MAX7424EUA [MAXIM]

5th-Order, Lowpass, Switched-Capacitor Filters; 5阶,低通,开关电容滤波器
MAX7424EUA
型号: MAX7424EUA
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

5th-Order, Lowpass, Switched-Capacitor Filters
5阶,低通,开关电容滤波器

开关
文件: 总14页 (文件大小:407K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1821; Rev 0; 11/00  
5th-Order, Lowpass,  
Switched-Capacitor Filters  
General Description  
Features  
The MAX7418–MAX7425 5th-order, low-pass, switched-  
capacitor filters (SCFs) operate from a single +5V  
(MAX7418–MAX7421) or +3V (MAX7422–MAX7425)  
supply. These devices draw only 3mA of supply current  
and allow corner frequencies from 1Hz to 45kHz, mak-  
ing them ideal for low-power post-DAC filtering and anti-  
aliasing applications. They feature a shutdown mode  
that reduces supply current to 0.2µA.  
5th-Order, Lowpass Filters  
Elliptic Response (MAX7418/MAX7421/  
MAX7422/MAX7425)  
Bessel Response (MAX7419/MAX7423)  
Butterworth Response (MAX7420/MAX7424)  
Clock-Turnable Corner Frequency (1Hz to 45kHz)  
Single-Supply Operation  
+5V (MAX7418–MAX7421)  
+3V (MAX7422–MAX7425)  
Two clocking options are available: self-clocking  
(through the use of an external capacitor), or external  
clocking for tighter corner-frequency control. An offset  
adjust pin allows for adjustment of the DC output level.  
Low Power  
3mA (Operating Mode)  
0.2µA (Shutdown Mode)  
The MAX7418/MAX7422 deliver 53dB of stopband  
rejection and a sharp rolloff with a 1.6 transition ratio.  
The MAX7421/MAX7425 achieve a sharper rolloff with a  
1.25 transition ratio while still providing 37dB of stop-  
band rejection. The MAX7419/MAX7423 Bessel filters  
provide low overshoot and fast settling, and the  
MAX7420/MAX7424 Butterworth filters provide a maxi-  
mally flat passband response. Their fixed response sim-  
plifies the design task of selecting a clock frequency.  
Available in 8-Pin µMAX Package  
Low Output Offset: 4mV  
Ordering Information  
PART  
TEMP. RANGE  
0°C to +70°C  
-40°C to +85°C  
0°C to +70°C  
-40°C to +85°C  
0°C to +70°C  
-40°C to +85°C  
0°C to +70°C  
-40°C to +85°C  
PIN-PACKAGE  
MAX7418CUA  
MAX7418EUA  
MAX7419CUA  
MAX7419EUA  
MAX7420CUA  
MAX7420EUA  
MAX7421CUA  
MAX7421EUA  
8 µMAX  
8 µMAX  
Applications  
8 µMAX  
ADC Anti-Aliasing  
DAC Postfiltering  
CT2 Base Stations  
8 µMAX  
Speech Processing  
8 µMAX  
8 µMAX  
Selector Guide  
8 µMAX  
OPERATING  
VOLTAGE (V)  
8 µMAX  
PART  
FILTER RESPONSE  
Ordering Information continued at end of data sheet.  
MAX7418  
MAX7419  
MAX7420  
MAX7421  
r = 1.6  
Bessel  
+5  
+5  
+5  
+5  
Typical Operating Circuit  
Butterworth  
r = 1.25  
V
SUPPLY  
Selector Guide continued at end of data sheet.  
0.1µF  
Pin Configuration  
V
DD  
SHDN  
OUT  
TOP VIEW  
INPUT  
IN  
OUTPUT  
COM  
IN  
1
2
3
4
8
7
6
5
CLK  
SHDN  
OS  
MAX7418  
MAX7425  
MAX7418–  
MAX7425  
CLOCK  
CLK  
COM  
OS  
GND  
0.1µF  
V
DD  
OUT  
GND  
µMAX  
________________________________________________________________ Maxim Integrated Products  
1
For price, delivery, and to place orders, please contact Maxim Distribution at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
5th-Order, Lowpass,  
Switched-Capacitor Filters  
ABSOLUTE MAXIMUM RATINGS  
V
DD  
to GND..............................................................-0.3V to +6V  
Operating Temperature Ranges  
IN, OUT, COM, OS, CLK, SHDN ................-0.3V to (V  
OUT Short-Circuit Duration.......................................................1s  
+ 0.3V)  
MAX74 _ _C_A ...................................................0°C to +70°C  
MAX74 _ _E_A ................................................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +160°C  
Lead Temperature (soldering, 10s) .................................+300°C  
DD  
Continuous Power Dissipation (T = +70°C)  
A
8-Pin µMAX (derate 4.1mW/°C above +70°C).............330mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICSMAX7418MAX7421  
(V  
= +5V, filter output measured at OUT, 10k|| 50pF load to GND at OUT, OS = COM, 0.1µF capacitor from COM to GND,  
DD  
SHDN = V , f  
= 2.2MHz, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
DD CLK  
A
MIN  
PARAMETER  
FILTER CHARACTERISTICS  
Corner Frequency  
SYMBOL  
CONDITIONS  
= 4Vp-p (Note 1)  
MIN  
TYP  
MAX  
UNITS  
f
c
V
0.001 to 30  
100:1  
kHz  
IN  
Clock-to-Corner Ratio  
Clock-to-Corner Tempco  
Output Voltage Range  
Output Offset Voltage  
f
/ f  
