MAX7403ESA+ [MAXIM]

暂无描述;
MAX7403ESA+
型号: MAX7403ESA+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

暂无描述

开关
文件: 总12页 (文件大小:191K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-4764; Rev 2; 6/99  
8 t h -Ord e r, Lo w p a s s , Ellip t ic ,  
S w it c h e d -Ca p a c it o r Filt e rs  
3/MAX407  
Ge n e ra l De s c rip t io n  
Fe a t u re s  
The MAX7400/MAX7403/MAX7404/MAX7407 8th-order,  
lowpass, elliptic, switched-capacitor filters (SCFs) oper-  
ate from a single +5V (MAX7400/MAX7403) or +3V  
(MAX7404/MAX7407) supply. These devices draw 2mA  
of supply current and allow corner frequencies from  
1Hz to 10kHz, making them ideal for low-power anti-  
aliasing and post-DAC filtering applications. They fea-  
ture a shutdown mode that reduces the supply current  
to 0.2µA.  
8th-Order Lowpass Elliptic Filter  
Low Noise and Distortion  
-82dB THD + Noise (MAX7400)  
Clock-Tunable Corner Frequency (1Hz to 10kHz)  
100:1 Clock-to-Corner Ratio  
Single-Supply Operation  
+5V (MAX7400/MAX7403)  
+3V (MAX7404/MAX7407)  
Two c loc king op tions a re a va ila b le : s e lf-c loc king  
(through the use of an external capacitor) or external  
clocking for tighter cutoff-frequency control. In addition,  
an offset adjustment pin (OS) allows for the adjustment  
of the DC output level.  
Low Power  
2mA (Operating Mode)  
0.2µA (Shutdown Mode)  
Available in 8-Pin SO and DIP Packages  
Low Output Offset: ±5mV  
The MAX7400/MAX7404 provide 82dB of stopband  
rejection and a sharp rolloff with a transition ratio of 1.5.  
The MAX7403/MAX7407 provide a sharper rolloff with a  
transition ratio of 1.2, while still delivering 60dB of stop-  
band rejection. The fixed response of these devices  
simplifies the design task to corner-frequency selection  
Ord e rin g In fo rm a t io n  
PART  
TEMP. RANGE  
0°C to +70°C  
PIN-PACKAGE  
8 SO  
MAX7400CSA  
MAX7400CPA  
MAX7400ESA  
MAX7400EPA  
b y s e tting  
a c loc k fre q ue nc y. The MAX7400/  
0°C to +70°C  
8 Plastic DIP  
8 SO  
MAX7403/MAX7404/MAX7407 are available in 8-pin SO  
and DIP packages.  
-40°C to +85°C  
-40°C to +85°C  
8 Plastic DIP  
Ap p lic a t io n s  
Ordering Information continued at end of data sheet.  
ADC Anti-Aliasing  
Post-DAC Filtering  
CT2 Base Stations  
Speech Processing  
S e le c t o r Gu id e  
Air-Bag Electronics  
OPERATING  
VOLTAGE (V)  
PART  
FILTER RESPONSE  
MAX7400  
MAX7403  
MAX7404  
MAX7407  
Elliptic (r = 1.5)  
Elliptic (r = 1.2)  
Elliptic (r = 1.5)  
Elliptic (r = 1.2)  
+5  
+5  
+3  
+3  
Typ ic a l Op e ra t in g Circ u it  
V
SUPPLY  
P in Co n fig u ra t io n  
0.1µF  
V
DD  
SHDN  
OUT  
TOP VIEW  
INPUT  
IN  
OUTPUT  
COM  
IN  
1
2
3
4
8
7
6
5
CLK  
SHDN  
OS  
MAX7400  
MAX7403  
MAX7404  
MAX7407  
MAX7400  
MAX7403  
MAX7404  
MAX7407  
CLOCK  
CLK  
COM  
OS  
GND  
0.1µF  
V
DD  
OUT  
GND  
SO/DIP  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 1-800-835-8769.  
8 t h -Ord e r, Lo w p a s s , Ellip t ic ,  
S w it c h e d -Ca p a c it o r Filt e rs  
ABSOLUTE MAXIMUM RATINGS  
V
DD  
to GND  
Continuous Power Dissipation (T = +70°C)  
A
MAX7400/MAX7403 ..............................................-0.3V to +6V  
MAX7404/MAX7407 ..............................................-0.3V to +4V  
SO (derate 5.88mW/°C above +70°C)..........................471mW  
DIP (derate 9.1mW/°C above +70°C) ...........................727mW  
Operating Temperature Ranges  
IN, OUT, COM, OS, CLK ............................-0.3V to (V + 0.3V)  
DD  
SHDN........................................................................-0.3V to +6V  
OUT Short-Circuit Duration...................................................1sec  
MAX740_C_A .....................................................0°C to +70°C  
MAX740_E_A ..................................................-40°C to +85°C  
Storage Temperature Range .............................-65°C to +150°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS—MAX7400/MAX7403  
(V = +5V, filter output measured at OUT, 10k|| 50pF load to GND at OUT, SHDN = V , OS = COM, 0.1µF from COM to GND,  
DD  
DD  
f
= 100kHz, T = T  
to T , unless otherwise noted. Typical values are at +25°C.)  
MAX  
CLK  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
