MAX77650AEWVT [MAXIM]

Ultra-Low Power PMIC with 3-Output SIMO and Power Path Charger for Small Li;
MAX77650AEWVT
型号: MAX77650AEWVT
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Ultra-Low Power PMIC with 3-Output SIMO and Power Path Charger for Small Li

集成电源管理电路
文件: 总82页 (文件大小:2610K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
Click here for production status of specific part numbers.  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
General Description  
Benefits and Features  
Highly Integrated  
The MAX77650/MAX77651 provide highly-integrated bat-  
tery charging and power supply solutions for low-power  
wearable applications where size and efficiency are  
critical. Both devices feature a SIMO buck-boost regulator  
that provides three independently programmable power  
rails from a single inductor to minimize total solution  
size. A 150mA LDO provides ripple rejection for audio  
and other noise-sensitive applications. A highly configu-  
rable linear charger supports a wide range of Li+ battery  
capacities and includes battery temperature monitoring  
for additional safety (JEITA).  
• Smart Power Selector™ Li+/Li-Poly Charger  
• 3 Output, Single-Inductor Multiple-Output (SIMO)  
Buck-Boost Regulator  
• 150mA LDO  
• 3-Channel Current Sink Driver  
• Analog MUX Output for Power Monitoring  
Low Power  
0.3μA Shutdown Current  
5.6μA Operating Current (3 SIMO Channels +  
LDO)  
The devices include other features such as current sinks  
for driving LED indicators and an analog multiplexer that  
switches several internal voltage and current signals to an  
external node for monitoring with an external ADC. A bidi-  
Charger Optimized for Small Battery Size  
• Programmable Fast-Charge Current from 7.5mA to  
300mA  
• Programmable Battery Regulation Voltage from  
3.6V to 4.6V  
2
rectional I C interface allows for configuring and check-  
ing the status of the devices. An internal on/off controller  
provides a controlled startup sequence for the regulators  
and provides supervisory functionality when the devices  
are on. Numerous factory programmable options allow  
the device to be tailored for many applications, enabling  
faster time to market.  
• Programmable Termination Current from 0.375mA  
to 45mA  
• JEITA Battery Temperature Monitors Adjust Charge  
Current and Battery Regulation Voltage for Safe  
Charging  
Flexible and Configurable  
2
• I C Compatible Interface and GPIO  
Simplified Application Circuit  
• Factory OTP Options Available  
IN_SBB  
SYS  
V
BUS  
Small Size  
CHGIN  
BATT  
V
SYS  
• 2.75mm x 2.15mm x 0.7mm WLP Package  
• 30-Bump, 0.4mm-Pitch WLP, 6x5 Array  
• Small Total Solution Size (19.2mm )  
+
2
IN_LDO  
SBB0  
GND  
2.05V  
1.2V  
3.3V  
Applications  
Bluetooth Headphones/Hearables  
Fitness, Health, and Activity Monitors  
Portable Devices  
TBIAS  
THM  
SBB1  
SBB2  
SYSTEM  
RESOURCES  
PGND  
GPIO  
1.5µH  
Internet of Things (IoT)  
GPIO  
1.85V  
LXA  
LXB  
BST  
VIO  
LDO  
Ordering Information appears at end of data sheet.  
MAX77650  
SYS  
Smart Power Selector is a trademark of Maxim Integrated  
Products, Inc.  
LED0  
LED1  
LED2  
VIO/Power  
*
*
*
*
SDA  
SCL  
nRST  
SDA  
SCL  
nRST  
nIRQ  
PWR_HLD  
AMUX  
PROCESSOR  
ADC INPUT  
nIRQ  
PWR_HLD  
AMUX  
nEN  
*PULLUP RESISTORS NOT DRAWN  
19-8550; Rev 7; 9/18  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
TABLE OF CONTENTS  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Benefits and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Simplified System Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Electrical Characteristics—Top Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Electrical Characteristics—Global Resources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Electrical Characteristics—Smart Power Selector Charger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Electrical Characteristics—Adjustable Thermistor Temperature Monitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Electrical Characteristics—Analog Multiplexer and Power Monitor AFEs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Electrical Characteristics—SIMO Buck-Boost. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Electrical Characteristics—LDO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Electrical Characteristics—Current Sinks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
2
Electrical Characteristics—I C Serial Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Pin Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Detailed Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Support Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Top-Level Interconnect Simplified Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Global Resources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Features and Benefits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Voltage Monitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
SYS POR Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
SYS Undervoltage Lockout Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
SYS Overvoltage Lockout Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
nEN Enable Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
nEN Manual Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
nEN Dual-functionality: Push-Button vs. Slide-Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Interrupts (nIRQ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Reset Output (nRST) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Power Hold Input (PWR_HLD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
General-Purpose Input Output (GPIO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
On/Off Controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Flexible Power Sequencer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
Debounced Inputs (nEN, GPI, CHGIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
Smart Power Selector Charger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
(
)
TABLE OF CONTENTS CONTINUED  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
Charger Symbol Reference Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Smart Power Selector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52  
Input Current Limiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52  
Minimum Input Voltage Regulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Minimum System Voltage Regulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Die Temperature Regulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52  
Charger State Machine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
Charger Off State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
Prequalification State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
Fast-Charge States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
Top-Off State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
Done State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
Prequalification Timer Fault State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Fast-Charge Timer Fault State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
Battery Temperature Fault State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
JEITA-Modified States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
Typical Charge Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
Charger Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
Configuring a Valid System Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
CHGIN/SYS/BATT Capacitor Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
Adjustable Thermistor Temperature Monitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Thermistor Bias. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
Configurable Temperature Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
Thermistor Applications Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
Using Different Thermistor β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
NTC Thermistor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
Analog Multiplexer & Power Monitor AFEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Measuring Battery Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
Method for Measuring Discharging Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
Method for Measuring Charging Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
SIMO Buck-Boost. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
SIMO Benefits and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
SIMO Control Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
SIMO Soft-Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
SIMO Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
SIMO Active Discharge Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
SIMO Applications Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
SIMO Available Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
(
)
TABLE OF CONTENTS CONTINUED  
Inductor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
Input Capacitor Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
Boost Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
Output Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
SIMO Switching Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
Unused Outputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
LDO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
LDO Simplified Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
LDO Active Discharge Resistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
LDO Soft-Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
LDO Applications Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
Input and Output Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Current Sinks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Current Sink Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
LED Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Unused Current Sink Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
2
I C Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
2
I C System Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72  
2
I C Interface Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72  
2
I C Data Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72  
2
I C Start and Stop Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72  
2
I C Acknowledge Bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73  
2
I C Slave Address. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73  
2
I C Clock Stretching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
2
I C General Call Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
2
I C Device ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
2
I C Communication Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
2
I C Communication Protocols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Writing to a Single Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Writing Multiple Bytes to Sequential Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Reading from a Single Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77  
Reading from Sequential Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77  
Engaging HS-mode for operation up to 3.4MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Typical Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
LIST OF FIGURES  
Figure 1. Top-Level Interconnect Simplified Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 2. nEN Usage Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 3. GPIO Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Figure 4. Top-Level On/Off Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Figure 5. Power-Up/Power-Down Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 6. Flexible Power Sequencer Basic Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 7. Startup Timing Diagram Due to nEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 8. Startup Timing Diagram Due to Charge Source Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Figure 9. Debounced Inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Figure 10. Linear Charger Simplified Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Figure 11. Charger Simplified Control Loops. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Figure 12. Charger State Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Figure 13. Example Battery Charge Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 14. Thermistor Logic Functional Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Figure 15. Safe-Charging Profile Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Figure 16. Thermistor Bias State Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Figure 17. Thermistor Circuit with Adjusting Series and Parallel Resistors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Figure 18. SIMO Detailed Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Figure 19. LDO Capacitance for Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Figure 20. LDO Simplified Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Figure 21. Current Sink Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Figure 22. I2C Simplified Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Figure 23. I2C System Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Figure 24. I2C Start and Stop Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Figure 25. Acknowledge Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Figure 26. Slave Address Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Figure 27. Writing to a Single Register with the Write Byte Protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Figure 28. Writing to Sequential registers X to N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Figure 29. Reading from a Single Register with the Read Byte Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Figure 30. Reading Continuously from Sequential Registers X to N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Figure 31. Engaging HS Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
LIST OF TABLES  
Table 1. Regulator Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 2. On/Off Controller Transition/State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Table 3. Charger Quick Symbol Reference Guide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Table 4. Trip Temperatures vs. Trip Voltages for Different NTC β. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Table 5. Example R and R Correcting Values for NTC β Above 3380K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
S
P
Table 6. NTC Thermistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Table 7. AMUX Signal Transfer Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Table 8. Battery Current Direction Decode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Table 9. SIMO Available Output Current for Common Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Table 10. Example Inductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
2
Table 11. I C Slave Address Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
Absolute Maximum Ratings  
nEN, PWR_HLD, nIRQ, nRST to GND.....-0.3V to V  
+ 0.3V  
IN_SBB to PGND.................................................-0.3V to +6.0V  
SYS  
SCL, SDA, GPIO to GND.............................-0.3V to V + 0.3V  
LXA Continuous Current (Note 3) .................................1.2A  
LXB Continuous Current (Note 4).................................1.2A  
IO  
RMS  
RMS  
CHGIN to GND...................................................-0.3V to +30.0V  
SYS, BATT to GND ..............................................-0.3V to +6.0V  
SYS to IN_SBB ....................................................-0.3V to +0.3V  
SBB0, SBB1, SBB2 to PGND (Note 2)................-0.3V to +6.0V  
BST to IN_SBB.....................................................-0.3V to +6.0V  
BST to LXB...........................................................-0.3V to +6.0V  
SBB0, SBB1, SBB2 Short-Circuit Duration...............Continuous  
PGND to GND......................................................-0.3V to +0.3V  
LGND to GND ......................................................-0.3V to +0.3V  
Operating Temperature Range........................... -40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range............................ -65°C to +150°C  
Soldering Temperature (reflow).......................................+260°C  
Continuous Power Dissipation (Multilayer Board)  
V to GND ............................................................-0.3V to +6.0V  
L
AMUX, THM, TBIAS to GND................................-0.3V to +6.0V  
nIRQ, nRST, SDA, AMUX, GPIO Continous Current.......±20mA  
CHGIN Continuous Current...........................................1.2A  
SYS Continuous Current...............................................1.2A  
BATT Continuous Current (Note 1)...............................1.2A  
RMS  
RMS  
RMS  
LDO to GND (Note 2)...........................-0.3V to V  
+ 0.3V  
IN_LDO  
IN_LDO, V to GND ................................. -0.3V to the lower of  
IO  
(V  
+ 0.3V) and +6.0V  
SYS  
LED0, LED1, LED2 to LGND...............................-0.3V to +6.0V  
(T = +70°C, derate 20.4mW/°C above +70°C)........1632mW  
A
Note 1: Do not repeatedly hot-plug a source to the BATT terminal at a rate greater than 10Hz. Hot plugging low-impedance sources  
results in an ~8A momentary (~2µs) current spike.  
Note 2: When the active discharge resistor is engaged, limit its power dissipation to an average of 10mW.  
Note 3: LXA has internal clamping diodes to PGND and IN_SBB. It is normal for these diodes to briefly conduct during switching  
events. Avoid steady-state conduction of these diodes.  
Note 4: Do not externally bias LXB. LXB has an internal low-side clamping diode to PGND, and an internal high-side clamping  
diode that dynamically shifts to the selected SIMO output. It is normal for these internal clamping diodes to briefly conduct  
during switching events. When the SIMO regulator is disabled, the LXB to PGND absolute maximum voltage is -0.3V to  
V
+ 0.3V.  
SBB0  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Package Information  
PACKAGE CHARACTERISTICS  
Package Code  
VALUES  
W302H2+1  
Outline Number  
21-100047  
Land Pattern Number  
Refer to Application Note 1891  
49°C/W (2s2p board)  
Thermal Resistance, Four-Layer Board:  
Junction-to-Ambient (θ  
)
JA  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board.  
For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
Package Information (continued)  
Pin 1  
Indicator  
see Note 7  
Marking  
E
1
COMMON DIMENSIONS  
A
0.05  
0.03  
0.64  
0.19  
A
A1  
A2  
0.45 REF  
D
AAAA  
A3  
b
BASIC  
0.040  
0.27  
0.03  
0.025  
0.025  
BASIC  
BASIC  
D
2.148  
2.748  
E
D1  
E1  
TOP VIEW  
SIDE VIEW  
1.60  
2.00  
A3  
e
0.40 BASIC  
0.00 BASIC  
0.20 BASIC  
A1  
SD  
SE  
S
A
A2  
DEPOPULATED BUMPS:  
NONE  
0.05  
S
FRONT VIEW  
E1  
SE  
e
NOTES:  
1. Terminal pitch is defined by terminal center to center value.  
2. Outer dimension is defined by center lines between scribe lines.  
3. All dimensions in millimeter.  
E
D
C
B
B
4. Marking shown is for package orientation reference only.  
5. Tolerance is ± 0.02 unless specified otherwise.  
SD  
D1  
6. All dimensions apply to PbFree (+) package codes only.  
7. Front - side finish can be either Black or Clear.  
A
maxim  
1
2
3
4
5
6
TM  
integrated  
A
b
TITLE  
PACKAGE OUTLINE 30 BUMPS  
S
AB  
M
0.05  
WLP PKG. 0.4 mm PITCH, W302H2+1  
BOTTOM VIEW  
REV.  
DOCUMENT CO2NT1RO-L1N0O.0047  
APPROVAL  
1
- DRAWING NOT TO SCALE -  
A
1
Maxim Integrated  
8
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
Electrical Characteristics—Top Level  
(V  
= 0V, V  
= V  
= V  
= V  
= 3.7V, V = 1.8V, limits are 100% production tested at T = +25°C, limits over  
CHGIN  
SYS  
BATT  
IN_SBB  
IN_LDO IO A  
the operating temperature range (T = -40°C to +85°C) are guaranteed by design and characterization, unless otherwise noted.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Operating Voltage  
Range  
V
2.7  
5.5  
V
SYS  
Main bias is off  
(SBIA_EN = 0). This  
is the standby state  
0.3  
1
1
Current measured  
into BATT and SYS  
and IN_SBB and  
IN_LDO, all  
Main bias is on in  
low-power mode  
(SBIA_EN = 1,  
Shutdown Supply  
Current  
I
μA  
SHDN  
resources are off  
(LDO, SBB0, SBB1, SBIA_LPM = 1)  
SBB2, LED0, LED1,  
LED2), T = 25°C  
A
Main bias is on in  
normal-power mode  
(SBIA_EN = 1,  
28  
5.6  
40  
SBIA_LPM = 0)  
Current measured  
into BATT and SYS  
and IN_SBB and  
IN_LDO. LDO,  
SBB0, SBB1, and  
SBB2 are enabled  
with no load. LED0,  
LED1, and LED2  
are disabled  
Main bias is in  
low-power mode  
(SBIA_LPM = 1)  
13  
60  
Quiescent Supply  
Current  
I
μA  
Q
Main bias is in  
normal-power mode  
(SBIA_LPM = 0)  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
Electrical Characteristics—Global Resources  
(V  
= 3.7V, limits are 100% production tested at T = +25°C, limits over the operating temperature range (T = -40°C to +85°C) are  
SYS  
A
A
guaranteed by design and characterization, unless otherwise noted.)  
PARAMETER  
POWER-ON RESET (POR)  
POR Threshold  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
falling  
1.6  
1.9  
2.1  
V
POR  
SYS  
POR Threshold  
Hysteresis  
100  
mV  
UNDERVOLTAGE LOCKOUT (UVLO)  
V
V
falling, UVLO_F[3:0] = 0xA  
falling, UVLO_F[3:0] = 0xF  
2.5  
2.6  
2.7  
SYS  
UVLO Threshold  
V
V
SYSUVLO  
2.75  
2.85  
2.95  
SYS  
UVLO Threshold  
Hysteresis  
V
UVLO_H[3:0] = 0x5  
300  
mV  
SYSUVLO_HYS  
OVERVOLTAGE LOCKOUT (OVLO)  
OVLO Threshold  
V
V
rising  
5.70  
5.85  
6.00  
V
SYSOVLO  
SYS  
THERMAL MONITORS  
Overtemperature  
Lockout Threshold  
T
T rising  
165  
80  
°C  
°C  
°C  
°C  
OTLO  
J
Thermal Alarm  
Temperature 1  
T
T rising  
J
JAL1  
JAL2  
Thermal Alarm  
Temperature 2  
T
T rising  
100  
15  
J
Thermal Alarm  
Temperature Hysteresis  
ENABLE INPUT (nEN)  
T = +25°C  
-1  
±0.001  
±0.01  
+1  
A
nEN Input Leakage  
Current  
V
= 5.5V, V  
=
SYS  
nEN  
I
μA  
nEN_LKG  
0V, and 5.5V  
T = +85°C  
A
Maxim Integrated  
10  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
Electrical Characteristics—Global Resources (continued)  
(V  
= 3.7V, limits are 100% production tested at T = +25°C, limits over the operating temperature range (T = -40°C to +85°C) are  
SYS  
A
A
guaranteed by design and characterization, unless otherwise noted.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
nEN Input Falling  
Threshold  
V
- 1.4  
V
SYS  
- 1.0  
SYS  
V
nEN falling  
nEN falling  
V
TH_nEN_F  
nEN Input Rising  
Threshold  
V
V
SYS  
- 0.6  
SYS  
V
V
TH_nEN_F  
- 0.9  
DBEN_nEN = 0  
DBEN_nEN = 1  
MRT_OTP = 0  
MRT_OTP = 1  
100  
30  
16  
8
μs  
Debounce Time  
t
DBNC_nEN  
ms  
14  
7
20  
Manual Reset Time  
t
s
MRST  
10.5  
POWER HOLD INPUT (PWR_HLD)  
V
V
= V = 5.5V,  
IO  
SYS  
T = +25°C  
-1  
±0.001  
±0.01  
+1  
A
PWR_HLD Input  
Leakage Current  
I
= 0V,  
μA  
PWR_HLD_LKG  
PWR_HLD  
T = +85°C  
and 5.5V  
A
PWR_HLD Input  
Voltage Low  
0.3 x  
V
V
V
V
= 1.8V  
= 1.8V  
= 1.8V  
V
V
IL  
IO  
IO  
IO  
V
IO  
PWR_HLD Input  
Voltage High  
0.7 x  
V
IH  
V
IO  
PWR_HLD Input  
Hysteresis  
V
50  
mV  
HYS  
PWR_HLD Glitch Filter  
t
Both rising and falling edges are filtered  
100  
μs  
PWR_HLD_GF  
Maximum time for PWR_HLD input to assert  
after nRST deasserts during the power-up  
sequence  
PWR_HLD Wait Time  
t
3.5  
4.0  
5.0  
0.4  
s
PWR_HLD_WAIT  
OPEN-DRAIN INTERRUPT OUTPUT (nIRQ)  
Output Voltage Low  
V
I
= 2mA  
= 25pF  
V
OL  
SINK  
Output Falling Edge  
Time  
t
C
2
ns  
f_nIRQ  
IRQ  
V
= V = 5.5V,  
IO  
SYS  
T = +25°C  
-1  
±0.001  
+1  
A
nIRQ set to be high  
impedance (i.e., no  
interrupts), VnIRQ =  
0V and 5.5V  
Leakage Current  
I
μA  
nIRQ_LKG  
T = +85°C  
±0.01  
A
OPEN-DRAIN RESET OUTPUT (nRST)  
Output Voltage Low  
V
I
= 2mA  
= 25pF  
0.4  
V
OL  
SINK  
Output Falling Edge  
Time  
t
C
2
ns  
f_nRST  
RST  
nRST Deassert Delay  
Time  
See Figure 5 and Figure 7 for more  
information  
t
5.12  
10.24  
±0.001  
ms  
ms  
RSTODD  
nRST Assert Delay Time  
t
See Figure 5 for more information  
RSTOAD  
V
= V = 5.5V,  
IO  
SYS  
T = +25°C  
-1  
+1  
A
nRST set to be high  
Leakage Current  
I
impedance (i.e., not  
μA  
nRST_LKG  
reset), V  
and 5.5V  
= 0V  
nRST  
T = +85°C  
±0.01  
A
Maxim Integrated  
11  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
Electrical Characteristics—Global Resources (continued)  
(V  
= 3.7V, limits are 100% production tested at T = +25°C, limits over the operating temperature range (T = -40°C to +85°C) are  
SYS  
A
A
guaranteed by design and characterization, unless otherwise noted.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
GENERAL-PURPOSE INPUT/OUTPUT (GPIO)  
0.3 x  
Input Voltage Low  
Input Voltage High  
V
V
V
= 1.8V  
= 1.8V  
V
V
IL  
IO  
V
IO  
0.7 x  
V
IH  
IO  
V
IO  
DIR = 1, V = 5.5V,  
T = +25°C  
-1  
±0.001  
±0.01  
+1  
IO  
A
Input Leakage Current  
I
V
= 0V and  
μA  
GPI_LKG  
GPIO  
T = +85°C  
A
5.5V  
Output Voltage Low  
Output Voltage High  
Input Debounce Time  
V
I
= 2mA  
0.4  
V
V
OL  
SINK  
0.8 x  
V
I
= 1mA  
OH  
SOURCE  
V
IO  
t
DBEN_GPI = 1  
30  
3
ms  
ns  
DBNC_GPI  
Output Falling Edge  
Time  
t
C
= 25pF  
= 25pF  
f_GPIO  
GPIO  
GPIO  
Output Rising Edge  
Time  
t
C
3
ns  
r_GPIO  
FLEXIBLE POWER SEQUENCER  
Power-Up Event Periods  
t
See Figure 6  
See Figure 6  
1.28  
2.56  
ms  
ms  
EN  
Power-Down Event  
Periods  
t
DIS  
Electrical Characteristics—Smart Power Selector Charger  
(V  
= 5.0V, V  
= 4.5V, V  
= 4.2V, limits are 100% production tested at T = +25°C, limits over the operating temperature  
CHGIN  
SYS  
BATT A  
range (T = -40°C to +85°C) are guaranteed by design and characterization, unless otherwise noted.)  
