1.1  
V
V
CC  
T
T
= 0°C to +85°C  
A
Valid RST/RST Supply Voltage  
V
CCR  
= -40°C to +125°C  
1.18  
5.5  
A
f
f
= 12MHz  
= 8MHz  
CLOCK  
CLOCK  
Operating Supply Current  
I
mA  
CC  
4.5  
TRI-LEVEL ꢁNꢁLOG INPUTS: WDS1, WDS2  
Input-High Voltage Level  
V
- 0.55V  
V
V
V
CC  
Input-Middle Voltage Level  
Input-Low Voltage Level  
0.9  
V
- 1.1V  
0.45  
CC  
LOGIC INPUT: WDI  
Input Leakage Current  
Logic-Input High Voltage  
Logic-Input Low Voltage  
I
Input high  
0.5  
µA  
V
LEAK  
V
0.7 x V  
CC  
IH  
V
0.3 x V  
V
IL  
CC  
PUSH-PULL LOGIC OUTPUTS: RST/RST  
Output High  
Output Low  
V
I
I
= 1mA  
V
- 1.5  
V
V
OH  
SOURCE  
CC  
V
= 3mA  
SINK  
0.05  
0.05  
0.4  
0.4  
OL  
OPEN-DRꢁIN LOGIC OUTPUTS: RST, PFO, WDO  
Output Low  
V
I
= 3mA  
V
OLO  
SINK  
OUTPUT: CLOCK  
Output High Voltage  
Output Low Voltage  
V
I
I
= 5mA  
V
- 0.3  
V
V
OHC  
SOURCE  
CC  
V
= 5mA  
SINK  
0.3  
+2.75  
+4  
OLC  
T
T
= 0°C to +85°C, V  
= 5.0V  
CC  
-2.75  
-4  
A
A
CLOCK Accuracy  
f
%
CLOCK  
= -40°C to +125°C, V  
= 5.0V  
CC  
Clock Frequency Temperature  
Coefficient  
V
= 5.0V (Note 2)  
140  
400  
ppm/°C  
CC  
Clock Frequency Supply  
Voltage Coefficient  
T
= +25°C (Note 2)  
0.67  
50  
1
%/V  
%
A
CLOCK Duty Cycle  
(Note 2)  
45  
55  
2
_______________________________________________________________________________________  
System Monitoring Oscillator with  
Watchdog and Power Fail  
ELECTRICꢁL CHꢁRꢁCTERISTICS (continued)  
(Typical Application Circuit, V  
= +2.7V to +5.5V, T = -40°C to +125°C, 1MHz to 16MHz output frequency range, typical values at  
CC  
A
V
= +5.0V, T = +25°C, unless otherwise noted.) (Note 1)  
CC  
A
PꢁRꢁMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MꢁX  
UNITS  
Observation for 20s using a 500MHz  
oscilloscope  
ps  
CLOCK Output Jitter  
310  
RMS  
Output Rise Time  
t
C
C
= 10pF, 10% to 90% of full scale (Note 2)  
= 10pF, 90% to 10% of full scale (Note 2)  
2.5  
2.8  
7.0  
7.5  
ns  
ns  
R
LOAD  
LOAD  
Output Fall Time  
t
F
INTERNꢁL POWER-ON RESET  
V
V
TH  
+ 1.5%  
TH  
T
T
= +25°C  
A
A
- 1.5%  
V
V
V
rising, Table 2  
TH+  
CC  
CC  
V
V
TH  
+ 2.5%  
TH  
= -40°C to +125°C  
Reset Voltage  
V
- 2.5%  
0.98 x  
V
falling  
TH-  
V
TH+  
Reset Timeout Period  
t
Figures 1, 2  
86  
135  
250  
µs  
RST  
WꢁTCHDOG  
WDS1 = GND, WDS2 = GND  
WDS1 = open, WDS2 = GND  
11  
22  
16  
32  
22  
44  
WDS1 = V , WDS2 = GND  
CC  
44  
64  
88  
WDS1 = GND, WDS2 = open  
WDS1 = open, WDS2 = open  
88  
128  
256  
512  
1024  
2048  
177  
354  
708  
1416  
2832  
ms  
Watchdog Timeout Period  
(Figure 2)  
t
177  
354  
708  
1416  
WDG  
WDS1 = V , WDS2 = open  
CC  
WDS1 = GND, WDS2 = V  
WDS1 = open, WDS2 = V  
CC  
CC  
WDS1 = WDS2 = V (watchdog disabled)  
CC  
POWER FꢁIL  
0.65 x  
0.85 x  
V
CC  
Power-Fail Select Threshold  
V
PFI input  
V
V
SEL  
V
CC  
V
Monitoring Threshold  
CC  
V
V
V
rising  
falling  
4.06  
1.0  
0.9  
1.0  
4.38  
2
4.60  
4.0  
1.4  
8.0  
ITH  
CC  
CC  
(Internal Threshold)  
Internal Threshold Hysteresis  
V
%V  
ITH  
IHYST  
PFI Monitoring Threshold  
(External Threshold)  
V
PFI rising  
PFI falling  
1.1  
3.5  
V
ETH  
External Threshold Hysteresis  
V
%V  
ETH  
EHYST  
Note 1: All parameters are tested at T = +25°C. Specifications over temperature are guaranteed by design.  
A
Note 2: Guaranteed by design. Not production tested.  
_______________________________________________________________________________________  
3
System Monitoring Oscillator with  
Watchdog and Power Fail  
Typical Operating Characteristics  
