MAX77504AAFC+T [MAXIM]

14V Input, 3A High-Efficiency Buck Converter in WLP or QFN;
MAX77504AAFC+T
型号: MAX77504AAFC+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

14V Input, 3A High-Efficiency Buck Converter in WLP or QFN

文件: 总37页 (文件大小:1872K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
Click here to ask about the production status of specific part numbers.  
MAX77504  
14V Input, 3A High-Efficiency  
Buck Converter in WLP or QFN  
General Description  
Benefits and Features  
The MAX77504 is a synchronous 3A step-down DC-DC  
converter optimized for portable 2-cell and 3-cell battery-  
operated applications. The converter operates on an input  
supply between 2.6V and 14V. Output voltage is ad-  
justable between 0.6V and 6V with external feedback re-  
● 3A Single-Channel Buck Regulator  
● 2.6V to 14V Input Voltage  
● 0.6V to 6V Output Voltage Range  
● 0.5MHz to 1.5MHz Fixed-Frequency Switching  
Options  
sistors. The device features a low-I SKIP mode that al-  
● High Efficiency, Low I Extends Battery Life  
Q
Q
lows excellent efficiency at light loads. The MAX77504  
can be sychronized by driving the FPWM pin with an ex-  
ternal clock.  
• 94% Peak Efficiency at 7.4V , 3.3V  
IN  
(2520  
OUT  
Inductor)  
• 10μA I  
(12V , 1.8V  
)
OUT  
SUP  
IN  
Dedicated enable, power-OK, and FPWM pins allow sim-  
ple hardware control. The SEL input easily configures  
switching frequency, gain, and output active discharge op-  
tion. Built-in undervoltage lockout (UVLO), output active  
discharge, cycle-by-cycle inductor current limit, thermal  
shutdown, and short-circuit protection ensure safe opera-  
tion under abnormal operating conditions.  
• OUT Powers V Automatically (V  
> 1.7V) for  
OUT  
L
Low I  
Q
● Enable Pin (EN) for Direct Hardware Control  
● Extenal Clock Synchronization Is Available Through  
the FPWM/SYNC Pin  
● Power-OK Output (POK) Monitors V  
Ordering Information)  
Quality (See  
OUT  
The MAX77504 is offered in a small 1.7mm x 1.7mm,  
16-bump, 0.4mm pitch wafer-level package (WLP) or a  
2.5mm x 2.5mm, 12-lead, 0.5mm pitch flip-chip QFN  
(FC2QFN).  
● Protection Features  
• Cycle-by-Cycle Inductor Current Limit  
• Short-Circuit Hiccup Mode, UVLO, and Thermal  
Shutdown Protection  
• Soft-Start  
Applications  
● FC2QFN or WLP Package Option  
• 2.5mm x 2.5mm (0.6mm max. height) 12-Lead  
FC2QFN, 0.5mm Pitch  
● 1- to 3-Cell Li+/Li-ion Battery-Powered Devices  
● Professional Radio, Handheld Computers  
● Mirrorless Cameras, DSLR, and Notebook Computers  
● Portable Scanners, POS Terminals, Printers  
● Space-Constrained Portable Electronics  
• 1.7mm x 1.7mm (0.7mm max. height) 16-Bump  
WLP, 0.4mm Pitch, 4 x 4 Array  
● All WLP Package Bumps (Except POK) Routeable on  
a Non-HDI PCB  
Ordering Information appears at end of data sheet.  
Simplified Application Circuit  
EFFICIENCY vs. LOAD  
7.4V SUPPLY  
100  
MAX77504  
2.6V TO 14V  
DC INPUT  
BST  
SUP  
0.22μF  
10μF  
L
90  
LX  
V
OUT  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.6V TO 6V  
3A MAX  
OUT  
C
C
OUT  
FF  
ENABLE  
EN  
R
R
TOP  
BOT  
VOUT = 5.0V  
VOUT = 3.3V  
FPWM/SYNC  
POWER-OK  
FPWM  
POK  
SEL  
FB  
VOUT = 1.8V  
R
SEL  
V
L
2.2μF  
AGND  
PGND  
R
SEL  
CONTROLS:  
● SWITCHING FREQ.  
● ACTIVE DISCHARGE  
● GAIN  
SKIP MODE  
1
0.001  
0.01  
0.1  
14V, 3A HIGH-EFFICIENCY BUCK CONVERTER  
OPTIMIZED FOR 2 OR 3 CELL BATTERY APPLICATIONS  
LOAD CURRENT (A)  
19-100678; Rev 2; 7/20  
 
 
 
