MAX7391CMWB-T [MAXIM]

Clock Generator, 16MHz, BICMOS, PDSO8, MO-187C-AA, MICRO, SOP-8;
MAX7391CMWB-T
型号: MAX7391CMWB-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Clock Generator, 16MHz, BICMOS, PDSO8, MO-187C-AA, MICRO, SOP-8

信息通信管理 光电二极管
文件: 总12页 (文件大小:594K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3981; Rev 0; 1/06  
Speed-Switching Clock Generator  
with Power Fail  
General Description  
The MAX7391 replaces ceramic resonators, crystals,  
and supervisory functions for microcontrollers in 3.3V  
and 5V applications.  
Features  
Robust Microcontroller Clock and Supervisory  
Functions in a Single Package  
Integrated Reset and Power-Fail Functions  
Speed Select  
The MAX7391 provides a clock source, reset, and  
power-fail functions. The programmable power-fail func-  
tion provides early warning of power failure and is con-  
+2.7V to +5.5V Operation  
figurable to detect either an external voltage or the V  
supply to the device.  
CC  
Factory-Trimmed Oscillator  
Reset Valid Down to 1.1V Supply Voltage  
±1ꢀmꢁ Clock-Output Drive Current  
±±4 Total ꢁccuracy ꢂor -±ꢀ0C to +1250C  
The clock output can be switched between normal and  
half-speed operation. This functionality allows the micro-  
controller to operate at reduced power and may be  
used to extend the time available to perform house-  
keeping tasks, such as writing data to flash during a  
power failure. Connecting the power-fail output to the  
SPEED input reduces clock speed automatically during  
power-fail events.  
±2.754 Total ꢁccurac ꢂor ꢀ0C to +ꢃ50C  
5.5mꢁ Operating Current (12MHz Version)  
-±ꢀ0C to +1250C Temperature Range  
Surꢂace-Mount Package  
The MAX7391 clock output is factory programmed to a  
frequency in the 1MHz to 16MHz range. Four standard  
frequencies are available. Other frequencies are avail-  
able upon request. The maximum operating supply cur-  
rent is 5.5mA (typ) with a clock frequency of 12MHz.  
1MHz to 16MHz Factory Preset Frequency Range  
Unlike typical crystal and ceramic resonator oscillator  
circuits, the MAX7391 is resistant to EMI and vibration,  
and operates reliably at high temperatures. The high-  
output drive current and absence of high-impedance  
nodes make the oscillator invulnerable to dirty or humid  
operating conditions.  
Ordering Information  
PKG  
CODE  
PꢁRT  
TEMP RꢁNGE  
PIN-PꢁCKꢁGE  
MAX7391srff -40°C to +125°C 8 µMAX  
U8-1  
The MAX7391 is available in an 8-pin µMAX® package.  
The MAX7391 standard operating temperature range is  
from -40°C to +125°C.  
Note: “s” is a placeholder for the reset output type. Insert the  
symbol found in Table 2 in the place of “s.” “r” is a placeholder  
for the power-on reset (POR) voltage. Insert the symbol found in  
Table 1 in the place of “r.” “ff” is a placeholder for the nominal  
output frequency. Insert the symbol found in Table 3 in the  
place of “ff.” For example, MAX7391CMTP describes a device  
with 4.38V reset level, open-collector RST output, and a clock  
output frequency of 8MHz.  
Applications  
White Goods  
Automotive  
Appliances and Controls  
Handheld Products  
Portable Equipment  
Microcontroller Systems  
Pin Configuration  
TOP VIEW  
PFI  
1
2
3
4
8
7
6
5
CLOCK  
RST/RST  
SPEED  
PFO  
V
CC  
MAX7391  
Typical Application Circuit, Functional Diagram, and Selector  
Guide appear at end of data sheet.  
N.C.  
GND  
µMAX is a registered trademark of Maxim Integrated Products, Inc.  
µMꢁX  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Speed-Switching Clock Generator  
with Power Fail  
ꢁBSOLUTE MꢁXIMUM RꢁTINGS  
CC  
All Other Pins to GND ................................-0.3V to (V  