CLK C  
10  
ppm/°C  
V
0.25  
V
- 0.25  
25  
DD  
V
V
V
= V  
= V / 2  
4
0.2  
0
mV  
OFFSET  
IN  
COM  
DD  
MAX7418/MAX7421  
MAX7419/MAX7420  
MAX7418  
0
0.4  
DC Insertion Gain with  
Output Offset Removed  
= V / 2  
DD  
(Note 2)  
COM  
dB  
dB  
-0.2  
+0.2  
-76  
-78  
-67  
-78  
1
f
IN  
= 2kHz,  
= 4Vp-p,  
MAX7419  
Total Harmonic Distortion  
plus Noise  
V
IN  
THD+N  
measurement  
bandwidth = 80kHz  
MAX7420  
MAX7421  
Offset Voltage Gain  
COM Voltage Range  
A
OS  
OS to OUT  
V/V  
V
Input, COM externally driven  
Output, COM unconnected  
Input, OS externally driven  
2.0  
2.3  
2.5  
2.5  
3.0  
2.7  
V
COM  
Input Voltage Range at OS  
Input Resistance at COM  
Clock Feedthrough  
V
OS  
V
0.1  
V
kΩ  
COM  
R
COM  
100  
140  
5
mVp-p  
kΩ  
Resistive Output Load Drive  
R
L
10  
50  
1
Maximum Capacitive Output  
Load Drive  
C
L
500  
pF  
Input Leakage Current at COM  
Input Leakage Current at OS  
CLOCK  
0.1  
0.1  
10  
10  
µA  
µA  
SHDN = GND, V  
= 0 to V  
DD  
COM  
V
OS  
= 0 to V  
DD  
MAX7418/MAX7421  
MAX7419/MAX7420  
MAX7418/MAX7421  
MAX7419/MAX7420  
68  
86  
87  
110  
40  
106  
135  
60  
C
= 1000pF  
OSC  
Internal Oscillator Frequency  
f
kHz  
µA  
OSC  
(Note 3)  
V = 0 or 5V  
CLK  
Clock Output Current  
(Internal Oscillator Mode)  
I
CLK  
50  
75  
Clock Input High  
Clock Input Low  
V
4.5  
V
V
IH  
V
0.5  
IL  
2
_______________________________________________________________________________________  
5th-Order, Lowpass,  
Switched-Capacitor Filters  
ELECTRICAL CHARACTERISTICSMAX7418MAX7421 (continued)  
(V  
= +5V, filter output measured at OUT, 10k|| 50pF load to GND at OUT, OS = COM, 0.1µF capacitor from COM to GND,  
DD  
SHDN = V , f  
= 2.2MHz, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
DD CLK  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER REQUIREMENTS  
Supply Voltage  
V
4.5  
5.5  
3.6  
4.1  
1
V
DD  
MAX7418/MAX7421  
MAX7419/MAX7420  
2.9  
3.4  
0.2  
70  
Operating mode,  
no load  
Supply Current  
I
mA  
DD  
Shutdown Current  
I
µA  
dB  
SHDN = GND  
SHDN  
Power-Supply Rejection Ratio  
PSRR  
IN = COM (Note 4)  
SHUTDOWN  
V
4.5  
V
V
SHDN Input High  
SDH  
V
0.5  
10  
SHDN Input Low  
SDL  
0.2  
µA  
SHDN Input Leakage Current  
V
= 0 to V  
DD  
SHDN  
ELECTRICAL CHARACTERISTICSMAX7422MAX7425  
(V  
= +3V, filter output measured at OUT pin, 10k|| 50pF load to GND at OUT, OS = COM, 0.1µF capacitor from COM to GND,  
DD  
SHDN = V , f  
= 2.2MHz, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
DD CLK  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MAX7422/MAX7425  
= 2.5Vp-p  
MIN  
TYP  
MAX  
UNITS  
FILTER CHARACTERISTICS  
0.001 to 45  
V
IN  
Corner-Frequency Range  
f
C
kHz  
(Note 1)  
MAX7423/MAX7424  
Clock-to-Corner Ratio  
Clock-to-Corner Tempco  
Output Voltage Range  
Output Offset Voltage  
f
/f  
100:1  
10  
V
CLK C  
ppm/°C  
V
0.25  
- 0.25  
25  
DD  
V
V
V
= V  
= V / 2  
4
mV  
OFFSET  
IN  
COM  
DD  
MAX7422/MAX7425  
MAX7423/MAX7424  
MAX7422  
0
0.2  
0
0.4  
DC Insertion Gain with Output  
Offset Removed  
= V / 2  
DD  
COM  
dB  
dB  
(Note 2)  
-0.2  
+0.2  
-80  
-81  
-70  
-80  
1
f
IN  
= 2kHz,  
= 2.5Vp-p,  
MAX7423  
Total Harmonic Distortion plus  
Noise  
V
IN  
THD+N  
measurement  
bandwidth = 80kHz  
MAX7424  
MAX7425  
Offset Voltage Gain  
COM Voltage Range  
A
OS to OUT  
V/V  
V
OS  
Input, COM externally driven  
Output, COM internally driven  
Measured with respect to COM  
1.4  
1.4  
1.5  
1.5  
1.6  
1.6  
V
COM  
Input Voltage Range at OS  
Input Resistance at COM  
Clock Feedthrough  
V
V
0.1  
V
kΩ  
OS  
COM  
R
100  
140  
COM  
3
1
mVp-p  
kΩ  
Resistive Output Load Drive  
R
10  
50  
L
Maximum Capacitive Load  
at OUT  
C
500  
pF  
L
Input Leakage Current at COM  
Input Leakage Current at OS  
0.1  
0.1  
10  
10  
µA  
µA  
SHDN = GND, V  
= 0 to V  
DD  
COM  
V
OS  
= 0 to V  
DD  
_______________________________________________________________________________________  
3
5th-Order, Lowpass,  
Switched-Capacitor Filters  
ELECTRICAL CHARACTERISTICSMAX7422MAX7425 (continued)  
(V  
= +3V, filter output measured at OUT pin, 10k|| 50pF load to GND at OUT, OS = COM, 0.1µF capacitor from COM to GND,  
DD  
SHDN = V , f  
= 2.2MHz, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
DD CLK  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
106  
UNITS  
CLOCK  
MAX7422/MAX7425  
68  
86  
68  
86  
2.5  
87  
110  