FILTER CHARACTERISTICS  
Corner Frequency  
f
(Note 1)  
0.001 to 10  
100:1  
kHz  
C
Clock-to-Corner Ratio  
Clock-to-Corner Tempco  
Output Voltage Range  
Output Offset Voltage  
f
/f  
CLK C  
10  
ppm/°C  
V
0.25  
-0.1  
V
DD  
- 0.25  
±25  
V
V
IN  
= V  
= V / 2  
±5  
mV  
OFFSET  
COM  
DD  
DC Insertion Gain with  
Output Offset Removed  
V
COM  
= V / 2 (Note 2)  
0.15  
0.3  
dB  
dB  
DD  
MAX7400  
MAX7403  
-82  
-80  
1
Total Harmonic Distortion  
plus Noise  
f
IN  
= 200Hz, V = 4Vp-p,  
IN  
THD+N  
measurement bandwidth = 22kHz  
OS Voltage Gain to OUT  
Input Voltage Range at OS  
A
OS  
V/V  
V
V
OS  
V
COM  
±0.1  
V
- 0.5  
/ 2  
V
+ 0.5  
/ 2  
DD  
DD  
Input, COM externally driven  
Output, COM internally biased  
V
/ 2  
DD  
COM Voltage Range  
V
COM  
V
V
/ 2  
V
/ 2  
DD  
DD  
V
DD  
/ 2  
- 0.2  
+ 0.2  
Input Resistance at COM  
Clock Feedthrough  
R
75  
125  
10  
1
kΩ  
mVp-p  
kΩ  
COM  
3/MAX407  
Resistive Output Load Drive  
R
C
10  
50  
L
L
Maximum Capacitive Load  
at OUT  
500  
pF  
Input Leakage Current at COM  
Input Leakage Current at OS  
CLOCK  
±0.1  
±0.1  
±10  
±10  
µA  
µA  
SHDN = GND, V  
= 0 to V  
DD  
COM  
V
= 0 to (V - 1V) (Note 3)  
DD  
OS  
Internal Oscillator Frequency  
Clock Input Current  
Clock Input High  
f
C
= 1000pF (Note 4)  
= 0 or 5V  
CLK  
29  
38  
48  
kHz  
µA  
V
OSC  
OSC  
I
V
±15  
±30  
CLK  
V
V
- 0.5  
IH  
DD  
Clock Input Low  
V
IL  
0.5  
V
2
_______________________________________________________________________________________  
8 t h -Ord e r, Lo w p a s s , Ellip t ic ,  
S w it c h e d -Ca p a c it o r Filt e rs  
3/MAX407  
ELECTRICAL CHARACTERISTICS—MAX7400/MAX7403 (continued)  
(V = +5V, filter output measured at OUT, 10k|| 50pF load to GND at OUT, SHDN = V , OS = COM, 0.1µF from COM to GND,  
DD  
DD  
f
= 100kHz, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX  
A
CLK  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER REQUIREMENTS  
Supply Voltage  
V
4.5  
5.5  
3.5  
1
V
DD  
Supply Current  
I
DD  
Operating mode, no load, IN = OS = COM  
2
mA  
µA  
dB  
Shutdown Current  
I
0.2  
60  
SHDN = GND, CLK driven from 0 to V  
SHDN  
DD  
Power-Supply Rejection Ratio  
SHUTDOWN  
PSRR  
Measured at DC  
V
V
DD  
- 0.5  
V
V
SHDN Input High  
SDH  
V
SDL  
0.5  
SHDN Input Low  
V
SHDN  
= 0 to V  
±0.1  
±10  
µA  
SHDN Input Leakage Current  
DD  
ELECTRICAL CHARACTERISTICS—MAX7404/MAX7407  
(V = +3V, filter output measured at OUT, 10k|| 50pF load to GND at OUT, SHDN = V , OS = COM, 0.1µF from COM to GND,  
DD  
DD  
f
= 100kHz, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
CLK  
A
MIN  
MAX  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
FILTER CHARACTERISTICS  
Corner Frequency  
f
(Note 1)  
0.001 to 10  
100:1  
kHz  
C
Clock-to-Corner Ratio  
Clock-to-Corner Tempco  
Output Voltage Range  
Output Offset Voltage  
f
/f  
CLK C  
10  
ppm/°C  
V
0.25  
-0.1  
V
DD  
- 0.25  
±25  
V
V
IN  
= V  
= V / 2  
±5  
mV  
OFFSET  
COM  
DD  
DC Insertion Gain with Output  
Offset Removed  
V
COM  
= V / 2 (Note 2)  
0.1  
0.3  
dB  
dB  
DD  
MAX7404  
MAX7407  
-79  
-77  
1
Total Harmonic Distortion  
plus Noise  
f
IN  
= 200Hz, V = 2.5Vp-p,  
IN  
THD+N  
measurement bandwidth = 22kHz  
OS Voltage Gain to OUT  
Input Voltage Range at OS  
A
OS  
V/V  
V
V
OS  
V
COM  
±0.1  
V
- 0.1  
/ 2  
V
+ 0.1  
/ 2  
DD  
DD  
COM Voltage Range  
V
COM  
COM internally biased or externally driven  
V
V
DD  
/ 2  
Input Resistance at COM  
Clock Feedthrough  
R
75  
125  
10  
1
kΩ  
mVp-p  
kΩ  
COM  
Resistive Output Load Drive  
R
C
10  
50  
L
L
Maximum Capacitive Load  
at OUT  
500  
pF  
Input Leakage Current at COM  
Input Leakage Current at OS  
±0.1  
±0.1  
±10  
±10  
µA  
µA  
SHDN = GND, V  
= 0 to V  
DD  
COM  
V
= 0 to (V - 1V) (Note 3)  
DD  
OS  
_______________________________________________________________________________________  
3
8 t h -Ord e r, Lo w p a s s , Ellip t ic ,  
S w it c h e d -Ca p a c it o r Filt e rs  
ELECTRICAL CHARACTERISTICS—MAX7404/MAX7407 (continued)  
(V = +3V, filter output measured at OUT, 10k|| 50pF load to GND at OUT, SHDN = V , OS = COM, 0.1µF from COM to GND,  
DD  
DD  
f