(Typical Application Circuit, V  
= +5V, T = +25°C, unless otherwise noted.)  
A
CC  
FREQUENCY vs. SUPPLY VOLTAGE  
FREQUENCY vs. TEMPERATURE  
DUTY CYCLE vs. SUPPLY VOLTAGE  
1.020  
1.010  
1.000  
0.990  
0.980  
1.040  
1.030  
1.020  
1.010  
1.000  
0.990  
0.980  
52  
51  
50  
49  
48  
NORMALIZED TO V = +5V  
CC  
V
= +2.9V  
V
TH+  
= +2.9V  
TH+  
NORMALIZED TO T = +25°C  
A
2.90  
3.55  
4.20  
(V)  
4.85  
5.50  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
2.90  
3.55  
4.20  
(V)  
4.85  
5.50  
V
TEMPERATURE (°C)  
V
CC  
CC  
CLOCK OUTPUT WAVEFORM  
CLOCK OUTPUT WAVEFORM  
WITH C = 10pF  
WITH C = 50pF  
DUTY CYCLE vs. TEMPERATURE  
L
L
MAX7387/88 toc05  
MAX7387/88 toc06  
52  
51  
50  
49  
48  
V
CC  
= +3.3V  
V
CC  
= +3.3V  
CLOCK  
1V/div  
CLOCK  
1V/div  
40ns/div  
40ns/div  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
CLOCK OUTPUT WAVEFORM  
WITH C = 100pF  
SUPPLY CURRENT vs. TEMPERATURE  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
L
MAX7387/88 toc07  
5
4
3
2
1
5
4
3
2
1
V
= 5V  
CC  
CLOCK  
1V/div  
V
= 3.3V  
CC  
V
= 2.9V  
TH+  
40ns/div  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
2.90  
3.55  
4.20  
(V)  
4.85  
5.50  
V
CC  
±
_______________________________________________________________________________________  
System Monitoring Oscillator with  
Watchdog and Power Fail  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, V  
= +5V, T = +25°C, unless otherwise noted.)  
A
CC  
MAXIMUM V TRANSIENT DURATION  
CC  
vs. RESET THRESHOLD OVERDRIVE  
CLOCK SETTLING TIME FROM START  
POWER-ON RESET BEHAVIOR  
MAX7387/88 toc10  
MAX7387/88 toc11  
1000  
100  
10  
V
CC  
V
2V/div  
CC  
2V/div  
RESET OCCURS ABOVE THIS CURVE  
CLOCK  
5V/div  
CLOCK  
2V/div  
t
RST  
RST  
5V/div  
PFO  
5V/div  
V
CC  
FALLING FROM V + 100mV  
TH+  
PFI = V  
CC  
1
100 200 300 400 500 600 700 800 900 1000  
RESET THRESHOLD OVERDRIVE (mV)  
1µs/div  
100µs/div  
RESPONSE OF RST AND WDO  
WDI EXCEEDING t  
RISING THRESHOLD vs. TEMPERATURE  
WDG  
MAX7387/88 toc13  
2.90  
2.88  
2.86  
2.84  
2.82  
2.80  
WDI  
2V/div  
WDO  
5V/div  
t
WDG  
RST  
5V/div  
t
RST  
2ms/div  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
5
System Monitoring Oscillator with  
Watchdog and Power Fail  
Pin Description  
PIN  
NꢁME  
FUNCTION  
MꢁX73ꢃ7 MꢁX73ꢃꢃ  
Power-Fail Input. PFI monitors the condition of either an external supplied voltage or V  
See the Power Fail section for more details.  
.
CC  
1
2
3
1
PFI  
Power Input. Connect V  
to the power supply. Bypass V to GND with a 1µF capacitor.  
CC  
CC  
V
CC  
Install the bypass capacitor as close to the device as possible.  
Watchdog Timeout Select Input 1. Connect WDS1 and WDS2 to V , GND, or V /2, as  
CC  
CC  
2
WDS1  
shown in Table 1, to set the watchdog timeout period.  
Watchdog Timeout Select Input 2. Connect WDS2 and WDS1 to V , GND, or V /2, as  
shown in Table 1, to set the watchdog timeout period.  
Ground  
CC  
CC  
4
5
6
3
4
WDS2  
GND  
Watchdog Output. Open-drain watchdog output asserts low if WDI is not toggled within the  
watchdog timeout period.  
WDO  
Power-Fail Output. Open-drain output asserts when the voltage being monitored drops below  
the power-fail threshold voltage.  
7
8
5
6
PFO  
Watchdog Input. A rising edge on WDI resets the watchdog timer. If WDI does not receive a  
rising edge within the watchdog timeout period (t  
), RST/RST asserts. The watchdog  
WDG  
WDI  
timeout period is programmable through WDS1 and WDS2. Connect WDS1 and WDS2 to  
to disable watchdog timer.  
V
CC  