A
PARAMETER  
DC INPUT  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
CHGIN Valid Voltage  
Range  
Initial CHGIN voltage before enabling  
charging  
V
4.10  
7.25  
V
V
CHGIN  
CHGIN Standoff Voltage  
Range  
V
DC rising  
DC rising  
28  
7.50  
100  
4.0  
STANDOFF  
CHGIN Overvoltage  
Threshold  
V
7.25  
3.9  
95  
7.75  
4.1  
V
CHGIN_OVP  
CHGIN Overvoltage  
Hysteresis  
mV  
V
CHGIN Undervoltage  
Lockout  
V
DC rising  
CHGIN_UVLO  
CHGIN Undervoltage  
Lockout Hysteresis  
500  
mV  
mA  
Input Current Limit  
Range  
V
= V  
- 100mV, programmable  
SYS  
SYS-REG  
I
475  
CHGIN-LIM  
in 95mA steps  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
Electrical Characteristics—Smart Power Selector Charger (continued)  
(V  
= 5.0V, V  
= 4.5V, V  
= 4.2V, limits are 100% production tested at T = +25°C, limits over the operating temperature  
CHGIN  
SYS  
BATT A  
range (T = -40°C to +85°C) are guaranteed by design and characterization, unless otherwise noted.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
= 95mA, V = V  
MIN  
TYP  
MAX  
UNITS  
Input Current Limit  
Accuracy  
I
-
SYS-REG  
CHGIN-LIM  
SYS  
90  
95  
100  
mA  
100mV  
V
falling due to loading conditions  
CHGIN  
Minimum Input Voltage  
Regulation Range  
and/or high-impedance charge source,  
programmable in 100mV increments with  
VCHGIN_MIN[2:0].  
V
4.0  
4.7  
V
CHGIN-MIN  
Minimum Input Voltage  
Regulation Accuracy  
V
= 4.5V (VCHGIN_MIN[2:0] =  
CHGIN-MIN  
4.32  
100  
4.50  
120  
4.68  
140  
V
0b101), I  
reduced by 10%  
CHGIN  
Charger Input  
Debounce Timer  
V
= 5V, time before CHGIN is  
CHGIN  
t
ms  
CHGIN-DB  
allowed to deliver current to SYS or BATT  
SUPPLY AND QUIESCENT CURRENTS  
V
= 5V, charger is not in USB  
CHGIN  
BATT Bias Current  
I
suspend (USBS = 0), charging is finished  
5
μA  
BATT-BIAS  
(CHG_DTLS indicate done), I = 0mA  
SYS  
V
= 5V, charger is not in USB  
CHGIN  
suspend (USBS = 0), Charging is finished  
1.0  
1.8  
mA  
(CHG_DTLS indicate done), I = 0mA  
CHGIN Supply Current  
I
SYS  
CHGIN  
V
0A  
= 0V to 1V, V  
= 3.3V, I  
=
CHGIN  
BATT  
SYS  
50  
50  
μA  
μA  
CHGIN Suspend Supply  
Current  
V
= 5V, charger in USB suspend  
CHGIN  
I
CHGIN  
(USBS = 1)  
PREQUALIFICATIONS  
Charge Current  
Soft-Start Slew Time  
Zero to full scale  
Zero to full scale  
1
1
ms  
ms  
Input Current  
Soft-Start Slew Time  
Charger is in prequalification mode when  
V < V this threshold has 100mV of  
BATT  
hysteresis, programmable in 100mV steps  
Prequalification Voltage  
Threshold Range  
PQ,  
V
2.3  
-3  
3.0  
+3  
V
PQ  
with CHG_PQ[2:0]  
Prequalification Voltage  
Threshold Accuracy  
V
V
= 3.0V  
%
PQ  
= 2.5V, V  
= 3.0V, expressed as a  
, I_PQ = 0  
BATT  
PQ  
10  
20  
30  
percentage of I  
Prequalification Mode  
Charge Current  
FAST-CHG  
I
t
%
PQ  
V
= 2.5V, V  
= 3.0V, expressed as a  
BATT  
PQ  
percentage of I  
, I_PQ = 1  
FAST-CHG  
Prequalification Safety  
Timer  
V
< V  
= 3.0V  
27  
33  
minutes  
PQ  
BATT  
PQ  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
Electrical Characteristics—Smart Power Selector Charger (continued)  
(V  
= 5.0V, V  
= 4.5V, V  
= 4.2V, limits are 100% production tested at T = +25°C, limits over the operating temperature  
CHGIN  
SYS  
BATT A  
range (T = -40°C to +85°C) are guaranteed by design and characterization, unless otherwise noted.)  
A
PARAMETER  
FAST CHARGE  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Fast-Charge Voltage  
Range  
I
= 0mA, programmable in 25mV  
BATT  
V
3.6  
4.6  
+0.5  
1.0  
V
FAST-CHG  
steps with CHG_CV[5:0]  
I
= 0mA, V  
= 4.3V, V  
=
BATT  
FAST-CHG  
SYS  
-0.5  
±0.15  
4.5V, T = +25°C  
Fast-Charge Voltage  
Accuracy  
A
%
mA  
%
I
= 0mA, V = 3.6V to 4.6V,  
FAST-CHG  
BATT  
V
= 4.8V  
SYS  
Fast-Charge Current  
Range  
Programmable in 7.5mA steps with CHG_  
CC[5:0]  
I
7.5  
-1.5  
-1.5  
300  
+1.5  
+1.5  
FAST-CHG  
I
= 15mA, T = 25°C, V  
=
BATT  
FAST-CHG  
A
V
- 300mV  
Fast-Charge Current  
Accuracy  
FAST-CHG  
I
= 300mA, T = 25°C, V  
A
=
FAST-CHG  
BATT  
V
- 300mV  
FAST-CHG  
Fast-Charge Current  
Accuracy over  
Temperature  
Across all current settings, V  
= V  
FAST-  
BATT  
-10  
+10  
%
- 300mV  
CHG  
Programmable in 2 hour increments or  
disabled with T_FAST_CHG[1:0], from  
prequal done to timer fault  
Fast-Charge Safety  
Timer Range  
t
3
7
hours  
%
FC  
Fast-Charge Safety  
Timer Accuracy  
t
= 3 hours  
-10  
+10  
FC  
Fast-charge CC mode, loading conditions  
and/or a weak charging source caused  
charge current to drop below this threshold,  
Fast-Charge Safety  
Timer Suspend  
Threshold  
20  
%
°C  
expressed as a percentage of I  
FAST-CHG  
Junction Temperature  
Regulation Setting  
Range  
Programmable in 10°C steps with  
TJ_REG[2:0]  
T
60  
100  
J-REG  
Rate at which I  
/I  
is reduced to  
FAST-CHG PQ  
Junction Temperature  
Regulation Loop Gain  
maintain T  
, expressed a percentage  
per degree centigrade  
J-REG  
/I  
G
-5.4  
%/°C  
TJ-REG  
of I  
FAST-CHG PQ  
rise  
TERMINATION AND TOPOFF  
I_TERM = 0b00 (expressed as a percentage  
of I  
5
)
FAST-CHG  
I_TERM = 0b01 (expressed as a percentage  
of I  
7.5  
10  
15  
)
End-of-Charge  
Termination Current  
FAST-CHG  
I
%
TERM  
I_TERM = 0b10 (expressed as a percentage  
of I  
)
FAST-CHG  
I_TERM = 0b11 (expressed as a percentage  
of I  
)
FAST-CHG  
Maxim Integrated  
14  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
Electrical Characteristics—Smart Power Selector Charger (continued)  
(V  
= 5.0V, V  
= 4.5V, V  
= 4.2V, limits are 100% production tested at T = +25°C, limits over the operating temperature  
CHGIN  
SYS  
BATT A  
range (T = -40°C to +85°C) are guaranteed by design and characterization, unless otherwise noted.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
= 15mA, I  
= 1.5mA (10%  
FAST-CHG  
TERM  
1.35  
1.5  
1.65  
of I  
), T = +25°C  
A
End-of-Charge Termina-  
tion Current Accuracy  
FAST-CHG  
mA  
I
= 300mA, I  
= 30mA (10%  
FAST-CHG  
TERM  
27  
30  
33  
of I  
), T = +25°C  
A
FAST-CHG  
I
< I  
, programmable in 5 minute  
BATT  
TERM  
Top-Off Timer Range  
t
0
35  
minutes  
%
TO  
steps with T_TOPOFF[2:0]  
Top-Off Timer Accuracy  
t
= 10 minutes  
-10  
+10  
TO  
CHG = 0 (charging done), charging re-  
Charge Restart Thresh-  
old  
V
sumes when V  
< V  
- V  
RE-  
65  
150  
mV  
RESTART  
BATT  
FAST-CHG  
START  
DEVICE ON-RESISTANCE AND LEAKAGE  
BATT to SYS  
On-Resistance  
V
= 3.7V, I  
= 300mA, V  
=
BATT  
BATT  
CHGIN  
100  
0.1  
1
mΩ  
μA  
0V, battery is discharging to SYS  
V
= 4.5V, V = 0V, T = 25°C,  
SYS  
BATT  
A
1.0  
1.0  
charger disabled  
Charger FET Leakage  
Current  
V
= 4.5V, V  
= 0V, T = 85°C,  
A
SYS  
BATT  
charger disabled  
CHGIN to SYS  
On-Resistance  
V
V
= 4.65V  
600  
0.1  
1
mΩ  
μA  
CHGIN  
= 0V, V  
= 4.2V, T = +25°C,  
A
CHGIN  
SYS  
body-switched diode reverse biased  
Input FET Leakage  
Current  
V
= 0V, V = 4.2V, T = +85°C,  
CHGIN  
SYS  
A
body-switched diode is reverse biased  
SYSTEM NODE  
System Voltage  
Regulation Range  
Programmable in 25mV steps with VSYS_  
REG[4:0]  
V
4.1  
4.41  
4.365  
4.8  
4.59  
4.635  
V
V
SYS-REG  
V
V
= 4.5V, I  
= 4.5V, I  
= 1mA, T = +25°C  
A
4.50  
SYS-REG  
SYS  
System Voltage  
Regulation Accuracy  
V
= 1mA, T = -40°C  
A
SYS  
SYS-REG  
SYS  
4.500  
to +85°C  
V
V
= 5V, V  
= 4.5V, V  
<
(in-  
CHGIN  
SYS-REG  
SYS  
Minimum System  
Voltage Regulation  
Loop Setpoint  
due to I  
= I  
SYS-REG  
CHGIN  
CHGIN-LIM  
V
put in current-limit), battery charging, I  
reduced to 50% of I  
4.34  
4.4  
4.45  
V
V
SYS-MIN  
BATT  
(minimum  
FAST-CHG  
system voltage regulation active)  
Supplement Mode Sys-  
tem Voltage Regulation  
V
BATT  
- 0.15V  
I
= 150mA  
SYS  
Maxim Integrated  
15  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
Electrical Characteristics—Adjustable Thermistor Temperature Monitors  
(V  
= 5.0V, V  
= 4.5V, V  
= 4.2V, limits are 100% production tested at T = +25°C, limits over the operating temperature  
CHGIN  
SYS  
BATT A  
range (T = -40°C to +85°C) are guaranteed by design and characterization, unless otherwise noted.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
JEITA TEMPERATURE MONITORS  
TBIAS Voltage  
V
THM_EN = 1, V  
= 5V  
1.25  
V
V
TBIAS  
CHGIN  
Voltage rising threshold, programmable  
with THM_COLD[1:0] in 5ºC increments  
when using an NTC β = 3380K  
JEITA Cold Threshold  
Range  
V
V
0.867  
0.747  
0.367  
0.291  
1.024  
0.923  
0.511  
0.411  
COLD  
COOL  
WARM  
Voltage rising threshold, programmable  
with THM_COOL[1:0] in 5ºC increments  
when using an NTC β = 3380K  
JEITA Cool Threshold  
Range  
V
V
V
Voltage falling threshold, programmable  
with THM_WARM[1:0] in 5ºC increments  
when using an NTC β = 3380K  
JEITA Warm Threshold  
Range  
V
Voltage falling threshold, programmable  
with THM_HOT[1:0] in 5ºC increments  
when using an NTC β = 3380K  
JEITA Hot Threshold  
Range  
V
HOT  
Temperature Threshold  
Accuracy  
Voltage threshold accuracy expressed as  
temperature for an NTC β = 3380K  
±3  
3
°C  
°C  
V
Temperature Threshold  
Hysteresis  
Temperature hysteresis set on each volt-  
age threshold for an NTC β = 3380K  
JEITA Modified Fast-  
Charge Voltage Range  
V
I
= 0mA, programmable in 25mV  
FAST-CHG_  
JEITA  
BATT  
3.6  
7.5  
4.6  
steps, battery is either cool or warm  
JEITA Modified Fast-  
Charge Current Range  
I
Programmable in 7.5mA steps, battery is  
either cool or warm  
FAST-CHG_JEI-  
TA  
300  
mA  
Electrical Characteristics—Analog Multiplexer and Power Monitor AFEs  
(V  
= 5.0V, V  
= 4.5V, V  
= 4.2V, limits are 100% production tested at T = +25°C, limits over the operating temperature  
CHGIN  
SYS  
BATT A  
range (T = -40°C to +85°C) are guaranteed by design and characterization, unless otherwise noted.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ANALOG MULTIPLEXER AND POWER MONITOR AFEs  
Full-Scale Voltage  
V
1.25  
0.26  
V
FS  
SYS Voltage Monitor  
Gain  
V
corresponds to maximum V  
FS  
SYS-REG  
G
V/V  
VSYS  
setting  
CHGIN POWER  
CHGIN Current Monitor  
Gain  
V
corresponds to maximum I  
FS CHGIN-LIM  
G
2.632  
0.167  
V/A  
V/V  
ICHGIN  
setting  
CHGIN Voltage Monitor  
Gain  
G
V
corresponds to V  
CHGIN_OVP  
VCHGIN  
FS  
BATT MONITOR  
Battery Charge Current  
Monitor Gain  
V
corresponds to 100% of I  
FAST-CHG  
FS  
G
12.5  
mV/%  
IBATT-CHG  
setting (CHG_CC[5:0])  
Maxim Integrated  
16  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
Electrical Characteristics—Analog Multiplexer and Power Monitor AFEs (continued)  
(V  
= 5.0V, V  
= 4.5V, V  
= 4.2V, limits are 100% production tested at T = +25°C, limits over the operating temperature  
CHGIN  
SYS  
BATT A  
range (T = -40°C to +85°C) are guaranteed by design and characterization, unless otherwise noted.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
V
= 15mA, T = 25°C, V  
A
=
FAST-CHG  
BATT  
-3.5  
+3.5  
- 300mV  
Charge Current Monitor  
Accuracy  
FAST-CHG  
%
I
V
= 300mA, T = +25°C, V  
=
BATT  
FAST-CHG  
A
-3.5  
-10  
+3.5  
+10  
- 300mV  
FAST-CHG  
Charge Current Monitor  
Accuracy over  
Temperature  
Across all current settings, V  
= V  
FAST-  
BATT  
%
mA  
%
- 300mV  
CHG  
Battery Discharge  
Monitor Full-Scale  
Current Range  
Programmable with IMON_DISCHG_  
SCALE[3:0]  
I
8.2  
300  
DISCHG-SCALE  
Battery Discharge  
Current Monitor  
Accuracy  
15mA to 300mA battery discharge current,  
-15  
+15  
I
= 300mA  
DISCHG-SCALE  
Battery Discharge  
Current Monitor Offset  
I
= 0mA  
-0.5  
+0.65  
mA  
V/V  
BATT  
Battery Voltage Monitor  
Gain  
V
corresponds to maximum V  
FS FAST-CHG  
G
0.272  
VBATT  
setting  
ANALOG MULTIPLEXER  
Channel Switching Time  
0.3  
1
μs  
nA  
μA  
T = +25°C  
500  
V
= 0V, AMUX  
A
AMUX  
Off Leakage Current  
is high impedance  
T = +85°C  
1
A
THM AND TBIAS  
THM Voltage Monitor  
Gain  
G
1
1
V/V  
V/V  
VTHM  
TBIAS Voltage Monitor  
Gain  
G
VTBIAS  
Maxim Integrated  
17  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
Electrical Characteristics—SIMO Buck-Boost  
(V  
= 3.7V, V  
= 3.7V, C  
= 10μF, L = 1.5μH, limits are 100% production tested at T = +25°C, limits over the operating  
SYS  
IN_SBB  
SBBx A  
temperature range (T = -40°C to +85°C) are guaranteed by design and characterization, unless otherwise noted.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
OUTPUT VOLTAGE RANGE (SBB0)  
Minimum Output  
Voltage  
0.8  
V
V
Maximum Output  
Voltage  
2.375  
Output DAC Bits  
6
bits  
mV  
Output DAC LSB Size  
25  
OUTPUT VOLTAGE RANGE (SBB1)  
MAX77650  
MAX77651  
MAX77650  
MAX77651  
0.8  
2.4  
Minimum Output  
Voltage  
V
1.5875  
5.25  
6
Maximum Output  
Voltage  
V
Output DAC Bits  
bits  
mV  
MAX77650  
MAX77651  
12.5  
50  
Output DAC LSB Size  
OUTPUT VOLTAGE RANGE (SBB2)  
MAX77650  
MAX77651  
MAX77650  
MAX77651  
0.8  
2.4  
3.95  
5.25  
6
Minimum Output  
Voltage  
V
V
Maximum Output  
Voltage  
Output DAC Bits  
bits  
mV  
Output DAC LSB Size  
OUTPUT VOLTAGE ACCURACY  
50  
V
falling,  
SBBx  
T
T
= +25°C  
-2.5  
-4.0  
+2.5  
+4.0  
threshold where LXA  
switches high. Speci-  
fied as a percentage  
of target output volt-  
age (Note 3)  
A
A
Output Voltage  
Accuracy  
%
= -40°C to  
+85°C  
TIMING CHARACTERISTICS  
Delay time from the SIMO receiving its first  
enable signal to when it begins to switch in  
order to service that output.  