= 100kHz, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX  
A
CLK  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
CLOCK  
Internal Oscillator Frequency  
Clock Input Current  
Clock Input High  
f
C
= 1000pF (Note 4)  
OSC  
26  
34  
43  
kHz  
µA  
V
OSC  
I
V
CLK  
= 0 or 3V  
±15  
±30  
CLK  
V
V
- 0.5  
IH  
DD  
Clock Input Low  
V
IL  
0.5  
V
POWER REQUIREMENTS  
Supply Voltage  
V
2.7  
3.6  
3.5  
1
V
DD  
Supply Current  
I
DD  
Operating mode, no load, IN = OS = COM  
2
mA  
µA  
dB  
Shutdown Current  
I
0.2  
60  
SHDN = GND, CLK driven from 0 to V  
SHDN  
DD  
Power-Supply Rejection Ratio  
SHUTDOWN  
PSRR  
Measured at DC  
V
V
DD  
- 0.5  
V
V
SHDN Input High  
SDH  
V
SDL  
0.5  
SHDN Input Low  
V
= 0 to V  
±0.1  
±10  
µA  
SHDN Input Leakage Current  
SHDN  
DD  
ELLIPTIC (r = 1.5) FILTER CHARACTERISTICS—MAX7400/MAX7404  
(V = +5V for MAX7400, V = +3V for MAX7404; filter output measured at OUT; 10k|| 50pF load to GND at OUT; SHDN = V ;  
DD  
DD  
DD  
V
COM  
= V = V / 2; f  
= 100kHz; T = T  
to T  
; unless otherwise noted. Typical values are at T = +25°C.)  
MAX  
A
OS  
DD  
CLK  
A
MIN  
PARAMETER  
CONDITIONS  
MIN  
-0.20  
-0.20  
-0.20  
-0.20  
-0.20  
-0.20  
-0.20  
TYP  
MAX  
0.20  
0.20  
0.20  
0.20  
0.20  
0.25  
0.25  
-75  
UNITS  
f
= 0.371f  
-0.10  
0.02  
-0.08  
0.06  
-0.03  
0.09  
0.02  
-82  
IN  
C
f
IN  
= 0.587f  
C
f
IN  
= 0.737f  
C
f
IN  
= 0.868f  
C
f
IN  
= 0.940f  
C
Insertion Gain Relative to DC Gain  
(Note 5)  
dB  
f
IN  
= 0.988f  
C
3/MAX407  
f
IN  
= 1.000f  
C
f
IN  
= 1.500f  
C
f
IN  
= 1.601f  
-84  
-78  
C
f
IN  
= 2.020f  
-83  
-78  
C
f
IN  
= 4.020f  
-85  
-78  
C
4
_______________________________________________________________________________________  
8 t h -Ord e r, Lo w p a s s , Ellip t ic ,  
S w it c h e d -Ca p a c it o r Filt e rs  
3/MAX407  
ELLIPTIC (r = 1.2) FILTER CHARACTERISTICS—MAX7403/MAX7407  
(V = +5V for MAX7403, V = +3V for MAX7407; filter output measured at OUT; 10k|| 50pF load to GND at OUT; SHDN = V ;  
DD  
DD  
DD  
V
COM  
= V = V / 2; f  
= 100kHz; T = T  
to T  
; unless otherwise noted. Typical values are at T = +25°C.)  
MAX  
A
OS  
DD  
CLK  
A
MIN  
PARAMETER  
CONDITIONS  
MIN  
-0.20  
-0.20  
-0.20  
-0.20  
-0.20  
-0.20  
-0.20  
TYP  
MAX  
0.20  
0.20  
0.20  
0.20  
0.20  
0.30  
0.30  
-50  
UNITS  
f
= 0.408f  
-0.11  
0.02  
-0.06  
0.10  
0.02  
0.14  
0.09  
-58  
IN  
C
f
IN  
= 0.640f  
C
f
IN  
= 0.784f  
C
f
IN  
= 0.902f  
C
f
IN  
= 0.956f  
C
Insertion Gain Relative to DC Gain  
(Note 5)  
dB  
f
IN  
= 0.992f  
C
f
IN  
= 1.000f  
C
f
IN  
= 1.200f  
C
f
IN  
= 1.261f  
-59  
-54  
C
f
IN  
= 1.533f  
-60  
-54  
C
f
IN  
= 2.875f  
-60  
-54  
C
Note 1: The maximum f is defined as the clock frequency, f  
= 100 · f , at which the peak SINAD drops to 68dB with a  
C
C
CLK  
sinusoidal input at 0.2f .  
C
Note 2: DC insertion gain is defined as V  
/ V .  
IN  
OUT  
Note 3: OS voltages above V - 1V saturate the input and result in a 75µA typical input leakage current.  
DD  
3
3
Note 4: For MAX7400/MAX7403, f  
(kHz) 38 · 10 / C  
(pF). For MAX7404/MAX7407, f  
(kHz) 34 · 10 / C  
(pF).  
OSC  
OSC  
OSC  
OSC  
Note 5: The input frequencies, f , are selected at the peaks and troughs of the frequency responses.  
IN  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(V  
DD  
= +5V for MAX7400/MAX7403, V  
= +3V for MAX7404/MAX7407; V  
= V = V  
/ 2; SHDN = V ; f  
= 100kHz;  
DD  
COM  
OS  
DD  
DD CLK  
T
A
= +25°C; unless otherwise noted.)  
MAX7400/MAX7404 (r = 1.5)  
FREQUENCY RESPONSE  
MAX7400/MAX7404 (r = 1.5)  
PASSBAND FREQUENCY RESPONSE  
MAX7400/MAX7404 (r = 1.5)  
PHASE RESPONSE  
20  
0.24  
0.20  
0.16  
0.12  
0.08  
0.04  
0
0
f = 1kHz  
C
f = 1kHz  
C
f = 1kHz  
C
-80  
0
-20  
-160  
-240  
-320  
-400  
-40  
-60  
-80  
-480  
-560  
-640  
-100  
-120  
-0.04  
-0.08  
0
1
2
3
4
5
0
202  
404  
606  
808  
1010  
0
300  
600  
900  
1200  
1500  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (Hz)  
INPUT FREQUENCY (Hz)  
_______________________________________________________________________________________  
5
8 t h -Ord e r, Lo w p a s s , Ellip t ic ,  
S w it c h e d -Ca p a c it o r Filt e rs  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V  