Reset Output. Reset output is available in one of three configurations: push-pull RST,  
push-pull RST, or open-drain RST. The reset output occurs if any combination of the following  
9
7
8
RST/RST conditions occurs: reset output is asserted during power-up and whenever V is below the  
CC  
reset threshold level; for devices with WDI, reset output asserts when WDI does not receive a  
rising edge within the watchdog timeout period.  
10  
CLOCK  
Clock Output  
The integrated reset and watchdog functions provide  
the power-supply monitoring functions necessary to  
ensure correct microcontroller operation. The reset cir-  
cuit has built-in power-supply transient immunity and  
provides both power-on reset and power-fail or  
brownout reset functionality. Two standard factory-  
trimmed reset levels are available. The watchdog timer  
is programmable to eight individual timeout values and  
may be disabled for test purposes.  
Detailed Description  
The MAX7387/MAX7388 replace ceramic resonators,  
crystals, and supervisory functions for microcontrollers  
in 3.3V and 5V applications.  
The MAX7387/MAX7388 provide a clock source together  
with integrated reset, watchdog, and power-fail func-  
tions. The watchdog timer is pin programmable and pro-  
vides watchdog timeout values in the 16ms to 2048ms  
range. The power-fail output provides early warning of  
power failure. The power-fail threshold on the MAX7388  
is internally set. The MAX7387 features a programmable  
power-fail threshold, which is configurable to detect  
A power-fail function is provided for power-supply volt-  
age monitoring and can provide advance notice of an  
impending power failure. Parts with power-fail input  
(MAX7387) monitor external power-supply voltages  
through an external resistive divider. Connect PFI to  
either an external voltage or the V  
supply voltage to  
CC  
the device. The MAX7387 also provides a separate  
watchdog output that is used as a status indicator or to  
control safety-critical system elements.  
V
to monitor V  
.
CC  
CC  
6
_______________________________________________________________________________________  
System Monitoring Oscillator with  
Watchdog and Power Fail  
Upon completion of the reset timeout, the reset output  
is released. See Figure 1.  
Clock Output (CLOCK)  
The push-pull clock output (CLOCK) drives a ground-  
connected 1kload or a positive supply connected  
500load to within 300mV of either supply rail. CLOCK  
remains stable over the full operating voltage range and  
does not generate short output cycles during either  
power-on or power-off. A typical startup characteristic is  
shown in the Typical Operating Characteristics section.  
Low-Voltage Lockout  
The reset output asserts whenever V  
drops below the  
CC  
reset falling threshold, V . The difference between the  
TH-  
reset rising and falling threshold values is V  
- (V ).  
TH-  
TH+  
The nominal hysteresis value is 2% of the reset rising  
threshold value. The reset detection circuitry provides  
filtering to prevent triggering on negative voltage  
Reset  
The reset function drives the microcontroller reset input  
to prevent operation in the cases of the initial power-on  
setting, low power-supply voltages, and the failed  
watchdog operations. Three reset output versions are  
available: push-pull RST, push-pull RST, and open-drain  
spikes. See the Maximum V  
Transient Duration vs.  
CC  
Reset Threshold Overdrive typical operating circuit.  
Figure 1 shows the reset output (RST/RST) behavior  
during power-up and brownout.  