Enable Delay  
60  
μs  
Soft-Start Slew Rate  
dV/dt  
3.3  
5.0  
6.6  
mV/μs  
SS  
Maxim Integrated  
18  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
Electrical Characteristics—SIMO Buck-Boost (continued)  
(V  
= 3.7V, V  
= 3.7V, C  
= 10μF, L = 1.5μH, limits are 100% production tested at T = +25°C, limits over the operating  
SYS  
IN_SBB  
SBBx A  
temperature range (T = -40°C to +85°C) are guaranteed by design and characterization, unless otherwise noted.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER STAGE CHARACTERISTICS  
SBB0, SBB1, SBB2  
are disabled,  
T = +25°C  
-1.0  
±0.1  
±1.0  
+1.0  
A
LXA Leakage Current  
μA  
V
V
= 5.5V,  
= 0V, or 5.5V  
IN_SBB  
T = +85°C  
A
LXA  
SBB0, SBB1, SBB2  
T = +25°C  
-1.0  
±0.1  
±1.0  
+1.0  
A
are disabled, V  
IN_  
LXB Leakage Current  
BST Leakage Current  
= 5.5V, V  
=
μA  
μA  
SBB  
LXA  
0V or 5.5V, all V  
SBBx  
T = +85°C  
A
= 5.5V  
V
V
V
= 5.5V,  
= 5.5V,  
= 11V  
T = +25°C  
A
+0.01  
+0.1  
+1.0  
+1.0  
IN_SBB  
LXB  
BST  
T = +85°C  
A
SBB0, SBB1, SBB2  
are disabled, active-  
discharge disabled  
(ADE_SBBx = 0),  
T = +25°C  
+0.1  
A
Disabled Output  
Leakage Current  
μA  
V
V
V
= 5.5V,  
SBBx  
= 0V, V  
=
=
LXB  
SYS  
BST  
T = +85°C  
+0.2  
140  
A
= V  
IN_SBB  
5.5V  
Active Discharge  
Impedance  
SBB0, SBB1, SBB2 are disabled, active  
discharge enabled (ADE_SBBx = 1)  
R
80  
260  
Ω
AD_SBBx  
CONTROL SCHEME  
IP_SBBx = 0b11  
IP_SBBx = 0b10  
IP_SBBx = 0b01  
IP_SBBx = 0b00  
0.414  
0.589  
0.713  
0.892  
0.500  
0.707  
0.866  
1.000  
0.586  
0.806  
0.947  
1.108  
Peak Current Limit  
(Note 4)  
I
A
P_SBB  
Note 3: Measured in an open-loop test that determines the output voltage falling threshold where LXA switches high.  
Note 4: Typical values align with bench observations using the stated conditions. Minimum and maximum values are tested in pro-  
duction with DC currents. See the Typical Operating Characteristics SIMO switching waveforms to gain more insight on this  
specification.  
Maxim Integrated  
19  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
Electrical Characteristics—LDO  
(V  
= 3.7V, V  
= 2.05V, V  
= 1.85V, C  
= 10μF, limits are 100% production tested at T = +25°C, limits over the operating  
SYS  
IN_LDO  
LDO  
LDO A  
temperature range (T = -40°C to +85°C) are guaranteed by design and characterization, unless otherwise noted.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
GENERAL CHARACTERISTICS  
IN_LDO cannot exceed SYS voltage  
(Note 5)  
Input Voltage  
V
1.8  
5.5  
1
V
IN_LDO  
Current measured into IN_LDO, LDO  
output disabled (Note 6)  
LDO Shutdown Current  
I
I
0.1  
1.7  
μA  
IN_LDO  
LDO output enabled  
and in regulation,  
5.15  
V
V
= 2.05V,  
= 1.85V  
IN_LDO  
Current measured  
into IN_LDO,  
LDO Quiescent Supply  
Current (Note 6)  
LDO  
μA  
IN_LDO  
LDO output enabled  
and in dropout, V  
I
= 0mA  
LDO  
IN_  
LDO  
2.3  
= 1.8V, V  
LDO  
target is 1.85V  
Maximum Output  
Current  
I
150  
165  
mA  
mA  
OUT  
Current Limit  
V
externally forced to 1.3V  
255  
375  
LDO  
OUTPUT VOLTAGE RANGE  
Programmable with TV_LDO[6:0] in  
12.5mV steps  
Output Voltage Range  
1.3500  
2.9375  
V
Output DAC Bits  
7
bits  
mV  
Output DAC LSB Size  
STATIC CHARACTERISTICS  
12.5  
Initial Output Voltage  
Accuracy  
I
= 75mA, T = +25°C  
-2.5  
-3  
+2.5  
+3  
%
%
LDO  
A
V
V
out, I  
programmed from 1.35V to 2.9375V,  
LDO  
Output Voltage  
Accuracy  
= 1.8V to 5.5V, LDO not in drop-  
IN_LDO  
= 0mA to 150mA, T = -5°C to  
A
LDO  
+85°C  
Main bias circuits  
f = 10Hz to  
100kHz, I  
are in normal-power  
mode (SBIA_LPM  
= 0)  
550  
800  
=
=
=
OUT  
15mA, V  
SYS  
Output Noise  
μV  
RMS  
3.7V, V  
2.05V, V  
1.85V  
IN_LDO  
Main bias circuits are  
in low-power mode  
(SBIA_LPM = 1)  
=
LDO  
Maxim Integrated  
20  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
Electrical Characteristics—LDO (continued)  
(V  
= 3.7V, V  
= 2.05V, V  
= 1.85V, C  
= 10μF, limits are 100% production tested at T = +25°C, limits over the operating  
SYS  
IN_LDO  
LDO  
LDO A  
temperature range (T = -40°C to +85°C) are guaranteed by design and characterization, unless otherwise noted.)  
A
PARAMETER  
TIMING CHARACTERISTICS  
Enable Delay  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
T
= +25°C  
0.6  
1.25  
2.50  
ms  
A
V
from 10% to 90% of final value.  
LDO  
= +25°C  
Soft-Start Slew Rate  
dV/dt  
0.5  
1.25  
mV/μs  
SS  
T
A
POWER STAGE CHARACTERISTICS  
V
= 3.7V, 1.85V programmed output  
SYS  
Dropout Voltage  
V
voltage (TV_LDO[6:0] = 0x20), V  
=
IN_LDO  
90  
180  
mV  
LDO_DO  
1.8V, I  
= 150mA (Note 5)  
LDO  
Active-Discharge  
Impedance  
Regulator disabled, active discharge  
enabled (ADE_LDO = 1)  
R
50  
100  
200  
Ω
AD_LDO  
Regulator disabled,  
active discharge  
disabled (ADE_  
T = +25°C (Note 7)  
+0.1  
+1.0  
A
Disabled Output  
Leakage Current  
LDO = 0), V  
=
μA  
SYS  
V
V
= 5.5V,  
= 5.5V and  
IN_LDO  
T = +85°C  
+1.0  
0.6  
A
LDO  
0V  
V
= 3.7V,  
SYS  
1.85V programmed T = +25°C  
output voltage  
(TV_LDO[6:0] =  
0.9  
1.2  
A
Dropout On-Resistance  
R
Ω
DSON  
0x20), V  
=
IN_LDO  
T = +85°C  
A
1.8V, I  
= I  
MAX,  
LDO  
(Note 5)  
Note 5: Dropout is the condition where the input voltage is in its valid input range but the output cannot be properly regulated  
because the input voltage is not sufficiently higher than the output voltage. The dropout voltage is the difference between  
the input voltage and the output voltage when the regulator is in dropout. The dropout on-resistance is the resistance of the  
power MOSFET between the input and the output when the regulator is in dropout. Generally speaking, applications should  
avoid dropout by having sufficient input voltage. A dropout detection interrupt is available (DOD_R; see the Programmer’s  
Guide for more information). For example, applications with the output voltage target of 1.85V and the maximum load cur-  
rent is 80mA (ILDO_MAX), has a dropout voltage of 96mV (V  
= ILDO_MAX x RDSON_LDO = 80mA x 1.2Ω =  
LDO_DO  
96mV). To avoid dropout, the input voltage should be 1.95V (V  
= V  
+ V  
).  
IN_LDO  
LDO  
LDO_DO  
Note 6: Guaranteed by design and characterization but not directly production tested. Production test coverage is provided by the  
shutdown supply current and quiescent supply current specification in the Electrical CharacteristicsTop Level table.  
Note 7: Guaranteed by design and characterization but not directly production tested. The ability to disconnect the active discharge  
resistance is functionally checked in a production test.  
Maxim Integrated  
21  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
Electrical Characteristics—Current Sinks  
(V  
= 3.7V, limits are 100% production tested at T = +25°C, limits over the operating temperature range (T = -40°C to +85°C) are  
SYS  
A
A
guaranteed by design and characterization, unless otherwise noted.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
GENERAL CHARACTERISTICS  
Change in supply current at SYS when one  
channel is enabled and delivering 12.8mA,  
Current Sink Quiescent  
Current  
I
6
12  
µA  
Q
V
= 0.2V  
LEDx  
All current sink  
drivers combined,  
outputs disabled,  
T
T
= +25ºC  
= +85ºC  
+0.1  
+1.0  
+1.0  
A
Current Sink Leakage  
µA  
A
V
= 5.5V  
LEDx  
3.2mA CURRENT SINK RANGE (LED_FSx[1:0] = 0b01, VLEDx = 0.2V)  
Minimum Sink Current  
Maximum Sink Current  
Current Sink DAC Bits  
Current Sink DAC LSB  
BRT_LEDx[4:0] = 0b00000  
BRT_LEDx[4:0] = 0b11111  
0.1  
3.2  
5
mA  
mA  
bits  
mA  
0.1  
3.20  
3.20  
35  
T
T
= +25ºC  
3.10  
3.03  
3.25  
3.36  
70  
A
Current Sink Accuracy  
mA  
mV  
= -40ºC to +85ºC  
A
Dropout Voltage  
V
BRT_LEDx[4:0] = 0b11111, I  
= 2.9mA  
DO  
LEDx  
6.4mA CURRENT SINK RANGE (LED_FSx[1:0] = 0b10, VLEDx = 0.2V)  
Minimum Sink Current  
Maximum Sink Current  
Current Sink DAC Bits  
Current Sink DAC LSB  
BRT_LEDx[4:0] = 0b00000  
BRT_LEDx[4:0] = 0b11111  
0.2  
6.4  
5
mA  
mA  
bits  
mA  
0.2  
6.40  
6.40  
T
T
= +25ºC  
6.30  
6.06  
6.50  
6.72  
A
Current Sink Accuracy  
Dropout Voltage  
mA  
mV  
= -40ºC to +85ºC  
A
LED_FSx[1:0] = 0b11, BRT_LEDx[4:0] =  
0b11111, I = 5.75mA  
V
35  
70  
DO  
LEDx  
12.8mA CURRENT SINK RANGE (LED_FSx[1:0] = 0b11, VLEDx = 0.2V)  
Minimum Sink Current  
Maximum Sink Current  
Current Sink DAC Bits  
Current Sink DAC LSB  
BRT_LEDx[4:0] = 0b00000  
BRT_LEDx[4:0] = 0b11111  
0.4  
12.8  
5
mA  
mA  
bits  
mA  
0.4  
T
T
= +25ºC  
12.6  
12.8  
12.80  
35  
13.0  
13.44  
70  
A
Current Sink Accuracy  
mA  
mV  
= -40ºC to +85ºC  
12.16  
A
Dropout Voltage  
V
BRT_LEDx[4:0] = 0b11111, I  
= 11.5mA  
DO  
LEDx  
TIMING CHARACTERISTICS  
Root Clock Frequency  
25.6  
32.0  
38.4  
Hz  
Maxim Integrated  
22  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
Electrical Characteristics—Current Sinks (continued)  
(V  
= 3.7V, limits are 100% production tested at T = +25°C, limits over the operating temperature range (T = -40°C to +85°C) are  
SYS  
A
A
guaranteed by design and characterization, unless otherwise noted.)  
PARAMETER SYMBOL CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
TIMING CHARACTERISTICS/BLINK PERIOD SETTINGS  
0.5  
16  
s
Minimum Blink Period  
clocks  
s
8
Maximum Blink Period  
256  
0.5  
16  
clocks  
s
Blink Period LSB  
clocks  
TIMING CHARACTERISTICS/BLINK DUTY CYCLE  
Minimum Blink Duty Cycle  
Maximum Blink Duty Cycle  
Blink Duty Cycle LSB  
D_LEDx[3:0] = 0b0000  
D_LEDx[3:0] = 0b1111  
6.25  
100  
%
%
%
6.25  
2
Electrical Characteristics—I C Serial Interface  
(V  
= 3.7V, V = 1.8V, limits are 100% production tested at T = +25°C, limits over the operating temperature range (T = -40°C to  
SYS  
IO A A  
+85°C) are guaranteed by design and characterization, unless otherwise noted.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER SUPPLY  
V
Voltage Range  
V
1.7  
-1  
1.8  
0
3.6  
+1  
+1  
V
IO  
IO  
IH  
V
= 3.6V, V  
= V  
= V  
= 0V or 3.6V,  
= 0V or 1.7V  
IO  
SDA  
SCL  
T = +25°C  
V
Bias Current  
μA  
A
IO  
V
= 1.7V, V  
-1  
0
IO  
SDA  
SCL  
SDA AND SCL I/O STAGE  
SCL, SDA Input High  
Voltage  
0.7 x  
V
V
V
= 1.7V to 3.6V  
= 1.7V to 3.6V  
V
V
IO  
V
IO  
SCL, SDA Input Low  
Voltage  
0.3 x  
V
IL  
IO  
V
IO  
SCL, SDA Input  
Hysteresis  
0.05 x  
V
V
HYS  
V
IO  
SCL, SDA Input  
Leakage Current  
I
V
= 3.6V, V  
= V  
= 0V and 3.6V  
-10  
+10  
0.4  
μA  
V
I
IO  
SCL  
SDA  
SDA Output Low  
Voltage  
V
Sinking 20mA  
OL  
SCL, SDA Pin  
Capacitance  
C
10  
pF  
ns  
I
Output Fall Time from  
t
120  
OF  
V
to V (Note 2)  
IL  
IH  
Maxim Integrated  
23  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
2
Electrical Characteristics—I C (continued)  
(V  
= 3.7V, V = 1.8V, limits are 100% production tested at T = +25°C, limits over the operating temperature range (T = -40°C to  
SYS  
IO A A  
+85°C) are guaranteed by design and characterization, unless otherwise noted.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
2
I C-COMPATIBLE INTERFACE TIMING (STANDARD, FAST AND FAST MODE PLUS) (Note 8)  
Clock Frequency  
f
0
1000  
kHz  
SCL  
Hold Time (REPEATED)  
START Condition  
t
0.26  
μs  
HD;STA  
SCL Low Period  
SCL High Period  
t
0.5  
μs  
μs  
LOW  
t
0.26  
HIGH  
Setup Time REPEATED  
START Condition  
t
0.26  
μs  
SU_STA  
Data Hold Time  
Data Setup Time  
t
0
μs  
HD_DAT  
t
50  
ns  
SU_DAT  
Setup Time for STOP  
Condition  
t
0.26  
μs  
μs  
ns  
SU_STO  
Bus Free Time between  
STOP and START  
Condition  
t
0.5  
BUF  
Pulse Width of Sup-  
pressed Spikes  
Maximum pulse width of spikes that must  
be suppressed by the input filter  
t
50  
SP  
2
I C-COMPATIBLE INTERFACE TIMING (HIGH-SPEED MODE, C = 100pF) (Note 8)  
B
Clock Frequency  
f
3.4  
MHz  
ns  
SCL  
Setup Time REPEATED  
START Condition  
t
160  
160  
SU_STA  
Hold Time (REPEATED)  
START Condition  
t
ns  
HD_STA  
SCL Low Period  
SCL High Period  
Data Setup Time  
Data Hold Time  
SCL Rise Time  
t
160  
60  
10  
0
ns  
ns  
ns  
ns  
ns  
LOW  
t
HIGH  
t
SU_DAT  
HD_DAT  
t
70  
40  
t
T
T
= +25°C  
= +25°C  
10  
rCL  
A
Rise Time of SCL  
Signal after REPEATED  
START Condition and  
after Acknowledge Bit  
t
10  
80  
ns  
rCL1  
A
SCL Fall Time  
SDA Rise Time  
SDA Fall Time  
t
T
T
T
= +25°C  
= +25°C  
= +25°C  
10  
10  
10  
40  
80  
80  
ns  
ns  
ns  
fCL  
A
A
A
t
rDA  
t
fDA  
Setup Time for STOP  
Condition  
t
160  
ns  
pF  
ns  
SU_STO  
Bus Capacitance  
C
100  
B
Pulse Width of Sup-  
pressed Spikes  
Maximum pulse width of spikes that must  
be suppressed by the input filter  
t
10  
SP  
Maxim Integrated  
24  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
2
Electrical Characteristics—I C (continued)  
(V  
= 3.7V, V = 1.8V, limits are 100% production tested at T = +25°C, limits over the operating temperature range (T = -40°C to  
SYS  
IO A A  
+85°C) are guaranteed by design and characterization, unless otherwise noted.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
2
I C-COMPATIBLE INTERFACE TIMING (HIGH-SPEED MODE, C = 400pF) (Note 8)  
B
Clock Frequency  
f
1.7  
MHz  
ns  
SCL  
Setup Time REPEATED  
START Condition  
t
160  
160  
SU_STA  
Hold Time (REPEATED)  
START Condition  
t
ns  
HD_STA  
SCL Low Period  
SCL High Period  
Data Setup Time  
Data Hold Time  
SCL Rise Time  
t
320  
120  
10  
0
ns  
ns  
ns  
ns  
ns  
LOW  
t
HIGH  
t
SU_DAT  
HD_DAT  
t
150  
80  
t
T
T
= +25°C  
= +25°C  
20  
RCL  
A
Rise Time of SCL  
Signal after REPEATED  
START Condition and  
after Acknowledge Bit  
t
20  
80  
ns  
RCL1  
A
SCL Fall Time  
SDA Rise Time  
SDA Fall Time  
t
T
T
T
= +25°C  
= +25°C  
= +25°C  
20  
20  
20  
80  
ns  
ns  
ns  
FCL  
A
A
A
t
160  
160  
RDA  
t
FDA  
Setup Time for STOP  
Condition  
t
160  
ns  
pF  
ns  
SU_STO  
Bus Capacitance  
C
400  
B
Pulse Width of  
Suppressed Spikes  
Maximum pulse width of spikes that must  
be suppressed by the input filter  
t
10  
SP  
Note 8: Design guidance only. Not production tested.  
Maxim Integrated  
25  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
Typical Operating Characteristics  
(Typical Application Circuit, V  
= 0V, V  
= V  
= 3.7V, V  
= 3.7V, V = 1.8V, T = +25°C, unless otherwise noted.)  