DD  
= +5V for MAX7400/MAX7403, V  
= +3V for MAX7404/MAX7407; V  
= V = V  
/ 2; SHDN = V ; f  
= 100kHz;  
DD  
COM  
OS  
DD  
DD CLK  
T
A
= +25°C; unless otherwise noted.)  
MAX7403/MAX7407 (r = 1.2)  
FREQUENCY RESPONSE  
MAX7403/MAX7407 (r = 1.2)  
PASSBAND FREQUENCY RESPONSE  
MAX7403/MAX7407 (r = 1.2)  
PHASE RESPONSE  
40  
0.32  
0.24  
0.16  
0.08  
0
0
-80  
f = 1kHz  
C
f = 1kHz  
C
f = 1kHz  
C
20  
0
-160  
-240  
-320  
-400  
-480  
-560  
-640  
-20  
-40  
-60  
-80  
-100  
-120  
-0.08  
-0.16  
-0.24  
-0.32  
0
1
2
3
4
5
0
202  
404  
606  
808  
1010  
0
240  
480  
720  
960  
1200  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (Hz)  
INPUT FREQUENCY (Hz)  
OFFSET VOLTAGE  
vs. SUPPLY VOLTAGE  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
SUPPLY CURRENT  
vs. TEMPERATURE  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
20  
15  
10  
5
2.03  
2.02  
2.01  
2.00  
1.99  
1.98  
1.97  
NO LOAD  
V
= V  
= V /2  
IN COM DD  
NO LOAD  
MAX7400  
MAX7403  
MAX7400  
MAX7403  
MAX7404  
MAX7407  
MAX7400  
MAX7403  
MAX7404  
MAX7407  
0
-5  
-10  
-15  
-20  
MAX7404  
MAX7407  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
-40 -20  
0
20  
40  
60  
80 100  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
3/MAX407  
THD PLUS NOISE vs. INPUT SIGNAL  
AMPLITUDE AND RESISTIVE LOAD (MAX7400)  
THD PLUS NOISE vs. INPUT SIGNAL  
AMPLITUDE (MAX7400)  
OFFSET VOLTAGE vs. TEMPERATURE  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
2.0  
1.5  
1.0  
0.5  
0
f
= 200Hz  
IN  
V
= V  
= V /2  
IN COM DD  
NO LOAD  
(SEE TABLE A)  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
f = 1kHz  
C
MEASUREMENT BW = 22kHz  
R = 500  
L
R = 1kΩ  
L
B
C
D
R = 10kΩ  
L
-0.5  
0
1
2
3
4
5
0
1
2
3
4
5
-40 -20  
0
20  
40  
60  
80 100  
AMPLITUDE (Vp-p)  
AMPLITUDE (Vp-p)  
TEMPERATURE (°C)  
6
_______________________________________________________________________________________  
8 t h -Ord e r, Lo w p a s s , Ellip t ic ,  
S w it c h e d -Ca p a c it o r Filt e rs  
3/MAX407  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V  
DD  
= +5V for MAX7400/MAX7403, V  
= +3V for MAX7404/MAX7407; V  
= V = V  
/ 2; SHDN = V ; f  
= 100kHz;  
DD  
COM  
OS  
DD  
DD CLK  
T
A
= +25°C; unless otherwise noted.)  
THD PLUS NOISE vs. INPUT SIGNAL  
AMPLITUDE AND RESISTIVE LOAD (MAX7403)  
THD PLUS NOISE vs. INPUT SIGNAL  
AMPLITUDE (MAX7403)  
TABLE A. THD PLUS NOISE vs. INPUT SIGNAL  
AMPLITUDE TEST CONDITIONS  
0
0
NO LOAD  
(SEE TABLE A)  
f
= 200Hz  
IN  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-10  
f = 1kHz  
C
f
f
f
MEASUREMENT  
IN  
C
CLK  
MEASUREMENT BW = 22kHz  
TRACE  
-20  
-30  
-40  
-50  
(Hz) (kHz) (kHz) BANDWIDTH (kHz)  
R = 500Ω  
A
B
C
D
2800 14 1400  
2000 10 1000  
80  
80  
80  
22  
L
R
L =  
1kΩ  
B
-60  
C
R = 10kΩ  
L
1000  
200  
5
1
500  
100  
D
-70  
-80  
-90  
0
1
2
3
4
5
0
1
2
3
4
5
AMPLITUDE (Vp-p)  
AMPLITUDE (Vp-p)  
THD PLUS NOISE vs. INPUT SIGNAL  
AMPLITUDE AND RESISTIVE LOAD (MAX7404)  
THD PLUS NOISE vs. INPUT SIGNAL  
AMPLITUDE (MAX7404)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
f
= 200Hz  
IN  
NO LOAD  
(SEE TABLE A)  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
f = 1kHz  
C
MEASUREMENT BW = 22kHz  
R = 500Ω  
L
A
B
R = 10kΩ  
L
C
D
R = 1kΩ  
L
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
AMPLITUDE (Vp-p)  
AMPLITUDE (Vp-p)  
THD PLUS NOISE vs. INPUT SIGNAL  
AMPLITUDE AND RESISTIVE LOAD (MAX7407)  
THD PLUS NOISE vs. INPUT SIGNAL  
AMPLITUDE (MAX7407)  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
f
= 200Hz  
IN  
NO LOAD  
(SEE TABLE A)  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
f = 1kHz  
C
MEASUREMENT BW = 22kHz  
R = 500Ω  
L
A
B
C
R = 1kΩ  
L
R = 10kΩ  
L
D
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
AMPLITUDE (Vp-p)  
AMPLITUDE (Vp-p)  
_______________________________________________________________________________________  
7
8 t h -Ord e r, Lo w p a s s , Ellip t ic ,  
S w it c h e d -Ca p a c it o r Filt e rs  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V  
DD  
= +5V for MAX7400/MAX7403, V  
= +3V for MAX7404/MAX7407; V  
= V = V  
/ 2; SHDN = V ; f  
= 100kHz;  
DD  
COM  
