MAX762ESA+ [MAXIM]

暂无描述;
MAX762ESA+
型号: MAX762ESA+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

暂无描述

转换器
文件: 总12页 (文件大小:124K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0201; Rev 0; 11/93  
1 2 V/1 5 V o r Ad ju s t a b le , Hig h -Effic ie n c y,  
Lo w I , Ste p-Up DC-DC Conve rte rs  
Q
1/MAX762  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
High Efficiency for a Wide Range of Load Currents  
12V/150mA Flash Memory Programming Supply  
110µA Max Supply Current  
The MAX761/MAX762 s te p -up s witc hing re g ula tors  
provide high efficiency over a wide range of load currents,  
d e live ring up to 150mA. A uniq ue , c urre nt-limite d  
pulse-frequency-modulated (PFM) control scheme gives  
the devices the benefits of pulse-width-modulated (PWM)  
converters (high efficiency with heavy loads), while using  
less than 110µA of supply current (vs. 2mA to 10mA for  
PWM converters). The result is high efficiency over a wide  
range of loads.  
5µA Max Shutdown Supply Current  
2V to 16.5V Input Voltage Range  
12V (MAX761), 15V (MAX762) or Adjustable Output  
Current-Limited PFM Control Scheme  
300kHz Switching Frequency  
The MAX761/MAX762 input voltage range is 2V to 16.5V.  
Output voltages are preset to 12V (MAX761) and 15V  
(MAX762), or they can be set with two external resistors.  
With a 5V input, the MAX761 guarantees a 12V, 150mA  
output. Its high efficiency, low supply current, fast start-up  
time, SHDN controlling capability, and small size make the  
MAX761 ideal for powering flash memory.  
Internal, 1A, N-Channel Power FET  
LBI/LBO Low-Battery Comparator  
______________Ord e rin g In fo rm a t io n  
PART  
TEMP. RANGE  
0°C to +70°C  
PIN-PACKAGE  
8 Plastic DIP  
8 SO  
The MAX761/MAX762 have an internal 1A power MOS-  
FET, making them ideal for minimum-component, low- and  
medium-power applications. These devices use tiny exter-  
nal components, and their high switching frequencies (up  
to 300kHz) allow for small surface-mount magnetics.  
MAX761CPA  
MAX761CSA  
MAX761C/D  
MAX761EPA  
MAX761ESA  
MAX761MJA  
MAX762CPA  
MAX762CSA  
MAX762C/D  
MAX762EPA  
MAX762ESA  
MAX762MJA  
0°C to +70°C  
0°C to +70°C  
Dice*  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
0°C to +70°C  
8 Plastic DIP  
8 SO  
For increased output drive capability or higher output volt-  
ages, use the MAX770–MAX773, which are similar in  
design to the MAX761/MAX762, but drive external power  
MOSFETs. For stepping up to 5V, see the MAX756/  
MAX757 and MAX856-MAX859 data sheets.  
8 CERDIP**  
8 Plastic DIP  
8 SO  
0°C to +70°C  
0°C to +70°C  
Dice*  
_________________________Applic a t io n s  
Flash Memory Programming  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
8 Plastic DIP  
8 SO  
PCMCIA Cards  
8 CERDIP**  
Battery-Powered Applications  
High-Efficiency DC-DC Converters  
* Contact factory for dice specifications.  
** Contact factory for availability and processing to MIL-STD-883.  
__________Typ ic a l Op e ra t in g Circ u it  
__________________P in Co n fig u ra t io n  
INPUT  
4.75V  
TO 12V  
TOP VIEW  
33µF  
18µH  
OUTPUT  
12V  
150mA  
LX  
LBO  
LBI  
1
2
3
4
V+  
8
7
6
5
33µF  
MAX761  
LX  
SHDN  
V+  
ON/OFF  
MAX761  
MAX762  
FB  
GND  
REF  
LBI  
LOW-BATTERY  
DETECTOR OUTPUT  
SHDN  
LOW-BATTERY  
LBO  
DETECTOR INPUT  
REF  
FB  
GND  
DIP/SO  
________________________________________________________________ Maxim Integrated Products  
1
Ca ll t o ll fre e 1 -8 0 0 -9 9 8 -8 8 0 0 fo r fre e s a m p le s o r lit e ra t u re .  
1 2 V/1 5 V o r Ad ju s t a b le , Hig h -Effic ie n c y,  
Lo w I , Ste p-Up DC-DC Conve rte rs  
Q
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage V+ to GND.......................................-0.3V to 17V  
REF, LBO, LBI, SHDN, FB............................-0.3V to (V+ + 0.3V)  
LX..............................................................................-0.3V to 17V  
LX Peak Current....................................................................1.5A  
LBO Current..........................................................................5mA  
Operating Temperature Ranges:  
MAX76_C_A........................................................0°C to +70°C  
MAX76_E_A .....................................................-40°C to +85°C  
MAX76_MJA ..................................................-55°C to +125°C  
Junction Temperatures:  