CHGIN  
SYS  
IN_SBB  
BATT IO A  
SHUTDOWN SUPPLY CURRENT  
vs. BATTERY VOLTAGE  
SHUTDOWN SUPPLY CURRENT  
vs. BATTERY VOLTAGE  
SHUTDOWN SUPPLY CURRENT  
vs. BATTERY VOLTAGE  
toc03  
toc01  
toc02  
6
5
4
3
2
1
0
6
60  
LDO, SIMO, LED'S ARE DISABLED  
MAIN-BIAS OFF (SBIA_EN = 0)  
LDO, SIMO, LED'S ARE DISABLED  
MAIN-BIAS ON (SBIA_EN = 1)  
LOW-POWER MODE (SBIA_LPM = 1)  
LDO, SIMO, LED'S ARE DISABLED  
MAIN-BIAS ON (SBIA_EN = 1)  
NORMAL-POWER MODE (SBIA_LPM = 0)  
5
4
3
2
1
0
50  
TA = +85°C  
40 TA = +25°C  
TA = -40°C  
TA = +85°C  
TA = +25°C  
TA = -40°C  
TA = +85°C  
TA = +25°C  
TA = -40°C  
30  
20  
10  
0
2.5  
3.5  
4.5  
VBATT (V)  
5.5  
2.5  
3.5  
4.5  
VBATT (V)  
5.5  
2.5  
3.5  
4.5  
VBATT (V)  
5.5  
QUIESCENT SUPPLY CURRENT  
vs. BATTERY VOLTAGE  
QUIESCENT SUPPLY CURRENT  
vs. TEMPERATURE  
toc04  
toc05  
10  
9
8
7
6
5
4
3
2
1
0
10  
MAIN-BIAS ON (SBIA_EN = 1)  
LOW-POWER MODE (SBIA_LPM = 1)  
MAIN-BIAS ON (SBIA_EN = 1)  
LOW-POWER MODE (SBIA_LPM = 1)  
9
8
7
6
5
4
3
2
1
0
SBB0, SBB1, SBB2, LDO ENABLED  
SBB0, SBB1, SBB2, LDO ENABLED  
SBB0, SBB1, SBB2 ENABLED  
SBB0, SBB1 ENABLED  
SBB0, SBB1, SBB2 ENABLED  
SBB0, SBB1 ENABLED  
SBB0 ENABLED  
SBB0 ENABLED  
2.5  
3.5  
4.5  
VBATT (V)  
5.5  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
SBB2 LOAD REGULATION  
(VSBB2 = 3.3V, PER PEAK CURRENT LIMIT)  
SBB2 EFFICIENCY vs. OUTPUT CURRENT  
(VSBB2 = 3.3V, PER PEAK CURRENT LIMIT)  
toc07  
toc06  
3.50  
3.45  
3.40  
3.35  
3.30  
3.25  
3.20  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
DRV_SBB = 0, VIN_SBB = 3.7V  
IP_SBB2 = 1000mA  
DRV_SBB = 0, VIN_SBB = 3.7V  
CSBB2_EFFECTIVE = 3µF  
CSBB2_EFFECTIVE = 3µF  
IP_SBB2 = 866mA  
IP_SBB2 = 700mA  
IP_SBB2 = 500mA  
IP_SBB2 = 500mA  
IP_SBB2 = 700mA  
IP_SBB2 = 866mA  
IP_SBB2 = 1000mA  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
Maxim Integrated  
26  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, V  
= 0V, V  
= V  
= 3.7V, V  
= 3.7V, V = 1.8V, L = 2.2µF (TOKO DFE201210S-2R2M,  
CHGIN  
SYS  
IN_SBB  
BATT IO  
127mΩ, 2.0mm x 1.2mm x 1.0mm), T = +25°C, unless otherwise noted.)  
A
SBB0 EFFICIENCY vs. OUTPUT CURRENT  
SBB0 LOAD REGULATION  
SBB1 EFFICIENCY vs. OUTPUT CURRENT  
(VSBB0 = 2.05V, PER PEAK CURRENT LIMIT)  
(VSBB0 = 2.05V, PER PEAK CURRENT LIMIT)  
(VSBB1 = 1.2V, PER PEAK CURRENT LIMIT)  
toc08  
toc09  
toc10  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
2.25  
2.20  
2.15  
2.10  
2.05  
2.00  
1.95  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
DRV_SBB = 0, VIN_SBB = 3.7V  
CSBB0_EFFECTIVE = 5µF  
DRV_SBB = 0, VIN_SBB = 3.7V  
DRV_SBB = 0, VIN_SBB = 3.7V  
IP_SBB1 = 500mA  
IP_SBB1 = 700mA  
IP_SBB1 = 866mA  
CSBB0_EFFECTIVE = 5µF  
CSBB1_EFFECTIVE = 8µF  
IP_SBB0 = 1000mA  
IP_SBB0 = 866mA  
IP_SBB0 = 700mA  
IP_SBB0 = 500mA  
IP_SBB1 = 1000mA  
IP_SBB0 = 500mA  
IP_SBB0 = 700mA  
IP_SBB0 = 866mA  
IP_SBB0 = 1000mA  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
SBB2 EFFICIENCY  
vs. OUTPUT CURRENT  
(VSBB2 = 3.3V, PER DRIVE STRENGTH)  
SBB1 LOAD REGULATION  
(VSBB1 = 1.2V, PER PEAK CURRENT LIMIT)  
toc11  
toc12  
1.24  
1.23  
1.22  
1.21  
1.20  
1.19  
1.18  
88  
86  
84  
82  
80  
78  
76  
74  
DRV_SBB = 0, VIN_SBB = 3.7V  
CSBB1_EFFECTIVE = 8µF  
IP_SBB2 = 3, VIN_SBB = 3.7V  
CSBB2_EFFECTIVE = 3µF  
IP_SBB1 = 1000mA  
IP_SBB1 = 866mA  
IP_SBB1 = 700mA  
IP_SBB1 = 500mA  
DRV_SBB = 0  
DRV_SBB = 1  
72 DRV_SBB = 2  
DRV_SBB = 3  
70  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
CHGIN SUPPLY CURRENT vs.  
CHGIN VOLTAGE  
SBB2 LOAD REGULATION  
(VSBB2 = 3.3V, PER DRIVE STRENGTH)  
(USB SUSPENDED)  
toc13  
toc14  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VCHGIN RISING  
IP_SBB2 = 3, VIN_SBB = 3.7V  
CSBB2_EFFECTIVE = 3µF  
DRV_SBB = 0  
DRV_SBB = 1  
DRV_SBB = 2  
DRV_SBB = 3  
0.1  
1
10  
100  
1000  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
OUTPUT CURRENT (mA)  
VCHGIN (V)  
Maxim Integrated  
27  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, V  
= 0V, V  
= V  
= 3.7V, V  
= 3.7V, V = 1.8V, L = 2.2µF (TOKO DFE201210S-2R2M,  
CHGIN  
SYS  
IN_SBB  
BATT IO  
127mΩ, 2.0mm x 1.2mm x 1.0mm), T = +25°C, unless otherwise noted.)  
A
SBB1 EFFICIENCY vs. OUTPUT CURRENT  
(VSBB1 = 1.2V, PER DRIVE STRENGTH)  
SBB0 LOAD REGULATION  
(VSBB0 = 2.05V, PER DRIVE STRENGTH)  
CHARGE PROFILE, 40mAh BATTERY  
toc15  
toc16  
toc17  
2.09  
2.08  
2.07  
2.06  
2.05  
2.04  
2.03  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0.060  
0.054  
0.048  
0.042  
0.036  
0.030  
0.024  
0.018  
0.012  
0.006  
0.000  
IP_SBB0 = 3, VIN_SBB = 3.7V  
CSBB0_EFFECTIVE = 5µF  
IP_SBB1 = 3, VIN_SBB = 3.7V  
CSBB1_EFFECTIVE = 8µF  
VPQ = 3V, IPQ = 10%  
IFAST-CHARGE = 30mA, VFAST-CHARGE = 4.2V  
DRV_SBB = 0  
DRV_SBB = 1  
DRV_SBB = 2  
DRV_SBB = 3  
DRV_SBB = 0  
DRV_SBB = 1  
DRV_SBB = 2  
DRV_SBB = 3  
VBATT (V)  
IBATT (A)  
BATTERY LOADED  
DURING THE 'DONE'  
STATE TO SHOW  
THE RESTART  
BEHAVIOR  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
0.0  
1.0  
2.0  
3.0  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
TIME (hr)  
SBB2 LOAD REGULATION  
(VSBB2 = 3.3V, PER INPUT VOLTAGE)  
CHARGE PROFILE, 110mAh BATTERY  
toc18  
toc19  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0.150  
0.135  
0.120  
0.105  
0.090  
0.075  
0.060  
0.045  
0.030  
0.015  
0.000  
DRV_SBB=0, IP_SBB2 = 3  
CSBB2_EFFECTIVE = 3µF  
VPQ = 3V, IPQ = 10%  
IFAST-CHG = 75mA, VFAST-CHG = 4.2V  
VIN_SBB = 5.5V  
VIN_SBB = 5.0V  
VIN_SBB = 4.2V  
VIN_SBB = 3.7V  
VIN_SBB = 3.3V  
VIN_SBB = 2.8V  
VBATT (V)  
IBATT (A)  
BATTERY LOADED  
DURING THE 'DONE'  
STATE TO SHOW  
THE RESTART  
BEHAVIOR  
0.1  
1
10  
100  
1000  
0.0  
1.0  
2.0  
TIME (hr)  
3.0  
OUTPUT CURRENT (mA)  
SBB2 EFFICIENCY vs. OUTPUT CURRENT  
SBB2 LOAD REGULATION  
(VSBB2 = 2.5V, PER INPUT VOLTAGE)  
(VSBB2 = 2.5V, PER INPUT VOLTAGE)  
toc20  
toc21  
88  
2.58  
2.56  
2.54  
2.52  
2.50  
2.48  
2.46  
DRV_SBB = 0, IP_SBB2 = 3  
DRV_SBB = 0, IP_SBB2 = 3  
CSBB2_EFFECTIVE = 5µF  
VIN_SBB = 5.5V  
VIN_SBB = 5.0V  
VIN_SBB = 4.2V  
VIN_SBB = 3.7V  
VIN_SBB = 3.3V  
VIN_SBB = 2.8V  
86 CSBB2_EFFECTIVE = 5µF  
84  
82  
80  
VIN_SBB = 4.2V  
VIN_SBB = 3.7V  
VIN_SBB = 5.0V  
VIN_SBB = 3.3V  
VIN_SBB = 5.5V  
VIN_SBB = 3.0V  
VIN_SBB = 2.8V  
78  
76  
74  
72  
70  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
Maxim Integrated  
28  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, V  
= 0V, V  
= V  
= 3.7V, V  
= 3.7V, V = 1.8V, L = 2.2µF (TOKO DFE201210S-2R2M,  
CHGIN  
SYS  
IN_SBB  
BATT  
IO  
127mΩ, 2.0mm x 1.2mm x 1.0mm), T = +25°C, unless otherwise noted.)  
A
SBB0 EFFICIENCY vs. OUTPUT CURRENT  
(VSBB0 = 2.05V, PER INPUT VOLTAGE)  
SBB0 LOAD REGULATION  
(VSBB0 = 2.05V, PER INPUT VOLTAGE)  
toc22  
88  
toc23  
2.09  
DRV_SBB = 0, IP_SBB0 = 3  
86 CSBB0_EFFECTIVE = 5µF  
DRV_SBB = 0, IP_SBB0 = 3  
VIN_SBB = 5.5V  
CSBB0_EFFECTIVE = 5µF  
VIN_SBB = 5.0V  
2.08  
VIN_SBB = 4.2V  
VIN_SBB = 3.7V  
VIN_SBB = 3.3V  
VIN_SBB = 3.0V  
84  
82  
2.07  
80  
VIN_SBB = 2.8V  
VIN_SBB = 3.7V  
VIN_SBB = 3.3V  
2.06  
78  
VIN_SBB = 4.2V  
VIN_SBB = 3.0V  
VIN_SBB = 2.8V  
VIN_SBB = 5.0V  
VIN_SBB = 5.5V  
76  
74  
72  
70  
2.05  
2.04  
2.03  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
SBB0 EFFICIENCY vs. OUTPUT CURRENT  
SBB0 LOAD REGULATION  
(VSBB0 = 1.85V, PER INPUT VOLTAGE)  
(VSBB0 = 1.85V, PER INPUT VOLTAGE)  
toc24  
toc25  
88  
1.89  
1.88  
1.87  
1.86  
1.85  
1.84  
1.83  
DRV_SBB = 0, IP_SBB0 = 3  
DRV_SBB = 0, IP_SBB0 = 3  
CSBB0_EFFECTIVE = 5µF  
VIN_SBB = 5.5V  
VIN_SBB = 5.0V  
VIN_SBB = 4.2V  
VIN_SBB = 3.7V  
VIN_SBB = 3.3V  
VIN_SBB = 2.8V  
86 CSBB0_EFFECTIVE = 5µF  
84  
82  
80  
VIN_SBB = 3.7V  
78  
VIN_SBB = 3.3V  
VIN_SBB = 4.2V  
VIN_SBB = 3.0V  
VIN_SBB = 2.8V  
VIN_SBB = 5.0V  
VIN_SBB = 5.5V  
76  
74  
72  
70  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
SBB0 EFFICIENCY vs. OUTPUT CURRENT  
SBB0 LOAD REGULATION  
(VSBB0 = 1.5V, PER INPUT VOLTAGE)  
(VSBB0 = 1.5V, PER INPUT VOLTAGE)  
toc26  
toc27  
88  
1.54  
1.53  
1.52  
1.51  
1.50  
1.49  
1.48  
DRV_SBB = 0, IP_SBB0 = 3  
DRV_SBB = 0, IP_SBB0 = 3  
CSBB0_EFFECTIVE = 6µF  
VIN_SBB = 5.5V  
86 CSBB0_EFFECTIVE = 6µF  
VIN_SBB = 5.0V  
VIN_SBB = 4.2V  
VIN_SBB = 3.7V  
VIN_SBB = 3.3V  
VIN_SBB = 2.8V  
84  
82  
80  
78  
76  
74  
72  
70  
VIN_SBB = 3.7V  
VIN_SBB = 3.3V  
VIN_SBB = 4.2V  
VIN_SBB = 3.0V  
VIN_SBB = 2.8V  
VIN_SBB = 5.0V  
VIN_SBB = 5.5V  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
Maxim Integrated  
29  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, V  
= 0V, V  
= V  
= 3.7V, V  
= 3.7V, V = 1.8V, L = 2.2µF (TOKO DFE201210S-2R2M,  
CHGIN  
SYS  
IN_SBB  
BATT  
IO  
127mΩ, 2.0mm x 1.2mm x 1.0mm), T = +25°C, unless otherwise noted.)  
A
SBB1 EFFICIENCY vs. OUTPUT CURRENT  
(VSBB1 = 1.2V, PER INPUT VOLTAGE)  
SBB1 LOAD REGULATION  
(VSBB1 = 1.2V, PER INPUT VOLTAGE)  
toc28  
toc29  
88  
1.24  
DRV_SBB = 0, IP_SBB1 = 3  
VIN_SBB = 5.5V  
VIN_SBB = 3.7V  
VIN_SBB = 3.3V  
VIN_SBB = 4.2V  
VIN_SBB = 3.0V  
VIN_SBB = 2.8V  
VIN_SBB = 5.0V  
VIN_SBB = 5.5V  
DRV_SBB = 0, IP_SBB1 = 3  
CSBB1_EFFECTIVE = 8µF  
86  
84  
82  
80  
78  
76  
74  
72  
70  
CSBB1_EFFECTIVE = 8µF  
VIN_SBB = 5.0V  
1.23  
VIN_SBB = 4.2V  
VIN_SBB = 3.7V  
VIN_SBB = 3.3V  
VIN_SBB = 2.8V  
1.22  
1.21  
1.20  
1.19  
1.18  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
SBB1 EFFICIENCY vs. OUTPUT CURRENT  
SBB1 LOAD REGULATION  
(VSBB1 = 1.0V, PER INPUT VOLTAGE)  
(VSBB1 = 1.0V, PER INPUT VOLTAGE)  
toc30  
toc31  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
1.04  
1.03  
1.02  
1.01  
1.00  
0.99  
0.98  
DRV_SBB = 0, IP_SBB1 = 3  
CSBB1_EFFECTIVE = 8µF  
DRV_SBB = 0, IP_SBB1 = 3  
CSBB1_EFFECTIVE = 8µF  
VIN_SBB = 3.7V  
VIN_SBB = 3.3V  
VIN_SBB = 4.2V  
VIN_SBB = 3.0V  
VIN_SBB = 2.8V  
VIN_SBB = 5.0V  
VIN_SBB = 5.5V  
VIN_SBB = 5.5V  
VIN_SBB = 5.0V  
VIN_SBB = 4.2V  
VIN_SBB = 3.7V  
VIN_SBB = 3.3V  
VIN_SBB = 2.8V  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
SBB1 LOAD REGULATION  
(VSBB1 = 0.8V, PER INPUT VOLTAGE)  
SBB1 EFFICIENCY vs. OUTPUT CURRENT  
(VSBB1 = 0.8V, PER INPUT VOLTAGE)  
toc32  
toc33  
88  
0.84  
0.83  
0.82  
0.81  
0.80  
0.79  
0.78  
DRV_SBB = 0, IP_SBB1 = 3  
VIN_SBB = 3.7V  
DRV_SBB = 0, IP_SBB1 = 3  
CSBB1_EFFECTIVE = 9µF  
VIN_SBB = 5.5V  
VIN_SBB = 5.0V  
VIN_SBB = 4.2V  
VIN_SBB = 3.7V  
VIN_SBB = 3.3V  
VIN_SBB = 2.8V  
86 CSBB1_EFFECTIVE = 9µF  
VIN_SBB = 3.3V  
VIN_SBB = 4.2V  
VIN_SBB = 3.0V  
VIN_SBB = 2.8V  
VIN_SBB = 5.0V  
VIN_SBB = 5.5V  
84  
82  
80  
78  
76  
74  
72  
70  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
Maxim Integrated  
30  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, V  
= 0V, V  
= V  
= 3.7V, V  
= 3.7V, V = 1.8V, L = 1.5µF, T = +25°C, unless otherwise noted.)  
CHGIN  
SYS  
IN_SBB  
BATT  
IO  
A
SIMO LINE TRANSIENT  
SBB2 LOAD TRANSIENT  
toc34  
toc35  
3.3V CSBB2_EFF =6µF  
ISBB0 = ISBB1 = ISBB2 = 10mA  
L=2.2µH  
4.2V  
VSBB2  
50mV/div  
3.2V  
VIN_SBB  
1V/div  
IP_SBBx SET TO 500mA  
LOW-POWER MODE  
IP_SBB2 = 866mA,VSBB2 = 3.3V, CSBB2_EFF =6µF  
IP_SBB1 = 500mA,VSBB1 = 1.2V, CSBB1_EFF =8µF  
IP_SBB0 = 707mA,VSBB0 = 2.05V, CSBB0_EFF = 5µF  
1.2V  
CSBB1_EFF =8µF  
CSBB0_EFF =5µF  
ISBB1 = 10mA  
ISBB0 = 10mA  
VSBB1  
VSBB0  
50mV/div  
50mV/div  
2.05V  
VSBB2  
VSBB1  
VSBB0  
50mV/div  
50mV/div  
50mV/div  
80mA  
10mA  
ISBB2  
100mA/div  
40µs/div  
10µs/div  
SBB1 LOAD TRANSIENT  
SBB0 LOAD TRANSIENT  
toc36  
toc37  
3.3V  
3.3V  
CSBB2_EFF =6µF  
CSBB2_EFF =6µF  
ISBB2 = 10mA  
ISBB2 = 10mA  
VSBB2  
VSBB2  
50mV/div  
50mV/div  
IP_SBBx SET TO 500mA  
LOW-POWER MODE  
IP_SBBx SET TO 500mA  
LOW-POWER MODE  
ISBB1 = 10mA  
CSBB1_EFF =8µF  
1.2V  
1.2V CSBB1_EFF =8µF  
VSBB1  
VSBB0  
VSBB1  
VSBB0  
50mV/div  
50mV/div  
50mV/div  
50mV/div  
ISBB0 = 10mA  
2.05V  
CSBB0_EFF =5µF  
CSBB0_EFF =5µF  
2.05V  
100mA  
100mA  
10mA  
10mA  
ISBB0  
ISBB1  
100mA/div  
100mA/div  
40µs/div  
40µs/div  
SIMO SWITCHING WAVEFORMS  
HEAVY UTILIZATION 75mA PER CHANNEL  
SIMO SWITCHING WAVEFORMS  
MEDIUM UTILIZATION 25mA PER CHANNEL  
SIMO SWITCHING WAVEFORMS  
LIGHT UTILIZATION 10mA PER CHANNEL  
toc39  
toc40  
toc38  
IL  
IL  
VSBB2  
VSBB1  
VSBB0  
500mA/div  
500mA/div  
50mV/div  
IL  
500mA/div  
IP_SBB2 = 1000mA,VSBB2= 3.3V, CSBB2_EFF =3µF  
IP_SBB2 = 866mA,VSBB2= 3.3V, CSBB2_EFF =3µF  
IP_SBB2 = 500mA,VSBB2= 3.3V, CSBB2_EFF =3µF  
VSBB2  
VSBB1  
VSBB0  
IP_SBB1 = 1000mA,VSBB1= 1.2V, CSBB1_EFF =8µF  
IP_SBB2 = 1000mA,VSBB0= 2.05V, CSBB0_EFF =5µF  
VSBB2  
VSBB1  
VSBB0  
50mV/div  
50mV/div  
50mV/div  
50mV/div  
50mV/div  
50mV/div  
50mV/div  
50mV/div  
IP_SBB1 = 500mA,VSBB1= 1.2V, CSBB1_EFF =8µF  
IP_SBB2 = 500mA,VSBB0= 2.05V, CSBB0_EFF =5µF  
IP_SBB1 = 500mA,VSBB1= 1.2V, CSBB1_EFF =8µF  
IP_SBB2 = 707mA,VSBB0= 2.05V, CSBB0_EFF =5µF  
4µs/div  
4µs/div  
4µs/div  
Maxim Integrated  
31  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, V  
= 0V, V  
= V  
= 3.7V, V  
= 3.7V, V = 1.8V, L = 1.5µF, T = +25°C, unless otherwise noted.)  