RST. The reset timeout period (t ) is nominally 135s.  
RST  
Watchdog  
The watchdog function provides microprocessor moni-  
toring by requiring the microprocessor to toggle an out-  
put pin to indicate correct operation. The WDI input  
monitors the port signal and resets the watchdog timer  
on receipt of a rising edge. If an edge is not received  
within the required watchdog timeout period, the watch-  
dog circuit initiates a reset cycle. The internal watchdog  
Power-On Reset (POR)  
The internal power-on reset (POR) circuit detects the  
power-supply voltage (V ) level at startup. The POR  
CC  
circuit starts the oscillator when V  
exceeds the reset  
CC  
rising threshold level (V  
). The reset output remains  
TH+  
CC  
asserted from the time V  
crosses the V  
and con-  
TH+  
tinues to be asserted for the reset timeout period (t  
).  
RST  
5
V
ITH  
V - V  
ITH IHYST  
4
3
2
1
V
TH+  
V
TH-  
V
CCR  
CLK  
RST  
t
RST  
PFO  
CLOCK STARTS ON INTERNAL  
POR (V , V RISING)  
TH+ CC  
RST RELEASES AFTER THE  
RESET TIMEOUT PERIOD  
PFO ASSERTS AS V DROPS  
CC  
ITH IHYST  
BELOW V - V  
RST ASSERTS ON RESET FALLING  
VOLTAGE (V , V FALLING);  
TH- CC  
CLOCK STOPS  
RST CONTINUES TO  
ASSERT UNTIL V  
CCR  
Figure 1. RST/RST and PFO Behavior During Power-Up and Brownout  
_______________________________________________________________________________________  
7
System Monitoring Oscillator with  
Watchdog and Power Fail  
circuits are reset and the watchdog timer restarts at the  
MAX7387 Power Fail  
Internal (V ) detection is configured by connecting  
end of the reset cycle (RST/RST output releases).  
CC  
PFI to V . The internal V  
rising threshold (V ) is  
CC  
CC  
ITH  
For the MAX7387, the WDO output asserts if the WDI  
input does not receive a rising edge within the watchdog  
timeout period. WDO output remains asserted until a  
valid edge is received on the WDI input, signifying cor-  
rect microprocessor operation. The WDO output can be  
used as a status indicator either to the microprocessor  
or to an external device, such as a fault-indicating LED  
or sounder. The WDO output is an open-drain output.  
The power-up condition of the WDO output is high  
(not asserted).  
set at 4.38V. The open-drain PFO asserts low if the V  
CC  
supply voltage drops below the V  
falling threshold  
CC  
value (V  
). The V  
falling threshold is nominally  
HYST  
2% below the V  
CC  
rising threshold.  
CC  
Applications Information  
Interfacing to a Microcontroller  
Clock Input  
The CLOCK output is a push-pull, CMOS logic output,  
which directly drives any microprocessor (µP) or micro-  
controller (µC) clock input. There are no impedance-  
The operation of the watchdog and reset function is  
illustrated in Figure 2.  
The watchdog timeout period is set to one of nine possible  
values by pin strapping WDS1 and WDS2. Each control  
input has three possible values assigned by connection  
to GND, V , or V /2 (see Table 1). One of the  
Table 1. Watchdog Timeout Periods  
WꢁTCHDOG TIMEOUT  
PERIOD (ms)  
CC  
CC  
WDS1  
WDS2  
assigned values disables the watchdog function and is  
intended for customer use during test. The watchdog  
timer is disabled while the RST/RST output is asserted.  
MIN  
11  
TYP  
16  
MꢁX  
22  
GND  
GND  
GND  
GND  
V
V
V
/2 = open  
22  
32  
44  
CC  
CC  
CC  
Power Fail  
V
44  
64  
88  
CC  
MAX7388 Power Fail  
The power-fail function provides early warning of a power  
failure. The power-fail comparator threshold is internally  
GND  
V
V