OS  
DD  
DD CLK  
T
A
= +25°C; unless otherwise noted.)  
NORMALIZED OSCILLATOR FREQUENCY  
vs. TEMPERATURE  
INTERNAL OSCILLATOR FREQUENCY  
NORMALIZED OSCILLATOR FREQUENCY  
vs. SUPPLY VOLTAGE  
vs. C  
CAPACITANCE  
OSC  
1.04  
1.03  
1.02  
1.01  
1.00  
0.99  
0.98  
0.97  
0.96  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
10,000  
C
= 390pF  
OSC  
C
= 390pF  
OSC  
1000  
100  
10  
MAX7400  
MAX7403  
MAX7404  
MAX7407  
MAX7404  
MAX7407  
MAX7400  
MAX7403  
1
0.1  
0.01  
-40 -20  
0
20  
40  
60  
80 100  
10  
1000  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
1
100  
0.1  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
C
OSC  
CAPACITANCE (nF)  
P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
Common Input. Biased internally at midsupply. Bypass externally to GND with a 0.1µF capacitor. To over-  
ride internal biasing, drive with an external supply.  
1
COM  
2
3
4
5
IN  
Filter Input  
GND  
Ground  
V
DD  
Positive Supply Input: +5V for MAX7400/MAX7403, +3V for MAX7404/MAX7407  
Filter Output  
OUT  
OS  
3/MAX407  
Offset Adjust Input. To adjust output offset, bias OS externally. Connect OS to COM if no offset adjustment is  
needed. Refer to Offset and Common-Mode Input Adjustment section.  
6
7
8
Shutdown Input. Drive low to enable shutdown mode; drive high or connect to V for normal operation.  
DD  
SHDN  
CLK  
Clock Input. To override the internal oscillator, connect to an external clock; otherwise, connect an external  
capacitor (C  
) from CLK to GND to set the internal oscillator frequency.  
OSC  
8
_______________________________________________________________________________________  
8 t h -Ord e r, Lo w p a s s , Ellip t ic ,  
S w it c h e d -Ca p a c it o r Filt e rs  
3/MAX407  
De t a ile d De s c rip t io n  
The MAX7400/MAX7403/MAX7404/MAX7407 family of  
8th-order, lowpass filters provides sharp rolloff with  
g ood s top b a nd re je c tion. All p a rts op e ra te with a  
100:1 clock-to-corner frequency ratio and a 10kHz  
maximum corner frequency. These devices accept a  
single +5V (MAX7400/MAX7403) or +3V (MAX7404/  
MAX7407) supply. Figure 1 shows the functional dia-  
gram.  
INT  
CLOCK  
7
4
8
2
SHDN  
CLK  
IN  
LOGIC  
V
DD  
V
DD  
Most switched-capacitor filters (SFCs) are designed  
with biquadratic sections. Each section implements two  
filtering poles, and the sections can be cascaded to  
produce higher-order filters. The advantage of this  
a p p roa c h is e a s e of d e s ig n. Howe ve r, this typ e of  
design is highly sensitive to component variations if any  
sections Q is high. The MAX7400 family uses an alter-  
native approach, which is to emulate a passive network  
using switched-capacitor integrators with summing and  
scaling. The passive network can be synthesized using  
CAD programs or can be found in many filter books.  
Figure 2 shows a basic 8th-order ladder elliptic filter  
structure.  
MAX7400  
MAX7403  
MAX7404  
MAX7407  
SCF  
1
5
6
3
COM  
OUT  
OFFSET  
ADJ  
OS  
GND  
BIAS  
A switched-capacitor filter that emulates a passive lad-  
der filter retains many of the same advantages. The  
component sensitivity of a passive ladder filter is low  
when compared to a cascaded biquadratic design,  
because each component affects the entire filter shape  
rather than a single pole-zero pair. In other words, a  
mismatched component in a biquadratic design has a  
concentrated error on its respective poles, while the  
same mismatch in a ladder filter design spreads its  
error over all poles.  
Figure 1. Functional Diagram  
C11  
L7  
C9  
C10  
R1  
L5  
L1  
L3  
Ellip t ic Ch a ra c t e ris t ic s  
Lowpass, elliptic filters such as the MAX7400/MAX7403/  
MAX7404/MAX7407 provide the steepest possible rolloff  
with frequency of the four most common filter types  
(Butterworth, Bessel, Chebyshev, and Elliptic). Figure 3  
shows the 8th-order elliptic filter response. The high Q  
value of the poles near the passband edge combined  
with the stopband zeros allows for the sharp attenua-  
tion c ha ra c te ris tic of e llip tic filte rs , ma king the s e  
devices ideal for anti-aliasing and post-DAC filtering in  
single-supply systems (see the Anti-Aliasing and Post-  