CHGIN  
SYS  
IN_SBB  
BATT  
IO  
A
LDO LINE REGULATION  
LDO LOAD REGULATION  
LDO LINE TRANSIENT  
toc43  
toc41  
toc42  
1.95  
1.93  
1.91  
1.89  
1.87  
1.85  
1.83  
1.81  
1.79  
1.77  
1.75  
1.95  
NO LOAD  
VLDO TARGET VOLTAGE = 1.85V  
TA= +85°C  
TA= +25°C  
TA= -20°C  
1.93  
1.91  
1.89  
1.87  
1.85  
1.83  
1.81  
1.79  
1.77  
1.75  
3.0 VIN_LDO  
4.2 VIN_LDO  
5.5 VIN_LDO  
2.35V  
2.05V  
VIN_LDO  
200mV/div  
1mV/div  
VLDO  
0.000 0.025 0.050 0.075 0.100 0.125 0.150  
3.0  
4.0  
5.0  
6.0  
200µs/div  
ILDO (A)  
VIN_LDO (V)  
LDO LOAD TRANSIENT  
LDO LOAD TRANSIENT  
toc45  
toc44  
1.85V  
1.85V  
VLDO  
VLDO  
50mV/div  
50mV/div  
135mA  
80mA  
15mA  
5mA  
ILDO  
50mV/div  
ILDO  
50mV/div  
100µs/div  
100µs/div  
LDO POWER-SUPPLY  
REJECTION RATIO  
LDO LOAD TRANSIENT  
toc46  
toc47  
60  
50  
40  
30  
20  
10  
VIN_LDO AVERAGE = 2.05V  
V
AVERAGE = 1.85V  
LOAD = 15mA  
LDO  
1.85V  
VLDO  
50mV/div  
150mA  
2mA  
ILDO  
50mV/div  
0
100µs/div  
0.1  
1
10  
100  
1000  
INPUT FREQUENCY (kHz)  
Maxim Integrated  
32  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, V  
= 0V, V  
= V  
= 3.7V, V  
= 3.7V, V = 1.8V, L = 1.5µF, T = +25°C, unless otherwise noted.)  
CHGIN  
SYS  
IN_SBB  
BATT  
IO  
A
CHGIN SUPPLY CURRENT  
vs. CHGIN VOLTAGE  
CHGIN SUPPLY CURRENT  
vs. CHGIN VOLTAGE  
toc49  
toc48  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.8  
VCHGIN RISING  
USB SUSPENDED  
ISYS = 0mA  
VCHGIN RISING  
VBATT = 2.7V  
VBATT = 3.6V  
VBATT = 4.4V  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5  
VCHGIN (V)  
VCHGIN (V)  
SYS TO BATT IMPEDANCE  
BATT BIAS CURRENT vs. BATT  
toc50  
toc51  
10  
9
8
7
6
5
4
3
2
1
0
0.16  
0.15  
0.14  
0.13  
0.12  
0.11  
0.10  
0.09  
0.08  
CHARGER DISABLED  
VCHGIN = 5V  
TA = +85°C  
TA = +25°C  
TA = -40°C  
IBATT = 10mA  
IBATT = 100mA  
IBATT = 300mA  
2.5  
3.0  
3.5  
4.0  
4.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
VBATT (V)  
VBATT (V)  
SYS LOAD TRANSIENT  
CAUSING BATTERY SUPPLEMENT  
CHARGE PROFILE, 40mAh BATTERY  
CHARGE PROFILE, 110mAh BATTERY  
toc54  
toc52  
toc53  
4.5  
4.3  
4.1  
3.9  
3.7  
3.5  
3.3  
3.1  
2.9  
2.7  
2.5  
0.050  
0.045  
0.040  
0.035  
0.030  
0.025  
0.020  
0.015  
0.010  
0.005  
0.000  
4.5  
4.3  
4.1  
3.9  
3.7  
3.5  
3.3  
3.1  
2.9  
2.7  
2.5  
0.150  
VPQ = 3V, IPQ = 10%  
IFAST-CHARGE = 30mA, VFAST-CHARGE = 4.2V  
VPQ = 3V, IPQ = 10%  
IFAST-CHG = 90mA, VFAST-CHG = 4.2V  
125mA  
ICHGIN_LIM = 95mA  
0.135  
0.120  
0.105  
0.090  
0.075  
0.060  
0.045  
0.030  
0.015  
0.000  
ICHGIN = 30mA  
VSYS_REG = 4.5V  
VBATT (V)  
0mA  
VBATT (V)  
ISYS  
100mA/div  
100mA/div  
IBATT (A)  
95mA  
30mA  
IBATT (A)  
ICHGIN  
0mA  
0mA  
30mA DISCHARGING  
BATTERY  
LOADED DURING  
THE "DONE"  
STATE TO SHOW  
THE RESTART  
BEHAVIOR  
IBATT  
100mA/div  
1V/div  
30mA CHARGING  
3.7V  
4.5V  
VSYS  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
1ms/div  
TIME (hr)  
TIME (hr)  
Maxim Integrated  
33  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, V  
= 0V, V  
= V  
= 3.7V, V  
= 3.7V, V = 1.8V, L = 1.5µF, T = +25°C, unless otherwise noted.)  
CHGIN  
SYS  
IN_SBB  
BATT  
IO  
A
POWER UP  
NO LOAD  
POWER DOWN  
NO LOAD  
toc55  
toc56  
VSBB2  
VSBB2  
1V/div  
1V/div  
VSBB0  
VSBB1  
VSBB0  
VLDO  
1V/div  
1V/div  
1V/div  
2V/div  
1V/div  
1V/div  
VSBB1  
VnRST  
VLDO  
1V/div  
2V/div  
VnRST  
IBATT  
IBATT  
50mA/div  
50mA/div  
2ms/div  
4ms/div  
POWER DOWN  
POWER UP  
10mA LOAD PER CHANNEL  
10mA LOAD PER CHANNEL  
toc57  
toc58  
VSBB2  
VSBB2  
1V/div  
1V/div  
VSBB0  
VSBB0  
VSBB1  
1V/div  
1V/div  
1V/div  
1V/div  
VSBB1  
VnRST  
VLDO  
VLDO  
1V/div  
2V/div  
1V/div  
2V/div  
VnRST  
IBATT  
50mA/div  
50mA/div  
IBATT  
2ms/div  
4ms/div  
Maxim Integrated  
34  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
Pin Configuration  
TOP VIEW  
(BUMP SIDE DOWN)  
1
2
3
4
5
6
+
PWR_  
HLD  
nEN  
nRST  
nIRQ  
SDA  
LGND  
GND  
LED2  
SCL  
LED1  
LDO  
BST  
LED0  
IN_LDO  
SBB0  
A
B
GPIO  
C
AMUX  
V
IO  
D
THM  
SYS  
TBIAS  
BATT  
LXA  
LXB  
SBB1  
SBB2  
V
L
CHGIN  
IN_SBB PGND  
E
WLP  
(2.75mm x 2.15mm)  
Bump Description  
PIN  
NAME  
FUNCTION  
TYPE  
TOP LEVEL  
Active-Low Enable Input. nEN supports push-button or slide-switch configurations. An external  
pullup resistor (10kΩ to 100kΩ) to SYS is required.  
A2  
nEN  
digital input  
digital output  
digital output  
Active-Low, Open-Drain Interrupt Output. Connect a 100kΩ pullup resistor between nIRQ and a  
C2  
B2  
nIRQ  
nRST  
voltage equal to or less than V  
.
SYS  
Active-Low, Open-Drain Reset Output. Connect a 100kΩ pullup resistor between nRST and a  
voltage equal to or less than V  
.
SYS  
Active-High Power Hold Input. Assert PWR_HLD to keep the on/off controller in its on through  
A1  
PWR_HLD on/off controller state. If PWR_HLD is not needed, connect it to SYS and use the SFT_RST bits digital input  
to power down the device.  
B1  
C4  
B4  
A3  
GPIO  
General-Purpose Input/Output. The GPIO I/O stage is internally biased with V  
.
digital I/O  
power input  
digital input  
digital I/O  
IO  
2
V
I C Interface and GPIO Driver Power  
IO  
2
SCL  
SDA  
I C Clock  
2
I C Data  
Quiet Ground. Connect GND to PGND, LGND, and the low-impedance ground plane of the  
PCB.  
C3  
GND  
ground  
Maxim Integrated  
35  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
Bump Description (continued)  
PIN  
NAME  
FUNCTION  
TYPE  
CHARGER  
E1  
CHGIN  
SYS  
Charger Input. Connect to a DC charging source. Bypass to GND with a 4.7μF ceramic capacitor.  
power input  
System Power Output. SYS provides power to the system resources as well as the control logic  
of the device. Connect SYS to IN_SBB and bypass to GND with a 22μF ceramic capacitor.  
E2  
E3  
D1  
power output  
Li+ Battery Connection. Connect to positive battery terminal. Bypass to GND with a 4.7μF  
ceramic capacitor.  
BATT  
power I/O  
power  
Internal Charger 3V Logic Supply Powered from CHGIN. Bypass to GND with a 1μF ceramic  
capacitor. Do not load V externally.  
L
V
L
Thermistor Bias Supply. Connect a resistor equal to the NTC's room temperature resistance  
between TBIAS and THM. Do not load TBIAS with any other external circuitry.  
D3  
D2  
C1  
TBIAS  
THM  
analog  
Thermistor Monitor. Thermally couple an NTC to the battery and connect between THM and GND.  
analog input  
analog output  
Analog Multiplexer Output. Connect to system ADC to perform conversions on charger power  
signals.  
AMUX  
LDO  
B5  
LDO  
Linear Regulator Output  
power output  
power input  
B6  
IN_LDO Linear Regulator Input  
RGB LED DRIVER  
Current Sink Port 0. LED0 is typically connected to the cathode of an LED and is capable of  
sinking up to 12.5mA. Connect to ground if unused.  
A6  
A5  
A4  
B3  
LED0  
LED1  
LED2  
LGND  
power  
power  
power  
ground  
Current Sink Port 1. LED1 is typically connected to the cathode of an LED and is capable of  
sinking up to 12.5mA. Connect to ground if unused.  
Current Sink Port 2. LED2 is typically connected to the cathode of an LED and is capable of  
sinking up to 12.5mA. Connect to ground if unused.  
Current Sink Ground. Connect LGND to GND, PGND, and the low-impedance ground plane of  
the PCB.  
SIMO BUCK BOOST  
SIMO Power Input. Connect IN_SBB to SYS and bypass to PGND with a 10uF ceramic  
capacitor as close as possible to the IN_SBB pin.  
E4  
C6  
D6  
E6  
C5  
IN_SBB  
SBB0  
SBB1  
SBB2  
BST  
power input  
power output  
power output  
power output  
power input  
SIMO Buck-Boost Output 0. SBB0 is the power output for channel 0 of the SIMO buck-boost.  
Bypass SBB0 to PGND with a 10μF ceramic capacitor.  
SIMO Buck-Boost Output 1. SBB1 is the power output for channel 1 of the SIMO buck-boost.  
Bypass SBB1 to PGND with a 10μF ceramic capacitor.  
SIMO Buck-Boost Output 2. SBB2 is the power output for channel 2 of the SIMO buck-boost.  
Bypass SBB2 to PGND with a 10μF ceramic capacitor.  
SIMO Power Input for the High-Side Output NMOS Drivers. Connect a 3300pF ceramic capaci-  
tor between BST and LXB.  
Switching Node A. LXA is driven between PGND and IN_SBB when any SIMO channel is en-  
abled. LXA is driven to PGND when all SIMO channels are disabled. Connect a 1.5μH inductor  
between LXA and LXB.  
D4  
LXA  
power I/O  
Switching Node B. LXB is driven between PGND and SBBx when SBBx is enabled. LXB is  
driven to PGND when all SIMO channels are disabled. Connect a 1.5μH inductor between LXA  
and LXB.  
D5  
E5  
LXB  
power I/O  
ground  
Power ground for the SIMO low-side FETs. Connect PGND to GND, LGND, and the low-imped-  
ance ground plane of the PCB.  
PGND  
Maxim Integrated  
36  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
Support Materials  
Detailed Description  
Support materials are available to assist engineering  
teams in designing with this device. For example, a full  
description of the register bits along with software advice  
is available in the Programmer’s Guide. Visit the product  
page at www.maximintegrated.com/MAX77650 and/  
or contact Maxim for more information on support docu-  
ments.  
The MAX77650/MAX77651 provide a highly-integrated  
battery charging and power management solution for low-  
power applications. The linear charger provides a wide  
range of charge current and charger termination voltage  
options to charge various Li+ batteries. Temperature  
monitoring and JEITA compliance settings add additional  
functionality and safety to the charger. Four regulators  
are integrated within this device (see Table 1). A single-  
inductor, multiple output (SIMO) buck-boost regulator  
efficiently provides three independently programmable  
power rails. A 150mA LDO provides ripple rejection for  
audio and other low-noise applications.  
Top-Level Interconnect Simplified Diagram  
Figure 1 shows the same major blocks as the Typical  
Application Circuit with an increased emphasis on the  
routing between each block. This diagram is intended  
to familiarize the user with the landscape of the device.  
Many of the details associated with these signals are  
discussed throughout the data sheet. At this stage of  
the data sheet, note the addition of the main bias and  
clock block that are not shown in the Typical Applications  
Circuit. The main bias and clock block provides voltage,  
current, and clock references for other blocks as well as  
many resources for the top-level digital control.  
The system includes other features such as current sinks  
for driving LED indicators and an analog multiplexer that  
switches several internal voltage and current signals to  
an external node for monitoring with an external ADC.  
2
A bidirectional I C serial interface allows for configuring  
and checking the status of the device. An internal on/off  
controller provides regulator sequencing and supervisory  
functionality for the device.  
Table 1. Regulator Summary  
MAX77650 V  
RANGE/  
RESOLUTION  
MAX77651 V  
RANGE/  
RESOLUTION  
OUT  
OUT  
REGULATOR  
NAME  
REGULATOR  
TOPOLOGY  
MAXIMUM I  
OUT  
V
RANGE (V)  
IN  
(mA)  
0.8V to 2.375V in  
25mV steps  
0.8 to 2.375V in  
25mV steps  
SBB0  
SBB1  
SBB2  
LDO  
SIMO  
SIMO  
Up to 300*  
Up to 300*  
Up to 300*  
150  
2.7 to 5.5  
2.7 to 5.5  
2.7 to 5.5  
1.8 to 5.5  
0.8V to 1.5875V in  
12.5mV steps  
2.4 to 5.25V in  
50mV steps  
0.8V to 3.95V in  
50mV steps  
2.4 to 5.25V in  
50mV steps  
SIMO  
1.35V to 2.9375V in  
12.5mV steps  
1.35 to 2.9375V in  
12.5mV steps  
PMOS LDO  
*Shared capacity with other SBBx channels. See the SIMO Available Output Current section for more information.  
Maxim Integrated  
37  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
IRQ_CHG  
V
V
REF  
REF  
MAX77650/MAX77651  
V
V
IREF  
SYSRST  
IREF  
SYSRST  
CHGINPOK  
SIMO  
CHARGER  
and  
MUX  
nEN  
COMM  
FPS  
COMM  
AMUX  
IRQ_CHG  
V
REF  
V
IREF  
SYSRST  
LDO  
CLK  
FPS  
COMM  
V
REF  
V
IREF  
SYS  
SYSUVLO  
SYSOVLO  
OTLO  
POR  
BOK  
MAIN BIAS  
AND CLOCK  
CLK  
V
REF  
CURRENT  
SINK  
V
IREF  
SYSRST  
FPS  
SYSRST  
COMM  
BIAS_EN  
SBIA_LPM  
IRQ_CHG  
SYS  
100us/30ms  
DEBOUNCE  
TIMER  
DBEN_nEN  
DBNEN  
nEN  
t
DBNC_nEN  
AMUX  
nRST  
AMUX  
VIO  
TOP-LEVEL  
DIGITAL  
CONTROL  
100us  
GLITCH FILTER  
PWR_HLD  
STAT_PWR_HLD  
PWR_HLD2  
RST  
t
PWR_HLD_GF  
nIRQ  
IRQ_TOP  
CHGINPOK  
VIO  
SDA  
SCL  
10ns/30ms  
DEBOUNCE  
TIMER  
DBEN_GPI  
DI  
2
COMM  
I C  
t
GPIO  
DBNC_nEN  
DO  
Figure 1. Top-Level Interconnect Simplified Diagram  
Maxim Integrated  
38  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
and Table 2 for additional information regarding the UVLO  
comparator:  
Global Resources  
The global resources encompass a set of circuits that  
serve the entire device and ensure safe, consistent, and  
reliable operation.  
When the device is in the STANDBY state, the UVLO  
comparator is disabled.  
When transitioning out of the STANDBY state, the  
UVLO comparator is enabled allowing the device to  
check for sufficient input voltage. If the device has  
sufficient input voltage, it can transition to the on  
state; if there is insufficient input voltage, the device  
transitions back to the STANDBY state.  
Features and Benefits  
Voltage Monitors  
• SYS POR (power-on-reset) comparator generates  
a reset signal upon power-up  
• SYS undervoltage ensures repeatable behavior when  
power is applied to and removed from the device  
• SYS overvoltage monitor inhibits operation with  
overvoltage power sources to ensure reliability in  
faulty environments  
SYS Overvoltage Lockout Comparator  
The device is rated for 5.5V maximum operating voltage  
(V ) with an absolute maximum input voltage of 6.0V.  
SYS  
An overvoltage lockout monitor increases the robustness  
of the device by inhibiting operation when the supply volt-  
Thermal Monitors  
• 165°C junction temperature shutdown  
Manual Reset  
age is greater than V . See Figure 4 and Table 2  
SYSOVLO  
for additional information regarding the OVLO comparator:  
• 8s or 16s period  
Wakeup Events  
When the device is in the STANDBY state, the OVLO  
• Charger insertion (with 120ms debounce)  
• nEN input assertion  
Interrupt Handler  
comparator is disabled.  
nEN Enable Input  
nEN is an active-low internally debounced digital input  
that typically comes from the system’s on key. The  
debounce time is programmable with DBEN_nEN. The  
primary purpose of this input is to generate a wake-up  
signal for the PMIC that turns on the regulators. Maskable  
rising/falling interrupts are available for nEN (nEN_R and  
nEN_F) for alternate functionality. nEN requires an exter-  
nal pullup resistor (10kΩ to 100kΩ) to SYS.  
• Interrupt output (nIRQ)  
• All interrupts are maskable  
Push-button/Slide-Switch Onkey (nEN)  
Configurable push-button/slide-switch functionality  
100μs or 30ms debounce timer interfaces directly  
with mechanical switches  
On/Off Controller  
• Startup/shut-down sequencing  
• Programable sequencing delay  
PWR_HLD, GPIO, RST Digital I/Os  
The nEN input can be configured to work either with a  
push-button (nEN_MODE = 0) or a slide-switch (nEN_  
MODE = 1). See Figure 2 for more information. In both  
push-button mode and slide-switch mode, the on/off con-  
troller looks for a falling edge on the nEN input to initiate  
a power-up sequence.  
Voltage Monitors  
The device monitors the system voltage (V  
proper operation using three comparators (POR, UVLO,  
and OVLO). These comparators include hysteresis to  
prevent their outputs from toggling between states during  
noisy system transitions.  