87  
C
= 1000pF  
OSC  
Internal Oscillator Frequency  
f
kHz  
kHz  
OSC  
(Note 3)  
MAX7423/MAX7424  
MAX7422/MAX7425  
MAX7423/MAX7424  
135  
106  
135  
Clock Output Current (Internal  
Oscillator Mode)  
I
CLK  
110  
Clock Input High  
V
IH  
V
V
Clock Input Low  
V
IL  
0.5  
POWER REQUIREMENTS  
Supply Voltage  
V
2.7  
3.6  
3.4  
3.8  
1
V
DD  
MAX7422/MAX7425  
MAX7423/MAX7424  
2.6  
3.0  
0.2  
70  
Operating mode,  
no load  
Supply Current  
I
mA  
DD  
Shutdown Current  
I
µA  
dB  
SHDN = GND  
SHDN  
Power-Supply Rejection Ratio  
SHUTDOWN  
PSRR  
Measured at DC  
V
2.5  
V
V
SHDN Input High  
SDH  
V
0.5  
10  
SHDN Input Low  
SDL  
V
= 0 to V  
0.2  
µA  
SHDN Input Leakage Current  
DD  
SHDN  
FILTER CHARACTERISTICS  
(V  
= +5V for MAX7418–MAX7421, V  
= +3V for MAX7422–MAX7425 filter output measured at OUT, 10k|| 50pF load to GND at  
DD  
DD  
OUT, SHDN = V , f  
= 2.2MHz, T = T  
to T , unless otherwise noted.)  
MAX  
DD CLK  
A
MIN  
PARAMETER  
ELLIPTIC, r = 1.2MAX7421/MAX7425  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
= 0.38f  
= 0.68f  
= 0.87f  
= 0.97f  
-0.4  
-0.4  
-0.4  
-0.4  
-0.7  
0.2  
0.2  
0.4  
0.4  
0.4  
0.4  
0.2  
-33  
-35  
-35  
C
C
C
C
0.2  
0.2  
Insertion Gain with DC Gain  
Error Removed (Note 4)  
dB  
= f  
0.2  
C
= 1.25f  
= 1.43f  
= 3.25f  
-36  
C
C
C
-37.2  
-37.2  
BESSEL FILTERSMAX7419/MAX7423  
f
IN  
f
IN  
f
IN  
f
IN  
= 0.5f  
-1  
-0.74  
-3.0  
C
= f  
-3.6  
-2.4  
-35  
-60  
C
Insertion Gain Relative to  
DC Gain  
dB  
= 4f  
= 7f  
-41.0  
-67  
C
C
4
_______________________________________________________________________________________  
5th-Order, Lowpass,  
Switched-Capacitor Filters  
FILTER CHARACTERISTICS  
(V  
= +5V for MAX7418–MAX7421, V  
= +3V for MAX7422–MAX7425 filter output measured at OUT, 10k|| 50pF load to GND at  
DD  
DD  
OUT, SHDN = V , f  
= 2.2MHz, T = T  
to T , unless otherwise noted.)  
MAX  
DD CLK  
A
MIN  
PARAMETER  
BUTTERWORTH FILTERSMAX7420/MAX7424  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
f
= 0.5f  
-0.3  
-3.6  
0
IN  
IN  
IN  
C
f
f
= f  
-3.0  
-47.5  
-70  
-2.4  
-43  
-65  
C
Insertion Gain Relative to  
DC Gain  
dB  
= 3f  
= 5f  
C
f
IN  
C
Note 1: The maximum f is defined as the clock frequency f  
= 100 x f at which the peak S / (THD+N) drops to 68dB with a  
C
C
CLK  
sinusoidal input at 0.2f . Maximum f increases as V signal amplitude decreases.  
C
C
IN  
Note 2: DC insertion gain is defined as V  
/ V .  
OUT  
IN  
3
Note 3: MAX7418/MAX7421/MAX7422/MAX7425: f  
(kHz) 87x10 / C  
(pF).  
(pF).  
OSC  
of 5.5V.  
OSC  
OSC  
OSC  
3
MAX7419/MAX7420/MAX7423/MAX7424: f  
Note 4: PSRR is the change in output voltage from a V  
(kHz) 110x10 / C  
of 4.5V and a V  
DD  
DD  
__________________________________________Typical Operating Characteristics  
(V  
= +5V for MAX7418–MAX7421, V  
= +3V for MAX7422–MAX7425, f  
= 2.2MHz, SHDN = V , V  
= V = V / 2,  
COM OS  
DD  
CLK  
DD  
DD  
DD  
T
A
= +25°C, unless otherwise noted.)  
MAX7419/MAX7423  
FREQUENCY RESPONSE (BESSEL)  
MAX7418/MAX7422  
FREQUENCY RESPONSE (ELLIPTIC, r = 1.6)  
MAX7420/MAX7424  
FREQUENCY RESPONSE (BUTTERWORTH)  
10  
0
10  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-10  
-20  
-30  
-40  
-50  
-60  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
_______________________________________________________________________________________  
5
5th-Order, Lowpass,  
Switched-Capacitor Filters  
____________________________Typical Operating Characteristics (continued)  
(V  
= +5V for MAX7418–MAX7421, V  
= +3V for MAX7422–MAX7425, f  
= 2.2MHz, SHDN = V , V  
= V = V / 2,  
OS  
DD  
CLK  
COM  
DD  
DD  
DD  
T
A
= +25°C, unless otherwise noted.  
MAX7419/MAX7423  
PASSBAND FREQUENCY RESPONSE  
(BESSEL)  
MAX7418/MAX7422  
PASSBAND FREQUENCY RESPONSE  
(ELLIPTIC, r = 1.6)  
MAX7421/MAX7425  
FREQUENCY RESPONSE (ELLIPTIC, r = 1.25)  
10  
0.5  
0
0.4  
0.2  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
-3.5  
-4.0  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
4.5  
9.0  
13.5  
18.0  
22.5  
0
20  
40  
60  
80  
100  
0
4.5  
9.0  
13.5  
18.0  
22.5  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
MAX7421/MAX7425  
PASSBAND FREQUENCY RESPONSE  
(ELLIPTIC, r = 1.25)  
MAX7420/MAX7424  
PASSBAND FREQUENCY RESPONSE  
(BUTTERWORTH)  
MAX7418/MAX7422  
PHASE RESPONSE (ELLIPTIC, r = 1.6)  
0
-50  
0.5  
0
0.4  
0.2  
-100  
-150  
-200  
-250  