CLOCK, RST/RST, PFO Output Current .......................... 50mA  
V
to GND...........................................................-0.3V to +6.0V  
Operating Temperature Range .........................-40°C to +125°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
+ 0.3V)  
CC  
Continuous Power Dissipation  
8-Pin µMAX (derate 4.5mW/°C over T = +70°C)........362mW  
A
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICꢁL CHꢁRꢁCTERISTICS  
(Typical Application Circuit, V  
= +2.7V to +5.5V, T = -40°C to +125°C, 1MHz to 16MHz output frequency range, typical values at  
CC  
A
V
CC  
= +5.0V, T = +25°C, unless otherwise noted.) (Note 1)  
A
PꢁRꢁMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MꢁX  
UNITS  
POWER REQUIREMENTS  
Operating Supply Voltage  
V
2.7  
5.5  
1.1  
V
V
CC  
Minimum supply voltage for valid RST/RST  
Valid RST/RST Supply Voltage  
V
CCR  
output, T = 0°C to +85°C  
A
f
f
= 12MHz  
= 8MHz  
5.5  
4.5  
CLOCK  
Operating Supply Current  
I
mA  
CC  
CLOCK  
LOGIC INPUT: SPEED  
Input Leakage Current  
Logic-Input High Voltage  
Logic-Input Low Voltage  
I
Input is high  
0.5  
µA  
V
LEAK  
V
0.7 x V  
IH  
CC  
V
0.3 x V  
V
IL  
CC  
PUSH-PULL LOGIC OUTPUTS: RST/RST  
Output High  
Output Low  
V
I
= 1mA  
V
V
- 1.5  
- 0.3  
V
V
OH  
SOURCE  
CC  
V
I
= 3mA  
0.05  
0.05  
0.4  
0.4  
OL  
SINK  
OPEN-DRꢁIN LOGIC OUTPUTS: RST, PFO  
Output Low  
V
I
= 3mA  
V
OLO  
SINK  
OUTPUT: CLOCK  
CLOCK Output High Voltage  
CLOCK Output Low Voltage  
CLOCK Accuracy  
V
I
I
= 5mA  
V
V
OHC  
SOURCE  
CC  
-4  
V
= 5mA  
SINK  
0.3  
+4  
OLC  
f
Table 3, V  
= +5.0V  
%
CLOCK  
CC  
2
_______________________________________________________________________________________  
Speed-Switching Clock Generator  
with Power Fail  
ELECTRICꢁL CHꢁRꢁCTERISTICS (continued)  
(Typical Application Circuit, V  
= +2.7V to +5.5V, T = -40°C to +125°C, 1MHz to 16MHz output frequency range, typical values at  
CC  
A
V
CC  
= +5.0V, T = +25°C, unless otherwise noted.) (Note 1)  
A
PꢁRꢁMETER  
SYMBOL  
CONDITIONS  
= +5.0V (Note 2)  
MIN  
TYP  
MꢁX  
UNITS  
Clock Frequency Temperature  
Coefficient  
V
140  
400  
ppm/°C  
CC  
Clock Frequency Supply Voltage  
Coefficient  
T
= +25°C (Note 2)  
0.67  
50  
1
%/V  
%
A
CLOCK Duty Cycle  
(Note 2)  
45  
55  
Observation for 20s using a 500MHz  
oscilloscope  
ps  
CLOCK Output Jitter  
310  
RMS  
C
= 10pF, 10% to 90% of full scale  
LOAD  
Output Rise Time  
t
2.5  
2.5  
7.0  
7.5  
ns  
ns  
R
(Note 2)  
C
= 10pF, 90% to 10% of full scale  
LOAD  
Output Fall Time  
t
F
(Note 2)  
INTERNꢁL POWER-ON RESET  
V
V
TH  
+ 1.5%  
TH  
T
T
= +25°C  
A
- 1.5%  
V
V
V
rising, Table 1  
falling  
TH+  
CC  
CC  
= -40°C to  
V
V
TH  
A
TH  
Reset Voltage  
V
+125°C  
- 2.5%  
+ 2.5%  
0.98 x  
V
TH-  
V
TH+  
Reset Timeout Period  
t
Figure 1  
86  
135  
250  
µs  
RST  
POWER FꢁIL  
0.65 x  
0.85 x  
V
CC  
Power-Fail Select Threshold  
V
PFI input  
V
V
SEL  
V
CC  
V
Monitoring Threshold  
CC  
V
V
V
rising  
falling  
4.06  
1.0  
0.9  
1.0  
4.38  
2
4.60  
4.0  
1.4  
8.0  
ITH  
CC  
CC  
(Internal Threshold)  
Internal Threshold Hysteresis  
V
%V  
ITH  
IHYST  
PFI Monitoring Threshold  
(External Threshold)  
V
PFI rising  
PFI falling  
1.1  
3.5  
V
ETH  
External Threshold Hysteresis  
V
%V  
ETH  
EHYST  
Note 1: All parameters are tested at T = +25°C. Specifications over temperature are guaranteed by design.  
A
Note 2: Guaranteed by design. Not production tested.  
_______________________________________________________________________________________  
3
Speed-Switching Clock Generator  