Continuous Power Dissipation (T = +70°C)  
MAX76_C_A/E_A..........................................................+150°C  
MAX76_MJA.................................................................+175°C  
Storage Temperature Range .............................-65°C to +160°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
A
Plastic DIP (derate 9.09mW/°C above +70°C) ............727mW  
SO (derate 5.88mW/°C above +70°C).........................471mW  
CERDIP (derate 8.00mW/°C above +70°C).................640mW  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
1/MAX762  
(V+ = 5V, I  
= 0mA, C  
= 0.1µF, T = T  
A
to T typical values are at T = +25°C, unless otherwise noted.)  
MAX, A  
LOAD  
REF  
MIN  
PARAMETER  
Supply Voltage  
SYMBOL  
CONDITIONS  
MIN  
2
TYP  
MAX  
16.5  
16.5  
16.5  
UNITS  
Figure 2, bootstrapped  
V+  
MAX76_C/E  
MAX76_M  
3
V
Figure 3 or 5 with  
external resistors.  
3.1  
Minimum Operating Voltage  
Minimum Start-Up Voltage  
Figure 2, bootstrapped  
Figure 2, bootstrapped  
1.7  
1.7  
V
V
2.0  
V+ = 16.5V, normal operation, SHDN = 0V,  
non-bootstrapped  
88  
110  
Supply Current  
µA  
µA  
Figure 2, MAX761, V = 5V, SHDN = 0V,  
IN  
normal operation  
300  
Shutdown Current  
V+ = 10.0V, shutdown mode, SHDN = V+  
1
5
0mA I  
3V V+ 12V  
75mA,  
LOAD  
11.52  
11.52  
14.4  
12.0  
12.48  
Figure 2,  
MAX761,  
bootstrapped  
0mA I 150mA,  
LOAD  
12.0  
15.0  
15.0  
12.48  
15.6  
15.6  
4.75V V+ 12V  
Output Voltage  
(Note 1)  
V
OUT  
V
0mA I 50mA,  
LOAD  
Figure 2,  
MAX762,  
bootstrapped  
3V V+ 15V  
0mA I 100mA,  
LOAD  
14.4  
4.75V V+ 15V  
Peak Current at LX  
Maximum Switch-On Time  
Minimum Switch-Off Time  
Load Regulation  
I
See Figure 4b  
0.75  
6
1.0  
8
1.25  
10  
A
µs  
PEAK  
t
ON  
t
1.0  
1.3  
1.6  
µs  
OFF  
Figure 2, 0mA I  
200mA, bootstrapped  
0.0042  
0.08  
%/mA  
%/V  
LOAD  
Line Regulation  
Figure 2, 4V V 6V, bootstrapped  
IN  
Figure 2, bootstrapped, V  
= 12V,  
OUT  
Efficiency  
86  
%
60mA I  
120mA  
LOAD  
MAX76_C  
MAX76_E  
MAX76_M  
1.4700  
1.4625  
1.4550  
1.50  
1.50  
1.50  
1.5300  
1.5375  
1.5450  
Reference Voltage  
V
REF  
V
2
_______________________________________________________________________________________  
1 2 V/1 5 V o r Ad ju s t a b le , Hig h -Effic ie n c y,  
Lo w I , Ste p-Up DC-DC Conve rte rs  
Q
1/MAX762  
ELECTRICAL CHARACTERISTICS (continued)  
(V+ = 5V, I  
= 0mA, C  
= 0.1µF, T = T  
A
to T , typical values are at T = +25°C, unless otherwise noted.)  
MAX A  
LOAD  
REF  
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
10  
UNITS  
mV  
MAX76_C/E  
MAX76_M  
Reference Load Regulation  
Reference Line Regulation  
0µA I  
100µA  
LOAD  
15  
3.0V V+ 16.5V  
30  
100  
5
µV/V  
MAX76_C  
MAX76_E  
MAX76_M  
-5  
-10  
V+ = 16.5V,  
LX = 17V  
LX Leakage Current  
FB Leakage Current  
Voltage Trip Point  
10  
µA  
nA  
V
-30  
30  
MAX76_C  
-20  
20  
I
FB  
MAX76_E  
-40  
40  
MAX76_M  
-60  
60  
MAX76_C  
1.4700  
1.4625  
1.4550  
1.50  
1.50  
1.50  
1.0  
1.5300  
1.5375  
1.5450  
2.2  
V
FB  
MAX76_E  
MAX76_M  
LX On Resistance  
V+ > 5.0V  
V
SHDN Input High Voltage  
SHDN Input Low Voltage  
SHDN Leakage Current  
V
IH  
2.0V V+ 16.5V  
2.0V V+ 16.5V  
1.6  
V
IL  
0.4  
1
V
V+ = 16.5V, SHDN = 0V or V+  
MAX76_C  
-1  
µA  
1.4700  
1.4625  
1.4550  
1.50  
1.50  
1.50  
20  
1.5300  
1.5375  
1.5450  
LBI Threshold Voltage  
LBI falling  
MAX76_E  
MAX76_M  
V
LBI Hysteresis  
mV  
nA  
µA  
V
LBI Leakage Current  
LBO Leakage Current  
LBO Voltage  
V+ = 16.5V, V = 1.5V  
-20  
-1  
20  
1
LBI  
V+ = 16.5V, V  
= 16.5V  
LBO  
V
OL  
V+ = 5.0V, I  
= 1mA  
0.4  
SINK  
LBI to LBO Delay  
Overdrive = 5mV  
2.5  
µs  
Note 1: See Typical Operating Characteristics for output current capability versus input voltage. Guarantees based on correlation  
to switching on and off times, on-resistance, and peak-current ratings.  
_______________________________________________________________________________________  
3
1 2 V/1 5 V o r Ad ju s t a b le , Hig h -Effic ie n c y,  
Lo w I , Ste p-Up DC-DC Conve rte rs  
Q
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(Circuit of Figure 2, T = +25°C, unless otherwise noted.)  
A
EFFICIENCY vs. OUTPUT CURRENT  
BOOTSTRAPPED  
QUIESCENT CURRENT vs.  
INPUT VOLTAGE  
EFFICIENCY vs. OUTPUT CURRENT  
NON-BOOTSTRAPPED  
100  
90  
100  
90  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