DAC Filtering section).  
+
-
V
0
V
IN  
C6  
R2  
C2  
C4  
C8  
Figure 2. 8th-Order Ladder Filter Network  
The corner frequency, f , is defined as the point where  
C
the filter output attenuation falls just below the passband  
ripple. The transition ratio is defined as the ratio of the  
stopband frequency to the corner frequency:  
r = f / f  
S
C
In the frequency domain, the first transmission zero  
causes the filters amplitude to drop to a minimum level.  
Beyond this zero, the response rises as the frequency  
increases until the next transmission zero. The stopband  
The MAX7400/MAX7404 have a transition ratio of 1.5  
a nd a typ ic a l s top b a nd re je c tion of 82d B. The  
MAX7403/MAX7407 have a transition ratio of 1.2 (pro-  
vid ing the s te e p e s t rolloff) a nd a typ ic a l s top b a nd  
rejection of 60dB.  
begins at the stopband frequency, f . At frequencies  
S
above f , the filters gain does not exceed the gain at f .  
S
S
_______________________________________________________________________________________  
9
8 t h -Ord e r, Lo w p a s s , Ellip t ic ,  
S w it c h e d -Ca p a c it o r Filt e rs  
V
SUPPLY  
RIPPLE  
0.1µF  
f
C
V
DD  
SHDN  
OUT  
f
f
C
S
OUTPUT  
TRANSITION RATIO =  
INPUT  
IN  
COM  
0.1µF  
0.1µF  
50k  
50k  
50k  
f
S
MAX7400  
MAX7403  
MAX7404  
MAX7407  
CLOCK  
CLK  
OS  
GND  
PASSBAND  
STOPBAND  
FREQUENCY  
f
C
f
S
Figure 3. Elliptic Filter Response  
Figure 4. Offset Adjustment Circuit  
input impedance determined by the following equation  
represents the average input impedance, since the  
input current is not continuous. As a rule, use a driver  
with an output source impedance less than 10% of the  
filters input impedance. Estimate the input impedance  
of the filter using the following formula:  
Clo c k S ig n a l  
External Clock  
The MAX7400/MAX7403/MAX7404/MAX7407 SCFs  
were designed for use with external clocks that have a  
40% to 60% duty cycle. When using an external clock,  
drive CLK with a CMOS gate powered from 0 to V  
.
DD  
1
Varying the rate of the external clock adjusts the filter  
corner frequency:  
Z
() =  
IN  
(f  
C
)
IN  
CLK  
f
C
= f  
/ 100  
CLK  
where f  
= clock frequency and C = 0.85pF.  
IN  
CLK  
Internal Clock  
When using the internal oscillator, the capacitance  
(C ) on the CLK pin determines the oscillator fre-  
Lo w -P o w e r S h u t d o w n Mo d e  
These devices feature a shutdown mode that is activat-  
ed by driving SHDN low. Placing the filter in shutdown  
mode reduces the supply current to 0.2µA (typ) and  
places the output of the filter into a high-impedance  
state. For normal operation, drive SHDN high or con-  
OSC  
quency:  
3
K
10  
f
(kHz) =  
; C  
in pF  
OSC  
OSC  
C
OSC  
nect to V  
.
DD  
3/MAX407  
where K = 38 for the MAX7400/MAX7403, and K = 34  
for the MAX7404/MAX7407. Since the capacitor value  
is in picofarads, minimize the stray capacitance at CLK  
so that it does not affect the internal oscillator frequen-  
cy. Varying the rate of the internal oscillator adjusts the  
filters corner frequency by a 100:1 clock-to-corner fre-  
quency ratio. For example, an internal oscillator fre-  
q ue nc y of 100kHz p rod uc e s a nomina l c orne r  
frequency of 1kHz.  
Ap p lic a t io n s In fo rm a t io n  
Offs e t a n d Co m m o n -Mo d e  
In p u t Ad ju s t m e n t  
The voltage at COM sets the common-mode input volt-  
age and is internally biased at midsupply by a resistor-  
d ivid e r. Byp a s s COM with a 0.1µF c a p a c itor a nd  
connect OS to COM. For applications requiring offset  
adjustment or DC level shifting, apply an external bias  
voltage through a resistor-divider network to OS, as  
shown in Figure 4. (Note: Do not leave OS unconnect-  
ed.) The output voltage is represented by the following  
equation:  
In p u t Im p e d a n c e  
vs . Clo c k Fre q u e n c ie s  
The MAX7400/MAX7403/MAX7404/MAX7407s input  
impedance is effectively that of a switched-capacitor  
resistor and is inversely proportional to frequency. The  
V
OUT  
= (V - V  
) + V  
COM OS  
IN  
10 ______________________________________________________________________________________  
8 t h -Ord e r, Lo w p a s s , Ellip t ic ,  