with Power Fail  
Typical Operating Characteristics  
(Typical Application Circuit, V  
= +5V, f  
= 16MHz, T = +25°C, unless otherwise noted.)  
CC  
CLOCK  
A
FREQUENCY vs. SUPPLY VOLTAGE  
FREQUENCY vs. TEMPERATURE  
DUTY CYCLE vs. SUPPLY VOLTAGE  
1.020  
1.010  
1.000  
0.990  
0.980  
1.040  
1.030  
1.020  
1.010  
1.000  
0.990  
0.980  
52  
51  
50  
49  
48  
NORMALIZED TO V = 5V  
CC  
V
= 2.9V  
V
= 2.9V  
TH+  
NORMALIZED TO T = +25°C  
TH+  
A
2.90  
3.55  
4.20  
(V)  
4.85  
5.50  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
2.90  
3.55  
4.20  
(V)  
4.85  
5.50  
V
TEMPERATURE (°C)  
V
CC  
CC  
CLOCK OUTPUT WAVEFORM  
DUTY CYCLE vs. TEMPERATURE  
WITH C = 10pF  
L
MAX7391 toc05  
52  
51  
50  
49  
48  
V
= 3.3V  
V
= 3.3V  
CC  
CC  
CLOCK  
1V/div  
CLOCK  
1V/div  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
40ns/div  
40ns/div  
TEMPERATURE (°C)  
CLOCK OUTPUT WAVEFORM  
WITH C = 100pF  
SUPPLY CURRENT vs. TEMPERATURE  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
L
MAX7391 toc07  
5
4
3
2
1
5
4
3
2
1
V
= 5V  
CC  
CLOCK  
1V/div  
V
= 3.3V  
CC  
V
= 2.9V  
TH+  
40ns/div  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
2.90  
3.55  
4.20  
(V)  
4.85  
5.50  
V
CC  
±
_______________________________________________________________________________________  
Speed-Switching Clock Generator  
with Power Fail  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, V  
= +5V, f  
= 16MHz, T = +25°C, unless otherwise noted.)  
CC  
CLOCK A  
MAXIMUM V TRANSIENT DURATION  
CC  
vs. RESET THRESHOLD OVERDRIVE  
CLOCK SETTLING TIME FROM START  
POWER-ON RESET BEHAVIOR  
MAX7391 toc10  
MAX7391 toc11  
1000  
V
CC  
V
2V/div  
CC  
5V/div  
RESET OCCURS ABOVE THIS CURVE  
100  
10  
1
CLOCK  
5V/div  
CLOCK  
2V/div  
RST  
5V/div  
PFO  
5V/div  
V
FALLING FROM V + 100mV  
TH+  
CC  
1µs/div  
20µs/div  
100 200 300 400 500 600 700 800 900 1000  
RESET THRESHOLD OVERDRIVE (mV)  
CLOCK RESPONSE TO SPEED SELECT INPUT  
RISING THRESHOLD vs. TEMPERATURE  
MAX7391 toc13  
2.90  
2.88  
2.86  
2.84  
2.82  
2.80  
SPEED  
2V/div  
CLOCK  
2V/div  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
200ns/div  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
5
Speed-Switching Clock Generator  
with Power Fail  
Pin Description  
PIN  
NꢁME  
FUNCTION  
Power-Fail Input. PFI monitors the condition of either an external supplied voltage or V . See the Power Fail  
section for more details.  
CC  
1
PFI  
Power Input. Connect V  
bypass capacitor as close to the device as possible.  
to the power supply. Bypass V  
to GND with a 0.1µF capacitor. Install the  
CC  
CC  
2
V
CC  
3
4
N.C.  
No Connection  
Ground  
GND  
Power-Fail Output. Open-drain output asserts when the voltage being monitored drops below the power-fail  
threshold voltage.  
5
6
PFO  
Clock-Speed Select Input. Connect SPEED high for the factory-trimmed clock output frequency. Connect  
SPEED low to reduce the clock output frequency by half.  
SPEED  
Reset Output. Reset output is available in one of three configurations: push-pull RST, push-pull RST,  
or open-drain RST. The reset output occurs if any combination of the following conditions occurs: reset  
output is asserted during power-up, and whenever V is below the reset threshold level; for devices with WDI,  
CC  
7
8
RST/RST  
reset output asserts when WDI does not receive a rising or falling edge within the watchdog timeout period.  
CLOCK Clock Output  
Clock Output (CLOCK)  
The push-pull clock output (CLOCK) drives a ground-  
connected 1kload or a positive supply connected  
