MAX7413CUA [MAXIM]

5th-Order, Lowpass, Switched-Capacitor Filters; 5阶,低通,开关电容滤波器
MAX7413CUA
型号: MAX7413CUA
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

5th-Order, Lowpass, Switched-Capacitor Filters
5阶,低通,开关电容滤波器

开关
文件: 总12页 (文件大小:135K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-4766; Rev 1; 9/98  
5 t h -Ord e r, Lo w p a s s ,  
S w it c h e d -Ca p a c it o r Filt e rs  
903/MAX714  
Ge n e ra l De s c rip t io n  
Fe a t u re s  
The MAX7409/MAX7410/MAX7413/MAX7414 5th-order,  
lowpass, switched-capacitor filters (SCFs) operate from  
a single +5V (MAX7409/MAX7410) or +3V (MAX7413/  
MAX7414) supply. These devices draw only 1.2mA of  
supply current and allow corner frequencies from 1Hz  
to 15kHz, making them ideal for low-power post-DAC  
filtering and anti-aliasing applications. They feature a  
shutdown mode, which reduces the supply current to  
0.2µA.  
5th-Order Lowpass Filters  
Bessel Response (MAX7409/MAX7413)  
Butterworth Response (MAX7410/MAX7414)  
Clock-Tunable Corner Frequency (1Hz to 15kHz)  
Single-Supply Operation  
+5V (MAX7409/MAX7410)  
+3V (MAX7413/MAX7414)  
Low Power  
Two clocking options are available on these devices:  
self-clocking (through the use of an external capacitor)  
or external clocking for tighter corner-frequency control.  
An offset adjust pin allows for adjustment of the DC out-  
put level.  
1.2mA (operating mode)  
0.2µA (shutdown mode)  
Available in 8-Pin µMAX/DIP Packages  
Low Output Offset: ±4mV  
The MAX7409/MAX7413 Bessel filters provide low over-  
shoot and fast settling, while the MAX7410/MAX7414  
Butterworth filters provide a maximally flat passband  
response. Their fixed response simplifies the design  
task to selecting a clock frequency.  
Ord e rin g In fo rm a t io n  
PART  
TEMP. RANGE  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
8 µMAX  
MAX7409CUA  
MAX7409CPA  
MAX7409EUA  
MAX7409EPA  
MAX7410CUA  
MAX7410CPA  
MAX7410EUA  
MAX7410EPA  
Ap p lic a t io n s  
8 Plastic DIP  
8 µMAX  
ADC Anti-Aliasing  
DAC Postfiltering  
Air-Bag Electronics  
CT2 Base Stations  
Speech Processing  
8 Plastic DIP  
8 µMAX  
8 Plastic DIP  
8 µMAX  
S e le c t o r Gu id e  
8 Plastic DIP  
OPERATING  
VOLTAGE (V)  
PART  
FILTER RESPONSE  
Ordering Information continued at end of data sheet.  
MAX7409  
MAX7410  
MAX7413  
MAX7414  
Bessel  
+5  
+5  
+3  
+3  
Butterworth  
Bessel  
Typ ic a l Op e ra t in g Circ u it  
Butterworth  
V
SUPPLY  
P in Co n fig u ra t io n  
0.1µF  
TOP VIEW  
V
DD  
SHDN  
OUT  
INPUT  
IN  
OUTPUT  
COM  
1
2
3
4
8
7
6
5
CLK  
SHDN  
OS  
MAX7409  
MAX7410  
MAX7413  
MAX7414  
IN  
MAX7409  
MAX7410  
MAX7413  
MAX7414  
CLOCK  
CLK  
COM  
OS  
GND  
0.1µF  
V
DD  
OUT  
GND  
µMAX/DIP  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 408-737-7600 ext. 3468.  
5 t h -Ord e r, Lo w p a s s ,  
S w it c h e d -Ca p a c it o r Filt e rs  
ABSOLUTE MAXIMUM RATINGS  
V
DD  
to GND..............................................................-0.3V to +6V  
Operating Temperature Ranges  
IN, OUT, COM, OS, CLK, SHDN ................-0.3V to (V + 0.3V)  
OUT Short-Circuit Duration...................................................1sec  
MAX74 _ _C_A ...................................................0°C to +70°C  
MAX74 _ _E_A ................................................-40°C to +85°C  