MAX77504  
14V Input, 3A High-Efficiency  
Buck Converter in WLP or QFN  
TABLE OF CONTENTS  
General Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Benefits and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Simplified Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
16 WLP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
12 FC2QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Bump/Pin Configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
16 WLP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
12 FC2QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Bump/Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Buck Regulator Control Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Mode Control (FPWM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
SKIP Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
FPWM Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
External Clock Synchronization (SYNC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Buck Enable Control (EN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
V Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
L
Soft-Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Power-OK (POK) Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Output Voltage Connection (OUT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Configuration Selection Resistor (SEL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Active Discharge Resistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Short-Circuit Protection and Hiccup Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Thermal Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Buck Enable Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Always-On. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Hardware Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
FPWM/SYNC Clock Pulse Width Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Design Procedure (Choosing R  
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
SEL  
Switching Frequency Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Example A (9V to 3.3V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
IN  
OUT  
Example B (12V to 1.8V  
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
OUT  
IN  
www.maximintegrated.com  
Maxim Integrated | 2  
MAX77504  
14V Input, 3A High-Efficiency  
Buck Converter in WLP or QFN  
TABLE OF CONTENTS (CONTINUED)  
Gain Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
SUP Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Output Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Inductor Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Setting the Output Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
PCB Layout Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Typical Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Typical Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
0.6V Output, 0.75MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
0.82V Output, 0.75MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
1.0V Output, 0.75MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
1.2V Output, 0.75MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
1.8V Output, 1MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
2.5V Output, 1.5MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
3.3V Output, 1.5MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
5V Output, 1.5MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
6V Output, 1.5MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
www.maximintegrated.com  
Maxim Integrated | 3  
MAX77504  
14V Input, 3A High-Efficiency  
Buck Converter in WLP or QFN  
LIST OF FIGURES  
Figure 1. Buck Control Scheme Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 2. External Clock Synchronization Behavioral State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 3. Buck Enable Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 4. External Feedback Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 5. PCB Top-Metal and Component Layout Example (WLP Version). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 6. PCB Top-Metal and Component Layout Example (FC2QFN Version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
www.maximintegrated.com  
Maxim Integrated | 4  
MAX77504  
14V Input, 3A High-Efficiency  
Buck Converter in WLP or QFN  
LIST OF TABLES  
Table 1. Buck Switching Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Table 2. Resistor-Set Configuration Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 3. Configuration Selection Resistor (R  
) Lookup Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
SEL  
Table 4. Inductor Value vs. Output Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 5. Common Feedback Resistor Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Table 6. Typical Application Circuit Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
www.maximintegrated.com  
Maxim Integrated | 5  
MAX77504  
14V Input, 3A High-Efficiency  
Buck Converter in WLP or QFN  
Absolute Maximum Ratings  
SUP to PGND......................................................... -0.3V to +16V  
LX to PGND (DC) ................................................... -0.3V to +16V  
AGND to PGND .....................................................-0.3V to +0.3V  
OUT Short-Circuit Duration.........................................Continuous  
EN to PGND ............................................... -0.3V to V  
+ 0.3V  
LX Continuous Current (Note 1) .................................... 3.2A  
SUP  
RMS  
BST to LX .............................................................. -0.3V to +2.2V  
Continuous Power Dissipation (Multilayer Board, T = +70°C)  
A
V to PGND........................................................... -0.3V to +2.2V  
16 WLP (derate 17.26mW/°C above +70°C)...............1381mW  
12 FC2QFN (derate 14.23mW/°C above +70°C)........1139mW  
Operating Junction Temperature Range.............-40°C to +125°C  
Junction Temperature.......................................................+150°C  
Soldering Temperature (reflow) ........................................+260°C  
L
SEL to AGND .................................................. -0.3V to V + 0.3V  
L
POK, FPWM/SYNC to PGND.. -0.3V to V  
(V  
+ 0.3V, +6V)  
MIN SUP  
OUT to AGND........................................................... -0.3V to +8V  
FB to AGND.............................................................. -0.3V to +6V  
Note 1: LX has internal clamp diodes to PGND and SUP. Applications that forward bias these diodes should not exceed the ICs  
package power dissipation limits.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the  
device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability.  
www.maximintegrated.com  
Maxim Integrated | 6  
MAX77504  
14V Input, 3A High-Efficiency  
Buck Converter in WLP or QFN  
Package Information  
16 WLP  
Package Code  
W161L1+1  
21-100334  
Outline Number  
Land Pattern Number  
Thermal Resistance, Four-Layer Board:  
Refer to Application Note 1891  
Junction to Ambient (θ  
)
57.93°C/W  
JA  
COMMON DIMENSIONS  
Pin 1  
Indicator  
E
see Note 7  
Marking  
A
0.05  
0.03  
0.64  
0.19  
1
A1  
A2  
A
0.45 REF  
AAAA  
D
A3  
b
BASIC  
0.04  
0.27  
0.03  
0.025  
0.025  
BASIC  
BASIC  
D
1.688  
1.688  
TOP VIEW  
SIDEVIEW  
E
D1  
E1  
1.20  
1.20  
A3  
e
0.40 BASIC  
0.20 BASIC  
0.20 BASIC  
A1  
S
SD  
SE  
A2  
A
0.05  
S
DEPOPULATED BUMPS:  
NONE  
FRONTVIEW  
E1  
SE  
NOTES:  
e
1. Terminal pitch isdefined by terminal center to center value.  
2. Outer dimension isdefined by center linesbetween scribe lines.  
3. All dimensionsin millimeter.  
4. Marking shown isfor package orientation reference only.  
5. Tolerance is± 0.02 unlessspecified otherwise.  
6. All dimensionsapply to PbFree (+) package codesonly.  
7. Front - side finish can be either Black or Clear.  
SD  
D
C
B
A
B
D1  
1
2 3 4  
b
M
S
AB  
0.05  
maxim  
A
TM  
integrated  
TITLE  
PACKAGEOUTLINE16 BUMPS  
BOTTOM VIEW  
WLP PKG. 0.4 mm PITCH,  
W161L1+1  
REV.  
APPROVAL  
DOCUMENTCONTROL NO.  
1
- DRAWING NOTTO SCALE-  
21-100334  
A
1
www.maximintegrated.com  
Maxim Integrated | 7  
MAX77504  
14V Input, 3A High-Efficiency  
Buck Converter in WLP or QFN  
12 FC2QFN  
Package Code  
F122A2F+2  
21-100406  
90-100140  
Outline Number  
Land Pattern Number  
Thermal Resistance, Four-Layer Board:  
Junction to Ambient (θ  
)
70.23°C/W  
JA  
1
·
1
maxim  
integratedTM  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”, “#”, or “-” in the package code indicates  
RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.  
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal  
considerations, refer to www.maximintegrated.com/thermal-tutorial.  
www.maximintegrated.com  
Maxim Integrated | 8  
MAX77504  
14V Input, 3A High-Efficiency  
Buck Converter in WLP or QFN  
Electrical Characteristics  
(V  
= V  
= 12V, V  
= 0V (SKIP mode), V = 1.8V, T = T = -40°C to +125°C, typical values are at T = T = +25°C, unless  
SUP  
EN  
FPWM  
L
A
J
A
J
otherwise noted.) (Note 2)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
STEP-DOWN CONVERTER  
SUP Valid Voltage  
Range  
V
2.6  
2.4  
14  
V
V
SUP  
SUP Undervoltage  
Lockout  
V
V
rising  
SUP  
2.5  
300  
1.2  
2.6  
SUP-UVLO  
SUP Undervoltage  
Lockout Hysteresis  
mV  
μA  
V
EN  
= 0V (device disabled), T = -40°C to  
J
SUP Shutdown Current  
I
3
SUP-SHDN  
+85°C  
V
OUT  
= 1.2V,  
R
R
= 49.9kΩ,  
= 49.9kΩ  
33  
12  
14  
TOP  
BOT  
V
OUT  
= 1.8V,  
= 46.4kΩ,  
= 23.2kΩ  
I
= 0mA, SKIP  
LOAD  
R
TOP  
R
BOT  
μA  
mode  
Supply Current  
I
SUP  
V
OUT  
= 3.3V,  
= 459kΩ,  
= 102kΩ  
R
TOP  
R
BOT  
I
= 0mA, FPWM mode, no switching  
= 2.3V to 14V  
1
1.5  
mA  
V
LOAD  
V Regulator Voltage  
L
V
L
V
1.8  
SUP  
OUT  
V
rising, 100mV hysteresis, POK = 1,  
V Power Input Switch-  
L
Over Threshold  
V
V input switches from SUP to OUT  
above this threshold  
1.6  
1.7  
0.6  
1.75  
V
SWO  
L
V
SUP  
= 12V, I  
LOAD  
= 250mA, T =  
0.594  
0.606  
J
25°C  
FB Voltage Accuracy  
V
FB  
FPWM mode  
V
V
SUP  
= 2.6V to  
14V, I  
to 3A, T = -40°C to  
= 0mA  
LOAD  
0.588  
0.6  
0.612  
J
+125°C  
FB Input Current  
I
V
= 0.6V  
0.02  
1.25  
μA  
ms  
FB  
FB  
Measured from EN  
rising edge to POK  
rising edge  
SFT_STRT = 0  
(1ms ramp)  
Total Startup Time  
t
1.5  
TSU  
High-Side DMOS On-  
Resistance  
R
V = 1.8V, I = 180mA, V  
= 4.5V  
= 4.5V  
50  
27  
4
100  
54  
mΩ  
mΩ  
A
ON-HS  
L
LX  
SUP  
SUP  
Low-Side DMOS On-  
Resistance  
R
V = 1.8V, I = 180mA, V  
L LX  
ON-LS  
High-Side DMOS Peak  
Current Limit  
I
3.6  
4.4  
LX-PLIM  
Output overloaded (V  
target), threshold below where on-times  
are allowed to start  
< 67% of  
OUT  
Low-Side DMOS Valley  
Current Threshold  
I
2
A
LX-VALLEY  
www.maximintegrated.com  
Maxim Integrated | 9  
 
MAX77504  
14V Input, 3A High-Efficiency  
Buck Converter in WLP or QFN  
Electrical Characteristics (continued)  
(V  
= V  
= 12V, V  
= 0V (SKIP mode), V = 1.8V, T = T = -40°C to +125°C, typical values are at T = T = +25°C, unless  
SUP  
EN  
FPWM  
L
A
J
A
J
otherwise noted.) (Note 2)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
High-Side DMOS  
Minimum Current  
Threshold  
Inductor current ramps to at least  
in SKIP mode  
I
500  
mA  
LX-PK-MIN  
I
LX-PK-MIN  
Low-Side DMOS Zero-  
Crossing Threshold  
I
SKIP mode  
40  
mA  
A
ZX  
Low-Side DMOS  
Negative Current Limit  
Threshold  
I
mFPWM Mode  
-1.5  
NEG  
Dropout condition (V  
< V  
target);  
OUT  
SUP  
Maximum Duty Cycle  
D
f
on-times extend for 16 clocks before LX  
drives low for 200ns to refresh C  
99  
%
MAX  
BST  
FSW[1:0] = 0b00  
FSW[1:0] = 0b01  
FSW[1:0] = 0b10  
FSW[1:0] = 0b11  
0.475  
0.7125  
0.95  
0.5  
0.75  
1
0.525  
0.7875  
1.05  
FPWM mode, T =  
J
-40°C to +85°C  
Switching Frequency  
MHz  
SW  
1.425  
1.5  
1.575  
Minimum Switching  
Frequency  
F
SKIP mode  
1.2  
1.43  
66.7  
1.7  
kHz  
%
SW-MIN  
Soft-Short Output  
Voltage Monitor  
Threshold  
Expressed as a percentage of target  
V
OUT-OVRLD  
V
OUT  
Switching stopped because output  
voltage has fallen to less than 67% of  
target and 15 LX cycles ended by current  
limit; time before converter attempts to  
soft-start again  
Output-Overloaded  
Retry Timer  
t
15  
100  
92  
ms  
Ω
RETRY  
Active Discharge  
Resistor  
Between OUT and PGND, buck output  
disabled, ADEN = 1  
R
AD  
POWER-OK OUTPUT (POK)  
V
of V  
rising, expressed as a percentage  
OUT-REG  
OUT  
V
90  
88  
94  
92  
POK_RISE  
POK Threshold  
%
V
OUT  
falling, expressed as a percentage  
V
90  
12  
POK_FALL  
of V  
OUT-REG  
POK Debounce Timer  
POK Leakage Current  
t
V
OUT  
rising or falling  
μs  
μA  
V
POK-DB  
POK = high (high impedance), V  
=
POK  
I
1
POK  
5V, T = 25°C  
A
POK Low Voltage  
V
POK = low, sinking 1mA  
0.4  
POK  
ENABLE INPUT (EN)  
EN Logic-High  
Threshold  
V
1.1  
V
EN_HI  
EN Logic-Low Threshold  
EN Leakage Current  
V
0.4  
1
V
EN_LO  
I
V
EN  
= V = 14V  
SUP  
0.1  
μA  
EN  
www.maximintegrated.com  
Maxim Integrated | 10  
MAX77504  
14V Input, 3A High-Efficiency  
Buck Converter in WLP or QFN  
Electrical Characteristics (continued)  
(V  
= V  
= 12V, V  
= 0V (SKIP mode), V = 1.8V, T = T = -40°C to +125°C, typical values are at T = T = +25°C, unless  
SUP  
EN  
FPWM  
L
A
J
A
J
otherwise noted.) (Note 2)  
PARAMETER  
FPWM/SYNC  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
FPWM/SYNC Logic-  
High Threshold  
V
1.1  
V
V
FPWM_HI  
FPWM/SYNC Logic-Low  
Threshold  
V
0.4  
FPWM_LO  
FSW[1:0] = 0b00  
(0.5MHz)  
0.394  
0.526  
0.789  
1.05  
0.690  
0.920  
1.38  
FSW[1:0] = 0b01  
(0.75MHz)  
Valid Synchronization  
Range (Note 3)  
T = -40ºC to  
J
+85ºC  
F
MHz  
SYNC-VALID  
FSW[1:0] = 0b10  
(1.0MHz)  
FSW[1:0] = 0b11  
(1.5MHz)  
1.84  
THERMAL PROTECTION  
Thermal Shutdown  
T
Junction temperature rising  
+165  
+15  
°C  
°C  
SHDN  
Thermal Shutdown  
Hysteresis  
Note 2: The MAX77504 is tested under pulsed load conditions such that T ≈ T . Min/Max limits are 100% production tested at T  
A
A
J
= +25°C. Limits over the operating temperature range are guaranteed by design and characterization using statistical quality  
control methods. Note that the maximum ambient temperature consistent with this specification is determined by specific  
operating conditions, board layout, rated package thermal impedance, and other environmental factors.  
Note 3: Synchronization specifications are only valid for product variants that include the feature. See the Ordering Information table  
to find the availability of synchronization for each orderable part number.  
www.maximintegrated.com  
Maxim Integrated | 11  
MAX77504  
14V Input, 3A High-Efficiency  
Buck Converter in WLP or QFN  
Typical Operating Characteristics  
(V  
= 7.4V, V  
= 3.3V, FPWM = 0, I  
= 4A, T = +25°C, unless otherwise noted. See the Typical Application Circuits  
SUP  
OUT  
LX-PLIM  
A
section for each V  
configuration.)  
OUT  
www.maximintegrated.com  
Maxim Integrated | 12  
 