) to ensure  
SYS  
nEN Manual Reset  
nEN works as a manual reset input when the on/off con-  
troller is in the on via on/off controller state. The manual  
reset function is useful for forcing a power-down in case  
the communication with the processor fails. When nEN is  
configured for a push-button mode and the input is assert-  
SYS POR Comparator  
The SYS POR comparator monitors V  
a power-on reset signal (POR). When V  
and generates  
SYS  
is below  
SYS  
V
V
, the device is held in reset (SYSRST = 1). When  
POR  
ed (nEN = low) for an extended period (t  
), the on/off  
MRST  
rises above V  
, internal signals and on-chip  
POR  
SYS  
controller initiates a power-down sequence and goes to  
standby mode. When nEN is configured for a slide-switch  
mode and the input is deasserted (nEN = high) for an  
memory stabilize and the device is released from reset  
(SYSRST = 0).  
extended period (t  
power-down sequence and goes to standby mode.  
), the on/off controller initiates a  
MRST  
SYS Undervoltage Lockout Comparator  
The SYS undervoltage lockout (UVLO) comparator moni-  
A dedicated internal oscillator is used to create the 30ms  
tors V  
and generates a SYSUVLO signal when the  
falls below UVLO threshold. The SYSUVLO signal  
SYS  
(t  
) and 16s (t  
) timers for nEN. Whenever  
V
SYS  
DBNC_nEN  
MRST  
the device is actively counting either of these times, the  
is provided to the top-level digital controller. See Figure 4  
Maxim Integrated  
39  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
supply current increases by the oscillator's supply current  
(65μA when the battery voltage is at 3.7V). As soon as  
the event driving the timer goes away or is fulfilled, the  
oscillator automatically turns off and its supply current  
goes away.  
A pullup resistor to a voltage less than or equal to V  
SYS  
is required for this node. nIRQ is the logical NOR of all  
unmasked interrupt bits in the register map  
All interrupts are masked by default. Masked interrupt bits  
do not cause the nIRQ pin to change. Unmask the inter-  
rupt bits to allow nIRQ to assert.  
nEN Dual-functionality:  
Push-Button vs. Slide-Switch  
Reset Output (nRST)  
The nEN digital input can be configured to work with  
a push-button switch or a slide-switch. The timing dia-  
gram below shows nEN's dual functionality for power-on  
sequencing and manual reset. The default configuration  
of the device is push-button mode (nEN_MODE = 0) and  
no additional programming is necessary. Applications  
that use a slide-switch on-key configuration must set  
nRST is an open-drain, active-low output that is typically  
used to hold the processor in a reset state when the device  
is powered down. During a power-up sequence, the nRST  
deasserts after the last regulator in the power-up chain  
is enabled (t  
). During a power-down sequence,  
RSTODD  
the nRST output asserts before any regulator is powered  
down (t ). See Figure 5 for nRST timing.  
RSTOAD  
nEN_MODE = 1 within t  
.
MRST  
A pullup resistor to a voltage less than or equal to V  
is required for this node.  
SYS  
Interrupts (nIRQ)  
nIRQ is an active-low, open-drain output that is typically  
routed to the host processor’s interrupt input to signal  
an important change in the device’s status. Refer to the  
Programmer’s Guide for a comprehensive list of all inter-  
rupt bits and status registers.  
Power Hold Input (PWR_HLD)  
PWR_HLD is an active-high digital input. PWR_HLD has a  
100μs glitch filter (t ). As shown in Figure 1, the  
PWR_HLD_GF  
output of this glitch filter is logically ORed with the wakeup  
signal coming from the charger to create a signal called  
PWR_HLD2 that drives the top-level digital control.  
NOT DRAWN TO SCALE  
STATE  
STANDBY  
POWER-ON SEQUENCE  
ON  
POWER-DOWN SEQUENCE  
BATTERY  
INSERTION  
V
SYS  
SYS  
t
DBNC_nEN  
nEN  
t
t
DBNC_nEN  
DBNC_nEN  
t
MRST  
PUSH-BUTTON MODE  
SYS  
t
DBNC_nEN  
nEN  
t
MRST  
t
DBNC_nEN  
SLIDE-SWITCH MODE  
Figure 2. nEN Usage Timing Diagram  
Maxim Integrated  
40  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
When there is no valid charge voltage at CHGIN  
(CHGINPOK = 0):  
The open-drain mode requires an external pullup  
resistor (typically 10kΩ–100kΩ). Connect the external  
pullup resistor to a bias voltage that is less than or  
• After the power-up sequence, the system proces-  
sor must assert PWR_HLD within the PWR_HLD  
equal to V .  
IO  
wait time (t  
) to hold the power  
PWR_HLD_WAIT  
• The open-drain mode can be used to communicate  
supply in the on state. If the PWR_HLD input is  
not asserted within the t period, a  
to different logic domains. For example, to send a  
signal from the GPO on a 1.8V logic domain (V  
=
PWR_HLD_WAIT  
IO  
power-down sequence is initiated.  
1.8V) to a device on a 1.2V logic domain, connect  
the external pullup resistor to 1.2V.  
• The open-drain mode can be used to connect sever-  
al open-drain (or open-collector) devices together on  
the same bus to create wired logic (wired AND logic  
is positive-true; wired OR logic is negative-true).  
• While in the on state, the system processor must  
assert PWR_HLD as long as power is required. If  
the system processor wants to turn off, it can either  
pull PWR_HLD low or it can write the SFT_RST  
bits to execute the SFT_CRST or SFT_OFF func-  
tions to execute the power-down sequence.  
The general-purpose input (GPI) functions are still avail-  
able while the pin is configured as a GPO. In other words,  
the DI (input status) bit still functions properly and does  
not collide with the state of the DIR bit.  
If there is a valid charge voltage at CHGIN  
(CHGINPOK = 1):  
The charger sends a wakeup signal to the on/off  
controller which is also logically ORed with PWR_  
HLD to assert PWR_HLD2. PWR_HLD2 being  
asserted satisfies the on/off controller such that the  
PWR_HLD signal is a don't care.  
Set DIR to disable the output drivers associated with the  
GPO and have the device function as a GPI. The GPI  
features a 30ms debounce timer (t  
) that can be  
DBNC_GPI  
enabled or disabled with DBEN_GPI.  
See the Figure 7, Top-Level On/Off Controller section,  
and Table 2 for additional information regarding PWR_  
HLD. If the power hold function is not used, connect  
PWR_HLD to SYS and then use the SFT_RST bits to  
power the device down.  
Enable the debounce timer (DBEN_GPI = 1) if the  
GPI is connected to a device that can bounce or  
chatter (like a mechanical switch).  
If the GPI is connected to a circuit with clean logic  
transitions and no risk of bounce, disable the  
debounce timer (DBEN_GPI = 0) to eliminate unnec-  
essary logic delays. With no debounce timer, the GPI  
input logic propagates to nIRQ in 10ns.  
General-Purpose Input Output (GPIO)  
A general-purpose input/output (GPIO) is provided to  
increase system flexibility. See Figure 3 for the GPIO  
Block Diagram.  
A dedicated internal oscillator is used to create the 30ms  
(t  
) debounce timer. Whenever the device is  
DBNC_GPI  
Clear DIR to configure GPIO as a general-purpose output  
(GPO). The GPO can either be in push-pull mode (DRV =  
1) or open-drain mode (DRV = 0).  
actively counting this time, the supply current increases  
by the oscillator's supply current (65μA when the battery  
voltage is at 3.7V). As soon as the event driving the timer  
goes away or is fulfilled, the oscillator automatically turns  
off and its supply current goes away.  
The push-pull output mode is ideal for applications that  
need fast (~2ns) edges and low power consumption.  
Maxim Integrated  
41  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
SYS  
DRV  
DIR  
DO  
GPI_RM  
GPI_FM  
DBNC_EN  
DI  
V
IO  
COMM  
CNFG_GPIO  
GPI_R  
GPI_F  
GPI_R  
GPI_RM  
Q
Q
D
R
1
1
DRV  
nIRQ  
DBNC_EN  
READ  
(GPI_R)  
IRQ  
GPIO  
GND  
0
1
30ms DEBOUNCE  
DI  
(t  
)
DBNC_GPI  
GPI_FM  
GPI_F  
D
R
DIR  
DO  
LOGIC  
OTHER nIRQ ASSERTION  
SOURCES NOT SHOWN  
READ  
(GPI_F)  
Figure 3. GPIO Block Diagram  
Maskable rising and falling interrupts (GPI_R and GPI_F)  
are available to signal a change in the GPI’s status.  
edge interrupt and mask the rising edge interrupt  
(GPI_RM = 1, GPI_FM = 0).  
To interrupt on either rising or falling edge: unmask  
both rising and falling edge interrupts (GPI_RM = 0,  
GPI_FM = 0). Consult the Register Map for more  
details.  
To interrupt on a rising edge only: unmask the rising  
edge interrupt and mask the falling edge interrupt (GPI_  
RM = 0, GPI_FM = 1).  
To interrupt on a falling edge only: unmask the falling  
Maxim Integrated  
42  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
Some systems have several power management blocks,  
a main processor, and subprocessors. These systems  
can use this device as a subpower management block for  
On/Off Controller  
The on/off controller monitors multiple power-up (wakeup)  
and power-down (shutdown) conditions to enable or dis-  
able resources that are necessary for the system and its  
processor to move between its operating modes.  
2
a peripheral portion of circuitry as long as there is an I C  
port available from a higher level processor. To concep-  
tualize this slave operation, see Figure 4 and Table 2. A  
typical path through the on/off controller in slave mode is:  
Many systems have one power management controller  
and one processor and rely on the on/off controller to be  
the master controller. In this case, the on/off controller  
receives the wakeup events and enables some or all of  
the regulators in order to power up a processor. That pro-  
cessor then manages the system. To conceptualize this  
master operation see Figure 4 and Table 2. A typical path  
through the on/off controller in master mode is:  
Start in the no power state.  
Apply a battery to the system and transition through  
path 1 and 2 to the standby state.  
When the higher level processor wants to turn on this  
device's resources, it enables the main bias circuits  
2
through I C (SBIA_EN = 1) to transition along path  
2A to the on through software state.  
Start in the no power state.  
Apply a battery to the system and transition through  
path 1 and 2 to the standby state.  
The higher level processor can now control this  
2
device's resources with I C commands (i.e., turn on/  
off regulators).  
Press the system's on key (nEN = low) and transition  
through path 3A and 4 to the "PWR_HLD?" state.  
The processor boots up and drives PWR_HLD high,  
which drives the transition through path 4C to the on  
through the on/off controller state.  
The device performs its desired functions in the on  
through on/off controller state. When it is ready to turn  
off, the processor drives PWR_HLD low that drives the  
transition through path 5B and 8 to the standby state.  
When the higher level processor is ready to turn  
2
this device off, it turns off everything through I C  
and then disables the main bias circuits through I C  
2
(SBIA_EN = 0) to transition along path 2B to the  
standby state.  
Note that in this slave style of operation, the SFT_RST  
bits should not be used to turn the device off. The SFT_  
RST bits establish directives to the on/off controller itself  
that does not make sense in slave mode. In slave mode,  
2
since the I C commands enable the device's resources,  
they should also disable them.  
Maxim Integrated  
43  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
NO POWER  
CHGIN=0, VSYS<VPOR  
ANY  
STATE  
STATE  
0
V
ACTION  
1
DECISION  
POWER-ON  
RESET (POR)  
2
X
TRANSITION NAME.  
SEE TABLE 2  
2A  
STANDBY  
3
11  
DISABLE MAIN BIAS  
ENABLE MAIN BIAS  
12  
ENABLE MAIN BIAS  
3A  
6
6
8
2B  
9
POWER UP  
SEQUENCE  
(FIGURE 5)  
POWER DOWN  
SEQUENCE  
(FIGURE 5)  
IMMEDIATE  
SHUTDOWN  
(FIGURE 5)  
3
4
7
4B  
PWR_HLD?  
4C  
4A  
10  
3
5A  
ON VIA  
SOFTWARE  
ON VIA ON/OFF  
CONTROLLER  
5B  
10  
2B  
Figure 4. Top-Level On/Off Controller  
Maxim Integrated  
44  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
Table 2. On/Off Controller Transition/State  
TRANSITION/STATE  
CONDITION  
0
1
2
System voltage is below the POR threshold (V  
< V  
).  
SYS  
POR  
System voltage is above the POR threshold (V  
> V  
).  
SYS  
POR  
Internal signals and on-chip memory stabilize and the device is released from reset.  
2
The device is waiting for a wake-up signal or an I C command to enable the main bias circuits.  
* This is the lowest current state of the device (I ~0.3μA).  
Q
* Main bias circuits are off, POR comparator is on.  
STANDBY  
2
* I C is on when V is valid.  
IO  
* Peripheral functions (LDO, SIMO, LEDs, AMUX) do not operate in this state because the main bias circuits  
are off. To utilize a function enter the on through software or on through on/off controller states.  
2
2A  
2B  
Main bias circuits enabled through I C (SBIA_EN = 1).  
2
Main bias circuits disabled through I C (SBIA_EN = 0).  
The main bias circuits are enabled through software and all peripheral functions (LDO, SIMO, LEDs, AMUX)  
can be manually enabled or disabled through I C.  
ON VIA  
SOFTWARE*  
2
A wake-up signal has been received.  
* A debounced onkey (nEN) falling edge has been detected (DBNEN = 1) or  
* A charge source has been applied and a rising edge on CHGIN has been detected and debounced  
3
(t  
~120ms) or  
CHGIN-DB  
* Internal wake-up flag has been set due to SFT_RST = 0b01 (WKUP = 1)  
3A  
4
Main bias circuits are OK (BOK = 1)  
Power-up sequence complete.  
4A  
4B  
4C  
PWR_HLD wait time has expired and PWR_HLD2 is low (t > t  
&& PWR_HLD2 = 0).  
PWR_HLD_WAIT  
PWR_HLD wait time has not expired and PWR_HLD2 is low (t < t  
PWR_HLD2 = 1  
&& PWR_HLD2 = 0).  
PWR_HLD_WAIT  
On state.  
* All flexible power sequencers (FPS) are on.  
* The main bias circuits are enabled.  
ON VIA ON/OFF  
CONTROLLER*  
* I ~5.6µA (typ) with all regulators enabled (no load) and the main bias circuits in low power mode.  
Q
5A  
5B  
PWR_HLD2 = 1  
PWR_HLD2 = 0 OR  
System overtemperature lockout (T >T  
Software cold reset (SFT_RST[1:0] = 0b01) or  
) or  
J
OTLO  
Software power off (SFT_RST[1:0] = 0b10) or  
Manual reset occurred. See the nEN Manual Reset section for more information.  
System overtemperature lockout (T >T  
) or  
J
OTLO  
6
7
System undervoltage lockout (V  
< V  
+ V  
) or  
SYSUVLO_HYS  
SYS  
SYSUVLO  
System overvoltage lockout (V  
> V  
)
SYS  
SYSOVLO  
System undervoltage lockout (V  
System overvoltage lockout (V  
< V  
SYSUVLO  
) or  
SYS  
> V  
)
SYS  
SYSOVLO  
Note: The overvoltage lockout transition does not apply to the ON VIA SOFTWARE state.  
8
Finished with the power-down sequence.  
9
Finished with immediate shutdown.  
10  
11  
12  
System overtemperature lockout (T > T  
J
).  
OTLO  
Done disabling main bias.  
Done enabling main bias.  
Maxim Integrated  
45  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
POWER-UP SEQUENCE  
POWER-DOWN SEQUENCE  
START FROM TOP LEVEL  
#4A OR #5B  
START  
FROM TOP LEVEL #3A  
CLEAR WAKEUP  
FLAG (WKUP = 0)  
CLEAR WAKEUP FLAGS  
FPS ENABLE SLOT 0  
TEMPERATURE IS  
NOT OKAY  
(T >T  
J
)
OTLO  
OTLO?  
TEMPERATURE IS OKAY  
(T <T  
WAIT t  
EN  
)
OTLO  
J
WAIT 60ms  
FPS ENABLE SLOT 1  
SFT_RST = 0b00  
OR PWR_HLD2 = 1  
SFT_RST = 0b01  
WAIT t  
EN  
SFT_RST = 0b10  
OR PWR_HLD2 = 0  
SET WAKEUP  
FLAG (WKUP = 1)  
FPS ENABLE SLOT 2  
WAIT t  
EN  
SET THE APPROPRIATE BIT IN THE EVENT  
RECORDER REGISTER (ERCFLAG) TO INDICATE  
THE SOURCE OF THE POWER DOWN EVENT.  
FPS ENABLE SLOT 3  
WAIT t  
RSTODD  
ASSERT nRST  
DE-ASSERT nRST  
WAIT t  
RSTOAD  
END  
TO TOP LEVEL #4  
FPS DISABLE SLOT 3  
WAIT t  
DIS  
IMMEDIATE SHUTDOWN  
FPS DISABLE SLOT 2  
START  
FROM TOP LEVEL #7  
WAIT t  
DIS  
SET THE APPROPRIATE BIT IN THE EVENT  
RECORDER REGISTER (ERCFLAG) TO INDICATE  
THE SOURCE OF THE POWER DOWN EVENT.  
FPS DISABLE SLOT 1  
WAIT t  
DIS  
ASSERT nRST  
DISABLE FPS3, FPS2, FPS1, FPS0  
FPS DISABLE SLOT 0  
WAIT 125ms  
WAIT 125ms  
RESET DEVICE  
RESET DEVICE  
(PULSE SYSRST FOR 5µs)  
(PULSE SYSRST FOR 5µs)  
END  
END  
RETURN BACK TO  
THE ON STATE  
TO TOP LEVEL #9  
TO TOP LEVEL #8  
Figure 5. Power-Up/Power-Down Sequence  
Maxim Integrated  
46  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
The flexible sequencing structure consists of 1 master  
sequencing timer and 4 slave resources (SBB0, SBB1,  
SBB2, and LDO). When the FPS is enabled, a master  
timer generates four sequencing events for device power-  
up and power-down.  
Flexible Power Sequencer  
The flexible power sequencer (FPS) allows resources to  
power up under hardware or software control. Additionally,  
each resource can power up independently or among a  
group of other regulators with adjustable power-up and pow-  
er-down delays (sequencing). Figure 6 shows four resources  
powering up under the control of flexible power sequencer.  
NOT DRAWN TO SCALE  
ENFPS  
t
t
SAME FOR ALL FPS DISABLE PULSES  
DIS  
t
SAME FOR ALL FPS ENABLE PULSES  
EN  
= 2x t  
DIS  
EN  
0
1
2
3
3
2
1
0
PLSFPS  
FPS RESOURCES  
SBB0  
LDO  
SBB1  
SBB2  
Figure 6. Flexible Power Sequencer Basic Timing Diagram  
Maxim Integrated  
47  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
NOT DRAWN TO SCALE  
ON THROUGH ON/OFF  
CONTROLLER  
NO POWER  
STATE  
POR  
STANDBY  
POWER-UP SEQUENCE  
PWR_HLD?  
BATTERY  
INSERTION  
V
SYS  
V
~1.9V  
POR  
t
~100µs  
POR  
t
t
DBNC_nEN  
DBNC_nEN  
nEN  
NOTE 1  
NOTE 2  
STAT_EN  
nEN_F  
t
SBIA_EN  
nEN_R  
BIAS EN  
(INTERNAL)  
INTERNAL WAKE-UP  
SIGNAL NOTE 3  
FPS0  
FPS1  
FPS2  
FPS3  
t
t
t
EN  
EN  
EN  
REGULATORS  
nIRQ  
NOTE 4  
t
RSTODD  
nRST  
t
PWR_HLD_WAIT  
SYSTEM  
SOFTWARE  
PWR_HLD  
NOTES:  
1 – nEN LOGIC INPUT IS CONFIGURED TO PUSH-BUTTON MODE AND HAS AN EXTERNAL PULLUP TO SYS.  
2 – nEN ASSERTION RESULTS IN A WAKE-UP EVEN AFTER A DEBOUNCE TIME (t ).  
DBNCEN  
NOTE  
5
NOTE  
6
3 – INTERNAL WAKE-UP SIGNAL CAN ALSO BE GENERATED BY CHARGER PLUG-IN EVENT.  