Storage Temperature Range .............................-65°C to +160°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
DD  
Continuous Power Dissipation (T = +70°C)  
A
8-Pin DIP (derate 9.09mW/°C above +70°C)...............727mW  
8-Pin µMAX (derate 4.1mW/°C above +70°C) .............330mW  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS—MAX7409/MAX7410  
(V  
DD  
= +5V, filter output measured at OUT, 10k|| 50pF load to GND at OUT, OS = COM, 0.1µF capacitor from COM to GND,  
SHDN = V , f  
= 100kHz, T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
DD CLK  
A
MIN  
PARAMETER  
FILTER CHARACTERISTICS  
Corner Frequency  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
f
c
(Note 1)  
0.001 to 15  
100:1  
kHz  
Clock-to-Corner Ratio  
Clock-to-Corner Tempco  
Output Voltage Range  
Output Offset Voltage  
f
/ f  
CLK c  
10  
ppm/°C  
V
0.25  
-0.2  
V
DD  
- 0.25  
±25  
V
V
IN  
= V  
= V / 2  
±4  
0
mV  
OFFSET  
COM  
DD  
DC Insertion Gain with  
Output Offset Removed  
V
COM  
= V / 2 (Note 2)  
0.2  
dB  
DD  
MAX7409  
MAX7410  
-85  
-78  
1
Total Harmonic Distortion  
plus Noise  
f
= 200Hz, V = 4Vp-p,  
IN IN  
THD+N  
dB  
V/V  
V
measurement bandwidth = 22kHz  
Offset Voltage Gain  
COM Voltage Range  
A
OS  
OS to OUT  
Input, COM externally driven  
Output, COM unconnected  
Input, OS externally driven  
2.0  
2.3  
2.5  
2.5  
3.0  
2.7  
V
COM  
Input Voltage Range at OS  
Input Resistance at COM  
Clock Feedthrough  
V
OS  
V
±0.1  
V
kΩ  
COM  
R
110  
180  
COM  
5
1
mVp-p  
kΩ  
Resistive Output Load Drive  
R
C
10  
50  
L
L
Maximum Capacitive Output  
Load Drive  
500  
pF  
903/MAX714  
Input Leakage Current at COM  
Input Leakage Current at OS  
CLOCK  
±0.1  
±0.1  
±10  
±10  
µA  
µA  
SHDN = GND, V  
= 0 to V  
DD  
COM  
V
= 0 to V  
DD  
OS  
Internal Oscillator Frequency  
f
C
= 1000pF (Note 3)  
= 0 or 5V  
CLK  
21  
30  
38  
kHz  
µA  
OSC  
OSC  
Clock Output Current  
(Internal Oscillator Mode)  
I
V
±13.5  
±20  
CLK  
Clock Input High  
Clock Input Low  
V
4.5  
V
V
IH  
V
IL  
0.5  
2
_______________________________________________________________________________________  
5 t h -Ord e r, Lo w p a s s ,  
S w it c h e d -Ca p a c it o r Filt e rs  
903/MAX714  
ELECTRICAL CHARACTERISTICS—MAX7409/MAX7410  
(V  
DD  
= +5V, filter output measured at OUT, 10k|| 50pF load to GND at OUT, OS = COM, 0.1µF capacitor from COM to GND,  
SHDN = V , f  
= 100kHz, T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
DD CLK  
A
MIN  
PARAMETER  
POWER REQUIREMENTS  
Supply Voltage  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
DD  
4.5  
5.5  
1.5  
1
V
Supply Current  
I
DD  
Operating mode, no load  
1.2  
0.2  
70  
mA  
µA  
dB  
Shutdown Current  
I
SHDN  
SHDN = GND  
Power-Supply Rejection Ratio  
SHUTDOWN  
PSRR  
IN = COM (Note 4)  
V
4.5  
V
V
SHDN Input High  
SDH  
V
SDL  
0.5  
SHDN Input Low  
±0.2  
±10  
µA  
SHDN Input Leakage Current  
V
= 0 to V  
DD  
SHDN  
ELECTRICAL CHARACTERISTICS—MAX7413/MAX7414  
(V = +3V, filter output measured at OUT pin, 10k|| 50pF load to GND at OUT, OS = COM, 0.1µF capacitor from COM to GND,  
DD  
SHDN = V , f  
= 100kHz, T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
DD CLK  
A
MIN  
PARAMETER  
FILTER CHARACTERISTICS  
Corner Frequency  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
f
C
(Note 1)  