V
/2 = open  
/2 = open  
/2 = open  
88  
128  
177  
354  
708  
1416  
2832  
CC  
CC  
CC  
/2 = open  
177  
354  
708  
1416  
256  
V
512  
CC  
set to 4.38V V  
rising threshold (V ). The open-drain  
ITH  
CC  
PFO asserts low if the V  
supply voltage drops below  
GND  
V
1024  
2048  
Disabled  
CC  
CC  
the V  
falling threshold value. The V  
falling threshold  
CC  
CC  
/2 = open  
V
V
CC  
CC  
is nominally 2% below the V rising threshold.  
CC  
V
CC  
Note: WDS1 or WDS2 is pulled to open if left floating.  
V
CC  
CLK  
RST  
RESET TIMEOUT PERIOD  
(t  
)
RST  
ACTIVE  
INTERNAL  
WATCHDOG STATE  
TRIPPED  
WDI  
WDO  
WATCHDOG TIMEOUT  
PERIOD (t  
)
WDG  
Figure 2. Watchdog Timing Diagram  
_______________________________________________________________________________________  
System Monitoring Oscillator with  
Watchdog and Power Fail  
matching issues when using the MAX7387/MAX7388.  
load. Use a bypass capacitor value of at least 1000  
times that of the output load capacitance.  
Operate the MAX7387/MAX7388 and microcontroller  
(or other clock input device) from the same supply volt-  
age level. Refer to the microcontroller data sheet for  
clock-input compatibility with external clock signals.  
Output Jitter  
The MAX7387/MAX7388s’ jitter performance is given in  
the Electrical Characteristics table as a peak-to-peak  
value obtained by observing the output of the device for  
20s with a 500MHz oscilloscope. Jitter measurements  
are approximately proportional to the period of the out-  
put frequency of the device. Thus, a 4MHz part has  
approximately twice the jitter value of an 8MHz part.  
The MAX7387/MAX7388 require no biasing compo-  
nents or load capacitance. When using the MAX7387/  
MAX7388 to retrofit a crystal oscillator, remove all bias-  
ing components from the oscillator input.  
Power-Supply Consideration  
The MAX7387/MAX7388 operate with power-supply  
voltages in the 2.7V to 5.5V range. Power-supply  
decoupling is needed to maintain the power-supply  
rejection performance of the MAX7387/MAX7388.  
The jitter performance of all clock sources degrades in  
the presence of mechanical and electrical interference.  
The MAX7387/MAX7388 are immune to vibration,  
shock, and EMI influences, and thus provide a consid-  
erably more robust clock source than crystal- or ceram-  
ic-resonator-based oscillator circuits.  
Bypass V  
to GND with a 0.1µF surface-mount ceramic  
CC  
capacitor. Mount the bypass capacitor as close to the  
device as possible. If possible, mount the MAX7387  
/MAX7388 close to the microcontroller’s decoupling  
capacitor so that additional decoupling is not required.  
Table 3. Reset Output Type  
OUTPUT TYPE  
s
A
B
C
A larger-value bypass capacitor is recommended if the  
MAX7387/MAX7388 are to operate with a large capacitive  
Push-pull RST  
Push-pull RST  
Open-drain RST  
Table 2. POR Voltage  
Note: Standard values are shown in bold. Contact factory for  
other output types.  
POWER-ON RESET VOLTꢁGE (V  
)
r
M
J
TH  
±.3ꢃ  
3.96  
3.44  
3.34  
3.13  
2.ꢃ9  
2.82  
2.5  
Table ±. Clock Output Frequency  
CLOCK FREQUENCY (ꢂ  
N
P
Q
S
V
X
) (MHz)  
ꢂꢂ  
CLOCK  
4
8
RD  
TP  
12  
16  
VB  
WB  
Note: Contact factory for other frequencies.  
Note: Standard values are shown in bold. Contact factory for  
other POR voltages.  
Selector Guide  
FREQUENCY  
RꢁNGE (MHz) FUNCTION  
RESET  
WꢁTCHDOG INPUT (WDI)/  
WꢁTCHDOG OUTPUT (WDO)  
POWER-FꢁIL INPUT (PFI)/  
POWER-FꢁIL OUTPUT (PFO)  
PIN-  
PꢁCKꢁGE  
PꢁRT  
SPEED  
MAX7387  
MAX7388  
MAX7389  
MAX7390  