MAX77504  
14V Input, 3A High-Efficiency  
Buck Converter in WLP or QFN  
Typical Operating Characteristics (continued)  
(V  
= 7.4V, V  
= 3.3V, FPWM = 0, I  
= 4A, T = +25°C, unless otherwise noted. See the Typical Application Circuits  
SUP  
OUT  
LX-PLIM  
A
section for each V  
configuration.)  
OUT  
www.maximintegrated.com  
Maxim Integrated | 13  
MAX77504  
14V Input, 3A High-Efficiency  
Buck Converter in WLP or QFN  
Typical Operating Characteristics (continued)  
(V  
= 7.4V, V  
= 3.3V, FPWM = 0, I  
= 4A, T = +25°C, unless otherwise noted. See the Typical Application Circuits  
SUP  
OUT  
LX-PLIM  
A
section for each V  
configuration.)  
OUT  
www.maximintegrated.com  
Maxim Integrated | 14  
MAX77504  
14V Input, 3A High-Efficiency  
Buck Converter in WLP or QFN  
Typical Operating Characteristics (continued)  
(V  
= 7.4V, V  
= 3.3V, FPWM = 0, I  
= 4A, T = +25°C, unless otherwise noted. See the Typical Application Circuits  
SUP  
OUT  
LX-PLIM  
A
section for each V  
configuration.)  
OUT  
www.maximintegrated.com  
Maxim Integrated | 15  
MAX77504  
14V Input, 3A High-Efficiency  
Buck Converter in WLP or QFN  
Typical Operating Characteristics (continued)  
(V  
= 7.4V, V  
= 3.3V, FPWM = 0, I  
= 4A, T = +25°C, unless otherwise noted. See the Typical Application Circuits  
SUP  
OUT  
LX-PLIM  
A
section for each V  
configuration.)  
OUT  
www.maximintegrated.com  
Maxim Integrated | 16  
MAX77504  
14V Input, 3A High-Efficiency  
Buck Converter in WLP or QFN  
Bump/Pin Configurations  
16 WLP  
TOP VIEW  
(BUMP SIDE DOWN)  
MAX77504  
1
2
3
4
+
A
BST  
SUP  
SUP  
POK  
LX  
PGND  
PGND  
OUT  
FB  
B
EN  
LX  
C
FPWM/SYNC  
AGND  
AGND  
D
SEL  
V
L
16 WLP  
(1.7mm x 1.7mm x 0.7mm, 0.4mm BUMP PITCH)  
12 FC2QFN  
TOP VIEW  
SUP  
12  
LX  
11  
PGND  
10  
1
2
3
4
BST  
EN  
MAX77504  
FPWM/  
SYNC  
9
8
OUT  
FB  
POK  
5
6
7
SEL  
AGND  
V
L
12 FC2QFN  
(2.5mm x 2.5mm x 0.6mm, 0.5mm LEAD PITCH)  
www.maximintegrated.com  
Maxim Integrated | 17  
MAX77504  
14V Input, 3A High-Efficiency  
Buck Converter in WLP or QFN  
Bump/Pin Descriptions  
PIN  
NAME  
FUNCTION  
16 WLP  
12 FC2QFN  
High-Side FET Driver Supply. Connect a 0.22μF ceramic capacitor between BST  
and LX.  
A1  
1
BST  
SUP  
Buck Supply Input. Bypass to PGND with a 10μF ceramic capacitor as close to the  
IC as possible.  
A2, B2  
12  
A3, B3  
A4, B4  
C3, D3  
11  
10  
7
LX  
Switching Node. LX is high-impedance when the converter is disabled.  
Power Ground. Connect to AGND on the PCB.  
PGND  
AGND  
Quiet Ground. Connect to PGND on the PCB.  
Open-Drain, Power-OK Output. An external pullup resistor (10kΩ to 100kΩ) is  
required to use this pin. Leave this pin unconnected if unused.  
C2  
D2  
4
6
POK  
Low-Voltage Internal IC Supply Output. Powered from SUP or OUT depending on  
V
L
V
OUT  
. Bypass to AGND with a 2.2μF ceramic capacitor. Do not load this pin  
externally.  
Feedback Sense Input. Connect a resistor voltage divider between the converter's  
output and AGND to set the output voltage. Do not route FB close to sources of  
EMI or noise.  
D4  
B1  
8
2
FB  
EN  
Enable Input. Drive EN above V  
to enable the buck output. Drive EN to  
EN_HI  
PGND to disable. EN is compatible with the SUP voltage domain.  
Buck Mode Control and External Clock Synchronization Input. Drive FPWM/SYNC  
above V  
to enable forced-PWM mode. Connect to ground to enable SKIP  
FPWM_HI  
mode. See the Mode Control (FPWM) section for more information.  
Provide an external clock signal with a frequency inside the valid range (f  
SYNC-  
C1  
3
FPWM/SYNC  
) to enable externally synchronized forced-PWM mode while the buck is  
VALID  
enabled. See the External Clock Synchronization (SYNC) section for more  
information.  
Not all MAX77504 versions include the synchronization feature. Consult the  
Ordering Information.  
Output Voltage Sense Input. Connect to the buck output capacitor. Do not connect  
anywhere else.  
C4  
D1  
9
5
OUT  
SEL  
Configuration Selection Input. Connect a ±1% selection resistor (R  
) between  
SEL  
SEL and AGND to configure MAX77504 options. See the Configuration Selection  
Resistor (SEL) section for more information.  
www.maximintegrated.com  
Maxim Integrated | 18  
MAX77504  
14V Input, 3A High-Efficiency  
Buck Converter in WLP or QFN  
Detailed Description  
The MAX77504 is a small, high-efficiency 3A step-down (buck) DC-DC converter. The step-down converter uses  
synchronous rectification and internal current-mode compensation. The buck operates on a supply voltage between  
2.6V and 14V. Output voltage is set by external feedback resistors between 0.6V and 6V. The buck utilizes an ultra-low  
quiescent current (I ) SKIP mode (10μA typ for 1.8V  
Q
) that maintains very high efficiency at light loads.  
OUT  
Buck Regulator Control Scheme  
The step-down converter uses a PWM peak current-mode control scheme with a high-gain architecture. Peak current-  
mode control provides precise control of the inductor current on a cycle-by-cycle basis and inherent compensation for  
supply voltage variation.  
On-times (MOSFET Q1 on) are started by a fixed-frequency clock and terminated by a PWM comparator. See Figure  
1. When an on-time ends (starting an off-time) current conducts through the low-side MOSFET (Q2 on). Shoot-through  
current from SUP to PGND is avoided by introducing a brief period of dead time between switching events when neither  
MOSFET is on. The inductor current is conducted through Q2's intrinsic body diode during dead time.  
The PWM comparator regulates V  
by controlling duty cycle. The negative input of the PWM comparator is a voltage  
OUT  
proportional to the actual output voltage error. The positive input is the sum of the current-sense signal through MOSFET  
Q1 and a slope-compensation ramp. The PWM comparator ends an on-time when the error voltage becomes less than  
the slope-compensated current-sense signal. On-times begin again due to a fixed-frequency clock pulse. The controller's  
compensation components and current-sense circuits are integrated. This reduces the risk of routing sensitive control  
signals on the PCB.  
A high-gain architecture is present in the controller design. The feedback uses an integrator to eliminate steady-state  
output voltage error while the converter is conducting heavy loads. See the Typical Operating Characteristics sections  
for information about the converter's typical voltage regulation behavior versus load.  
SUP  
V
L
SWITCH-OVER CONTROL  
V LDO  
L
EN  
AGND  
I
V
LX-PLIM  
ILIM  
L
OUT  
BST  
SLOPE  
COMPENSATION  
SEL  
CONFIGURATION  
DECODER  
Q1  
FPWM/SYNC  
CLOCK  
REFERENCE  
S
R
Q
Q
DIGITAL  
LX  
PWM  
LOGIC  
SOFT-START  
RAMP  
V
L
Q2  
g
m
FB  
R
COMP  
I
ZX  
C
COMP  
I
LX-VALLEY  
AGND  
PGND  
POK  
Figure 1. Buck Control Scheme Diagram  
www.maximintegrated.com  
Maxim Integrated | 19  
 