0.001 to 15  
100:1  
kHz  
Clock-to-Corner Ratio  
Clock-to-Corner Tempco  
Output Voltage Range  
Output Offset Voltage  
f
/ f  
CLK C  
10  
ppm/°C  
V
0.25  
-0.2  
V
- 0.25  
±25  
DD  
V
V
IN  
= V  
= V / 2  
±4  
0
mV  
OFFSET  
COM  
DD  
DC Insertion Gain with  
Output Offset Removed  
V
COM  
= V / 2 (Note 2)  
+0.2  
dB  
dB  
DD  
MAX7413  
MAX7414  
-83  
-81  
1
Total Harmonic Distortion  
plus Noise  
f
= 200Hz, V = 2.5Vp-p,  
IN IN  
THD+N  
measurement bandwidth = 22kHz  
Offset Voltage Gain  
COM Voltage Range  
A
OS  
OS to OUT  
V/V  
V
Input, COM externally driven  
Output, COM unconnected  
Input, OS externally driven  
1.4  
1.4  
1.5  
1.5  
1.6  
1.6  
V
COM  
V
Input Voltage Range at OS  
Input Resistance at COM  
Clock Feedthrough  
V
OS  
V
±0.1  
V
COM  
R
110  
180  
kΩ  
COM  
3
1
mVp-p  
kΩ  
Resistance Output Load Drive  
R
C
10  
50  
L
L
Maximum Capacitive Output  
Load Drive  
500  
pF  
Input Leakage Current at COM  
Input Leakage Current at OS  
±0.1  
±0.1  
±10  
±10  
µA  
µA  
SHDN = GND, V  
= 0 to V  
DD  
COM  
V
= 0 to V  
DD  
OS  
_______________________________________________________________________________________  
3
5 t h -Ord e r, Lo w p a s s ,  
S w it c h e d -Ca p a c it o r Filt e rs  
ELECTRICAL CHARACTERISTICS—MAX7413/MAX7414 (continued)  
(V = +3V, filter output measured at OUT pin, 10k|| 50pF load to GND at OUT, OS = COM, 0.1µF capacitor from COM to GND,  
DD  
SHDN = V , f  
= 100kHz, T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
DD CLK  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
CLOCK  
Internal Oscillator Frequency  
f
C
= 1000pF (Note 3)  
OSC  
21  
2.5  
2.7  
30  
38  
kHz  
µA  
OSC  
Clock Output Current  
(Internal Oscillator Mode)  
I
V
CLK  
= 0 or 3V  
±13.5  
±20  
CLK  
Clock Input High  
V
V
V
IH  
Clock Input Low  
V
IL  
0.5  
POWER REQUIREMENTS  
Supply Voltage  
V
3.6  
1.5  
1
V
DD  
Supply Current  
I
Operating mode, no load  
SHDN = GND  
1.2  
0.2  
70  
mA  
µA  
dB  
DD  
Shutdown Current  
Power-Supply Rejection Ratio  
SHUTDOWN  
I
SHDN  
PSRR  
IN = COM (Note 4)  
V
2.5  
V
V
SHDN Input High  
SDH  
V
SDL  
0.5  
SHDN Input Low  
V
= 0 to V  
0.2  
±10  
µA  
SHDN Input Leakage Current  
SHDN  
DD  
FILTER CHARACTERISTICS  
(V = +5V for MAX7409/MAX7410, V = +3V for MAX7413/MAX7414, filter output measured at OUT, 10k|| 50pF load to GND at  
DD  
DD  
OUT, SHDN = V , f  
= 100kHz, T = T  
to T , unless otherwise noted.)  
MAX  
DD CLK  
A
MIN  
PARAMETER  
BESSEL FILTERS—MAX7409/MAX7413  
= 0.5f  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
f
IN  
-1  
-0.74  
-3.0  
C
f
= f  
-3.6  
-2.4  
-35  
-58  
IN  
C
Insertion Gain Relative to  
DC Gain  
dB  
f
IN  
= 4f  
-41.0  
-64.3  
C
f
IN  
= 7f  
C
BUTTERWORTH FILTERS—MAX7410/MAX7414  
= 0.5f  
903/MAX714  
f
IN  
-0.3  
-3.6  
0
C
f
= f  
-3.0  
-47.5  
-70  
-2.4  
-43  
-65  
IN  
C
Insertion Gain Relative to  
DC Gain  
dB  
f
IN  
= 3f  
C
f
IN  
= 5f  
C
Note 1: The maximum f is defined as the clock frequency f  
= 100 x f at which the peak S / (THD+N) drops to 68dB with a  
C
C
CLK  
sinusoidal input at 0.2f .  
C
Note 2: DC insertion gain is defined as V  
/ V .  
IN  
OUT  
3
Note 3: f  
(kHz) 30 x 10 / C  
(pF).  
OSC  
OSC  
Note 4: PSRR is the change in output voltage from a V of 4.5V and a V of 5.5V.  
DD  
DD  
4