V
= 12V  
V
= 10V  
OUT  
IN  
V
IN  
= 10V  
BOOTSTRAPPED  
(INTERNAL RESISTORS)  
V
= 5V  
80  
70  
IN  
80  
70  
V
IN  
= 5V  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
V
= 2V  
IN  
BOOTSTRAPPED  
(EXTERNAL RESISTORS)  
V
OUT  
= 12V  
V
OUT  
= 12V  
1/MAX762  
NON-BOOTSTRAPPED  
0
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
0
0.5  
1
1.5 2 2.5  
3
3.5  
4
4.5  
5
5.5  
6
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
INPUT VOLTAGE (V)  
MAXIMUM OUTPUT CURRENT vs.  
INPUT VOLTAGE  
REFERENCE vs.TEMPERATURE  
COEFFICIENT  
REFERENCE OUTPUT RESISTANCE vs.  
TEMPERATURE  
400  
250  
200  
1.506  
1.504  
1.502  
350  
300  
250  
200  
150  
100  
50  
BOOTSTRAPPED  
10µA  
150  
100  
50  
1.500  
1.498  
1.496  
1.494  
1.492  
50µA  
NON-BOOTSTRAPPED  
= 12V  
100µA  
V
OUT  
0
0
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
-60 -40 -20  
0
20 40 60 80 100 120 140  
-60 -40 -20  
0 20 40 60 80 100 120 140  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
NO-LOAD START-UP VOLTAGE  
LX ON-RESISTANCE vs.  
TEMPERATURE  
MAX761  
START-UP VOLTAGE vs. R  
LOAD  
3.5  
3.0  
2.5  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.6  
1.4  
1.2  
V
= 12V  
OUT  
BOOTSTRAPPED  
(EXTERNAL RESISTORS)  
V
= 12V  
OUT  
BOOTSTRAPPED  
INTERNAL RESISTORS  
V+ = 5V  
NON-BOOTSTRAPPED  
(EXTERNAL RESISTORS)  
2.0  
1.5  
1.0  
0.5  
1.0  
0.8  
0.6  
0.4  
V+ = 12V  
BOOTSTRAPPED  
(INTERNAL RESISTORS)  
-60 -40 -20  
0
20 40 60 80 100 120 140  
0.1  
1
10  
(k)  
100  
1000  
-60 -40 -20  
0
20 40 60 80 100 120 140  
TEMPERATURE (°C)  
R
TEMPERATURE (°C)  
LOAD  
4
_______________________________________________________________________________________  
1 2 V/1 5 V o r Ad ju s t a b le , Hig h -Effic ie n c y,  
Lo w I , Ste p-Up DC-DC Conve rte rs  
Q
1/MAX762  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(Circuit of Figure 2, T = +25°C, unless otherwise noted.)  
A
PEAK CURRENT AT LX vs. TEMPERATURE  
SHUTDOWN CURRENT  
vs. TEMPERATURE  
LX LEAKAGE vs. TEMPERATURE  
1000  
100  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
4.0  
3.5  
3.0  
2.5  
V+ = 15V  
V+ = 12V  
10  
1
V+ = 5V  
2.0  
1.5  
1.0  
0.5  
0
V+ = 15V  
V+ = 8V  
0.1  
V
= 16.5V  
LX  
V+ = 4V  
-60 -40 -20  
0.01  
20  
40  
60  
80  
100 120 140  
-60 -40 -20  
0
20 40 60 80 100 120 140  
0
20 40 60 80 100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SWITCH-ON TIME vs. TEMPERATURE  
SWITCH-OFF TIME vs. TEMPERATURE  
POWER-SUPPLY CURRENT  
vs. TEMPERATURE  
8.5  
8.0  
7.5  
2.0  
1.5  
1.0  
100  
V+ = 16.5V  
V+ = 3V  
V+ = 5V  
V+ = 5V  
90  
80  
-60  
0
60  
120  
-60  
0
60  
120  
-60  
0
60  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SWITCH-ON/SWITCH-OFF TIME RATIO  
vs.TEMPERATURE  
SHDN RESPONSE TIME  
7
6
5
12V  
V+ = 5V  
5V  
4V  
0V  
2ms/div  
-60  
0
60  
120  
TEMPERATURE (°C)  
I
= 100mA, V = 5V  
IN  
LOAD  
A: V , 2V/div  
OUT  
B: SHDN (0V to 4V)  
_______________________________________________________________________________________  
5
1 2 V/1 5 V o r Ad ju s t a b le , Hig h -Effic ie n c y,  
Lo w I , Ste p-Up DC-DC Conve rte rs  
Q
_____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(Circuit of Figure 2, TA = +25°C, unless otherwise noted.)  
LOADTRANSIENT RESPONSE  
LINETRANSIENT RESPONSE  
200mA  
A
6V  
A
0mA  
4V  
B
B
1/MAX762  
s/div  
5ms/div  
A: I , (0mA to 200mA)  
LOAD  
A: V (4V to 6V)  
IN  
B: V , AC COUPLED, 100mV/div  
OUT  
B: V , AC COUPLED, 20mV/div  
OUT  
V
IN  
= 5V, V = 12V  
I
= 50mA, V = 12V  
OUT  
OUT OUT  
______________________________________________________________P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
Low-battery output is an open-drain output that goes low when LBI is less than 1.5V.  
Connect to V+ through a pull-up resistor. Leave LBO floating if not used.  
LBO  
LBI  
1
2
Input to the internal low-battery comparator. Tie to GND or V+ if not used.  
Feedback input. For fixed-output bootstrapped operation, connect FB to GND. For  
adjustable-output bootstrapped operation, connect a resistor divider between V+, FB and  
GND. For non-bootstrapped operation, there is no fixed-output option. Connect a resistor  
3
4
FB  
divider network between V , FB and GND. See Bootstrapped/Non-Bootstrapped  
OUT  
Modes section.  
Active-high TTL/CMOS logic-level input. In shutdown mode (SHDN = V+), the internal  