-300  
-350  
-400  
-450  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
-3.5  
-4.0  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
4
8
12  
16  
20  
24  
28  
0
4.5  
9.0  
13.5  
18.0  
22.5  
0
4.5  
9.0  
13.5  
18.0  
22.5  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
MAX7419/MAX7423  
PHASE RESPONSE (BESSEL)  
MAX7424/MAX7425  
PHASE RESPONSE (ELLIPTIC, r = 1.25)  
MAX7420/MAX7424  
PHASE RESPONSE (BUTTERWORTH)  
0
-50  
0
-50  
0
-50  
-100  
-150  
-200  
-250  
-300  
-350  
-400  
-450  
-100  
-150  
-200  
-250  
-300  
-350  
-100  
-150  
-200  
-250  
0
4
8
12  
16  
20  
24  
28  
0
4
8
12  
16  
20  
24  
28  
0
4
8
12  
16  
20  
24  
28  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
6
_______________________________________________________________________________________  
5th-Order, Lowpass,  
Switched-Capacitor Filters  
____________________________Typical Operating Characteristics (continued)  
(V  
= +5V for MAX7418–MAX7421, V  
= +3V for MAX7422–MAX7425, f  
= 2.2MHz, SHDN = V , V  
= V = V / 2,  
COM OS  
DD  
CLK  
DD  
DD  
DD  
T
A
= +25°C, unless otherwise noted.  
MAX7419  
MAX7418  
MAX7420  
THD + NOISE vs. INPUT SIGNAL AMPLITUDE  
THD + NOISE vs. INPUT SIGNAL AMPLITUDE  
(ELLIPTIC, r = 1.6)  
THD + NOISE vs. INPUT SIGNAL AMPLITUDE  
(BESSEL)  
(BUTTERWORTH)  
0
0
0
SEE TABLE A  
SEE TABLE A  
SEE TABLE A  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
D
D
D
E
1
E
3
E
1
0
2
3
4
5
0
2
3
4
5
0
1
2
4
5
AMPLITUDE (Vp-p)  
AMPLITUDE (Vp-p)  
AMPLITUDE (Vp-p)  
MAX7421  
MAX7423  
MAX7422  
THD + NOISE vs. INPUT SIGNAL AMPLITUDE  
(ELLIPTIC, r = 1.25)  
THD + NOISE vs. INPUT SIGNAL AMPLITUDE  
(BESSEL)  
THD + NOISE vs. INPUT SIGNAL AMPLITUDE  
(ELLIPTIC, r = 1.6)  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
SEE TABLE A  
SEE TABLE A  
SEE TABLE A  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
A
A
D
B
B
C
C
E
1
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
2
3
4
5
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
AMPLITUDE (Vp-p)  
AMPLITUDE (Vp-p)  
AMPLITUDE (Vp-p)  
MAX7424  
MAX7425  
INTERNAL OSCILLATOR FREQUENCY  
vs. SMALL CAPACITANCE (pF)  
THD + NOISE vs. INPUT SIGNAL AMPLITUDE  
(BUTTERWORTH)  
THD + NOISE vs. INPUT SIGNAL AMPLITUDE  
(ELLIPTIC, r = 1.25)  
0
0
7000  
6000  
5000  
4000  
3000  
2000  
1000  
0
SEE TABLE A  
SEE TABLE A  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
BESSEL/BUTTERWORTH  
ELLIPTIC  
A
B
A
B
C
C
1
10  
100  
1000  
10000  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
CAPACITANCE ( pF)  
AMPLITUDE (Vp-p)  
AMPLITUDE (Vp-p)  
_______________________________________________________________________________________  
7
5th-Order, Lowpass,  
Switched-Capacitor Filters  
____________________________Typical Operating Characteristics (continued)  
(V  
= +5V for MAX7418–MAX7421, V  
= +3V for MAX7422–MAX7425, f  
= 2.2MHz, SHDN = V , V  
= V = V / 2,  
COM OS  
DD  
CLK  
DD  
DD  
DD  
T
A
= +25°C, unless otherwise noted.  
ELLIPTIC INTERNAL OSCILLATOR  
FREQUENCY vs. SUPPLY VOLTAGE  
INTERNAL OSCILLATOR FREQUENCY  
vs. LARGE CAPACITANCE (nF)  
87.0  
86.5  
86.0  
85.5  
85.0  
84.5  
84.0  
6
5
4
3
2
1
0
BESSEL/BUTTERWORTH  
ELLIPTIC  
C
= 1000PF  
OSC  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
10  
100  
1000  
SUPPLY VOLTAGE (V)  
CAPACITANCE (nF)  
ELLIPTIC SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
ELLIPTIC INTERNAL OSCILLATOR  
FREQUENCY vs. TEMPERATURE  
3.3  
3.1  
2.9  
2.7  
2.5  
2.3  
87.0  
86.5  
86.0  
85.5  
85.0  
84.5  
84.0  
V
DD  
= 3V  
V
DD  
= 5V  
35  
C
= 1000pF  
-15  
OSC  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
-40  
10  
60  
85  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
ELLIPTIC SUPPLY CURRENT  
vs. TEMPERATURE  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
Table A.  
f
f
f
BW  
IN  
C
CLK  
LABEL  
V
= 5V  
= 3V  
DD  
DD  
(kHz) (kHz) (kHz) (kHz)  
A
B
C
D
E
2
2
1
2
1
30  
22  
10  
22  
10  
3000  
2200  
1000  
2200  
1000  
80  
80  
22  
80  
22  
V
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
8
_______________________________________________________________________________________  
5th-Order, Lowpass,  
Switched-Capacitor Filters  
Typical Operating Characteristics (continued)  
(V  
= +5V for MAX7418–MAX7421, V  
= +3V for MAX7422–MAX7425, f  
= 2.2MHz, SHDN = V , V  
= V = V / 2,  
COM OS  
DD  
CLK  
DD  
DD  
DD  
T
A
= +25°C, unless otherwise noted.  