_______________________________________________________________________________________  
5 t h -Ord e r, Lo w p a s s ,  
S w it c h e d -Ca p a c it o r Filt e rs  
903/MAX714  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(V = +5V for MAX7409/MAX7410, V = +3V for MAX7413/MAX7414, f  
= 100kHz, SHDN = V , COM = OS = V / 2, T = +25°C,  
CLK  
DD  
DD  
DD DD A  
unless otherwise noted.)  
MAX7409/MAX7413  
FREQUENCY RESPONSE  
(BESSEL)  
MAX7410/MAX7414  
FREQUENCY RESPONSE  
(BUTTERWORTH)  
MAX7409/MAX7413  
PASSBAND FREQUENCY RESPONSE  
(BESSEL)  
8
0
10  
0
0
f = 1kHz  
C
f = 1kHz  
C
f = 1kHz  
C
-0.4  
-0.8  
-1.2  
-1.6  
-2.0  
-2.4  
-3.0  
-3.2  
-8  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-16  
-24  
-32  
-40  
-48  
-56  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
INPUT FREQUENCY (kHz)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
INPUT FREQUENCY (kHz)  
0
102 204 306 408 510 612 714 816 918 1.02k  
INPUT FREQUENCY (Hz)  
MAX7409/MAX7413  
PHASE RESPONSE  
(BESSEL)  
MAX7410/MAX7414  
PHASE RESPONSE  
(BUTTERWORTH)  
MAX7410/MAX7414  
PASSBAND FREQUENCY RESPONSE  
(BUTTERWORTH)  
0
-50  
0
-50  
0.5  
0
f = 1kHz  
C
f = 1kHz  
C
f = 1kHz  
C
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
-3.5  
-100  
-150  
-200  
-250  
-300  
-350  
-100  
-150  
-200  
-250  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6  
INPUT FREQUENCY (kHz)  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6  
INPUT FREQUENCY (kHz)  
0
102 204 306 408 510 612 714 816 918 1.02k  
INPUT FREQUENCY (Hz)  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
Table A. THD+N vs. Input Signal  
Amplitude Plot Characteristics  
1.19  
1.18  
1.17  
1.16  
1.15  
1.14  
1.13  
1.12  
1.11  
f
f
f
CLK  
(kHz)  
MEASUREMENT  
BANDWIDTH (kHz)  
IN  
C
LABEL  
(Hz)  
(kHz)  
A
B
200  
1k  
1
5
100  
500  
22  
80  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
SUPPLY VOLTAGE (V)  
_______________________________________________________________________________________  
5
5 t h -Ord e r, Lo w p a s s ,  
S w it c h e d -Ca p a c it o r Filt e rs  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = +5V for MAX7409/MAX7410, V = +3V for MAX7413/MAX7414, f  
= 100kHz, SHDN = V , COM = OS = V / 2, T = +25°C,  
CLK  
DD  
DD  
DD DD A  
unless otherwise noted.)  
MAX7413  
MAX7409  
MAX7410  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. INPUT SIGNAL AMPLITUDE  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. INPUT SIGNAL AMPLITUDE  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. INPUT SIGNAL AMPLITUDE  
0
0
0
SEE TABLE A  
SEE TABLE A  
SEE TABLE A  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
B
A
B
B
A
A
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
AMPLITUDE (Vp-p)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
AMPLITUDE (Vp-p)  
AMPLITUDE (Vp-p)  
MAX7414  
INTERNAL OSCILLATOR PERIOD  
vs. SMALL CAPACITANCE  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. INPUT SIGNAL AMPLITUDE  
SUPPLY CURRENT vs. TEMPERATURE  
1.19  
1.18  
1.17  
1.16  
1.15  
1.14  
1.13  
1.12  
1.11  
0
120  
100  
80  
60  
40  
20  
0
SEE TABLE A  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
V
DD  
= +5V  
V
DD  
= +5V  
V
DD  
= +3V  
B
V
DD  
= +3V  
A
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
500 1000 1500 2000 2500 3000 3500  
CAPACITANCE (pF)  