MAX7391  
1 to 16  
1 to 16  
1 to 16  
1 to 16  
1 to 16  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes/yes  
Yes/no  
Yes/yes  
Yes/no  
Yes/yes  
No/yes  
10 µMAX  
8 µMAX  
8 µMAX  
8 µMAX  
8 µMAX  
Yes  
Yes  
Yes/yes  
Note: Other versions with different features are available. Refer to the MAX7389/MAX7390 and MAX7391 data sheets.  
_______________________________________________________________________________________  
9
System Monitoring Oscillator with  
Watchdog and Power Fail  
Functional Diagram  
RST/RST  
MAX7387  
MAX7388  
PRESCALER  
RESET TIMER  
POWER-ON  
RESET  
OSCILLATOR  
CLOCK  
WDO*  
WATCHDOG  
TIMER  
WDI  
N
WDS1  
WDS2  
PFI*  
PFO  
INTERNAL (V DETECTION)  
CC  
N
V_TH  
*MAX7387 ONLY  
GND  
Typical Application Circuit  
POWER  
SUPPLY  
5V  
DC-DC  
V
CC  
WDS1  
WDS2  
RST/RST  
INT  
RST/RST  
R1  
PFO  
WDI  
MAX7387  
MAX7388  
µC  
I/O PORT  
I/O PORT  
PFI*  
WDO*  
R2  
OSC1  
CLOCK  
GND  
*MAX7387 ONLY  
Chip Information  
PROCESS: BICMOS  
1ꢀ ______________________________________________________________________________________  
System Monitoring Oscillator with  
Watchdog and Power Fail  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
4X S  
8
8
MILLIMETERS  
INCHES  
DIM MIN  
MAX  
MAX  
MIN  
-
-
0.043  
0.006  
0.037  
0.014  
0.007  
0.120  
1.10  
0.15  
0.95  
0.36  
0.18  
3.05  
A
0.002  
0.030  
0.010  
0.005  
0.116  
0.05  
0.75  
0.25  
0.13  
2.95  
A1  
A2  
b
E
H
Ø0.50 0.1  
c
D
e
0.0256 BSC  
0.65 BSC  
0.6 0.1  
E
H
0.116  
0.188  
0.016  
0°  
0.120  
2.95  
4.78  
0.41  
0°  
3.05  
5.03  
0.66  
6°  
0.198  
0.026  
6°  
L
1
1
α
S
0.6 0.1  
0.0207 BSC  
0.5250 BSC  
BOTTOM VIEW  
D
TOP VIEW  
A1  
A2  
A
c
α
e
L
b
SIDE VIEW  
FRONT VIEW  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, 8L uMAX/uSOP  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0036  
J
1
______________________________________________________________________________________ 11  
System Monitoring Oscillator with  
Watchdog and Power Fail  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
e
4X S  
10  
10  
INCHES  
MAX  
MILLIMETERS  
MAX  
1.10  
0.15  
0.95  
3.05  
3.00  
3.05  
3.00  
5.05  
0.70  
DIM MIN  
MIN  
-
A
-
0.043  
0.006  
0.037  
0.120  
0.118  
0.120  
0.118  
0.199  
A1  
A2  
D1  
D2  
E1  
E2  
H
0.002  
0.030  
0.116  
0.114  
0.116  
0.114  
0.187  
0.05  
0.75  
2.95  
2.89  
2.95  
2.89  
4.75  
0.40  
H
Ø0.50 0.1  
0.6 0.1  
L
0.0157 0.0275  
0.037 REF  
L1  
b
0.940 REF  
0.007  
0.0106  
0.177  
0.270  
0.200  
1
1
e
0.0197 BSC  
0.500 BSC  
0.6 0.1  
c
0.0035 0.0078  
0.0196 REF  
0.090  
BOTTOM VIEW  
0.498 REF  
S
α
TOP VIEW  
0°  
6°  
0°  
6°  
D2  
E2  
GAGE PLANE  
A2  
c
A
E1  
b
L
α
A1  
D1  
L1  
FRONT VIEW  
SIDE VIEW  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, 10L uMAX/uSOP  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0061  
1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2006 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products, Inc.  
ENGL ISH ? ? ? ? ? ? ? ? ? ?  
WH AT 'S NEW  
PR OD UC TS  
SO LUTI ONS  
D ES IG N  
A PPNOTES  
SU PPORT  
B U Y  
COM PA N Y  
M EMB ERS  
M A X 7 3 8 7  
Pa rt Nu m ber T abl e  
N o t e s :  
1 . S e e t h e M A X 7 3 8 7 Q u i c k V i e w D a t a S h e e t f o r f u r t h e r i n f o r m a t i o n o n t h i s p r o d u c t f a m i l y o r d o w n l o a d t h e  
M A X 7 3 8 7 f u l l d a t a s h e e t ( P D F , 6 0 8 k B ) .  
2 . O t h e r o p t i o n s a n d l i n k s f o r p u r c h a s i n g p a r t s a r e l i s t e d a t : h t t p : / / w w w . m a x i m - i c . c o m / s a l e s .  