500load to within 300mV of either supply rail. CLOCK  
remains stable over the full operating voltage range and  
does not generate short output cycles during either  
power-on or power-off. A typical startup characteristic is  
shown in the Typical Operating Characteristics section.  
Detailed Description  
The MAX7391 replaces ceramic resonators, crystals,  
and supervisory functions for microcontrollers in 3.3V  
and 5V applications.  
The MAX7391 provides a clock source, reset, and  
power-fail functions. The power-fail output provides  
early warning of power failure. The power-fail threshold  
is configurable to detect either an external voltage or  
The clock output frequency is reduced by a factor of  
two by taking SPEED low. This functionality allows the  
microcontroller to operate at reduced power and may  
be used to extend the time available to perform house-  
keeping tasks, such as writing data to flash during  
power failure.  
the V  
supply voltage to the device.  
CC  
The clock output can be switched between normal and  
half-speed operation. This functionality allows the  
microcontroller to operate at reduced power and may  
be used to extend the time available to perform house-  
keeping tasks, such as writing data to flash, during a  
power failure. Connecting the power-fail output (PFO)  
to the SPEED input reduces clock speed automatically  
during power-fail events.  
Reset  
The reset function drives the microcontroller reset input  
to prevent operation in the cases of the initial power-on  
setting, low power-supply voltages, and the failed  
watchdog operations. Three reset output versions are  
available: push-pull RST, push-pull RST, and open-drain  
The integrated reset provides the power-supply monitor-  
ing functions necessary to ensure correct microcontroller  
operation. The reset circuit has built-in power-supply  
transient immunity and provides both power-on reset  
and power-fail or brownout reset functionality. Two stan-  
dard factory-trimmed reset levels are available.  
RST. The reset timeout period (t ) is nominally 135s.  
RST  
Power-On Reset (POR)  
The internal power-on reset (POR) circuit detects the  
power-supply voltage (V ) level at startup. The POR  
CC  
A power-fail function is provided for power-supply volt-  
age monitoring and can provide advance notice of an  
impending power failure. The power-fail input monitors  
external power-supply voltages through an external  
circuit starts the oscillator when V  
exceeds the reset  
CC  
rising threshold level (V  
). The reset output remains  
TH+  
asserted from the time V  
crosses the V  
and con-  
CC  
TH+  
tinues to be asserted for the reset timeout period (t  
).  
resistive divider. Connect PFI to V  
to monitor V  
.
CC  
RST  
CC  
Upon completion of the reset timeout, the reset output  
is released. See Figure 1.  
6
_______________________________________________________________________________________  
Speed-Switching Clock Generator  
with Power Fail  
Low-Voltage Lockout  
The reset output asserts whenever V drops below the  
supply voltage drops below the V  
falling threshold  
CC  
value (V  
). The V  
falling threshold is nominally  
CC  
CC  
IHYST  
2% below the V  
reset falling threshold, V . The difference between the  
rising threshold.  
TH-  
CC  
reset rising and falling threshold values is V  
- (V ).  
TH-  
TH+  
External power-fail detection is selected when the  
applied voltage on PFI (V ) is less than 0.65 x V  
The nominal hysteresis value is 2% of the reset rising  
threshold value. The reset detection circuitry provides  