-40 -20  
0
20  
40  
60  
80 100  
AMPLITUDE (Vp-p)  
TEMPERATURE (°C)  
903/MAX714  
INTERNAL OSCILLATOR FREQUENCY  
vs. SUPPLY VOLTAGE  
INTERNAL OSCILLATOR FREQUENCY  
vs. TEMPERATURE  
INTERNAL OSCILLATOR PERIOD  
vs. LARGE CAPACITANCE  
31.5  
31.0  
30.5  
30.0  
29.5  
29.0  
30.2  
30.1  
30.0  
29.9  
29.8  
29.7  
29.6  
29.5  
29.4  
12  
10  
8
C
= 1000pF  
OSC  
C
= 1000pF  
OSC  
V
= +5V  
DD  
V
= +3V  
DD  
V
DD  
= +3V  
6
4
2
V = +5V  
DD  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
-40 -20  
0
20  
40  
60  
80 100  
0
50 100 150 200 250 300 350  
CAPACITANCE (nF)  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
6
_______________________________________________________________________________________  
5 t h -Ord e r, Lo w p a s s ,  
S w it c h e d -Ca p a c it o r Filt e rs  
903/MAX714  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = +5V for MAX7409/MAX7410, V = +3V for MAX7413/MAX7414, f  
= 100kHz, SHDN = V , COM = OS = V / 2, T = +25°C,  
CLK  
DD  
DD  
DD DD A  
unless otherwise noted.)  
OUTPUT OFFSET VOLTAGE  
vs. SUPPLY VOLTAGE  
OUTPUT OFFSET VOLTAGE  
vs. TEMPERATURE  
-2.0  
-2.5  
-3.0  
-3.5  
-4.0  
-4.5  
-5.0  
-3.00  
-3.25  
-3.50  
-3.75  
-4.00  
-4.25  
-4.50  
V
DD  
= +3V  
V
DD  
= +5V  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
-40 -20  
0
20  
40  
60  
80 100  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
Common Input Pin. Biased internally at midsupply. Bypass COM externally to GND with a 0.1µF capacitor.  
To override internal biasing, drive COM with an external supply.  
1
COM  
2
3
4
5
IN  
Filter Input  
GND  
Ground  
V
DD  
Positive Supply Input: +5V for MAX7409/MAX7410, +3V for MAX7413/MAX7414.  
Filter Output  
OUT  
Offset Adjust Input. To adjust output offset, connect OS to an external supply through a resistive voltage-  
divider (Figure 3). Connect OS to COM if no offset adjustment is needed. Refer to the Offset and Common-  
Mode Input Adjustment section.  
6
OS  
7
8
Shutdown Input. Drive low to enable shutdown mode; drive high or connect to V for normal operation.  
DD  
SHDN  
3
Clock Input. Connect an external capacitor (C  
) from CLK to ground: f  
(kHz) = 30 x 10 / C  
/100.  
(pF).  
OSC  
OSC  
OSC  
CLK  
To override the internal oscillator, connect CLK to an external clock: f = f  
C
CLK  
higher frequencies). Bessel filters settle quickly—an  
important characteristic in applications that use a multi-  
plexer (mux) to select an input signal for an analog-to-  
digital converter (ADC). An anti-aliasing filter placed  
between the mux and the ADC must settle quickly after  
a new channel is selected.  
_______________De t a ile d De s c rip t io n  
The MAX7409/MAX7413 Bessel filters provide low over-  
shoot and fast settling responses, and the MAX7410/  
MAX7414 Butterworth filters provide a maximally flat  
passband response. All parts operate with a 100:1  
clock-to-corner frequency ratio and a 15kHz maximum  
corner frequency.  
Bu t t e rw o rt h Ch a ra c t e ris t ic s  
Lowp a s s Butte rworth filte rs s uc h a s the MAX7410/  
MAX7414 provide a maximally flat passband response,  
making them ideal for instrumentation applications that  
require minimum deviation from the DC gain throughout  
the passband.  
Be s s e l Ch a ra c t e ris t ic s  
Lowpass Bessel filters such as the MAX7409/MAX7413  