DC OFFSET VOLTAGE  
vs. SUPPLY VOLTAGE  
DC OFFSET VOLTAGE  
vs. TEMPERATURE  
2.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
V
= 5V  
DD  
V
= 3V  
DD  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
-40  
-15  
10  
35  
60  
85  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
Pin Description  
PIN  
NAME  
FUNCTION  
Common Input Pin. Biased internally at midsupply. Bypass COM externally to GND with a 0.1µF capacitor.  
To override internal biasing, drive COM with an external supply.  
1
COM  
2
3
IN  
Filter Input  
Ground  
GND  
Positive Supply Input: +5V for MAX7418–MAX7421, +3V for MAX7422–MAX7425. Bypass V to GND with  
DD  
a 0.1µF capacitor.  
4
5
V
DD  
OUT  
OS  
Filter Output  
Offset Adjust Input. To adjust output offset, connect OS to an external supply through a resistive voltage-  
divider (Figure 4). Connect OS to COM if no offset adjustment is needed. See the Offset and Common-Mode  
Input Adjustment section.  
6
7
8
Shutdown Input. Drive low to enable shutdown mode; drive high or connect to V  
for normal operation.  
SHDN  
DD  
Clock Input. Connect an external capacitor (C  
) from CLK to ground. To override the internal oscillator,  
OSC  
CLK  
connect CLK to an external clock: f = f  
/100.  
C
CLK  
produce higher order filters. The advantage to this  
approach is ease of design. However, this type of  
design is highly sensitive to component variations if any  
section’s Q is high. The MAX7418–MAX7425 use an  
alternative approach, which is to emulate a passive net-  
work using switched-capacitor integrators with sum-  
ming and scaling. The passive network may be  
synthesized using CAD programs, or may be found in  
many filter books. Figure 1 shows a basic 5th-order lad-  
der filter structure.  
_______________Detailed Description  
The MAX7418/MAX7421/MAX7422/MAX7425 elliptic  
lowpass filters provide sharp rolloff with good stopband  
rejection. The MAX7419/MAX7423 Bessel filters provide  
low overshoot and fast settling responses, and the  
MAX7420/MAX7424 Butterworth filters provide a maxi-  
mally flat passband response. All parts operate with a  
100:1 clock-to-corner frequency ratio.  
Most switch capacitor filters (SCFs) are designed with  
biquadratic sections. Each section implements two  
pole-zero pairs, and the sections can be cascaded to  
_______________________________________________________________________________________  
9
5th-Order, Lowpass,  
Switched-Capacitor Filters  
delay all frequency components equally, preserving the  
line up shape of step inputs (subject to the attenuation  
of the higher frequencies). Bessel filters settle quickly—  
an important characteristic in applications that use a  
multiplexer (mux) to select an input signal for an ana-  
log-to-digital converter (ADC). An anti-aliasing filter  
placed between the mux and the ADC must settle  
quickly after a new channel is selected.  
R
S
L2  
L4  
+
-
C1  
V
IN  
C3  
C5  
R
L
Butterworth Characteristics  
Lowpass Butterworth filters such as the MAX7420/  
MAX7424 provide a maximally flat passband response,  
making them ideal for instrumentation applications that  
require minimum deviation from the DC gain throughout  
the passband.  
Figure 1. 5th-Order Ladder Filter Network  
An SCF that emulates a passive ladder filter retains  
many of the same advantages. The component sensi-  
tivity of a passive ladder filter is low when compared to  
a cascaded biquadratic design because each compo-  
nent affects the entire filter shape rather than a single  
pole-zero pair. In other words, a mismatched compo-  
nent in a biquadratic design has a concentrated error  
on its respective poles, while the same mismatch in a  
ladder filter design spreads its error over all poles.  
The difference between Bessel and Butterworth filters  
can be observed when a 1kHz square wave is applied  
to the filter input (Figure 3, trace A). With the filter cutoff  
frequencies set at 5kHz, trace B shows the Bessel filter  
response and trace C shows the Butterworth filter  
response.  
Clock Signal  
Elliptic Characteristics  
Lowpass elliptic filters such as the MAX7418/MAX7421/  
MAX7422/MAX7425 provide the steepest possible  
rolloff with frequency of the four most common filter  
types (Butterworth, Bessel, Chebyshev, and elliptic).  
The high-Q value of the poles near the passband edge  
combined with the stopband zeros allow for the sharp  