filtering to prevent triggering on negative voltage spikes.  
See the Typical Operating Characteristics for a plot of  
maximum transient duration without causing a reset  
pulse vs. reset comparator overdrive.  
PFI  
CC  
(V  
minimum). When the voltage on PFI is more than  
SEL  
0.85 x V  
(V  
maximum), the device switches to  
SEL  
CC  
internal monitoring. External power-fail detection is nor-  
mally used with a resistive divider from the supply  
being monitored. See the Typical Application Circuit.  
For a 3.3V supply, the voltage on PFI needs to be set  
Figure 1 shows the reset output (RST/RST) behavior  
during power-up and brownout.  
externally and less than 0.65 x V (V  
minimum). To set  
CC SEL  
the voltage on PFI externally, choose R1 and R2 so that:  
Power Fail  
The power-fail function provides early warning of a power  
failure. The power-fail comparator detects the condition  
R2 × PowerSupply  
V
=
PFI  
R2+R1  
of either an external voltage or the V supply voltage.  
CC  
See Figure 1 for PFO behavior during power-up and  
brownout.  
Internal (V ) detection is configured by connecting  
CC  
PFI to V . The internal V  
rising threshold (V ) is  
CC  
CC  
ITH  
set at 4.38V. The open-drain PFO asserts low if the V  
CC  
5
V
V
- V  
ITH IHYST  
ITH  
4
3
2
1
V
V
TH+  
TH-  
V
CCR  
CLK  
RST  
t
RST  
PFO  
CLOCK STARTS ON INTERNAL  
POR (V , V RISING).  
TH+ CC  
RST RELEASES AFTER THE  
RESET TIMEOUT PERIOD.  
PFO ASSERTS AS V DROPS  
CC  
BELOW V . CLOCK FREQUENCY  
TH  
REDUCTION SHOWN IS ACHIEVED  
BY CONNECTING SPEED TO PFO.  
RST ASSERTS ON RESET FALLING  
VOLTAGE (V , V FALLING).  
TH- CC  
CLOCK STOPS.  
RST CONTINUES TO  
ASSERT UNTIL V  
.
CCR  
Figure 1. RST/RST and PFO Behavior During Power-Up and Brownout  
_______________________________________________________________________________________  
7
Speed-Switching Clock Generator  
with Power Fail  
Selector Guide  
WꢁTCHDOG INPUT  
(WDI) / WꢁTCHDOG  
OUTPUT (WDO)  
POWER-FꢁIL INPUT  
(PFI)/POWER-FꢁIL  
OUTPUT (PFO)  
FREQUENCY RꢁNGE  
(MHz)  
RESET  
FUNCTION  
PIN-  
SPEED  
PꢁRT  
PꢁCKꢁGE  
MAX7387  
MAX7388  
MAX7389  
MAX7390  
MAX7391  
1 to 32  
1 to 32  
1 to 32  
1 to 32  
1 to 32  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes/yes  
Yes/no  
Yes/yes  
Yes/no  
Yes/yes  
No/yes  
10 µMAX  
8 µMAX  
8 µMAX  
8 µMAX  
8 µMAX  
Yes  
Yes  
Yes/yes  
Note: Other versions with different features are available. Refer to the MAX7387/MAX7388 and MAX7389/MAX7390 data sheets.  
Power-Supply Considerations  
Applications Information  
Interfacing to a Microcontroller  
Clock Input  
The MAX7391 operates with power-supply voltages in  
the 2.7V to 5.5V range. Good power-supply decoupling  
is needed to maintain the power-supply rejection per-  
The clock output is a push-pull, CMOS logic output,  
which directly drives any microprocessor (µP) or micro-  
controller (µC) clock input. There are no impedance-  
matching issues when using the MAX7391. Operate the  
MAX7391 and µC (or other clock input device) from the  
same supply voltage level. Refer to the microcontroller  
data sheet for clock-input compatibility with external  
clock signals. Table 3 lists clock output frequency.  
formance of the MAX7391. Bypass V  
to GND with a  
CC  
0.1µF surface-mount ceramic capacitor. Mount the  
bypass capacitor as close to the device as possible. If  
possible, mount the MAX7391 close to the microcon-  
troller’s decoupling capacitor so that additional decou-  
pling is not required.  
A larger-value bypass capacitor is recommended if the  
MAX7391 is to operate with a large capacitive load.  