delay all frequency components equally, preserving the  
shape of step inputs (subject to the attenuation of the  
_______________________________________________________________________________________  
7
5 t h -Ord e r, Lo w p a s s ,  
S w it c h e d -Ca p a c it o r Filt e rs  
R
S
L2  
L4  
+
-
2V/div  
C1  
V
IN  
C3  
C5  
R
L
A
2V/div  
B
Figure 2. 5th-Order Ladder Filter Network  
2V/div  
C
Clo c k S ig n a l  
External Clock  
200µs/div  
The MAX7409/MAX7410/MAX7413/MAX7414 family of  
SCFs is designed for use with external clocks that have  
a 50% ±10% duty cycle. When using an external clock  
with these devices, drive CLK with a CMOS gate pow-  
A: 1kHz INPUT SIGNAL  
B: MAX7409 BESSEL FILTER RESPONSE; f = 5kHz  
C: MAX7410 BUTTERWORTH FILTER RESPONSE; f = 5kHz  
C
C
ered from 0 to V . Varying the rate of the external  
DD  
clock adjusts the corner frequency of the filter as fol-  
lows:  
Figure 1. Bessel vs. Butterworth Filter Response  
The difference between Bessel and Butterworth filters  
can be observed when a 1kHz square wave is applied  
to the filter input (Figure 1, trace A). With the filter cutoff  
frequencies set at 5kHz, trace B shows the Bessel filter  
re s p ons e a nd tra c e C s hows the Butte rworth filte r  
response.  
f
= f  
/ 100  
C
CLK  
Internal Clock  
When using the internal oscillator, connect a capacitor  
(C ) between CLK and ground. The value of the  
OSC  
capacitor determines the oscillator frequency as follows:  
3
f
(kHz) = 30 x 10 / C  
(pF)  
OSC  
OSC  
Ba c k g ro u n d In fo rm a t io n  
Most switched-capacitor filters (SCFs) are designed with  
biquadratic sections. Each section implements two filter-  
ing poles, and the sections are cascaded to produce  
higher-order filters. The advantage to this approach is  
ease of design. However, this type of design is highly  
sensitive to component variations if any sections Q is  
high. An alternative approach is to emulate a passive net-  
work using switched-capacitor integrators with summing  
and scaling. Figure 2 shows a basic 5th-order ladder filter  
structure.  
Minimize the stray capacitance at CLK so that it does  
not affect the internal oscillator frequency. Vary the rate  
of the internal oscillator to adjust the filters corner fre-  
quency by a 100:1 clock-to-corner frequency ratio. For  
example, an internal oscillator frequency of 100kHz  
produces a nominal corner frequency of 1kHz.  
In p u t Im p e d a n c e vs . Clo c k Fre q u e n c ie s  
The MAX7409/MAX7410/MAX7413/MAX7414s input  
impedance is effectively that of a switched-capacitor  
resistor (see the following equation), and is inversely  
proportional to frequency. The input impedance values  
determined below represent the average input imped-  
ance, since the input current is not continuous. As a  
rule, use a driver with an output impedance less than  
10% of the filters input impedance. Estimate the input  
impedance of the filter using the following formula:  
903/MAX714  
A s witc he d -c a p a c itor filte r s uc h a s the MAX7409/  
MAX7410/MAX7413/MAX7414 emulates a passive ladder  
filter. The filters component sensitivity is low when com-  
pared to a cascaded biquad design, because each  
component affects the entire filter shape, not just one  
pole-zero pair. In other words, a mismatched component  