switch is turned off and the output voltage equals V+ minus a diode drop (due to the DC  
path from the input to the output). Tie to GND for normal operation.  
SHDN  
1.5V reference output that can source 100µA for external loads. Bypass with 0.1µF  
or larger capacitor.  
5
6
7
8
REF  
GND  
LX  
Ground  
Drain of the internal N-channel FET. LX has an output resistance of 1and a peak current  
limit of 1A.  
V+  
Power-supply input. In bootstrapped mode, V+ is also the output voltage sense input.  
6
_______________________________________________________________________________________  
1 2 V/1 5 V o r Ad ju s t a b le , Hig h -Effic ie n c y,  
Lo w I , Ste p-Up DC-DC Conve rte rs  
Q
1/MAX762  
LBO  
V+  
FB  
DUAL-MODE  
COMPARATOR  
MAX761  
MAX762  
LBI  
N
LBI  
100mV  
ERROR  
COMPARATOR  
REF  
V+  
1.5V  
REFERENCE  
Q
TRIG  
ONE-SHOT  
N
Q
S
R
LOW INPUT  
VOLTAGE  
OSCILLATOR  
UNDER VOLTAGE  
COMPARATOR  
2.5V  
Q
TRIG  
ONE-SHOT  
LX  
CURRENT  
COMPARATOR  
N
0.2V  
0.1V  
CURRENT CONTROL  
CIRCUITRY  
GND  
Figure 1. Simple Block Diagram  
because of their 300kHz switching frequency, (2) the  
current-limited PFM control scheme allows 86% efficien-  
cies over a wide range of load currents, and (3) the max-  
imum supply current is only 110µA.  
________________De t a ile d De s c rip t io n  
Op e ra t in g P rin c ip le  
The MAX761/MAX762 BiCMOS step-up switch-mode  
power supplies provide fixed outputs of 12V and 15V,  
respectively. They have a unique control scheme that  
combines the advantages of pulse-frequency modulation  
(low supply current) and pulse-width modulation (high  
efficiency at high loads). The internal N-channel power  
MOSFET allows 1A peak currents, increasing the output  
current capability over previous pulse-frequency-modu-  
la tion (PFM) d e vic e s . Fig ure 1 s hows the MAX761/  
MAX762 block diagram.  
Bo o t s t ra p p e d /No n -Bo o t s t ra p p e d Mo d e s  
Figures 2 and 3 show the standard application circuits  
for bootstrapped and non-bootstrapped modes. In boot-  
stra p p e d mode , the IC is p owe re d from the outp ut  
(V ). In other words, the current needed to power the  
OUT  
bootstrapped circuit is different from the V+ current the  
chip consumes. The voltage applied to the gate of the  
internal N-channel FET is switched from V  
to ground,  
OUT  
providing more switch-gate drive and increasing the effi-  
ciency of the DC-DC converter compared with non-boot-  
strapped operation.  
The MAX761/MAX762 offer three main improvements  
over prior solutions: (1) the converters operate with tiny  
s urfa c e -mount ind uc tors (le s s tha n 5mm d ia me te r)  
_______________________________________________________________________________________  
7
1 2 V/1 5 V o r Ad ju s t a b le , Hig h -Effic ie n c y,  
Lo w I , Ste p-Up DC-DC Conve rte rs  
Q
L1  
18µH  
D1  
1N5817  
ADJUSTABLE  
OUTPUT (V  
L1  
18µH  
D1  
1N5817  
V
IN  
V
IN  
=
+12V at  
150mA  
)
OUT  
+5V  
C4  
V
OUT  
C1  
33µF  
C4  
33µF  
R2 = R1  
(
-1)  
V
REF  
7
7
LX  
LX  
5
4
2
3
8
REF  
SHDN  
LBI  
V+  
R2  
R1  
C1  
C2  
C3  
0.1µF  
R4  
MAX761  
MAX761  
MAX762  
8
3
1
100k  
V+  
FB  
R4  
R3  
2
5
C2  
0.1µF  
LBI  
100k  
REF  
R3  
C3  
1
4
FB  
LBO  
SHDN  
LBO  
LOW-BATTERY  
OUTPUT  
LOW-BATTERY  
DETECT OUTPUT  
GND  
6
GND  
6
1/MAX762  
LOW-BATTERY  
DETECT  
V
- V  
TRIP REF  
R4 = R3  
(
)
V
REF  
V
= 1.5V NOMINAL  
REF  
C1 = 33µF  
C2 = 0.1µF  
C3 = 0.1µF  
C4 = 33µF  
Figure 2. Bootstrapped Operating Circuit  
In non-bootstrapped mode, the IC is powered from the  
supply voltage, V , and operates with minimum supply  
IN  
Figure 3. Non-Bootstrapped Operating Circuit  
current. Since the voltage applied to the gate of the inter-  
nal FET is reduced, efficiency declines with low input  
voltages. Note: In non-bootstrapped mode, there is no  
fixed-output operation; external resistors must be  
used to set the output voltage. Use 1% external feed-  
back resistors when operating in non-bootstrapped  
mode (Figure 3).  
rent limit and a pair of one-shots that set the maximum  
on-time (8µs) a nd minimum off-time (1.3µs) for the  
switch. Once off, the minimum off-time one-shot holds  
the switch off for 1.3µs. After this minimum time, the  
switch either (1) stays off if the output is in regulation, or  
(2) turns on again if the output is out of regulation.  
Use bootstrapped mode when V is below approxi-  
IN  