MAX77504  
14V Input, 3A High-Efficiency  
Buck Converter in WLP or QFN  
Mode Control (FPWM)  
FPWM is an active-high digital input that controls the buck converter's mode. Raise FPWM above V  
to enable  
FPWM_HI  
forced-PWM (FPWM) mode. Lower FPWM to AGND to enable SKIP mode. Always drive this pin to prevent mode chatter.  
Some MAX77504 versions use the FPWM input for external clock synchronization (FPWM/SYNC). See the Ordering  
Information to find which MAX77504 part numbers include the synchronization feature. See the External Clock  
Synchronization (SYNC) section of the data sheet for a functional description of this feature.  
SKIP Mode  
SKIP mode causes discontinuous inductor current at light loads by forcing the low-side MOSFET (Q2) off if inductor  
current falls below I (40mA typ) during an off-time. This prevents inductor current from sourcing back to the input (SUP)  
ZX  
and enables high-efficiency by reducing the total number of switching cycles required to regulate the output voltage.  
When the load is very light and the output voltage is in regulation, then the converter automatically transitions to  
standby mode. In this mode, the LX node is high-impedance and the converter's internal circuit blocks are deactivated  
to reduce I consumption. Output voltage typically rests 2.5% above the regulation target in standby mode. A low-power  
Q
comparator monitors the output voltage during standby. The converter reactivates and starts switching again when V  
OUT  
drops below 102% of regulation target. Inductor current ramps to at least I  
cycle.  
(500mA typ) upon every switching  
LX-PK-MIN  
FPWM Mode  
The low-side MOSFET (Q2) current-limit threshold is I  
(-1.5A typ) in FPWM mode, which allows the converter to  
NEG  
switch at constant frequency at light loads. The buck has the best possible load-transient response in this mode at the  
cost of higher I consumption. Use FPWM for applications that do not require low-I and/or when heavy load transients  
Q
Q
are expected. Switching frequency is fixed by an internal oscillator in FPWM mode. See Table 1.  
Table 1. Buck Switching Frequency  
FSW[1:0]  
SWITCHING FREQUENCY (f ) (MHz)  
SW  
00  
01  
10  
11  
0.5  
0.75  
1.0  
1.5  
A configuration resistor between SEL and AGND programs FSW[1:0]. See the Configuration Selection Register (SEL) section and  
Table 2.  
External Clock Synchronization (SYNC)  
Select MAX77504 versions use the FPWM/SYNC input for external clock synchronization. See the Ordering Information  
to find which MAX77504 part numbers include the synchronization feature.  
Provide an external clock signal to FPWM/SYNC with a frequency inside the valid range (f  
) to enable  
SYNC-VALID  
externally synchronized forced-PWM (FPWM) mode. The valid lockable range shifts depending on the chosen internal  
switching frequency (FSW[1:0] programmed by R ). See the FPWM/SYNC section of the Electrical Characteristics  
SEL  
table for the guaranteed valid lock ranges versus FSW[1:0] choice. External synchronization can only happen after the  
converter enables, soft-start finishes, and the external signal's frequency is valid.  
An internal digital state machine (drawn in Figure 2) evaluates the external clock frequency on a cycle-by-cycle basis  
to determine if the signal's frequency is within the valid range. If the logic detects 16 consecutive cycles within the valid  
range then the buck immediately synchronizes the beginning of the next on-time with the rising edge of the external clock  
on FPWM/SYNC. The converter maintains on-time synchronization as long as each subsequent external clock cycle  
remains within the valid range. If the logic detects a single invalid external clock cycle (a rising edge that comes too fast  
or too slow), then the converter immediately reverts back to its internal oscillator (FSW[1:0] programmed by R  
). The  
SEL  
converter returns to SKIP mode when FPWM/SYNC asserts low for the debounce time, t  
(5μs typ).  
DB-SKIP  
www.maximintegrated.com  
Maxim Integrated | 20  
 
 
MAX77504  
14V Input, 3A High-Efficiency  
Buck Converter in WLP or QFN  
FPWM/SYNC RISING EDGE  
INSIDE VALID RANGE  
FPWM/SYNC = 0  
FPWM/SYNC = 1  
16 CONSECUTIVE  
FPWM/SYNC VALID RISING  
EDGES  
FPWM/SYNC RISING EDGE  
FPWM/SYNC DEBOUNCED 0  
SKIP MODE  
FPWM MODE  
INTERNAL CLOCK  
FPWM MODE  
INTERNAL CLOCK  
EXTERNAL CLOCK  
ONE INVALID FPWM/SYNC  
RISING EDGE  
(FPWM/SYNC = 0 FOR t  
)
DB-SKIP  
Figure 2. External Clock Synchronization Behavioral State Machine  
Applications using the external synchronization function must consider minimum on-time restrictions when providing the  
external clock. The Switching Frequency Selection section details these restrictions. Minimum on-time restrictions are  
valid regardless of whether the switching frequency is controlled with an internal or external clock.  
Buck Enable Control (EN)  
Raise the EN pin voltage above V  
(or tie to SUP) to enable the buck output. Lower EN to PGND to disable.  
EN_HI  
V Regulator  
L
An integrated 1.8V linear regulator (V ) provides power to low-voltage internal circuit blocks and switching FET gate  
L
drivers.  
SUP powers V when V  
is set less than the switch-over threshold (V  
, 1.7V typical). If V  
> V , then the V  
SWO L  
L
OUT  
SWO  
OUT  
regulator power input switches from SUP to OUT after the buck soft-start ramp finishes and POK = 1. Switching V 's input  
L
to OUT utilizes the buck's high-efficiency to power the linear regulator (as opposed to SUP) and improves the device's  
total power efficiency.  
Do not load V externally. The V regulator activates whenever EN is high. Connect a 2.2μF ceramic capacitor from V  
L
L
L
to ground on the PCB.  
Soft-Start  
The device has an internal soft-start timer (t ) that controls the ramp time of the output as the converter is starting.  
SS  
Soft-start limits inrush current during buck startup. The converter soft-starts every time the buck enables, exits a UVLO  
condition, and/or retries from an overcurrent (hiccup) or overtemperature condition. 1ms ramp time is available and only  
programmable at the factory.  
Power-OK (POK) Output  
The device features an active-high, open-drain POK output to monitor the output voltage. POK requires an external pullup  
resistor (typically 10kΩ to 100kΩ). POK goes high (high-impedance) after the buck converter output increases above  
92% (V  
) of the target regulation voltage and the soft-start ramp is done. POK goes low when the output drops  
POK_RISE  
below 90% (V  
) of target or when the buck is disabled.  
POK_FALL  
www.maximintegrated.com  
Maxim Integrated | 21  
 