attenuation characteristic of elliptic filters, making these  
devices ideal for anti-aliasing and post-DAC filtering in  
single-supply systems (see Anti-Aliasing and Post-DAC  
Filtering).  
External Clock  
These SCFs are designed for use with external clocks  
that have a 40% to 60% duty cycle. When using an  
external clock, drive the CLK pin with a CMOS gate  
powered from 0 to V . Varying the rate of the external  
DD  
clock adjusts the corner frequency of the filter:  
f
CLK  
f
=
C
100  
In the frequency domain, the first transmission zero  
causes the filter’s amplitude to drop to a minimum level  
(Figure 2). Beyond this zero, the response rises as the  
frequency increases until the next transmission zero.  
RIPPLE  
The stopband begins at the stopband frequency, f . At  
S
frequencies above f , the filter’s gain does not exceed  
S
f
C
the gain at f . The corner frequency, f , is defined as  
S
C
f
C
S
TRANSITION RATIO =  
the point at which the filter output attenuation falls just  
below the passband ripple. The transition ratio (r) is  
defined as the ratio of the stopband frequency to the  
corner frequency:  
f
f
S
r = f / f  
S
C
The MAX7418/MAX7422 have a transition ratio of 1.6  
and typically 53dB of stopband rejection. The  
MAX7421/MAX7425 have a transition ratio of 1.25 (pro-  
viding a steeper rolloff) and typically 37dB of stopband  
rejection.  
PASSBAND  
STOPBAND  
FREQUENCY  
f
C
f
S
Bessel Characteristics  
Lowpass Bessel filters such as the MAX7419/MAX7423  
Figure 2. Elliptic Filter Response  
10 ______________________________________________________________________________________  
5th-Order, Lowpass,  
Switched-Capacitor Filters  
V
SUPPLY  
0.1µF  
2V/div  
V
DD  
SHDN  
OUT  
A
B
C
OUTPUT  
INPUT  
IN  
COM  
2V/div  
2V/div  
0.1µF  
0.1µF  
50k  
MAX7418  
MAX7425  
50k  
50k  
CLOCK  
CLK  
OS  
GND  
200µs/div  
A: 1kHz INPUT SIGNAL  
B: MAX7419 BESSEL FILTER RESPONSE; f = 5kHz  
C
C: MAX7420 BUTTERWORTH FILTER RESPONSE; f = 5kHz  
C
Figure 4. Offset Adjustment Circuit  
Figure 3. Bessel vs. Butterworth Filter Response  
1
Z
=
Internal Clock  
When using the internal oscillator, the capacitance  
IN  
(f  
× C )  
IN  
CLK  
(C  
) on CLK determines the oscillator frequency:  
OSC  
where f  
= clock frequency and C = 1pF.  
IN  
CLK  
k
Low-Power Shutdown Mode  
f
(kHz) =  
OSC  
C
(pF)  
OSC  
The MAX7418–MAX7425 have a shutdown mode that is  
activated by driving SHDN low. In shutdown mode, the  
filter supply current reduces to 0.2µA, and the output of  
the filter becomes high impedance. For normal opera-  
where  
k = 87 x 103 for the  
tion, drive SHDN high or connect to V  
.
DD  
MAX7418/MAX7421/MAX7422/MAX7425  
and  
Applications Information  
Offset (OS) and Common-Mode (COM)  
Input Adjustment  
k = 110 x 103 for the  
MAX7419/MAX7420/MAX7423/ MAX7424.  
COM sets the common-mode input voltage and is  
biased at midsupply with an internal resistor-divider. If  
the application does not require offset adjustment, con-  
nect OS to COM. For applications in which offset  
adjustment is required, apply an external bias voltage  
through a resistor-divider network to OS, as shown in  
Figure 4. For applications that require DC level shifting,  
adjust OS with respect to COM. (Note: Do not leave OS  
unconnected.) The output voltage is represented by  
these equations:  
Since C  
is in the low picofarads, minimize the stray  
OSC  
capacitance at CLK so that it does not affect the inter-  
nal oscillator frequency. Varying the rate of the internal  
oscillator adjusts the filter’s corner frequency by a  
100:1 clock-to-corner frequency ratio. For example, an  
internal oscillator frequency of 2.2MHz produces a  
nominal corner frequency of 2.2kHz.  
Input Impedance vs. Clock Frequencies  
The MAX7418–MAX7425s’ input impedance is effective  
as a switched-capacitor resistor and is inversely propor-  
tional to frequency. The input impedance values deter-  
mined by the equation represents the average input  
impedance, since the input current is not continuous.  
As a rule, use a driver with an output resistance less  
than 10% of the filter’s input impedance.  
V
= (V V  
) + V  
OUT  
IN  
COM OS  
V
DD  
2
V
=
(typ)  
COM  
where (V - V  
) is lowpass filtered by the SCF and  
COM  
IN  
OS is added at the output stage. See the Electrical  
Characteristics table for the input voltage range of COM  
Estimate the input impedance of the filter by using the  