3
.
D
i
d
n
'
t
F
i
n
d
W
h
a
t
Y
o
u
N
e
e
d
?
A
s
k
o
u
r
a
p
p
l
i
c
a
t
i
o
n
s
e
n
g
i
n
e
e
r
s
.
E
x
p
e
r
t
a
s
s
i
s
t
a
n
c
e
i
n
f
i
n
d
i
n
g
p
a
r
t
s
,
u
s
u
a
l
l
y
w
i
t
h
i
n
o n e b u s i n e s s d a y .  
4 . P a r t n u m b e r s u f f i x e s : T o r T & R = t a p e a n d r e e l ; + = R o H S / l e a d - f r e e ; # = R o H S / l e a d - e x e m p t . M o r e : S e e f u l l  
d a t a s h e e t o r P a r t N a m i n g C o n v e n t i o n s .  
5 . * S o m e p a c k a g e s h a v e v a r i a t i o n s , l i s t e d o n t h e d r a w i n g . " P k g C o d e / V a r i a t i o n " t e l l s w h i c h v a r i a t i o n t h e p r o d u c t  
u s e s .  
P a r t N u m b e r  
F r e e  
S a m p l e  
B u y  
D i r e c t  
T e m p  
R o H S / L e a d - F r e e ?  
M a t e r i a l s A n a l y s i s  
P a c k a g e : T Y P E P I N S S I Z E  
D R A W I N G C O D E / V A R *  
M A X 7 3 8 7 C M A C  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : N o  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : N o  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : N o  
M A X 7 3 8 7 C S A C  
M A X 7 3 8 7 C M V B - T  
M A X 7 3 8 7 C M T P  
M A X 7 3 8 7 C M R D  
M A X 7 3 8 7 C M T P - T  
M A X 7 3 8 7 C M R D - T  
u M A X ; 1 0 p i n ; 3 x 3 m m  
D w g : 2 1 - 0 0 6 1 I ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 1 0 - 2 *  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
u M A X ; 1 0 p i n ; 3 x 3 m m  
D w g : 2 1 - 0 0 6 1 I ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 1 0 - 2 *  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : N o  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : N o  
M A X 7 3 8 7 C S W B - T  
M A X 7 3 8 7 C S V B - T  
M A X 7 3 8 7 C S T P - T  
M A X 7 3 8 7 C S R D - T  
M A X 7 3 8 7 C M W B  
M A X 7 3 8 7 C S W B  
M A X 7 3 8 7 C S V B  
M A X 7 3 8 7 C S T P  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : N o  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : N o  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : N o  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : N o  
u M A X ; 1 0 p i n ; 3 x 3 m m  
D w g : 2 1 - 0 0 6 1 I ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 1 0 - 2 *  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
u M A X ; 1 0 p i n ; 3 x 3 m m  
D w g : 2 1 - 0 0 6 1 I ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 1 0 - 2 *  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
u M A X ; 1 0 p i n ; 3 x 3 m m  
D w g : 2 1 - 0 0 6 1 I ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 1 0 - 2 *  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
u M A X ; 1 0 p i n ; 3 x 3 m m  
D w g : 2 1 - 0 0 6 1 I ( P D F )  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
U s e p k g c o d e / v a r i a t i o n : U 1 0 - 2 *  
M A X 7 3 8 7 C S R D  
M A X 7 3 8 7 C M W B - T  
M A X 7 3 8 7 C M V B  
u M A X ; 1 0 p i n ; 3 x 3 m m  
D w g : 2 1 - 0 0 6 1 I ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 1 0 - 2 *  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : N o  
u M A X ; 1 0 p i n ; 3 x 3 m m  
D w g : 2 1 - 0 0 6 1 I ( P D F )  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
U s e p k g c o d e / v a r i a t i o n : U 1 0 - 2 *  
D i d n ' t F i n d W h a t Y o u N e e d ?  
C O N T A C T U S : S E N D U S A N E M A I L  
C o p y r i g h t 2 0 0 7 b y M a x i m I n t e g r a t e d P r o d u c t s , D a l l a s S e m i c o n d u c t o r L e g a l N o t i c e s P r i v a c y P o l i c y  