Use a bypass capacitor value of at least 1000 times  
that of the output load capacitance.  
The MAX7391 requires no biasing components or load  
capacitance. When using the MAX7391 to retrofit a  
crystal oscillator, remove all biasing components from  
the oscillator input.  
Output Jitter  
The MAX7391’s jitter performance is given in the  
Electrical Characteristics table as a peak-to-peak value  
obtained by observing the output of the device for 20s  
with a 500MHz oscilloscope. Jitter measurements are  
approximately proportional to the period of the output  
frequency of the device. Thus, a 4MHz part has approx-  
imately twice the jitter value of an 8MHz part.  
Table 1. POR Voltage  
POWER-ON RESET VOLTꢁGE (V  
)
TH  
r
M
J
±.3ꢃ  
3.96  
3.44  
3.34  
3.13  
2.ꢃ9  
2.82  
2.5  
N
P
Q
S
V
X
The jitter performance of all clock sources degrades in  
the presence of mechanical and electrical interference.  
The MAX7391 is immune to vibration, shock, and EMI  
influences, and thus provides a considerably more  
robust clock source than crystal- or ceramic-resonator-  
based oscillator circuits.  
Note: Standard values are shown in bold. Contact factory for  
other POR voltages.  
Table 3. Clock Output Frequency  
CLOCK FREQUENCY (ꢂ  
) (MHz)  
ꢂꢂ  
CLOCK  
Table 2. Reset Output Type  
4
8
RD  
TP  
OUTPUT TYPE  
s
A
B
C
Push-pull RST  
12  
16  
VB  
WB  
Push-pull RST  
Open collector RST  
Note: Contact factory for other frequencies.  
Note: Standard values are shown in bold. Contact factory for  
other output types.  
_______________________________________________________________________________________  
Speed-Switching Clock Generator  
with Power Fail  
Functional Diagram  
MAX7391  
RST/RST  
PRESCALER  
RESET TIMER  
POWER-ON  
RESET  
OSCILLATOR  
CLOCK  
SPEED  
PFI  
PFO  
INTERNAL (V DETECTION)  
CC  
N
V_TH  
GND  
Typical Application Circuit  
POWER  
SUPPLY  
5V  
DC-DC  
V
CC  
RST/RST  
RST/RST  
R1  
PFO  
INT  
MAX7391  
µC  
PFI  
SPEED  
R2  
OSC1  
CLOCK  
GND  
Chip Information  
PROCESS: BiCMOS  
_______________________________________________________________________________________  
9
Speed-Switching Clock Generator  
with Power Fail  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
4X S  
8
8
MILLIMETERS  
INCHES  
DIM MIN  
MAX  
MAX  
MIN  
-
-
0.043  
0.006  
0.037  
0.014  
0.007  
0.120  
1.10  
0.15  
0.95  
0.36  
0.18  
3.05  
A
0.002  
0.030  
0.010  
0.005  
0.116  
0.05  
0.75  
0.25  
0.13  
2.95  
A1  
A2  
b
E
H
Ø0.50±0.1  
c
D
e
0.0256 BSC  
0.65 BSC  
0.6±0.1  
E
H
0.116  
0.188  
0.016  
0°  
0.120  
2.95  
4.78  
0.41  
0°  
3.05  
5.03  
0.66  
6°  
0.198  
0.026  
6°  
L
1
1
α
S
0.6±0.1  
0.0207 BSC  
0.5250 BSC  
BOTTOM VIEW  
D
TOP VIEW  
A1  
A2  
A
c
α
e
L
b
SIDE VIEW  
FRONT VIEW  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, 8L uMAX/uSOP  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0036  
J
1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
1ꢀ ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2006 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products, Inc.  
ENGL ISH ? ? ? ? ? ? ? ? ? ?  
WH AT 'S NEW  
PR OD UC TS  
SO LUTI ONS  
D ES IG N  
A PPNOTES  
SU PPORT  
B U Y  
COM PA N Y  
M EMB ERS  
M A X 7 3 9 1  
Pa rt Nu m ber T abl e  
N
o
t
e
s
:
1 . S e e t h e M A X 7 3 9 1 Q u i c k V i e w D a t a S h e e t f o r f u r t h e r i n f o r m a t i o n o n t h i s p r o d u c t f a m i l y o r d o w n l o a d t h e  
M A X 7 3 9 1 f u l l d a t a s h e e t ( P D F , 2 8 0 k B ) .  
2 . O t h e r o p t i o n s a n d l i n k s f o r p u r c h a s i n g p a r t s a r e l i s t e d a t : h t t p : / / w w w . m a x i m - i c . c o m / s a l e s .  