following formula:  
______________________________________________________________________________________ 11  
5th-Order, Lowpass,  
Switched-Capacitor Filters  
and OS. Changing the voltage on COM or OS signifi-  
cantly from midsupply reduces the dynamic range.  
V+  
Power Supplies  
The MAX7418–MAX7421 operate from a single +5V  
supply and the MAX7422–MAX7425 operate from a sin-  
*
V
DD  
SHDN  
OUT  
OUTPUT  
gle +3V supply. Bypass V  
to GND with a 0.1µF  
DD  
INPUT  
IN  
COM  
capacitor. If dual supplies are required, connect COM  
to the system ground and GND to the negative supply.  
Figure 5 shows an example of dual-supply operation.  
Single-supply and dual-supply performance are equiv-  
alent. For either single-supply or dual-supply operation,  
drive CLK and SHDN from GND (V- in dual supply  
MAX7418–  
MAX7425  
V+  
V-  
CLOCK  
CLK  
OS  
0.1µF  
0.1µF  
operation) to V . Use the MAX7418–MAX7421 for  
DD  
GND  
V-  
2.5, and use the MAX7422–MAX7425 for 1.5V. For  
5V dual-supply applications, refer to the MAX291/  
MAX292/MAX295/MAX296 and MAX293/MAX294/  
MAX297 data sheets.  
*CONNECT SHDN TO V- FOR LOW-POWER SHUTDOWN MODE.  
Input Signal Amplitude Range  
The optimal input signal range is determined by observ-  
ing the voltage level at which the signal-to-noise plus  
distortion (SINAD) ratio is maximized for a given corner  
frequency. The Typical Operating Characteristics show  
the THD + Noise response as the input signal’s peak-to-  
peak amplitude is varied.  
Figure 5. Dual-Supply Operation  
Harmonic Distortion  
Harmonic distortion arises from nonlinearities within the  
filter. These nonlinearities generate harmonics when a  
pure sine wave is applied to the filter input. Tables 1, 2,  
and 3 list typical harmonic distortion values with a 10kΩ  
load at T = +25°C.  
A
Anti-Aliasing and Post-DAC Filtering  
When using the MAX7418–MAX7425 for anti-aliasing or  
post-DAC filtering, synchronize the DAC (or ADC) and  
the filter clocks. If the clocks are not synchronized, beat  
frequencies may alias into the desired passband.  
Table 1. MAX7418/MAX7421/MAX7422/MAX7425 Typical Harmonic Distortion  
TYPICAL HARMONIC DISTORTION (dB)  
f
f
V
IN  
(Vp-p)  
CLK  
IN  
FILTER  
MAX7418  
MAX7421  
MAX7422  
MAX7425  
(MHz)  
(kHz)  
2nd  
<-80  
<-80  
<-80  
<-80  
<-80  
<-80  
<-80  
<-80  
3rd  
4th  
5th  
2.2  
1.5  
2.2  
1.5  
4.0  
2.2  
4.0  
2.2  
2
2
2
2
4
2
4
2
<-80  
<-80  
<-80  
<-80  
<-80  
<-80  
<-80  
<-80  
<-80  
<-80  
<-80  
<-80  
<-80  
<-80  
<-80  
<-80  
<-80  
<-80  
<-80  
<-80  
<-80  
<-80  
<-80  
<-80  
4
4
2
2
12 ______________________________________________________________________________________  
5th-Order, Lowpass,  
Switched-Capacitor Filters  
Table 2. MAX7420/MAX7424 Typical Harmonic Distortion  
TYPICAL HARMONIC DISTORTION (dB)  
f
f
V
IN  
(Vp-p)  
CLK  
IN  
FILTER  
MAX7420  
MAX7424  
(MHz)  
(kHz)  
2nd  
-77  
3rd  
-67  
-70  
-70  
-77  
4th  
5th  
-76  
2.2  
1.5  
3.5  
2.2  
2
2
3
2
< -80  
< -80  
< -80  
< -80  
4
< -80  
< -80  
< -80  
< -80  
< -80  
< -80  
2
Table 3. MAX7419/MAX7423 Typical Harmonic Distortion  
TYPICAL HARMONIC DISTORTION (dB)  
f
f
V
IN  
(Vp-p)  
CLK  
IN  
FILTER  
MAX7419  
MAX7423  
(MHz)  
(kHz)  
2nd  
3rd  
-77  
4th  
5th  
2.2  
1.5  
3.5  
2.2  
2
2
3
2
< -80  
< -80  
< -80  
< -80  
< -80  
< -80  
< -80  
< -80  
< -80  
< -80  
< -80  
< -80  
4
-80  
-75  
2
< -80  
Ordering Information (continued)  
Selector Guide (continued)  
PART  
TEMP. RANGE  
0°C to +70°C  
-40°C to +85°C  
0°C to +70°C  
-40°C to +85°C  
0°C to +70°C  
-40°C to +85°C  
0°C to +70°C  
-40°C to +85°C  
PIN-PACKAGE  
8 µMAX  
OPERATING  
FILTER RESPONSE  
PART  
VOLTAGE (V)  
MAX7422CUA  
MAX7422EUA  
MAX7423CUA  
MAX7423EUA  
MAX7424CUA  
MAX7424EUA  
MAX7425CUA  
MAX7425EUA  
8 µMAX  
MAX7422  
MAX7423  
MAX7424  
MAX7425  
r = 1.6  
Bessel  
+3  
+3  
+3  
+3  
8 µMAX  
8 µMAX  
Butterworth  
r = 1.25  
8 µMAX  
8 µMAX  
8 µMAX  
Chip Information  
8 µMAX  
TRANSISTOR COUNT: 1457  
PROCESS: BiCMOS  
______________________________________________________________________________________ 13  
5th-Order, Lowpass,  
Switched-Capacitor Filters  
________________________________________________________Package Information  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
14 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2000 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX7424EUA+