相关型号:

MAX7387AXRD

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, PDSO10, 3 X 3 MM, MO-187CBA, MICRO, SOP-10
MAXIM

MAX7387AXTP

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, PDSO10, 3 X 3 MM, MO-187CBA, MICRO, SOP-10
MAXIM

MAX7387AXVB

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, PDSO10, 3 X 3 MM, MO-187CBA, MICRO, SOP-10
MAXIM

MAX7387AXWB

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, PDSO10, 3 X 3 MM, MO-187CBA, MICRO, SOP-10
MAXIM

MAX7387BXTP

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, PDSO10, 3 X 3 MM, MO-187CBA, MICRO, SOP-10
MAXIM

MAX7387CJRD

暂无描述
MAXIM

MAX7387CJVB

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, PDSO10, 3 X 3 MM, MO-187CBA, MICRO, SOP-10
MAXIM

MAX7387CMAC

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, PDSO10, 3 X 3 MM, MO-187CBA, MICRO, SOP-10
MAXIM

MAX7387CMRD-T

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, PDSO10, 3 X 3 MM, MO-187CBA, MICRO, SOP-10
MAXIM

MAX7387CMTP-T

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, PDSO10, 3 X 3 MM, MO-187CBA, MICRO, SOP-10
MAXIM

MAX7387CMVB

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, PDSO10, 3 X 3 MM, MO-187CBA, MICRO, SOP-10
MAXIM

MAX7387CMVB-T

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, PDSO10, 3 X 3 MM, MO-187CBA, MICRO, SOP-10
MAXIM