 
MAX77504  
14V Input, 3A High-Efficiency  
Buck Converter in WLP or QFN  
Output Voltage Connection (OUT)  
OUT is an analog power input used to sense the buck's output voltage and optionally power the dedicated internal V  
regulator.  
L
● The buck adjusts its own internal compensation ramp based on V  
.
OUT  
● The V regulator's power input switches to OUT when V  
> V  
. See the V Regulator section.  
SWO L  
L
OUT  
● The active discharge resistor (R ) discharges the buck's output through the OUT pin when the buck is disabled and  
AD  
ADEN = 1. See the Active Discharge Resistor section.  
Connect OUT to the buck converter's nearest output capacitor. Do not connect OUT anywhere else. See the PCB Layout  
Guidelines section for a layout example.  
Configuration Selection Resistor (SEL)  
Connect a ±1% tolerance (or better) configuration selection resistor (R  
) between SEL and AGND to configure five  
SEL  
bits of options decoded in Table 2. See the Design Procedure (Choosing R  
) section for the procedure to select the  
SEL  
best configuration options for the buck converter's intended application.  
The device evaluates the resistance between SEL and AGND whenever SUP is valid and EN transitions from logic 0 to  
1. The decoded value of R latches until the next EN rising edge.  
SEL  
Active Discharge Resistor  
The device integrates a 100Ω active discharge resistor (R ) between OUT and PGND that discharges the output  
AD  
capacitor when the buck is disabled. This function is enabled/disabled using the ADEN bit. Use a configuration resistor  
between SEL and AGND to program ADEN. See Table 2.  
R
discharges the output capacitor for 15ms when ADEN = 1 and the buck is disabled. The OUT pin returns to a high-  
AD  
impedance state after this time.  
Short-Circuit Protection and Hiccup Mode  
The device has fault protection designed to protect itself from abnormal conditions. If the output is overloaded, cycle-by-  
cycle current limit prevents inductor current from increasing beyond I  
.
LX-PLIM  
The buck stops switching if V  
falls to less than 67% of target and 15 consecutive on-times are ended by current limit.  
OUT  
After switching stops, the buck waits for t  
before attempting to soft-start again (hiccup mode). While V  
is less  
RETRY  
OUT  
than 67% of target, the converter prevents new on-times if the inductor current has not fallen below I  
. This  
LX-VALLEY  
prevents inductor current from increasing uncontrollably due to the short-circuited output.  
Thermal Shutdown  
The device has an internal thermal protection circuit that monitors die temperature. The temperature monitor disables the  
buck if the die temperature exceeds T  
approximately 15°C.  
(165°C typ). The buck soft-starts again after the die temperature cools by  
SHDN  
www.maximintegrated.com  
Maxim Integrated | 22  
 
MAX77504  
14V Input, 3A High-Efficiency  
Buck Converter in WLP or QFN  
Applications Information  
Buck Enable Options  
The MAX77504 offers two control options using the EN pin. See Figure 3 for suggested methods of controlling the buck  
converter.  
ALWAYS-ON  
HARDWARE CONTROL  
CONFIGURATION  
CONFIGURATION  
BUCK  
INPUT  
BUCK  
INPUT  
MAX77504  
MAX77504  
SUP  
SUP  
EN  
EN  
CONNECT  
EN TO SUP  
DRIVE EN PIN  
Figure 3. Buck Enable Options  
Always-On  
Strap the EN pin to SUP to configure the device in an always-on configuration. See Figure 3 (left). The buck converter  
activates whenever V  
is valid and T < T  
.
SHDN  
SUP  
J
Hardware Control  
Drive the EN pin externally to control the buck. See Figure 3 (right). The buck converter activates whenever V  
>
EN  
V
EN_HI  
(1.1V min), T < T  
, and V  
is valid.  
SUP  
J
SHDN  
FPWM/SYNC Clock Pulse Width Requirements  
Applications using an external clock should choose a clock with close to 50% duty cycle. Keep clock duty cycles within  
±25% of the clock period. For example, if the input clock has a period of 1μs (i.e., 1MHz), a 50% duty cycle has a 500ns  
pulse width and the clock should not exceed ±250ns away from this. Valid on times in this specific case include 250ns to  
750ns within the 1μs period.  
www.maximintegrated.com  
Maxim Integrated | 23  
 
MAX77504  
14V Input, 3A High-Efficiency  
Buck Converter in WLP or QFN  
Design Procedure (Choosing R  
)
SEL  
The configuration selection resistor (RSEL) sets five bits of configuration options decoded in Table 2. Choose RSEL[4:0]  
carefully by following the procedure outlined in this section. See the Typical Application Circuits section for a list of known  
good RSEL choices for common applications. Contact Maxim for help or questions with this procedure.  
Table 2. Resistor-Set Configuration Bits  
RSEL[4:0]  
NAME  
DESCRIPTION  
DECODE  
MSB Bit 4  
00 = 0.5MHz  
01 = 0.75MHz  
10 = 1.0MHz  
11 = 1.5MHz  
Switching Frequency Control. Sets f  
.
SW  
FSW[1:0]  
Lower f  
requires more C  
to maintain stability.  
Bit 3  
Bit 2  
Bit 1  
SW  
OUT  
00 = 75kΩ  
01 = 100kΩ  
10 = 150kΩ  
11 = 200kΩ  
Mid-band Gain Control. Sets R  
.
COMP  
GAIN[1:0] Higher R  
increases gain and improves transient response, but requires  
COMP  
more C  
to maintain stability.  
OUT  
0 = Disabled  
1 = Enabled  
LSB Bit 0  
ADEN  
Active discharge resistor enable.  
Program these bits by choosing a configuration selection resistor (R  
) with a tolerance of ±1% or better using lookup Table 3.  
SEL  
Follow the design procedure to determine RSEL[4:0]. Use Table 3 to choose the corresponding R  
value.  
SEL  
Table 3. Configuration Selection Resistor (R  
) Lookup Table  
SEL  
R
(Ω) → RSEL[4:0]  
SEL  
95.3Ω or SHORT → 0x00  
200Ω → 0x01  
1620Ω → 0x0B  
1870Ω → 0x0C  
2150Ω → 0x0D  
2490Ω → 0x0E  
2870Ω → 0x0F  
3740Ω → 0x10  
8060Ω → 0x11  
12400Ω → 0x12  
16900Ω → 0x13  
21500Ω → 0x14  
26100Ω → 0x15  
30900Ω → 0x16  
36500Ω → 0x17  
309Ω → 0x02  
42200Ω → 0x18  
422Ω → 0x03  
48700Ω → 0x19  
536Ω → 0x04  
56200Ω → 0x1A  
649Ω → 0x05  
64900Ω → 0x1B  
768Ω → 0x06  
75000Ω → 0x1C  
86600Ω → 0x1D  
100000Ω → 0x1E  
115000Ω or OPEN → 0x1F  
909Ω → 0x07  
1050Ω → 0x08  
1210Ω → 0x09  
1400Ω → 0x0A  
For example, choose a 30.9kΩ (±1% TOL) resistor to program RSEL[4:0] to 0x16. 0x16 (0b10110) decodes with the  
following configuration:  
● FSW[1:0] = 0b10 (1MHz switching frequency)  
● GAIN[1:0] = 0b11 (200kΩ R  
)
COMP  
● ADEN = 0b0 (active discharge disabled)  
Table 3 indicates that a 30.9kΩ selection resistor selects code 0b10110 (0x16).  
The device evaluates R  
whenever SUP is valid and EN transitions from logic 0 to 1. The decoded value of R  
is  
SEL  
SEL  
latched until the next EN rising edge.  
www.maximintegrated.com  
Maxim Integrated | 24  
 
 
MAX77504  
14V Input, 3A High-Efficiency  
Buck Converter in WLP or QFN  
Switching Frequency Selection  
See the Typical Application Circuits section of the data sheet for a list of known good switching frequency choices for  
common output voltages.  
Program the converter's switching frequency (f ) using the external selection resistor (R  
SW  
) to set the bits in FSW[1:0].  
SEL  
See Table 2, bits 3 and 4.  
The converter's minimum on-time (t  
) limits the maximum f  
choice. The required on-time (t  
) to regulate  
ON-MIN  
SW  
ON(REQ)  
a desired output voltage must be greater than the converter's minimum on-time to ensure stable operation.  
t
≥ t  
ON(REQ) ONMIN  
Large step-down ratios (high V , low V  
switching period) results in shorter on-times compared to lower F  
frequency converters are desired due to their low output voltage ripple, small external component size, and high closed-  
loop bandwidth.  
) result in low duty cycles and require short on-times. High F  
(short  
SW  
IN  
OUT  
(long switching period). Generally, fast switching  
SW  
Determine the application's target output voltage (V  
) and maximum expected input voltage (V  
). Start with the  
OUT  
IN(MAX)  
highest F  
option (1.575MHz with tolerance) and compute the on-time required for stable operation (t  
) using  
ON(REQ)  
SW  
Equation 1.  
Equation 1:  
V
OUT  
t
=
ON(REQ)  
V
× F  
IN(MAX)  
SW  
Compare t  
with t  
(100ns max). If t  
is less than 100ns, then reduce the F  
to the next  
SW  
ON(REQ)  
ON-MIN  
ON(REQ)  
slowest option and recompute. Always consider f  
with tolerance using the guaranteed upper limit. See the Electrical  
SW  
Characteristics table for more information.  
If the slowest f  
choice (525kHz with tolerance) results in a required on-time that is less than t  
, then reduce the  
ON-MIN  
SW  
application's maximum expected input voltage using external methods.  
Example A (9V to 3.3V  
)
OUT  
IN  
for a 3.3V power supply operating from a 2s Li+ battery stack (9V max).  
Choose f  
SW  
● Target V  
= 3.3V  
OUT  
● V  
= 9V  
IN(MAX)  
Try the highest switching frequency first (1.5MHz typ, 1.575MHz max). Use Equation 1 to compute required on-time  
(t  
):  
ON(REQ)  
3.3V  
9V×1.575MHz  
t
=
= 232.8ns (OK)  
ON(REQ)  
The choice of 1.5MHz typical switching frequency is OK because t  
(100ns max).  
is greater than the upper limit of t  
ON-MIN  
ON(REQ)  
Example B (12V to 1.8V  
)
OUT  
IN  
for a 1.8V power supply operating from a 12V (±5%) supply rail.  
Choose f  
SW  
● Target V  
= 1.8V  
OUT  
● V  
= 12V + 5% = 12.6V  
IN(MAX)  
Try the highest switching frequency first (1.5MHz typ, 1.575MHz max). Use Equation 1 to compute required on-time  
(t  
):  
ON(REQ)  
1.8V  
12.6V×1.575MHz  
t
=
= 90.7ns (not OK)  
ON(REQ)  
The choice of 1.5MHz typical switching frequency is not OK because t  
is shorter than the upper limit of t  
ON-MIN  
ON(REQ)  
(100ns). Choose the next slowest f  
(1MHz typ, 1.05MHz max) and recompute Equation 1.  
SW  
www.maximintegrated.com  
Maxim Integrated | 25  
 