S w it c h e d -Ca p a c it o r Filt e rs  
3/MAX407  
with V  
= V / 2 (typical), and where (V - V  
)
An t i-Alia s in g a n d P o s t -DAC Filt e rin g  
Whe n us ing the MAX7400/MAX7403/MAX7404/  
MAX7407 for anti-aliasing or post-DAC filtering, syn-  
chronize the DAC and the filter clocks. If the clocks are  
not synchronized, beat frequencies may alias into the  
passband.  
COM  
DD  
IN  
COM  
is lowpass filtered by the SCF, and V is added at the  
OS  
output stage. See the Electrical Characteristics for  
COM and OS input voltage ranges. Changing the volt-  
a g e on COM or OS s ig nific a ntly from mid s up p ly  
reduces the filters dynamic range.  
The high clock-to-corner frequency ratio (100:1) also  
eases the requirements of pre- and post-SCF filtering.  
At the input, a lowpass filter prevents the aliasing of fre-  
quencies around the clock frequency into the pass-  
band. At the output, a lowpass filter attenuates the  
clock feedthrough.  
P o w e r S u p p lie s  
The MAX7400/MAX7403 operate from a single +5V  
supply. The MAX7404/MAX7407 operate from a single  
+3V supply. Bypass V  
to GND with a 0.1µF capaci-  
DD  
tor. If dual supplies are required, connect COM to the  
system ground and GND to the negative supply. Figure  
5 shows an example of dual-supply operation. Single-  
supply and dual-supply performance are equivalent.  
For single-supply or dual-supply operation, drive CLK  
and SHDN from GND (V- in dual-supply operation) to  
A high clock-to-corner frequency ratio allows a simple  
RC lowpass filter, with the cutoff frequency set above  
the SCF corner frequency, to provide input anti-aliasing  
and reasonable output clock attenuation.  
V . For a ±2.5V supply, use the MAX7400 or MAX7403;  
DD  
Ha rm o n ic Dis t o rt io n  
Harmonic distortion arises from nonlinearities within the  
filter. Such nonlinearities generate harmonics when a  
pure sine wave is applied to the filter input. Table 1 lists  
typical harmonic distortion values with a 10kload and  
an input signal of 4Vp-p (MAX7400/MAX7403) or 2Vp-p  
for a ±1.5V supply, use MAX7404 or MAX7407. For ±5V  
dual-supply applications, use the MAX291–MAX297.  
In p u t S ig n a l Am p lit u d e Ra n g e  
The ideal input signal range is determined by observ-  
ing the volta g e le ve l a t whic h the tota l ha rmonic  
distortion plus noise (THD+N) is minimized for a given  
corner frequency. The Typical Operating Character-  
is tic s s how THD+N re s p ons e a s the inp ut s ig na ls  
peak-to-peak amplitude is varied. These measurements  
are made with OS and COM biased at midsupply.  
(MAX7404/MAX7407), at T = +25°C.  
A
Table 1. Typical Harmonic Distortion  
V+  
TYPICAL  
HARMONIC  
DISTORTION (dB)  
f
f
f
V
IN  
CLK  
C
IN  
FILTER  
(kHz) (kHz) (Hz) (Vp-p)  
*
V
DD  
2nd 3rd 4th 5th  
SHDN  
OUT  
OUTPUT  
100  
500  
100  
500  
100  
500  
100  
500  
1
5
1
5
1
5
1
5
200  
1000  
200  
-89 -82 -89 -86  
-89 -77 -93 -88  
-88 -81 -91 -87  
-84 -80 -90 -91  
-85 -82 -85 -86  
-85 -81 -86 -84  
-85 -82 -85 -86  
-86 -84 -85 -86  
INPUT  
IN  
COM  
MAX7400  
MAX7403  
MAX7404  
MAX7407  
4
4
2
2
MAX7400  
MAX7403  
MAX7404  
MAX7407  
V+  
V-  
CLOCK  
CLK  
OS  
1000  
200  
0.1µF  
0.1µF  
GND  
1000  
200  
V-  
1000  
*DRIVE SHDN TO V- FOR LOW-POWER SHUTDOWN MODE.  
Figure 5. Dual-Supply Operation  
______________________________________________________________________________________ 11  
8 t h -Ord e r, Lo w p a s s , Ellip t ic ,  
S w it c h e d -Ca p a c it o r Filt e rs  
Ord e rin g In fo rm a t io n (c o n t in u e d )  
Ch ip In fo rm a t io n  
PART  
TEMP. RANGE  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
8 SO  
TRANSISTOR COUNT: 1116  
MAX7403CSA  
MAX7403CPA  
MAX7403ESA  
MAX7403EPA  
MAX7404CSA  
MAX7404CPA  
MAX7404ESA  
MAX7404EPA  
MAX7407CSA  
MAX7407CPA  
MAX7407ESA  
MAX7407EPA  
8 Plastic DIP  
8 SO  
8 Plastic DIP  
8 SO  
8 Plastic DIP  
8 SO  
8 Plastic DIP  
8 SO  
8 Plastic DIP  
8 SO  
8 Plastic DIP  
P a c k a g e In fo rm a t io n  
3/MAX407  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 ____________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 4 0 8 -7 3 7 -7 6 0 0  
© 1999 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX7404