mately 4V. For V between 4V and 6V, the trade-off is  
IN  
The MAX761/MAX762 also limit the peak inductor cur-  
rent, allowing the devices to run in continuous-conduc-  
tion mode (CCM) and maintain high efficiency with  
heavy loads (Figure 4a). This current-limiting feature is  
a key component of the control circuitry. Once turned  
on, the switch stays on until either (1) the maximum on-  
time one-shot turns it off (8µs later), or (2) the current  
limit is reached.  
lower supply current in non-bootstrapped mode versus  
hig he r outp ut c urre nt in b oots tra p p e d mod e (s e e  
Typical Operating Characteristics).  
P u ls e -Fre q u e n c y Mo d u la t io n  
(P FM) Co n t ro l S c h e m e  
The MAX761/MAX762 use a proprietary current-limited  
PFM control scheme. This control scheme combines  
the ultra-low supply current of pulse-skipping PFM con-  
verters with the high full-load efficiency characteristic of  
current-mode pulse-width-modulation (PWM) convert-  
ers. It allows the devices to achieve high efficiency over  
a wide range of loads, while the current-sense function  
and high operating frequency allow the use of tiny  
external components.  
To increase light-load efficiency, the current limit for the  
first two pulses is set to half the peak current limit. If  
those pulses bring the output voltage into regulation,  
the voltage comparator holds the MOSFET off, and the  
current limit remains at half the peak current limit. If the  
output voltage is still out of regulation after two pulses,  
the current limit for the next pulse is raised to the full  
current limit of 1A (Figure 4b).  
As with traditional PFM converters, the internal power  
MOSFET is turned on when the voltage comparator  
s e ns e s the outp ut is out of re g ula tion (Fig ure 1).  
However, unlike traditional PFM converters, switching is  
accomplished through the combination of a peak cur-  
In t e rn a l vs . Ex t e rn a l Re s is t o rs  
When external feedback resistors are used, an internal  
undervoltage lockout system prevents start-up until V+  
rises to about 2.7V. When external feedback resistors are  
8
_______________________________________________________________________________________  
1 2 V/1 5 V o r Ad ju s t a b le , Hig h -Effic ie n c y,  
Lo w I , Ste p-Up DC-DC Conve rte rs  
Q
1/MAX762  
1A  
1A  
500mA  
500mA  
0A  
Figure 4a. CCM, Heavy Load Current Waveform (500mA/div)  
Figure 4b. Light/Medium Load Current Waveform (500mA/div)  
used in a bootstrapped circuit (Figure 5), undervoltage  
loc kout p re ve nts s ta rt-up a t low inp ut volta g e s ; b ut  
once started, operation can continue down to a lower  
voltage that depends on the load.  
ringing (the inductor's self-resonant frequency). This  
ringing is normal and poses no operational problems.  
Lo w -Ba t t e ry De t e c t o r  
The MAX761/MAX762 provide a low-battery comparator  
that compares the voltage on LBI to the 1.5V reference  
There is no undervoltage lockout when the internal feed-  
back resistors are used (Figure 2), and special circuitry  
guarantees start-up at 2.0V. The start-up circuitry fixes  
the duty cycle at 50% until V+ is driven to 2.5V, above  
which the normal control system takes over.  
voltage. When the LBI voltage is below V , LBO (an  
REF  
open-drain output) goes low. The low-battery compara-  
tors 20mV of hysteresis adds noise immunity, prevent-  
ing repeated triggering of LBO. Use a resistor-divider  
network between V+, LBI, and GND to set the desired  
S h u t d o w n Mo d e  
The MAX761/MAX762 e nte r s hutd own mod e whe n  
SHDN is high. In this mode, the internal biasing circuitry  
trip voltage V  
(Figure 3). When SHDN is high, LBI is  
TRIP  
ig nore d a nd LBO is hig h imp e d a nc e . The va lue of  
resistor R3 should be no larger than 500kto ensure  
the LBI leakage current does not cause inaccuracies in  
is turned off (including the reference) and V  
equals  
OUT  
V+ minus a diode drop (due to the DC path from the  
input to the output). In shutdown mode, the supply cur-  
rent drops to less than 5µA. SHDN is a TTL/CMOS logic  
level input. Connect SHDN to GND for normal operation.  
LBO is high impedance during shutdown.  
V
TRIP  
.
__________________De s ig n P ro c e d u re  
S e t t in g t h e Ou t p u t Vo lt a g e  
The MAX761/MAX762s output voltage can be adjusted  
from 5V to 16.5V using external resistors R1 and R2  