MAX77504  
14V Input, 3A High-Efficiency  
Buck Converter in WLP or QFN  
1.8V  
12.6V×1.05MHz  
t
=
= 136.1ns (OK)  
ON(REQ)  
The choice of 1MHz typical switching frequency is OK because t  
is greater than 100ns.  
ON(REQ)  
Gain Selection  
See the Typical Application Circuits section of the data sheet for a list of known good gain choices for common output  
voltages and C values.  
OUT  
Program the converter's mid-band gain by changing R  
using the GAIN[1:0] bitfield. Program GAIN[1:0] using the  
COMP  
external selection resistor (R  
). See Table 2, bits 1 and 2.  
SEL  
The converter's mid-band gain is limited by the switching frequency (f ) choice and effective output capacitance (C  
)
SW  
OUT  
requirement. High gain (large R  
) results in better transient performance but requires additional C  
for stability.  
COMP  
OUT  
Low gain (small R  
) requires less C  
at the expense of transient performance. Generally, converters with higher  
COMP  
OUT  
gain are desired due to their fast transient response and high V  
regulation quality versus disturbances.  
OUT  
The choice of R  
and C  
must not allow the closed-loop unity-gain bandwidth (f ) of the converter to exceed  
OUT BW  
COMP  
20% of the switching frequency.  
f
≤ 0.2 × f  
BW  
SW  
SUP Capacitor Selection  
Choose the input capacitor (C  
) to be a 10μF nominal ceramic decoupling capacitor and place it as close to the SUP  
SUP  
pin as possible. Larger values improve the decoupling of the buck converter, but increase inrush current from the voltage  
supply when connected. C reduces the current peaks drawn from the input power source during buck operation and  
SUP  
reduces switching noise in the system. The ESR/ESL of C  
and its series PCB trace should be very low. Ceramic  
SUP  
capacitors with X5R or X7R dielectric are highly recommended due to their small size, low ESR, and small temperature  
coefficients.  
All ceramic capacitors derate with DC bias voltage (effective capacitance goes down as DC bias goes up). Generally,  
small case size capacitors derate heavily compared to larger case sizes (0603 case size performs better than 0402).  
Consider the effective capacitance value carefully by consulting the manufacturer's data sheet. Refer to Application Note  
5527: Temperature and Voltage Variation of Ceramic Capacitors, or Why Your 4.7µF Capacitor Becomes a 0.33µF  
Capacitor for more information.  
Output Capacitor Selection  
Choose an output capacitance (COUT) based on the transient performance requirements with a minimum of 8μF  
effective capacitance for stable operation.  
Effective C  
is the actual capacitance value seen by the buck output during operation. Choose effective C  
OUT  
OUT  
carefully by considering the capacitor's initial tolerance, variation with temperature, and derating with DC bias.  
See the Typical Application Circuits section for recommended output capacitors for each use case.  
Larger values of C  
(above the required effective minimum) improve load transient performance, but increase the input  
OUT  
surge currents during soft-start and output voltage changes. The output filter capacitor must meet output ripple and load  
transient requirements. The output capacitance must be high enough to absorb the inductor energy while transitioning  
from full-load to no-load conditions. Calculate output voltage ripple (V  
) to ensure the requirements are met:  
RIPPLE(P-P)  
V
= (LIR) (8xf xC  
)
SW OUT  
/
RIPPLE P P  
(
)
where LIR is the inductor current ripple. Compute LIR with Equation 2.  
Equation 2:  
V
× V − V  
(
)
OUT  
IN  
OUT  
LIR =  
V
× f  
× L  
IN SW  
where V is the application's input voltage and f  
IN  
is the switching frequency. See Table 1.  
SW  
www.maximintegrated.com  
Maxim Integrated | 26  
 
MAX77504  
14V Input, 3A High-Efficiency  
Buck Converter in WLP or QFN  
After taking careful consideration of the output voltage ripple, finalize the selection of the output capacitance based on  
the transient performance requirements. See the Typical Application Circuits section for recommended output capacitors  
for each use case that have a load transient performance of ±5% overshoot and undershoot with a 1.5A load step (5A/  
μs slew rate).  
Ceramic capacitors with X5R or X7R dielectric are highly recommended due to their small size, low ESR, and small  
temperature coefficients. All ceramic capacitors derate with DC bias voltage (effective capacitance goes down as DC bias  
goes up). Generally, small case size capacitors derate heavily compared to larger case sizes (0603 case size performs  
better than 0402). Consider the effective capacitance value carefully by consulting the manufacturer's data sheet.  
Inductor Selection  
Choose an inductor with a saturation current greater than or equal to the maximum peak current limit (I  
). Inductors  
LX-PLIM  
with lower saturation current and higher DCR ratings tend to be physically small. Higher values of DCR reduce buck  
efficiency. Choose the RMS current rating of the inductor (the current at which temperature rises appreciably) based on  
the system's expected load current.  
Choose an inductor value based on the V  
setting. See Table 4.  
OUT  
Table 4. Inductor Value vs. Output Voltage  
SUGGESTED COMPONENT  
PART NUMBERS*  
V
OUT  
RANGE  
INDUCTOR VALUE (μH)  
MURATA DFE252012F-1R0M  
MURATA DFE252010F-1R0M  
SAMSUNG CIGT252010EH1R0MNE  
COILCRAFT XGL4020-102ME  
V
≤ 1.3V  
1
OUT  
MURATA DFE252012F-1R5M  
MURATA FDSD0412-H-1R5M  
TDK SPM3015T-1R5M-LR  
1.3V < V  
≤ 4.5V  
1.5  
2.2  
OUT  
COILCRAFT XGL4020-152ME  
MURATA FDSD0415-H-2R2M  
COILCRAFT XGL4020-222ME  
V
OUT  
> 4.5V  
*List compiled circa 2019. Always consider the most recent inductor offerings for new designs to achieve best possible MAX77504  
circuit performance.  
The chosen inductor value (L) should ensure that the peak inductor ripple current (I  
) is below the high-side MOSFET  
PEAK  
peak current limit (I  
, 4A typ) so that the buck can maintain voltage regulation over load.  
LX-PLIM  
Use Equation 3 and Equation 4 to compute I  
value.  
. If I  
is greater than the limit (I ) then increase the inductor  
LX-PLIM ,  
PEAK  
PEAK  
Equation 3:  
V
× V  
(
− V  
OUT  
)
OUT  
V
IN(MAX)  
× f  
I
=
P-P  
× L  
IN(MAX) SW  
Equation 4:  
I
PP  
I
= I  
+
PEAK  
LOAD  
2
where I  
is the buck's output current in the particular application (3A max), V  
expected input voltage (up to 14V), and f  
section.  
is the application's largest  
IN(MAX)  
is the chosen switching frequency. See the Switching Frequency Selection  
LOAD  
SW  
www.maximintegrated.com  
Maxim Integrated | 27  
 
MAX77504  
14V Input, 3A High-Efficiency  
Buck Converter in WLP or QFN  
Setting the Output Voltage  
The IC uses external feedback resistors (R  
and R  
) to set V between 0.6V and 6V. Connect a resistor divider  
OUT  
TOP  
BOT  
between V  
, FB, and AGND as shown in Figure 4. One percent tolerance resistors (or better) are recommended to  
OUT  
maintain high output accuracy. Choose R  
to be 10kΩ or greater. Calculate the value of R  
for a desired output  
TOP  
BOT  
voltage with Equation 5.  
Equation 5:  
V
OUT  
R
= R  
×
BOT  
− 1  
TOP  
V
[
]
FB  
where V is 0.6V and V  
is the desired output voltage.  
FB  
OUT  
V
OUT  
R
OUT  
C
FF  
TOP  
MAX77504  
FB  
R
BOT  
AGND  
Figure 4. External Feedback Network  
www.maximintegrated.com  
Maxim Integrated | 28  
 