4 – nIRQ HAS AN EXTERNAL PULLUP TO V WHICH IS ENABLED IN FLEXIBLE POWER SEQUENCER SLOT #1  
IO  
5 – SYSTEM PROCESSOR ASSERTS PWR_HLD INPUT TO PLACE THE DEVICE IN THE ON THROUGH ON/OFF CONTROLLER STATE.  
6 – AS PART OF ITS INITIALIZATION ROUTINE, SOFTWARE READS THE INTERRUPT REGISTERS (CLEAR ON READ) AND PROGRAMS THE INTERRUPT MASKS AS DESIRED.  
Figure 7. Startup Timing Diagram Due to nEN  
Maxim Integrated  
48  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
STATE  
CHGIN DEBOUNCE  
CHGINOK=1  
POWER-UP SEQUENCE  
PWR_HLD?  
ON THROUGH ON/OFF CONTROLLER  
PRE-QUAL  
FAST CHARGE (CC)  
TOP-OFF (CV)  
DONE  
CHARGER  
INSERTION  
5V  
V
CHGIN  
0V  
V
SYS-REG  
V
FAST-CHG  
V
SYS  
V
~2.9V  
SYSUVLO  
t
(~120ms)  
CHGIN-DB  
V
~2.0V  
POR  
0V  
V
FAST-CHG  
INTERNAL CHARGER GENERATED  
WAKE SIGNAL  
NOTE 3  
V
BATT  
V
PQ  
0V  
FAST-CHG  
NOTE 4  
V
I
BATT  
I
TOPOFF  
PQ  
I
0mA  
NOTE 5  
CHG_EN = 1  
CHARGER ENABLED  
NOTE 1  
nEN  
FPS0  
FPS1  
FPS2  
FPS3  
NOTES: 1 – nEN LOGIC INPUT IN CONFIGURED TO PUSH-BUTTON MODE AND HAS AN  
EXTERNAL PULLUP TO SYS.  
t
t
t
EN  
EN  
EN  
2 – IF PWR_HLD IS NOT ASSERTED BY THE END OF THE t  
INITIATES A POWER-DOWN SEQUENCE.  
PERIOD, DEVICE  
PWR_HLD_WAIT  
REGULATORS  
3 - IF CHG_EN = 1 (@ OTP) THEN THE CHARGER ENABLED EVENT COINCIDES WITH THE WAKE  
EVENT (CHARGING START ALONG WITH POWER-UP SEQUENCE).  
t
SBIA_EN  
t
RSTODD  
4 – THIS INFLECTION POINT IS SYMBOLIC OF BATTERY PROTECTION FET CLOSING  
nRST  
5 – SOFTWARE SETS CHG_EN = 1 TO ENABLE CHARGING. IF CHG_EN = 1 AT OTP, SEE NOTE 3.  
t
PWR_HLD_WAIT  
- - - - BLUE DOTTED LINES ARE USER INITIATED EVENTS  
NOTE 2  
PWR_HLD2  
Figure 8. Startup Timing Diagram Due to Charge Source Insertion  
Maxim Integrated  
49  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
Over-temperature lockout (OTLO) is entered if the junc-  
Debounced Inputs (nEN, GPI, CHGIN)  
tion temperature exceeds T  
(approximately 165°C,  
OTLO  
nEN, CHGIN, and GPIO (when operating as an input), are  
debounced on both rising and falling edges to reject unde-  
sired transitions. The input must be at a stable logic level  
for the entire debounce period for the output to change its  
logic state. Figure 9 shows an example timing diagram for  
the nEN debounce.  
typ). OTLO causes transition 10 in Figure 4 which causes  
resources to immediately shutdown from the on via on/  
off controller state. Resources may not enable until the  
temperature falls below T  
by approximately 15°C.  
OTLO  
The TJAL1_S and TJAL2_S status bits continuously  
indicate the junction temperature alarm status. Maskable  
interrupts are available to signal a change in either of  
these bits. Refer to the Programmer’s Guide for details.  
Thermal Alarms and Protection  
The device has thermal alarms to monitor if the junction  
temperature rises above 80°C (T  
) and 100ºC (T  
).  
JAL1  
JAL2  
STABLE  
STABLE  
SIGNAL IS  
ACCEPTED  
SIGNALS IS  
ACCEPTED  
BOUNCING IS  
REJECTED  
BOUNCING IS  
REJECTED  
nEN  
tDBUF  
tDBUF  
EN  
(INTERNAL)  
DBEN  
tDBNCEN  
tDBNCEN  
(INTERNAL)  
Figure 9. Debounced Inputs  
Maxim Integrated  
50  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
Additionally, the robust charger input withstands overvoltag-  
es up to 28V. To enhance charger safety, an NTC thermis-  
tor provides temperature monitoring in accordance with the  
JEITA recommendations. See the Adjustable Thermistor  
Temperature Monitors section for more information.  
Smart Power Selector Charger  
The linear Li+ charger implements power path with  
Maxim's smart power selector. This allows separate input  
current limit and battery charge current settings. Batteries  
charge faster under the supervision of the smart power  
selector because charge current is independently regu-  
lated and not shared with variable system loads. See the  
Smart Power Selector section for more information.  
Features  
7.25V maximum operating input voltage with 28V  
input standoff  
The programmable constant-current charge rate (7.5mA  
to 300mA) supports a wide range of battery capacities.  
The programmable input current limit (0mA to 475mA)  
supports a range of charge sources, including USB. The  
charger's programmable battery regulation voltage range  
(3.6V–4.6V) supports a wide variety of cell chemistries.  
Small battery capacities are supported; the charger accu-  
rately terminates charging by detecting battery currents as  
low as 0.375mA.  
7.5mA to 300mA programmable fast-charge current  
Programmable termination current from 0.375mA to  
45mA  
Programmable battery regulation voltage from 3.6V  
to 4.6V  
● < 1μA battery-only supply current  
Instant-on functionality  
Analog multiplexer enables power monitoring  
JEITA battery temperature monitor adjusts current  
and battery regulation voltage for safe charging  
Programmable die temperature regulation  
Figure 10. Linear Charger Simplified Block Diagram  
Maxim Integrated  
51  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
Figure 11 indicates the high-level functions of each control  
circuit within the linear charger.  
Charger Symbol Reference Guide  
Table 3 lists the names and functions of charger-specific  
signals and if they can be programmed through I C.  
2
Consult the Electrical Characteristics and Programmer’s  
Guide for more information.  
Table 3. Charger Quick Symbol Reference Guide  
2
SYMBOL  
NAME  
I C PROGRAMMABLE?  
V
V
V
CHGIN overvoltage threshold  
No  
No  
CHGIN_OVP  
CHGIN undervoltage lockout threshold  
Minimum CHGIN voltage regulation setpoint  
CHGIN input current limit  
CHGIN_UVLO  
CHGIN-MIN  
CHGIN-LIM  
Yes, through VCHGIN_MIN[2:0]  
Yes, through ICHGIN_LIM[2:0]  
Yes, through VSYS_REG[4:0]  
I
V
V
V
SYS voltage regulation target  
Minimum SYS voltage regulation setpoint  
Fast-charge constant-voltage level  
Fast-charge constant-current level  
Prequalification current level  
Prequalification voltage threshold  
Termination current level  
SYS-REG  
SYS-MIN  
FAST-CHG  
FAST-CHG  
PQ  
No, tracks V  
SYS-REG  
Yes, through CHG_CV[5:0]  
Yes, through CHG_CC[5:0]  
Yes, through I_PQ  
I
I
V
Yes, through CHG_PQ[2:0]  
Yes, through I_TERM[1:0]  
Yes, through TJ_REG[2:0]  
No  
PQ  
I
TERM  
T
Die temperature regulation setpoint  
Prequalification safety timer  
J-REG  
t
t
t
PQ  
Fast-charge safety timer  
Yes, through T_FAST_CHG[1:0]  
Yes, through T_TOPOFF[2:0]  
FC  
TO  
Top-off timer  
BODY-  
SWITCH  
CHGIN  
SYS  
V
SYS-MIN  
I
V
CHGIN-LIM  
SYS-REG  
INPUT  
CONTROLLER  
CHARGE CONTROLLER  
V
CHGIN-MIN  
V
CHGIN_OVP  
V
CHGIN_UVLO  
I
I
I
FAST-CHG  
V
V
FAST-CHG  
PQ  
DIE TEMP  
MONITOR  
PQ  
T
J-REG  
TERM  
BATT  
TIMER  
t
PQ  
t
FC  
TO  
t
Figure 11. Charger Simplified Control Loops  
Maxim Integrated  
52  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
regulation loop also prevents V  
from dropping  
Smart Power Selector  
CHGIN  
below V  
if the cable between the charge  
CHGIN_UVLO  
The smart power selector seamlessly distributes power  
from the input (CHGIN) to the battery (BATT) and the sys-  
tem (SYS). The smart power selector basic functions are:  
source and the charger's input is long or highly resistive.  
The input voltage regulation loop improves performance  
with current limited adapters. If the charger’s input current  
limit is programmed above the current limit of the given  
adapter, the input voltage loop allows the input to regulate  
at the current limit of the adapter. The input voltage regu-  
lation loop also allows the charger to perform well with  
adapters that have poor transient load response times.  
When the system load current is less than the input  
current limit, the battery is charged with residual  
power from the input.  
When a valid input source is connected, the sys-  
tem regulates to V  
to power system loads  
SYS-REG  
regardless of the battery's voltage (instant on).  
When the system load current exceeds the input cur-  
rent limit, the battery provides additional current to  
the system (supplement mode).  
A maskable interrupt (CHGIN_CTRL_I) signals when the  
minimum input voltage regulation loop engages. The state  
of this loop is reflected by VCHGIN_MIN_STAT.  
When the battery is finished charging and an input  
source is present to power the system, the battery  
remains disconnected from the system.  
When the battery is connected and there is no input  
power, the system is powered from the battery.  
Minimum System Voltage Regulation  
The minimum system voltage regulation loop ensures that  
the system rail remains close to the programmed SYS  
regulation voltage (V  
) regardless of system load-  
SYS-REG  
ing. The loop engages when the combined battery charge  
current and system load current causes the CHGIN input  
Input Current Limiter  
The input current limiter limits CHGIN current so as not to  
to current-limit at I  
. When this happens, the  
CHGIN-LIM  
exceed I  
(programmed by I  
[2:0]). A  
CHGIN-LIM  
CHGIN_LIM  
minimum system voltage loop reduces charge current in  
an attempt to keep the input out of current limit, thereby  
maskable interrupt (CHGIN_CTRL_I) is available to signal  
when the input current limit engages. The state of this  
loop is reflected by the ICHGIN_LIM_STAT bit.  
keeping the system voltage above V  
(V  
SYS-MIN SYS-REG  
- 100mV typical). If this loop reduces battery current to 0  
and the system is in need of more current than the input  
can provide, then the smart power selector overrides the  
minimum system voltage regulation loop and allows SYS  
to collapse to BATT for the battery to provide supplement  
current to the system. The smart power selector automati-  
cally reenables the minimum system voltage loop when  
the supplement event has ended.  
The input circuit is capable of standing off 28V from  
ground. CHGIN suspends power delivery to the sys-  
tem and battery when V  
exceeds V  
CHGIN  
CHGIN_OVP  
(7.5V typical). The input circuit also suspends when  
falls below V minus 500mV of hys-  
V
CHGIN  
CHGIN_UVLO  
teresis (3.5V typical). While in OVP or UVLO, the charger  
remains off, and the battery provides power to the system.  
When an valid charge source is connected to CHGIN,  
SYS begins delivering power to the system after a 120ms  
A maskable interrupt (SYS_CTRL_I) asserts to signal a  
change in VSYS_MIN_STAT. This status bit asserts when  
the minimum system voltage regulation loop is active.  
debounce timer (t  
).  
CHGIN-DB  
A maskable interrupt (CHGIN_I) signals changes in the  
state of CHGIN's voltage quality. The state of CHGIN is  
reflected by CHGIN_DTLS[1:0].  
Die Temperature Regulation  
In case the die temperature exceeds T  
(pro-  
J-REG  
grammed by TJ_REG[2:0]) the charger attempts to limit  
the temperature increase by reducing battery charge  
current. The TJ_REG_STAT bit asserts whenever charge  
current is reduced due to this loop. The charger's cur-  
rent sourcing capability to SYS remains unaffected when  
TJ_REG_STAT is high. A maskable interrupt (TJ_REG_I)  
asserts to signal a change in TJ_REG_STAT. It is advis-  
able that the TJ_REG_I interrupt be used to signal the  
system processor to reduce loads on SYS to reduce total  
system temperature.  
Minimum Input Voltage Regulation  
In the event of a poor-quality charge source, the mini-  
mum input voltage regulation loop works to reduce input  
current if V  
falls below V  
(programmed  
CHGIN  
CHGIN-MIN  
by VCHGIN_MIN[2:0]). This is important because many  
commonly used charge adapters feature foldback protec-  
tion mechanisms where the adapter completely shuts off  
if its output droops too low. The minimum input voltage  
Maxim Integrated  
53  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
bitfield, CHG_DTLS[3:0], reflects the charger's current  
operational state. A maskable interrupt (CHG_I) is avail-  
able to signal a change in CHG_DTLS[3:0].  
Charger State Machine  
The battery charger follows a strict state-to-state progres-  
sion to ensure that a battery is charged safely. The status  
CHGIN INVALID  
(CHGIN_DTLS[1:0] = 0b00 or 0b01)  
OR  
CHGIN INSERTED  
(CHGIN_DTLS[1:0] = 0b10)  
CHARGER DISABLED  
DE-BOUNCE  
CHG_DTLS[3:0] = 0b0000  
CHG = 0  
CHARGER OFF  
CHG_DTLS[3:0] = 0b0000  
CHG = 0  
(CHG_EN = 0)  
ANY STATE  
CHGIN DE-BOUNCED  
TIME ELAPSED >= t  
THM_EN = 1  
CHGIN-DB  
RETURNS TO SAME STATE WHEN:  
THM_EN = 0  
OR  
AND  
CHG_EN = 1  
AND  
(CHGIN_DTLS[1:0] = 0b11)  
CHARGER ENABLED (CHG_EN = 1)  
AND  
TIME ELAPSED < t  
CHGIN-DB  
(T  
BATT  
< T  
AND T  
> T  
)
COLD  
HOT  
BATT  
(T  
> T  
OR T  
< T  
)
COLD  
BATT  
HOT  
BATT  
CHGIN DE-BOUNCED & VALID (CHGIN_DTLS[1:0] = 0b11)  
AND  
BATTERY TEMPERATURE  
FAULT  
BATTERY LOW BY V  
(V  
< V  
– 150mV)  
FAST-CHG  
RESTART BATT  
CHG_DTLS[3:0] = 0b1100  
CHG = 0  
TIMERS PAUSE IN THIS STATE,  
RESUME ON EXIT.  
PREQUALIFICATION  
CHG_DTLS[3:0] = 0b0001  
CHG = 1  
PREQUALIFICATION  
TIMER FAULT  
CHG_DTLS[3:0] = 0b1010  
CHG = 0  
TIME ELAPSED > t  
PQ  
I
= I  
BATT PQ  
V
< V – 100mV  
PQ  
BATT  
V
> V  
PQ  
BATT  
V
< V – 100mV  
PQ  
BATT  
THM_EN = 1 AND  
(T > T OR T  
< T )  
COOL  
BATT  
WARM  
BATT  
JEITA-MODIFIED  
ANY FAST-CHARGE OR  
JEITA-MODIFIED FAST-CHARGE  
STATE  
CHG_DTLS[3:0] = 0b0010-0b0101  
CHG = 1  
FAST-CHARGE (CC)  
CHG_DTLS[3:0] = 0b0010  
CHG = 1  
FAST-CHARGE (CC)  
CHG_DTLS[3:0] = 0b0011  
CHG = 1  
I
= I  
**  
BATT FAST-CHG  
I
= I  
**  
THM_EN = 0 OR  
(T < T  
BATT FAST-CHG_JEITA  
AND T  
> T  
)
COOL  
BATT  
WARM  
BATT  
BATT  
V
<
BATT  
V
= V  
TIME ELAPSED* > t  
FC  
BATT  
FAST-CHG_JEITA  
V
< V  
V
= V  
FAST-CHG  
BATT  
FAST-CHG  
BATT  
V
FAST-CHG_JEITA  
THM_EN = 1 AND  
(T > T OR T  
< T  
)
BATT  
WARM  
COOL  
JEITA-MODIFIED  
FAST-CHARGE  
TIMER FAULT  
CHG_DTLS[3:0] = 0b1011  
CHG = 0  
FAST-CHARGE (CV)  
CHG_DTLS[3:0] = 0b0100  
CHG = 1  
FAST-CHARGE (CV)  
CHG_DTLS[3:0] = 0b0101  
CHG = 1  
V
= V  
FAST-CHG  
BATT  
V
= V  
FAST-CHG_JEITA  
BATT  
THM_EN = 0 OR  
(T < T  
AND T  
> T  
)
COOL  
BATT  
WARM  
BATT  
BATT  
I
> I  
I
< I  
BATT TERM  
BATT TERM  
I
< I  
BATT TERM  
I
> I  
BATT TERM  
THM_EN = 1 AND  
(T > T OR T  
< T )  
COOL  
BATT  
WARM  
JEITA-MODIFIED  
TOP-OFF  
CHG_DTLS[3:0] = 0b0111  
CHG = 1  
TOP-OFF  
CHG_DTLS[3:0] = 0b0110  
CHG = 1  
*TIME ELAPSED IS AGGREGATED  
THROUGHOUT THE FAST-CHARGE AND  
JEITA-MODIFIED FAST-CHARGE  
STATES. ALL FAST-CHARGE STATES  
(REGARDLESS OF JEITA STATUS)  
SHARE THE SAME SAFETY TIMER.  
V
= V  
FAST-CHG  
BATT  
V
= V  
FAST-CHG_JEITA  
BATT  
THM_EN = 0 OR  
(T < T  
AND T  
> T  
)
COOL  
BATT  
WARM  
BATT  
TIME ELAPSED > t  
TO  
TIME ELAPSED > t  
TO  
**I  
MAY BE REDUCED BY THE  
FAST-CHG  
MINIMUM INPUT VOLTAGE REGULATION  
LOOP, THE MINIMUM SYSTEM VOLTAGE  
REGULATION LOOP, OR THE DIE  
JEITA-MODIFIED DONE  
CHG_DTLS[3:0] = 0b1001  
CHG = 0  
DONE  
CHG_DTLS[3:0] = 0b1000  
CHG = 0  
TEMPERATURE REGULATION LOOP.  
THM_EN = 0 OR  
(T < T  
AND T  
> T  
)
COOL  
BATT  
WARM  
BATT  
Figure 12. Charger State Diagram  
Maxim Integrated  
54  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
A fast-charge safety timer starts when the state machine  
enters fast-charge (CC) or JEITA-modified fast-charge  
(CC) from a non-fast-charge state. The timer continues to  
run through all fast-charge states regardless of JEITA sta-  
Charger Off State  
The charger is off when CHGIN is invalid, the charger is  
disabled, or the battery is fresh.  
CHGIN is invalid when the CHGIN input is invalid  
tus. The timer length (t ) is programmable from 3 hours  
FC  
(V  
< V  
or V  
> V  
).  
CHGIN  
CHGIN_UVLO  
CHGIN  
CHGIN_OVP  
to 7 hours in 2 hour increments with T_FAST_CHG[1:0].  
If it is desired to charge without a safety timer, program  
T_FAST_CHG[1:0] with 0b00 to disable the feature. If the  
timer expires before the fast-charge states are exited, the  
charger faults. See the Fast-Charge Timer Fault State  
section for more information.  
While CHGIN is invalid, the battery is connected to the  
system. CHGIN voltage quality can be separately moni-  
tored by the CHGIN_DTLS[1:0] status bitfield. Refer to  
the Programmer’s Guide for details.  
The charger is disabled when the charger enable bit is 0  
(CHG_EN = 0). The battery is connected or disconnected  
to the system depending on the validity of V  
If the charge current falls below 20% of the programmed  
value during fast-charge (CC), the safety timer pauses.  