configured as shown in Figures 3 and 5. For adjustable-  
output operation, select feedback resistor R1 in the  
10kto 250krange. Higher R1 values within this  
range give lowest supply current and best light-load  
efficiency. R2 is given by:  
Mo d e s o f Op e ra t io n  
When delivering high output currents, the MAX761/  
MAX762 operate in CCM. In this mode, current always  
flows in the inductor, and the control circuit adjusts the  
switchs duty cycle on a cycle-by-cycle basis to maintain  
regulation without exceeding the switch-current capabili-  
ty. This provides excellent load-transient response and  
high efficiency.  
V
OUT  
R2 = (R1)(  
- 1)  
V
REF  
In d is c ontinuous -c ond uc tion mod e (DCM), c urre nt  
through the inductor starts at zero, rises to a peak value,  
then ramps down to zero on each cycle. Although effi-  
ciency is still excellent, the switch waveforms contain  
where V  
= 1.5V.  
REF  
Note: Tie FB to GND for fixed-output operation  
(bootstrapped mode only).  
_______________________________________________________________________________________  
9
1 2 V/1 5 V o r Ad ju s t a b le , Hig h -Effic ie n c y,  
Lo w I , Ste p-Up DC-DC Conve rte rs  
Q
Inductors with a ferrite core or equivalent are recom-  
D1  
1N5817  
L1  
18µH  
mended. The inductors incremental saturation-current  
rating should be greater than the 1A peak current limit. It  
is generally acceptable to bias the inductor into satura-  
tion by approximately 20% (the point where the induc-  
tance is 20% below the nominal value). For highest effi-  
ciency, use a coil with low DC resistance, preferably  
under 100m. To minimize radiated noise, use a toroid,  
a pot core, or a shielded coil.  
V
V
IN  
OUT  
C1  
C4  
C2  
7
LX  
8
MAX761  
MAX762  
5
V+  
REF  
Table 1 lists inductor types and suppliers for various  
applications. The listed surface-mount inductors’ efficien-  
cies are nearly equivalent to those of the larger through-  
hole inductors.  
C3  
2
4
R2  
LBI  
3
FB  
SHDN  
Dio d e S e le c t io n  
The MAX761/MAX762s hig h s witc hing fre q ue nc y  
demands a high-speed rectifier. Use a Schottky diode  
with a 1A average current rating, such as a 1N5817. For  
high-temperature applications, use a high-speed silicon  
diode, such as the MUR105 or the EC11FS1. These  
d iod e s ha ve lowe r hig h-te mp e ra ture le a ka g e tha n  
Schottky diodes (Table 1).  
R1  
GND  
6
7
C1 = 33µF  
C2 = 0.1µF  
C3 = 0.1µF  
C4 = 33µF  
V
V
OUT  
R2 = R1  
(
-1)  
V
= 1.5V NOMINAL  
REF  
REF  
Figure 5. Bootstrapped Operation with Adjustable Output  
S e le c t in g t h e In d u c t o r (L)  
In both CCM and DCM, practical inductor values range  
from 10µH to 50µH. If the inductor value is too low, the  
current in the coil will ramp up to a high level before the  
current-limit comparator can turn off the switch. The mini-  
Ca p a c it o r S e le c t io n  
Output Filter Capacitor  
The primary criterion for selecting the output filter capac-  
itor (C4) is low effective series resistance (ESR). The  
product of the inductor current variation and the output  
filter capacitors ESR determines the amplitude of the  
high-frequency ripple seen on the output voltage. A  
33µF, 16V Sanyo OS-CON capacitor with 100mESR  
typically provides 100mV ripple when stepping up from  
5V to 12V at 150mA.  
mum on-time for the switch (t ) is approximately  
ON(min)  
2.5µs, so select an inductance that allows the current to  
ramp up to I in no less than 2.5µs. Choosing a value  
/
LIM 2  
of I  
/ allows the half-size pulses to occur, giving high-  
LIM 2  
er light-load efficiency and minimizing ripple. Hence, cal-  
culate the minimum inductance value as:  
Because the output filter capacitors ESR affects efficien-  
cy, use low-ESR capacitors for best performance. The  
smallest low-ESR SMT tantalum capacitors currently  
available are the Sprague 595D series. Sanyo OS-CON  
organic semiconductor through-hole capacitors and  
Nichicon PL series also exhibit very low ESR. Table 1  
lists some suppliers of low-ESR capacitors.  
(V  
)(t  
)
IN(max) ON(min)  
L
I
LIM/2  
OR  
L
(V  
IN(max)  
)(5)  
where V  
is in volts and L is in microhenries.  
IN(max)  
The coil’s inductance need not satisfy this criterion  
exactly, as the circuit can tolerate a wide range of val-  
ues. Larger inductance values tend to produce physical-  
ly larger coils and increase the start-up time, but are oth-  