MAX77504  
14V Input, 3A High-Efficiency  
Buck Converter in WLP or QFN  
Table 5 lists common feedback resistor combinations for various output voltages. For voltages not listed, see the closest  
output voltage in the table and take the RBOT value as a starting point. Then calculate RTOP using Equation 5.  
See the Typical Application Circuits section of the data sheet for a list of known configurations for these output voltages.  
Table 5. Common Feedback Resistor Values  
OUTPUT VOLTAGE TARGET (V)  
R
TOP  
(kΩ)  
R
BOT  
(kΩ)  
0.6  
0.7  
0.82  
1.0  
1.2  
1.5  
1.8  
1.85  
2.05  
2.5  
3.0  
3.3  
3.6  
5.0  
5.6  
6.0  
SHORT  
1.84  
4.07  
75  
OPEN  
11.1  
11.1  
49.9  
49.9  
23.2  
23.2  
23.2  
23.2  
23.2  
11.1  
11.1  
11.1  
62.6  
20  
49.9  
34.8  
46.4  
48.1  
56.2  
73.2  
44.2  
49.9  
55.6  
459  
167  
180  
20  
Table 6 suggests which typical application circuit corresponds to which range of output voltages. Use this table to  
determine the C , R , and C values.  
FF SEL  
OUT  
Table 6. Typical Application Circuit Reference  
OUTPUT VOLTAGE TARGET (V)  
TYPICAL APPLICATION CIRCUIT REFERENCE  
0.6  
0.6V  
0.82V  
1.0V  
1.2V  
1.8V  
2.5V  
3.3V  
5.0V  
6.0V  
0.6 < V  
0.9 < V  
1.1 < V  
1.4 < V  
2.1 < V  
2.9 < V  
4.0 < V  
5.5 < V  
≤ 0.9  
≤ 1.1  
≤ 1.4  
≤ 2.1  
≤ 2.9  
≤ 4.0  
≤ 5.5  
≤ 6.0  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
www.maximintegrated.com  
Maxim Integrated | 29  
 
 
MAX77504  
14V Input, 3A High-Efficiency  
Buck Converter in WLP or QFN  
PCB Layout Guidelines  
Careful circuit board layout is critical to achieve low switching power losses and clean, stable operation. Figure 5 shows  
an example PCB top-metal layout for the WLP version device, and Figure 6 shows an example PCB top-metal layout for  
the FC2QFN version of the device.  
Follow these guidelines when designing the PCB:  
1. Place the SUP capacitor immediately next to the SUP pin of the device. Since the device can operate up to 1.5MHz  
switching frequency, this placement is critical for effective decoupling of high-frequency noise from the SUP pin.  
2. Place the inductor and output capacitor close to the device and keep the loop area of switching current small.  
3. Make the trace between LX and the inductor short and wide. Do not take up an excessive amount of area. The voltage  
on this node switches very quickly and additional area creates more radiated emissions.  
4. The trace between BST and C  
should be as short as possible.  
BST  
5. Connect PGND and AGND together on the PCB. They must be the same net. Connect them together through a low-  
impedance inner PCB ground layer close to the IC.  
6. Keep the power traces and load connections short and wide. Use both top and inner PCB copper floods to reduce  
trace impedance. This practice is essential for high-efficiency.  
7. Place the V capacitor ground next to the AGND pin.  
L
8. Do not neglect ceramic capacitor DC voltage derating. Choose capacitor values and sizes carefully. See the Output  
Capacitor Selection section and refer to Application Note 5527: Temperature and Voltage Variation of Ceramic  
Capacitors, or Why Your 4.7µF Capacitor Becomes a 0.33µF Capacitor for more information.  
LX  
L
OUT  
1008 (2520)  
C
SUP  
SUP  
BST  
EN  
LEGEND  
0603  
FPWM  
POK  
PGND  
OUT  
FB  
R
SEL  
C
VL  
0402  
R
BOT  
V
AGND  
L
AGND  
SEL  
VIAS  
COMPONENT SIZES LISTED  
IN IMPERIAL (METRIC)  
● WAFER-LEVEL PACKAGE VERSION (WLP)  
● POK PULLUP NOT DRAWN.  
● CHOOSE C  
CAREFULLY. SEE OUTPUT CAPACITOR SELECTION.  
OUT  
● CHOOSE PHYSICAL INDUCTOR CASE SIZE CAREFULLY. SEE INDUCTOR  
SELECTION.  
Figure 5. PCB Top-Metal and Component Layout Example (WLP Version)  
www.maximintegrated.com  
Maxim Integrated | 30  
 