3
.
D
i
d
n
'
t
F
i
n
d
W
h
a
t
Y
o
u
N
e
e
d
?
A
s
k
o
u
r
a
p
p
l
i
c
a
t
i
o
n
s
e
n
g
i
n
e
e
r
s
.
E
x
p
e
r
t
a
s
s
i
s
t
a
n
c
e
i
n
f
i
n
d
i
n
g
p
a
r
t
s
,
u
s
u
a
l
l
y
w
i
t
h
i
n
o
n
e
b
u
s
i
n
e
s
s
d
a
y
.
4
.
P
a
r
t
n
u
m
b
e
r
s
u
f
f
i
x
e
s
:
T
o
r
T
&
R
=
t
a
p
e
a
n
d
r
e
e
l
;
+
=
R
o
H
S
/
l
e
a
d
-
f
r
e
e
;
#
=
R
o
H
S
/
l
e
a
d
-
e
x
e
m
p
t
.
M
o
r
e
:
S
e
e
f
u
l
l
d a t a s h e e t o r P a r t N a m i n g C o n v e n t i o n s .  
5 . * S o m e p a c k a g e s h a v e v a r i a t i o n s , l i s t e d o n t h e d r a w i n g . " P k g C o d e / V a r i a t i o n " t e l l s w h i c h v a r i a t i o n t h e p r o d u c t  
u s e s .  
P
a
r
t
N
u
m
b
e
r
F r e e  
S a m p l e  
B u y  
D i r e c t  
T
e
m
p
R o H S / L e a d - F r e e ?  
M a t e r i a l s A n a l y s i s  
P a c k a g e : T Y P E P I N S S I Z E  
D R A W I N G C O D E / V A R *  
M
A
X
7
3
9
1
C
S
A
C
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : N o  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : N o  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : N o  
M A X 7 3 9 1 C M A C  
M A X 7 3 9 1 C M W B - T  
M A X 7 3 9 1 C M V B  
M A X 7 3 9 1 C M T P  
M A X 7 3 9 1 C M R D  
M A X 7 3 9 1 C M V B - T  
u M A X ; 8 p i n ; 3 x 3 m m  
D w g : 2 1 - 0 0 3 6 J ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 8 - 1 *  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
u M A X ; 8 p i n ; 3 x 3 m m  
D w g : 2 1 - 0 0 3 6 J ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 8 - 1 *  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
u M A X ; 8 p i n ; 3 x 3 m m  
D w g : 2 1 - 0 0 3 6 J ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 8 - 1 *  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
-
4
0
C
t
o
+
1
2
5
C
R
o
H
S
/
L
e
a
d
-
F
r
e
e
:
N
o
M A X 7 3 9 1 C M T P - T  
M A X 7 3 9 1 C M R D - T  
M A X 7 3 9 1 C S W B - T  
M A X 7 3 9 1 C S V B - T  
M A X 7 3 9 1 C S T P - T  
M A X 7 3 9 1 C S R D - T  
M A X 7 3 9 1 C S W B  
M A X 7 3 9 1 C S V B  
M A X 7 3 9 1 C S T P  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : N o  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : N o  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : N o  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : N o  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : N o  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : N o  
u M A X ; 8 p i n ; 3 x 3 m m  
D w g : 2 1 - 0 0 3 6 J ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 8 - 1 *  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
u M A X ; 8 p i n ; 3 x 3 m m  
D w g : 2 1 - 0 0 3 6 J ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 8 - 1 *  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
u M A X ; 8 p i n ; 3 x 3 m m  
D w g : 2 1 - 0 0 3 6 J ( P D F )  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
U s e p k g c o d e / v a r i a t i o n : U 8 - 1 *  
M A X 7 3 9 1 C S R D  
M A X 7 3 9 1 C M W B  
u M A X ; 8 p i n ; 3 x 3 m m  
D w g : 2 1 - 0 0 3 6 J ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 8 - 1 *  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
u M A X ; 8 p i n ; 3 x 3 m m  
D w g : 2 1 - 0 0 3 6 J ( P D F )  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
U s e p k g c o d e / v a r i a t i o n : U 8 - 1 *  
D i d n ' t F i n d W h a t Y o u N e e d ?  
C O N T A C T U S : S E N D U S A N E M A I L  
C o p y r i g h t 2 0 0 7 b y M a x i m I n t e g r a t e d P r o d u c t s , D a l l a s S e m i c o n d u c t o r L e g a l N o t i c e s P r i v a c y P o l i c y  