8th-Order, Lowpass, Elliptic, Switched-Capacitor Filters
MAXIM

MAX7404CPA

Analog Filter
MAXIM

MAX7404CPA+

Switched Capacitor Filter, 1 Func, Elliptic, Lowpass, CMOS, PDIP8, PLASTIC, DIP-8
MAXIM

MAX7404CSA

Analog Filter
MAXIM

MAX7404CSA+

Switched Capacitor Filter, 1 Func, Elliptic, Lowpass, CMOS, PDSO8, 0.150 INCH, SOIC-8
MAXIM

MAX7404CSA+T

Switched Capacitor Filter, 1 Func, Elliptic, Lowpass, CMOS, PDSO8, 0.150 INCH, SOIC-8
MAXIM

MAX7404EPA

Analog Filter
MAXIM

MAX7404EPA+

Switched Capacitor Filter, 1 Func, Elliptic, Lowpass, CMOS, PDIP8, PLASTIC, DIP-8
MAXIM

MAX7404ESA

Analog Filter
MAXIM

MAX7404ESA+

Switched Capacitor Filter, 1 Func, Elliptic, Lowpass, CMOS, PDSO8, 0.150 INCH, SOIC-8
MAXIM

MAX7404ESA+T

Switched Capacitor Filter, 1 Func, Elliptic, Lowpass, CMOS, PDSO8, 0.150 INCH, SOIC-8
MAXIM

MAX7405

8th-Order, Lowpass, Bessel, Switched-Capacitor Filters
MAXIM