MAX77504  
14V Input, 3A High-Efficiency  
Buck Converter in WLP or QFN  
LX  
L
OUT  
1008 (2520)  
C
SUP  
SUP  
LEGEND  
0603  
BST  
EN  
PGND  
FPWM  
POK  
OUT  
FB  
0402  
VIAS  
R
BOT  
R
C
VL  
SEL  
COMPONENT SIZES LISTED  
IN IMPERIAL (METRIC)  
V
AGND  
L
SEL  
AGND  
● FLIP-CHIP QUAD FLAT NO-LEADS PACKAGE VERSION (FC2QFN)  
● POK PULLUP NOT DRAWN.  
● CHOOSE C  
CAREFULLY. SEE OUTPUT CAPACITOR SELECTION.  
OUT  
● CHOOSE PHYSICAL INDUCTOR CASE SIZE CAREFULLY. SEE INDUCTOR  
SELECTION.  
Figure 6. PCB Top-Metal and Component Layout Example (FC2QFN Version)  
www.maximintegrated.com  
Maxim Integrated | 31  
MAX77504  
14V Input, 3A High-Efficiency  
Buck Converter in WLP or QFN  
Typical Application Circuits  
Typical Application Circuits  
All output voltage use cases are configured to optimize load transient performance (±5% overshoot and undershoot at a  
5A/μs slew rate) and phase margin of at least 45° across the entire input voltage range specified.  
0.6V Output, 0.75MHz  
C
0.22μF  
BST  
DC INPUT  
2.6V TO 7.5V  
SUP  
BST  
10V (0402)  
C
SUP  
10μF  
L 1μH  
25V (0603)  
MAX77504  
0.6V OUTPUT  
MAX DC INPUT  
DERATED  
0.6V  
3A MAX  
OUT  
LX  
OUT  
ENABLE  
EN  
C
OUT  
4x 47μF  
FPWM/SKIP/SYNC  
FPWM/SYNC  
SEL  
6V (0603)  
FB  
R
1210Ω  
(1% TOL)  
SEL  
BIAS  
RSEL[1:0] = 0x09  
= 0.75MHz  
100kΩ  
POWER-OK  
f
SW  
POK  
V
L
R
COMP  
= 75kΩ  
C
2.2μF  
VL  
ACTIVE DISCHARGE ON  
AGND  
PGND  
6V (0402)  
0.82V Output, 0.75MHz  
C
0.22μF  
BST  
DC INPUT  
2.6V TO 10V  
SUP  
EN  
BST  
10V (0402)  
C
10μF  
SUP  
L 1μH  
25V (0603)  
MAX77504  
0.82V OUTPUT  
MAX DC INPUT  
DERATED  
0.82V  
OUT  
LX  
3A MAX  
OUT  
ENABLE  
R
TOP  
C
OUT  
4x 47μF  
C
15pF  
FF  
FPWM/SKIP/SYNC  
FPWM/SYNC  
SEL  
4.07kΩ  
6V (0603)  
(0402)  
FB  
R
1210Ω  
(1% TOL)  
SEL  
BIAS  
R
BOT  
11.1kΩ  
RSEL[1:0] = 0x09  
= 0.75MHz  
100kΩ  
f
SW  
POK  
POWER-OK  
V
L
R
= 75kΩ  
COMP  
C
2.2μF  
VL  
ACTIVE DISCHARGE ON  
AGND  
PGND  
6V (0402)  
www.maximintegrated.com  
Maxim Integrated | 32  
MAX77504  
14V Input, 3A High-Efficiency  
Buck Converter in WLP or QFN  
Typical Application Circuits (continued)  
1.0V Output, 0.75MHz  
C
0.22μF  
BST  
DC INPUT  
SUP  
BST  
10V (0402)  
2.6V TO 13V  
C
SUP  
10μF  
L 1μH  
25V (0603)  
MAX77504  
1.0V  
3A MAX  
OUT  
LX  
1.0V OUTPUT  
OUT  
ENABLE  
FPWM/SKIP/SYNC  
EN  
R
TOP  
C
OUT  
3x 47μF  
C
15pF  
FF  
FPWM/SYNC  
SEL  
49.9kΩ  
6V (0603)  
(0402)  
FB  
R
SEL  
2870Ω  
BIAS  
R
BOT  
(1% TOL)  
75kΩ  
RSEL[1:0] = 0x0F  
= 0.75MHz  
100kΩ  
f
SW  
POK  
POWER-OK  
V
L
R
= 200kΩ  
COMP  
C
2.2μF  
VL  
ACTIVE DISCHARGE ON  
AGND  
PGND  
6V (0402)  
1.2V Output, 0.75MHz  
C
0.22μF  
BST  
DC INPUT  
2.6V TO 14V  
SUP  
EN  
BST  
10V (0402)  
C
10μF  
SUP  
L 1μH  
25V (0603)  
MAX77504  
1.2V  
OUT  
LX  
1.2V OUTPUT  
3A MAX  
OUT  
ENABLE  
FPWM/SKIP/SYNC  
R
TOP  
C
OUT  
3x 47μF  
C
15pF  
FF  
FPWM/SYNC  
SEL  
49.9kΩ  
6V (0603)  
(0402)  
FB  
R
SEL  
2870Ω  
BIAS  
R
BOT  
(1% TOL)  
49.9kΩ  
RSEL[1:0] = 0x0F  
= 0.75MHz  
100kΩ  
f
SW  
POK  
POWER-OK  
V
L
R
= 200kΩ  
COMP  
C
2.2μF  
VL  
ACTIVE DISCHARGE ON  
AGND  
PGND  
6V (0402)  
www.maximintegrated.com  
Maxim Integrated | 33  
MAX77504  
14V Input, 3A High-Efficiency  
Buck Converter in WLP or QFN  
Typical Application Circuits (continued)  
1.8V Output, 1MHz  
C
0.22μF  
BST  
DC INPUT  
SUP  
BST  
10V (0402)  
2.6V TO 14V  
C
SUP  
10μF  
L 1.5μH  
25V (0603)  
MAX77504  
1.8V  
3A MAX  
OUT  
LX  
1.8V OUTPUT  
OUT  
ENABLE  
FPWM/SKIP/SYNC  
EN  
R
TOP  
C
OUT  
3x 22μF  
C
15pF  
FF  
FPWM/SYNC  
SEL  
46.4kΩ  
10V (0603)  
(0402)  
FB  
R
SEL  
36.5kΩ  
BIAS  
R
BOT  
(1% TOL)  
23.2kΩ  
RSEL[1:0] = 0x17  
= 1MHz  
100kΩ  
f
SW  
POK  
POWER-OK  
V
L
R
= 200kΩ  
COMP  
C
2.2μF  
VL  
ACTIVE DISCHARGE ON  
AGND  
PGND  
6V (0402)  
2.5V Output, 1.5MHz  
C
0.22μF  
BST  
DC INPUT  
2.6V TO 14V  
SUP  
EN  
BST  
10V (0402)  
C
10μF  
SUP  
L 1.5μH  
25V (0603)  
MAX77504  
2.5V  
OUT  
LX  
2.5V OUTPUT  
3A MAX  
OUT  
ENABLE  
FPWM/SKIP/SYNC  
R
TOP  
C
OUT  
3x 22μF  
C
2.2pF  
FF  
FPWM/SYNC  
SEL  
73.2kΩ  
10V (0603)  
(0402)  
FB  
R
SEL  
115kΩ  
BIAS  
R
BOT  
(1% TOL)  
23.2kΩ  
RSEL[1:0] = 0x1F  
= 1.5MHz  
100kΩ  
f
SW  
POK  
POWER-OK  
V
L
R
= 200kΩ  
COMP  
C
2.2μF  
VL  
ACTIVE DISCHARGE ON  
AGND  
PGND  
6V (0402)  
www.maximintegrated.com  
Maxim Integrated | 34  
MAX77504  
14V Input, 3A High-Efficiency  
Buck Converter in WLP or QFN  
Typical Application Circuits (continued)  
3.3V Output, 1.5MHz  
C
0.22μF  
BST  
DC INPUT  
SUP  
BST  
10V (0402)  
2.6V TO 14V  
C
SUP  
10μF  
L 1.5μH  
25V (0603)  
MAX77504  
3.3V  
3A MAX  
OUT  
LX  
3.3V OUTPUT  
OUT  
ENABLE  
FPWM/SKIP/SYNC  
EN  
R
TOP  
C
OUT  
3x 22μF  
C
2.2pF  
FF  
FPWM/SYNC  
SEL  
49.9kΩ  
10V (0603)  
(0402)  
FB  
R
115kΩ  
SEL  
BIAS  
R
BOT  
(1% TOL)  
11.1kΩ  
RSEL[1:0] = 0x1F  
= 1.5MHz  
100kΩ  
f
SW  
POK  
POWER-OK  
V
L
R
= 200kΩ  
COMP  
C
2.2μF  
VL  
ACTIVE DISCHARGE ON  
AGND  
PGND  
6V (0402)  
5V Output, 1.5MHz  
C
0.22μF  
BST  
DC INPUT  
2.6V TO 14V  
SUP  
EN  
BST  
10V (0402)  
C
10μF  
SUP  
L 2.2μH  
25V (0603)  
MAX77504  
5V  
OUT  
LX  
5V OUTPUT  
3A MAX  
OUT  
ENABLE  
FPWM/SKIP/SYNC  
R
TOP  
C
OUT  
2x 22μF  
C
2.2pF  
FF  
FPWM/SYNC  
SEL  
459kΩ  
10V (0603)  
(0402)  
FB  
R
SEL  
86.6kΩ  
BIAS  
R
BOT  
(1% TOL)  
62.6kΩ  
RSEL[1:0] = 0x1D  
= 1.5MHz  
100kΩ  
f
SW  
POK  
POWER-OK  
V
L
R
= 150kΩ  
COMP  
C
2.2μF  
VL  
ACTIVE DISCHARGE ON  
AGND  
PGND  
6V (0402)  
www.maximintegrated.com  
Maxim Integrated | 35  
MAX77504  
14V Input, 3A High-Efficiency  
Buck Converter in WLP or QFN  
Typical Application Circuits (continued)  
6V Output, 1.5MHz  
C
0.22μF  
BST  
DC INPUT  
SUP  
BST  
10V (0402)  
2.6V TO 14V  
C
SUP  
10μF  
L 2.2μH  
25V (0603)  
MAX77504  
6V  
3A MAX  
OUT  
LX  
6V OUTPUT  
OUT  
ENABLE  
FPWM/SKIP/SYNC  
EN  
R
TOP  
C
2x 22μF  
OUT  
C
2.2pF  
FF  
FPWM/SYNC  
SEL  
252kΩ  
10V (0603)  
(0402)  
FB  
R
SEL  
86.6kΩ  
BIAS  
R
BOT  
(1% TOL)  
28kΩ  
RSEL[1:0] = 0x1D  
= 1.5MHz  
100kΩ  
f
SW  
POK  
POWER-OK  
V
L
R
= 150kΩ  
COMP  
C
2.2μF  
VL  
ACTIVE DISCHARGE ON  
AGND  
PGND  
6V (0402)  
Ordering Information  
SOFT-START RAMP EXTERNAL CLOCK  
PART NUMBER  
PIN-PACKAGE  
TIME (ms)  
SYNC  
Available  
Unavailable  
Available  
MAX77504AAFC+T  
MAX77504AAWE+T  
MAX77504BAWE+T  
1
1
1
12 FC2QFN  
16 WLP  
16 WLP  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
www.maximintegrated.com  
Maxim Integrated | 36  
MAX77504  
14V Input, 3A High-Efficiency  
Buck Converter in WLP or QFN  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
0
10/19  
Initial release  
Updated the Electrical Characteristics table, Bump/Pin Descriptions table, Configuration  
Selection Resistor (SEL) section, Design Procedure (Choosing R ) section, Output  
Capacitor Selection section, Setting the Output Voltage section, PCB Layout Guidelines  
section, Figure 5, Typical Application Circuits section, and the Ordering Information table;  
added FPWM/SYNC Clock Pulse Width Requirements section, Table 6, and Figure 6  
9, 11, 18,  
22–24, 26,  
29–34, 36  
SEL  
1
2
3/20  
7/20  
Updated the Ordering Information table  
36  
For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent  
licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max  
limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
© 2020 Maxim Integrated Products, Inc.  

相关型号:

MAX77504AAWE+

Sense Points for High-Accuracy Measurements
MAXIM

MAX77504AAWE+T

Switching Regulator,
MAXIM

MAX77504BAWE+

Sense Points for High-Accuracy Measurements
MAXIM

MAX77504BAWE+T

14V Input, 3A High-Efficiency Buck Converter in WLP or QFN
MAXIM

MAX77504WEVKIT

Sense Points for High-Accuracy Measurements
MAXIM

MAX775C/D

-5V/-12V/-15V or Adjustable, High-Efficiency, Low IQ Inverting DC-DC Controllers
MAXIM

MAX775CPA

-5V/-12V/-15V or Adjustable, High-Efficiency, Low IQ Inverting DC-DC Controllers
MAXIM

MAX775CSA

-5V/-12V/-15V or Adjustable, High-Efficiency, Low IQ Inverting DC-DC Controllers
MAXIM

MAX775CSA

SWITCHING CONTROLLER, 300 kHz SWITCHING FREQ-MAX, PDSO8, 0.150 INCH, PLASTIC, SOIC-8
ROCHESTER

MAX775CSA+

Switching Controller, Current-mode, 0.5A, 300kHz Switching Freq-Max, CMOS, PDSO8, 0.150 INCH, PLASTIC, SOIC-8
MAXIM

MAX775CSA+T

Switching Controller, Current-mode, 0.5A, 300kHz Switching Freq-Max, CMOS, PDSO8, 0.150 INCH, PLASTIC, SOIC-8
MAXIM

MAX775CSA-T

-5V/-12V/-15V or Adjustable, High-Efficiency, Low IQ Inverting DC-to-DC Controllers
MAXIM