相关型号:

MAX7391CNTP

暂无描述
MAXIM

MAX7391CNWB

Clock Generator, 16MHz, BICMOS, PDSO8, MO-187C-AA, MICRO, SOP-8
MAXIM

MAX7391CPRD

Clock Generator, 4MHz, BICMOS, PDSO8, MO-187C-AA, MICRO, SOP-8
MAXIM

MAX7391CPTP

暂无描述
MAXIM

MAX7391CPVB

Clock Generator, 12MHz, BICMOS, PDSO8, MO-187C-AA, MICRO, SOP-8
MAXIM

MAX7391CSAC

Clock Generator, BICMOS, PDSO8, MO-187C-AA, MICRO, SOP-8
MAXIM

MAX7391CSTP-T

Clock Generator, 8MHz, BICMOS, PDSO8, MO-187C-AA, MICRO, SOP-8
MAXIM

MAX7391CSVB-T

Clock Generator, 12MHz, BICMOS, PDSO8, MO-187C-AA, MICRO, SOP-8
MAXIM

MAX7391CSWB-T

Clock Generator, 16MHz, BICMOS, PDSO8, MO-187C-AA, MICRO, SOP-8
MAXIM

MAX7391SRFF

Speed-Switching Clock Generator with Power Fail
MAXIM

MAX7393

Precision Silicon Oscillators with Enable or Autoenable
MAXIM

MAX7393ALT

Precision Silicon Oscillators with Enable or Autoenable
MAXIM