Switched Capacitor Filter, 1 Func, Butterworth, Lowpass, BICMOS, PDSO8, MICRO MAX PACKAGE-8
MAXIM

MAX7425

5th-Order, Lowpass, Switched-Capacitor Filters
MAXIM

MAX7425CUA

5th-Order, Lowpass, Switched-Capacitor Filters
MAXIM

MAX7425CUA+

MAXFILTERBRD
MAXIM

MAX7425EUA

5th-Order, Lowpass, Switched-Capacitor Filters
MAXIM

MAX7425EUA+

Switched Capacitor Filter, 1 Func, Elliptic, Lowpass, BICMOS, PDSO8, MICRO MAX PACKAGE-8
MAXIM

MAX7425EUA+T

Switched Capacitor Filter, 1 Func, Elliptic, Lowpass, BICMOS, PDSO8, MICRO MAX PACKAGE-8
MAXIM

MAX7425EUA-T

Switched Capacitor Filter, 1 Func, Elliptic, Lowpass, BICMOS, PDSO8, MICRO MAX PACKAGE-8
MAXIM

MAX7426

5th-Order, Lowpass, Elliptic, Switched-Capacitor Filters
MAXIM

MAX7426CPA

5th-Order, Lowpass, Elliptic, Switched-Capacitor Filters
MAXIM

MAX7426CPA+

Switched Capacitor Filter, 1 Func, Elliptic, Lowpass, BICMOS, PDIP8, 0.300 INCH, PLASTIC, DIP-8
MAXIM

MAX7426CUA

5th-Order, Lowpass, Elliptic, Switched-Capacitor Filters
MAXIM