in a biquad design will have a concentrated error on its  
respective poles, while the same mismatch in a ladder  
filter design results in an error distributed over all poles.  
Z
= 1 / ( f  
x 2.1pF)  
IN  
CLK  
For example, an f  
of 100kHz results in an input  
CLK  
impedance of 4.8M.  
8
_______________________________________________________________________________________  
5 t h -Ord e r, Lo w p a s s ,  
S w it c h e d -Ca p a c it o r Filt e rs  
903/MAX714  
Lo w -P o w e r S h u t d o w n Mo d e  
V
SUPPLY  
These devices feature a shutdown mode that is activat-  
ed by driving SHDN low. In shutdown mode, the filters  
supply current reduces to 0.2µA and its output becomes  
high impedance. For normal operation, drive SHDN  
0.1µF  
V
DD  
SHDN  
OUT  
high or connect it to V  
.
DD  
OUTPUT  
INPUT  
IN  
COM  
__________Ap p lic a t io n s In fo rm a t io n  
0.1µF  
0.1µF  
50k  
MAX7409  
MAX7410  
MAX7413  
MAX7414  
Offs e t a n d Co m m o n -Mo d e  
In p u t Ad ju s t m e n t  
50k  
50k  
CLOCK  
CLK  
OS  
The COM pin sets the common-mode input voltage and  
is biased at mid-supply with an internal resistor-divider.  
If the application does not require offset adjustment,  
connect OS to COM. For applications requiring offset  
adjustment, apply an external bias voltage through a  
resistor-divider network to OS such as shown in Fig-  
ure 3. For applications that require DC level shifting,  
adjust OS with respect to COM. (Note: OS should not  
be left unconnected.) The output voltage is represent-  
ed by this equation:  
GND  
Figure 3. Offset Adjustment Circuit  
V+  
V
OUT  
= (V - V  
) + V  
COM OS  
IN  
*
V
DD  
SHDN  
OUT  
with V  
= V / 2 (typical), and where (V - V  
)
COM  
DD  
IN  
COM  
OUTPUT  
is lowpass filtered by the SCF, and OS is added at the  
output stage. See the Electrical Characteristics for the  
voltage range of COM and OS. Changing the voltage  
on COM or OS significantly from midsupply reduces  
the filters dynamic range.  
INPUT  
IN  
COM  
MAX7409  
MAX7410  
MAX7413  
MAX7414  
V+  
V-  
CLOCK  
CLK  
OS  
0.1µF  
0.1µF  
P o w e r S u p p lie s  
The MAX7409/MAX7410 operate from a single +5V  
supply and the MAX7413/MAX7414 operate from a sin-  
GND  
g le +3V s up p ly. Byp a s s V  
to GND with a 0.1µF  
DD  
V-  
c a p a c itor. If d ua l s up p lie s a re re q uire d (± 2.5V for  
MAX7409/MAX7410, ±1.5V for MAX7413/MAX7414),  
connect COM to system ground and connect GND to  
the negative supply. Figure 4 shows an example of  
dual-supply operation. Single- and dual-supply perfor-  
mance are equivalent. For either single- or dual-supply  
operation, drive CLK and SHDN from GND (V- in dual-  
*DRIVE SHDN TO V- FOR LOW-POWER SHUTDOWN MODE.  
Figure 4. Dual-Supply Operation  
An t i-Alia s in g a n d DAC P o s t filt e rin g  
When using these devices for anti-aliasing or DAC  
postfiltering, synchronize the DAC (or ADC) and the fil-  
ter clocks. If the clocks are not synchronized, beat fre-  
quencies will alias into the desired passband.  
supply operation) to V . For ±5V dual-supply applica-  
DD  
tions, use the MAX291–MAX297.  
In p u t S ig n a l Am p lit u d e Ra n g e  
The op tima l inp ut s ig na l ra ng e is d e te rmine d b y  
observing the voltage level at which the Total Harmonic  
Distortion + Noise is minimized for a given corner fre-  