erwise acceptable. Smaller inductance values allow the  
coil current to ramp up to higher levels before the switch  
can turn off, producing higher ripple at light loads. In  
general, an 18µH inductor is sufficient for most applica-  
Input Bypass Capacitors  
The input bypass capacitor, C1, reduces peak currents  
drawn from the voltage source, and also reduces noise  
at the voltage source caused by the MAX761/MAX762s  
switching action. The input voltage source impedance  
determines the size of the capacitor required at the V+  
input. As with the output filter capacitor, a low-ESR  
capacitor is recommended. For output currents up to  
250mA, 33µF (C1) is adequate, although smaller bypass  
capacitors may also be acceptable. Bypass the IC sepa-  
rately with a 0.1µF ceramic capacitor, C2, placed close  
to the V+ and GND pins.  
tions (V 5V). An 18µH inductor is appropriate for  
IN  
input voltages up to 3.6V, as calculated above. However,  
the same 18µH coil can be used with input voltages up  
to 5V with only small increases in peak current, as shown  
in Figures 4a and 4b.  
10 ______________________________________________________________________________________  
1 2 V/1 5 V o r Ad ju s t a b le , Hig h -Effic ie n c y,  
Lo w I , Ste p-Up DC-DC Conve rte rs  
Q
1/MAX762  
Reference Capacitor  
Bypass REF with a 0.1µF capacitor. REF can source up  
to 100µA.  
Connect a pull-up resistor (e.g., 100k) between LBO  
and V . Tie LBI to GND or V+ and leave LBO floating  
if the low-battery detector is not used.  
OUT  
___________Ap p lic a t io n s In fo rm a t io n  
S e t t in g t h e Lo w -Ba t t e ry De t e c t o r Vo lt a g e  
To set the low-battery detectors falling trip voltage  
La yo u t Co n s id e ra t io n s  
Proper PC board layout is essential because of high cur-  
rent levels and fast switching waveforms that radiate  
noise. Minimize ground noise by connecting GND, the  
input bypass-capacitor ground lead, and the output filter-  
capacitor ground lead to a single point (star ground con-  
figuration). Also minimize lead lengths to reduce stray  
capacitance, trace resistance, and radiated noise. The  
traces connected to FB and LX, in particular, must be  
short. Place bypass capacitor C2 as close as possible to  
V+ and GND.  
(V  
), select R3 between 10kand 500k(Figures 2  
TRIP  
and 3), and calculate R4 as follows:  
(V  
- V  
)
TRIP  
REF  
R4 = R3 [  
]
V
REF  
where VREF = 1.5V.  
The rising trip voltage is higher because of the compara-  
tors hysteresis of approximately 20mV, and can be cal-  
culated by:  
V
TRIP  
(rising) = (V  
+ 20mV)(1 + R4/R3).  
REF  
Connect a high-value resistor (larger than R3 + R4)  
between LBI and LBO if additional hysteresis is required.  
Table 1. Component Suppliers  
CAPACITORS  
PRODUCTION METHOD  
INDUCTORS  
DIODES  
Sumida  
CD54-180 (22µH)  
Matsuo  
267 series  
Nihon  
EC10 series  
Surface Mount  
Coiltronics  
CTX 100-series  
Sanyo  
Sumida  
OS-CON series  
Low-ESR organic  
semiconductor  
Miniature Through-Hole  
Low-Cost Through-Hole  
RCH855-180M  
Motorola  
1N5817,  
MUR105  
Nichicon  
PL series  
Low-ESR electrolytics  
Renco  
RL 1284-18  
United Chemi-Con  
LXF series  
Coiltronics  
Matsuo  
Matsuo  
Nichicon  
Nihon  
Renco  
Sanyo  
Sanyo  
Sumida  
Sumida  
(USA)  
(407) 241-7876  
(714) 969-2491  
81-6-337-6450  
(708) 843-7500  
(805) 867-2555  
(516) 586-5566  
(619) 661-6835  
(0720) 70-1005  
(708) 956-0666  
81-3-607-5111  
(714) 255-9500  
FAX (407) 241-9339  
FAX (714) 960-6492  
FAX 81-6-337-6456  
FAX (708) 843-2798  
FAX (805) 867-2556  
FAX (516) 586-5562  
FAX (619) 661-1055  
FAX (0720) 70-1174  
(USA)  
(Japan)  
(USA)  
(USA)  
(USA)  
(USA)  
(Japan)  
(USA)  
(Japan)  
FAX 81-3-607-5144  
FAX (714) 255-9400  
United Chem-Con (USA)  
______________________________________________________________________________________ 11  
1 2 V/1 5 V o r Ad ju s t a b le , Hig h -Effic ie n c y,  
Lo w I , Ste p-Up DC-DC Conve rte rs  
Q
___________________Ch ip To p o g ra p h y  
LBO  
V+  
LX  
LBI  
0. 142"  
(3. 607mm)  
FB  
1/MAX762  
GND  
REF  
SHDN  
0. 080"  
(2. 030mm)  
TRANSISTOR COUNT: 492;  
SUBSTRATE CONNECTED TO V+.  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 __________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 (4 0 8 ) 7 3 7 -7 6 0 0  
© 1993 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX762ESA+T

Switching Regulator, Current-mode, 1.5A, 300kHz Switching Freq-Max, BICMOS, PDSO8, 0.150 INCH, PLASTIC, SOIC-8
MAXIM

MAX762MJA

12V/15V or Adjustable, High-Efficiency, Low IQ, Step-Up DC-DC Converters
MAXIM

MAX763A

CMOS.10-Bit A/D Converter with Track and Hold[MAX177/MAX177C/D/MAX177CNG/MAX177CWG/MAX177CWG-T/MAX177ENG/MAX177EWG/MAX177EWG-T/MAX177MRG]
MAXIM

MAX763AC/D

3.3V, Step-Down, Current-Mode PWM DC-DC Converters
MAXIM

MAX763ACPA

3.3V, Step-Down, Current-Mode PWM DC-DC Converters
MAXIM

MAX763ACPA

2A SWITCHING REGULATOR, 212.5kHz SWITCHING FREQ-MAX, PDIP8, PLASTIC, DIP-8
ROCHESTER

MAX763ACSA

3.3V, Step-Down, Current-Mode PWM DC-DC Converters
MAXIM

MAX763ACSA+

Switching Regulator, Current-mode, 2A, 200kHz Switching Freq-Max, CMOS, PDSO8, 0.150 INCH, PLASTIC, SOIC-8
MAXIM

MAX763ACSA+T

Switching Regulator, Current-mode, 2A, 200kHz Switching Freq-Max, CMOS, PDSO8, 0.150 INCH, PLASTIC, SOIC-8
MAXIM

MAX763ACSA-T

Switching Regulator, Current-mode, 2A, 212.5kHz Switching Freq-Max, CMOS, PDSO8, SOP-8
MAXIM

MAX763AEPA

3.3V, Step-Down, Current-Mode PWM DC-DC Converters
MAXIM

MAX763AEPA

2A SWITCHING REGULATOR, 212.5kHz SWITCHING FREQ-MAX, PDIP8, PLASTIC, DIP-8
ROCHESTER