quency. The Typical Operating Characteristics show  
graphs of the devices’ Total Harmonic Distortion plus  
Noise Response as the input signal’s peak-to-peak  
amplitude is varied.  
Ha rm o n ic Dis t o rt io n  
Harmonic distortion arises from nonlinearities within the  
filter. These nonlinearities generate harmonics when a  
pure sine wave is applied to the filter input. Table 1 lists  
typical harmonic-distortion values for the MAX7410/  
MAX7414 with a 10kload at T = +25°C. Table 2 lists  
typical harmonic-distortion values for the MAX7409/  
A
MAX7413 with a 10kload at T = +25°C.  
A
_______________________________________________________________________________________  
9
5 t h -Ord e r, Lo w p a s s ,  
S w it c h e d -Ca p a c it o r Filt e rs  
Table 1. MAX7410/MAX7414 Typical Harmonic Distortion  
TYPICAL HARMONIC DISTORTION (dB)  
f
f
V
IN  
(Vp-p)  
CLK  
IN  
FILTER  
MAX7410  
MAX7414  
(kHz)  
(Hz)  
2nd  
-85  
3rd  
-67  
4th  
5th  
-82  
500  
100  
500  
100  
1k  
200  
1k  
-86.7  
-88.7  
-87.1  
-85.8  
4
-84  
-78  
-88.5  
-87.6  
-86.4  
-85.3  
-86.1  
-74  
2
200  
-85.5  
Table 2. MAX7409/MAX7413 Typical Harmonic Distortion  
TYPICAL HARMONIC DISTORTION (dB)  
f
f
V
IN  
(Vp-p)  
CLK  
IN  
FILTER  
MAX7409  
MAX7413  
(kHz)  
(Hz)  
2nd  
-82.5  
-83.5  
-86  
3rd  
-79  
4th  
5th  
500  
100  
500  
100  
1k  
200  
1k  
-88.8  
-88.4  
-87.3  
-87.9  
-91.1  
-88.8  
-87.9  
-88.3  
4
-85.4  
-81  
2
200  
-86.4  
-86.9  
Ch ip In fo rm a t io n  
Ord e rin g In fo rm a t io n (c o n t in u e d )  
PART  
TEMP. RANGE  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
8 µMAX  
TRANSISTOR COUNT: 1457  
MAX7413CUA  
MAX7413CPA  
MAX7413EUA  
MAX7413EPA  
MAX7414CUA  
MAX7414CPA  
MAX7414EUA  
MAX7414EPA  
8 Plastic DIP  
8 µMAX  
8 Plastic DIP  
8 µMAX  
8 Plastic DIP  
8 µMAX  
903/MAX714  
8 Plastic DIP  
10 ______________________________________________________________________________________  
5 t h -Ord e r, Lo w p a s s ,  
S w it c h e d -Ca p a c it o r Filt e rs  
903/MAX714  
________________________________________________________P a c k a g e In fo rm a t io n  
______________________________________________________________________________________ 11  
5 t h -Ord e r, Lo w p a s s ,  
S w it c h e d -Ca p a c it o r Filt e rs  
P a c k a g e In fo rm a t io n (c o n t in u e d )  
903/MAX714  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 ____________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 4 0 8 -7 3 7 -7 6 0 0  
© 1998 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX7413CUA+

MAXFILTERBRD
MAXIM

MAX7413CUA+T

Switched Capacitor Filter, 1 Func, Bessel, Lowpass, CMOS, PDSO8, UMAX-8
MAXIM

MAX7413EPA

5th-Order, Lowpass, Switched-Capacitor Filters
MAXIM

MAX7413EPA+

Switched Capacitor Filter, 1 Func, Bessel, Lowpass, CMOS, PDIP8, 0.300 INCH, PLASTIC, DIP-8
MAXIM

MAX7413EUA

5th-Order, Lowpass, Switched-Capacitor Filters
MAXIM

MAX7414

5th-Order, Lowpass, Switched-Capacitor Filters
MAXIM

MAX7414CPA

5th-Order, Lowpass, Switched-Capacitor Filters
MAXIM

MAX7414CUA

5th-Order, Lowpass, Switched-Capacitor Filters
MAXIM

MAX7414CUA+

MAXFILTERBRD
MAXIM

MAX7414CUA+T

Switched Capacitor Filter, 1 Func, Butterworth, Lowpass, CMOS, PDSO8, UMAX-8
MAXIM

MAX7414CUA-T

暂无描述
MAXIM

MAX7414EPA

5th-Order, Lowpass, Switched-Capacitor Filters
MAXIM