The timer also pauses for the duration of supplement  
mode events. The TIME_SUS bit indicates the status of  
the fast-charge safety timer. Refer to the Programmer’s  
Guide for more details.  
while  
CHGIN  
CHG_EN = 0. See the Smart Power Selector section.  
The battery is fresh when CHGIN is valid and the charger  
is enabled (CHG_EN = 1) and the battery is not low by  
V
(V  
BATT  
> V  
- V  
). The bat-  
RESTART  
FAST-CHG  
RESTART  
tery is disconnected from the system and not charged  
while the battery is fresh. The charger state machine exits  
this state and begin charging when the battery becomes  
Top-Off State  
Top-off state is entered when the battery charge cur-  
rent falls below I  
during the fast-charge (CV) state.  
low by V  
(150mV typical). This condition is func-  
TERM  
RESTART  
I
is a percentage of I  
and is program-  
tionally similar to done state. See Done State section.  
TERM  
FAST-CHG  
mable through I_TERM[1:0]. While in the top-off state,  
the battery charger continues to hold the battery's voltage  
Prequalification State  
The prequalification state is intended to assess a low-volt-  
age battery's health by charging at a reduced rate. If the  
battery voltage is less than the V  
at V . A programmable top-off timer starts when  
FAST-CHG  
the charger state machine enters the top-off state. When  
the timer expires, the charger enters the done state. The  
threshold, the charger  
PQ  
is automatically in prequalification. If the cell voltage does  
not exceed V in 30 minutes (t ), the charger faults.  
top-off timer value (t ) is programmable from 0 minutes  
to 35 minutes with T_TOPOFF[2:0]. If it is desired to stop  
TO  
PQ  
PQ  
The prequalification charge rate is a percentage of I  
charging as soon as battery current falls below I  
,
FAST-  
TERM  
and is programmable with I_PQ. The prequalifica-  
program t  
to 0 minutes.  
CHG  
TO  
tion voltage threshold (V ) is programmable through  
PQ  
Done State  
CHG_PQ[2:0].  
The charger enters the done state when the top-off timer  
expires. The battery remains disconnected from the  
system during done. The charger restarts if the battery  
Fast-Charge States  
When the battery voltage is above V , the charger  
PQ  
transitions to the fast-charge (CC) state. In this state, the  
charger delivers a constant current (I  
cell. The constant current level is programmable from  
7.5mA to 300mA by CHG_CC[5:0].  
voltage falls more than V  
(150mV typ) below the  
RESTART  
value.  
) to the  
programmed V  
FAST-CHG  
FAST-CHG  
Prequalification Timer Fault State  
The prequalification timer fault state is entered when the  
When the cell voltage reaches V  
state machine transitions to fast-charge (CV). V  
, the charger  
FAST-CHG  
battery's voltage fails to rise above V  
in t  
(30 min-  
PQ  
TO  
FAST-  
utes typical) from when the prequalification state was first  
entered. If a battery is too deeply discharged, damaged,  
or internally shorted, the prequalification timer fault state  
can occur. During the timer fault state, the charger stops  
delivering current to the battery and the battery remains  
disconnected from the system. To exit the prequalification  
timer fault state, toggle the charger enable (CHG_EN)  
bit or unplug and replug the external voltage source con-  
nected to CHGIN.  
is programmable with CHG_CV[5:0] from 3.6V to  
CHG  
4.6V. The charger holds the battery's voltage constant  
at V while in the fast-charge (CV) state. As  
FAST-CHG  
the battery approaches full, the current accepted by the  
battery reduces. When the charger detects that battery  
charge current has fallen below I  
machine enters the top-off state.  
, the charger state  
TERM  
Maxim Integrated  
55  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
The THM_DTLS[2:0] bitfield reports battery tempera-  
ture status. See the Adjustable Thermistor Temperature  
Monitors section and refer to the Programmer’s Guide for  
more information.  
Fast-Charge Timer Fault State  
The charger enters the fast-charge timer fault state if the  
fast-charge safety timer expires. While in this state, the  
charger stops delivering current to the battery and the  
battery remains disconnected from the system. To exit  
the fast-charge timer fault state, toggle the charger enable  
bit (CHG_EN) or unplug and replug the external voltage  
source connected to CHGIN.  
JEITA-Modified States  
If the thermistor is enabled (THM_EN = 1), then the char-  
ger state machine is allowed to enter the JEITA-modified  
states. These states are entered if the charger's tem-  
perature monitors indicate that the battery temperature  
Battery Temperature Fault State  
is either warm (greater than T  
) or cool (lesser than  
WARM  
If the thermistor monitoring circuit reports that the battery  
is either too hot or too cold to charge (as programmed by  
THM_HOT[1:0] and THM_COLD[1:0]), the state machine  
enters the battery temperature fault state. While in this  
state, the charger stops delivering current to the battery  
and the battery remains disconnected from the system.  
This state can only be entered if the thermistor is enabled  
(THM_EN = 1). Battery temperature fault state has prior-  
ity over any other fault state, and can be exited when the  
thermistor is disabled (THM_EN = 0) or when the battery  
returns to an acceptable temperature. When this fault  
state is exited, the state machine returns to the last state it  
was in before battery temperature fault state was entered.  
T
). See the Adjustable Thermistor Temperature  
COOL  
Monitors section for more information about setting the  
temperature thresholds.  
The charger's current and voltage parameters change  
from I  
and V  
to I  
and  
FAST-CHG  
FAST-CHG  
FAST-CHG_JEITA  
V
while in the JEITA-modified states. The  
FAST-CHG_JEITA  
JEITA modified parameters can be independently set to  
lower voltage and current values so that the battery can  
charge safely over a wide range of ambient tempera-  
tures. If the battery temperature returns to normal, or the  
thermistor is disabled (THM_EN = 0) the charger exits the  
JEITA-modified states.  
All active charger timers (fast-charge safety timer,  
prequalification timer, or top-off timer) are paused in this  
state. Active timers resume when the state is exited.  
Typical Charge Profile  
A typical battery charge profile (and state progression) is  
illustrated in Figure 13.  
(V)  
(mA)  
500  
400  
CHGIN  
5
SYS  
V
= 4.5V  
SYS-REG  
BATT  
V
= 4.25V  
FAST-CHG  
4
3
2
1
I
= 300mA  
FAST-CHG  
300  
200  
V
= 2.3V  
PQ  
I
BATT  
100  
t
TO  
I
= 30mA  
PQ  
I
= 30mA  
TERM  
(TIME)  
DONE  
FAST-CHARGE (CV)  
TOP-OFF  
CHGIN  
FAST-CHARGE (CC)  
INVALID  
PREQUALIFICATION  
Figure 13. Example Battery Charge Profile  
Maxim Integrated  
56  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
10μF). The effective value of the CHGIN capacitor must  
be greater than 1µF when biased with 5V.  
Charger Applications Information  
Configuring a Valid System Voltage  
Bypass SYS to GND with a 22μF ceramic capacitor.  
This capacitor is needed to ensure stability of SYS while  
it is being regulated from CHGIN. Since SYS must be  
connected to IN_SBB, then one capacitor can be used  
to bypass this node as long as it is physically close to  
the device. Larger values of SYS capacitance increase  
decoupling for all SYS loads. When biased with 4.5V, the  
effective value of the SYS capacitor must be greater than  
4μF and no more than 100μF.  
The smart power selector begins to regulate SYS to  
V
when CHGIN is connected to a valid source. To  
SYS-REG  
ensure the charger's accuracy specified in the Electrical  
Characteristics table, the system voltage must always  
be programmed at least 200mV above the charger's  
constant-voltage level (V  
). If this condition is not  
FAST-CHG  
met, then the charger's internal configuration logic forces  
to reduce to satisfy the 200mV requirement. If  
V
FAST-CHG  
this happens, the charger asserts the SYS_CNFG_I inter-  
rupt to alert the user that a configuration error has been  
made and that the bits in CHG_CV[5:0] have changed to  
Bypass BATT to GND with a 4.7μF ceramic capacitor.  
This capacitor is required to ensure stability of the BATT  
voltage regulation loop. When biased with 4.5V, the effec-  
tive value of the BATT capacitor must be greater than 1μF.  
reduce V  
.
FAST-CHG  
CHGIN/SYS/BATT Capacitor Selection  
Ceramic capacitors with X5R or X7R dielectric are highly  
recommended due to their small size, low ESR, and small  
temperature coefficients. All ceramic capacitors derate  
with DC bias voltage (effective capacitance goes down as  
DC bias goes up). Generally, small case size capacitors  
derate heavily compared to larger case sizes (0603 case  
size performs better than 0402). Consider the effective  
capacitance value carefully by consulting the manufac-  
turer's data sheet.  
Bypass CHGIN to GND with a 4.7μF ceramic capacitor to  
minimize inductive kick caused by long cables between  
the DC charge source and the device. Larger values  
increase decoupling for the linear charger, but increase  
inrush current from the DC charge source when the  
device is first connected to a source through a cable/plug.  
If the DC charging source is an upstream USB device,  
limit the maximum CHGIN input capacitance based on  
the appropriate USB specification (typically no more than  
Maxim Integrated  
57  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
enables the charger to operate safely over the JEITA tem-  
perature range. When the thermistor is enabled (THM_EN  
= 1), the charger continuously monitors the voltage at the  
THM pin in order to sense the temperature of the battery  
being charged.  
Adjustable Thermistor Temperature  
Monitors  
The optional use of a negative temperature coeffi-  
cient (NTC) thermistor (thermally coupled to the battery)  
MAX77650/  
MAX77651  
CHG_CV[5:0]  
D0  
D1  
1.25V  
V
FAST-CHG  
TBIAS  
CHG_CV_JEITA[5:0]  
S0  
S0  
TBIAS SWITCH  
CONTROL  
(FIGURE 16)  
CHG_CC[5:0]  
D0  
D1  
R
BIAS  
I
FAST-CHG  
CHG_CC_JEITA[5:0]  
THM  
INTERNAL COOL/WARM SIGNAL  
THM_DTLS[2:0] = 0b000 OR 0b101 (NTC  
DISABLED OR BATTERY NORMAL).  
CHARGER V&I PARAMETERS FOLLOW  
THM_COLD[1:0]  
0b0  
NTC  
NORMAL SETTINGS.  
THM_DTLS[2:0] = 0b010 OR 0b011  
(BATTERY COOL OR WARM). CHARGER  
V&I PARAMETERS SWITCH TO JEITA  
THM_EN  
THM_COOL[1:0]  
THM_WARM[1:0]  
THM_HOT[1:0]  
0b1  
SETTINGS.  
INTERNAL HOT/COLD SIGNAL  
THM_DTLS[2:0] 0b001 OR 0b100  
(BATTERY NOT COLD OR HOT). CHARGER  
V&I PARAMETERS FOLLOW NORMAL OR  
0b0  
JEITA SETTINGS.  
THM_DTLS[2:0] = 0b001 OR 0b100  
0b1 (BATTERY COLD OR HOT). CHARGING IS  
PAUSED REGARDLESS OF CHG_EN.  
Figure 14. Thermistor Logic Functional Diagram  
Maxim Integrated  
58  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
See Figure 15 for a visual example of what is described  
here in text.  
If the battery temperature is either above T  
or below  
HOT  
T , the charger follows the JEITA recommendation  
COLD  
and pauses charging. The charger state machine enters  
battery temperature fault state while charging is paused  
due to extreme high or low temperatures.  
If the battery temperature is higher than T  
and  
COOL  
lower than T , the battery charges normally with  
WARM  
the normal values for V  
and I  
. The  
FAST-CHG  
FAST-CHG  
The battery's temperature status is reflected by the  
THM_DTLS[2:0] status bitfield. A maskable interrupt  
(THM_I) signals a change in THM_DTLS[2:0]. Refer to  
the Programmer’s Guide for more information. To com-  
pletely disable the charger's automatic response to bat-  
tery temperature, disable the feature by programming  
THM_EN = 0.  
charger state machine does not enter JEITA-modified  
states while the battery temperature is normal.  
If the battery temperature is either above T  
WARM  
but below T  
, or, below T  
but above T  
,
HOT  
COOL  
COLD  
the battery charges with the JEITA-modified volt-  
age and current values. These modified values,  
V
and I , are pro-  
FAST-CHG_JEITA  
FAST-CHG_JEITA  
grammable through CHG_CV_JEITA[5:0] and  
CHG_CC_JEITA[5:0], respectively. These values are  
independently programmable from the nonmodified  
The voltage thresholds corresponding to the JEITAtemper-  
ature thresholds are independently programmable through  
THM_HOT[1:0], THM_WARM[1:0], THM_COOL[1:0], and  
THM_COLD[1:0]. Each threshold can be programmed  
to one of four voltage options spanning 15°C for an  
NTC beta of 3380K. See the Configurable Temperature  
Thresholds section and refer to the Programmer’s Guide  
for more information.  
V
and I  
values and can even  
FAST-CHG  
FAST-CHG  
be programmed to the same values if an automatic  
response to a warm or cool battery is not desired. The  
charger state machine enters JEITA-modified states  
while the battery temperature is outside of normal.  
EXAMPLE TEMPERATURES  
FOR NTC β = 3380K  
THM_COLD[1:0] = 0b10 (0°C)  
THM_COOL[1:0] = 0b11 (15°C)  
THM_WARM[1:0] = 0b10 (45°C)  
THM_HOT[1:0] = 0b11 (60°C)  
4.4V  
4.3V  
4.2V  
4.1V  
4.0V  
V
= 4.2V  
FAST-CHG  
(CHG_CV[5:0] = 0b011000)  
V
= 4.075V  
FAST-CHG_JEITA  
(CHG_CV_JEITA[5:0] = 0b010011)  
COLD  
COOL  
NORMAL  
25°C  
WARM  
HOT  
75°C  
-40°C  
-25°C  
0°C  
15°C  
45°C  
60°C  
85°C  
T
COLD  
T
T
T
HOT  
COOL  
WARM  
BATTERY TEMPERATURE  
I
= 150mA  
FAST-CHG  
(CHG_CC[5:0] = 0b010011)  
0.15  
0.1  
0.05  
0
I
= 75mA  
FAST-CHG_JEITA  
(CHG_CC_JEITA[5:0] = 0b001001)  
COLD  
COOL  
NORMAL  
WARM  
HOT  
-40°C  
-25°C  
0°C  
15°C  
25°C  
45°C  
60°C  
75°C  
85°C  
T
T
COOL  
T
T
HOT  
COLD  
WARM  
BATTERY TEMPERATURE  
Figure 15. Safe-Charging Profile Example  
Maxim Integrated  
59  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
The NTC thermistor's bias source (TBIAS) follows the  
simple operation outlined below:  
Thermistor Bias  
An external ADC can optionally perform conversions on  
the THM and TBIAS pins to measure the battery's tem-  
perature. An on-chip analog multiplexer is used to route  
these nodes to the AMUX pin. The operation of the analog  
multiplexer does not interfere with the charger's tempera-  
ture monitoring comparators or the charger's automatic  
JEITA response. See the Analog Multiplexer & Power  
Monitor AFEs section for more information.  
If CHGIN is valid and the thermistor is enabled  
(THM_EN = 1), then the thermistor is biased so the  
charger can automatically respond to battery tem-  
perature changes.  
If the analog multiplexer is connecting THM or  
TBIAS to AMUX, then the thermistor is biased so an  
external ADC can perform a meaningful temperature  
conversion.  
The AMUX pin is a buffered output. The operation of the  
analog multiplexer and external ADC does not collide with  
the function of the on-chip temperature monitors. Both  
functions may be used simultaneously with no ill effect.  
THERMISTOR BIASED  
TBIAS = 1.25V  
Configurable Temperature Thresholds  
Temperature thresholds for different NTC thermistor beta  
values are listed in Table 4. The largest possible program-  
mable temperature range can be realized by using an NTC  
with a beta of 3380K. Using a larger beta compresses the  
temperature range. The trip voltage thresholds are pro-  
grammable with the THM_HOT[1:0], THM_WARM[1:0],  
THM_COOL[1:0], and THM_COLD[1:0] bitfields. All pos-  
sible programmable trip voltages are listed in Table 4.  
MUX_SEL ≠ 0b0111 or 0b1000  
AND  
(THM_EN = 0 OR CHGIN INVALID)  
MUX_SEL = 0b0111 or 0b1000  
OR  
(THM_EN = 1 AND CHGIN VALID)  
THERMISTOR OFF  
TBIAS = GND  
These are theoretical values computed by a formula.  
Refer to the particular NTC's data sheet for more accurate  
measured data. In all cases, select the value of R  
to  
BIAS  
be equal to the NTC's effective resistance at +25°C.  
Figure 16. Thermistor Bias State Diagram  
Table 4. Trip Temperatures vs. Trip Voltages for Different NTC β  
TRIP TEMPERATURES (°C)  
TRIPVOLTAGE  
(V)  
3380K  
-10.0  
-5.0  
3435K  
-9.5  
3940K  
-5.6  
4050K  
-4.8  
4100K  
-4.5  
4250K  
-3.5  
0.6  
1.024  
0.976  
0.923  
0.867  
0.807  
0.747  
0.511  
0.459  
0.411  
0.367  
0.327  
0.291  
-4.6  
-1.1  
-0.5  
-0.2  
0.0  
0.3  
3.3  
3.8  
4.1  
4.8  
5.0  
5.3  
7.7  
8.1  
8.3  
8.9  
10.0  
15.0  
35.0  
40.0  
45.0  
50.0  
55.0  
60.0  
10.2  
15.1  
34.8  
39.8  
44.7  
49.6  
54.5  
59.4  
12.0  
16.4  
33.5  
37.8  
42.0  
46.2  
50.4  
54.6  
12.4  
16.6  
33.3  
37.4  
41.5  
45.6  
49.7  
53.7  
12.5  
16.7  
33.2  
37.3  
41.3  
45.3  
49.3  
53.3  
12.9  
17.0  
32.9  
36.8  
40.7  
44.6  
48.4  
52.2  
Maxim Integrated  
60  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
Figure 17  
Thermistor Applications Information  
Using Different Thermistor β  
TBIAS  
If an NTC with a beta larger than 3380K is used and the  
resulting available programmable temperature range is  
undesirably small, then two adjusting resistors can be  
R
BIAS  
used to expand the temperature range. R and R can  
S
P
THM  
be optionally added to the NTC thermistor circuit shown  
in Figure 17 to expand the range of programmable tem-  
perature thresholds.  
R
S
R
P
Select values for R and R based on the information  
S
P
shown in Table 5.  
NTC  
NTC Thermistor Selection  
Popular NTC thermistor options are listed in Table 6.  
Figure 17. Thermistor Circuit with Adjusting Series and Parallel  
Resistors  
Table 5. Example R and R Correcting Values for NTC β Above 3380K  
S
P
PARAMETER  
NTC thermistor beta  
25°C NTC resistance  
UNIT DESIGN TARGET CASE  
CASE 1  
3940  
10  
CASE 2  
4050  
47  
CASE 3  
4250  
100  
K
3380  
10  
R
10  
10  
47  
100  
BIAS  
Adjusting parallel resistor, R  
open  
short  
45.24  
22.61  
5.81  
open  
200  
0.62  
open  
680  
3.3  
open  
1300  
9.1  
P
Adjusting series resistor, R  
short  
45.24  
22.61  
5.81  
short  
212.6  
106.3  
27.3  
short  
452.4  
226.1  
58.1  
S
kΩ  
R
R
R
R
at 1.024V  
at 0.867V  
at 0.459V  
at 0.291V  
threshold  
threshold  
threshold  
578.5  
248.8  
5.36  
306.1  
122.7  
25.1  
684.8  
264.7  
51.7  
NTC  
COLD  
COOL  
WARM  
NTC  
NTC  
threshold  
HOT  
3.04  
3.04  
2.46  
14.3  
112.7  
-11.14  
5.33  
30.4  
22.0  
NTC  
T
T
T
T
at V  
at V  
at V  
at V  
(-10°C expected)  
(5°C expected)  
(40°C expected)  
-10.03  
4.98  
-5.56  
7.66  
-9.96  
5.76  
-4.82  
8.10  
-3.55  
8.86  
-10.46  
5.94  
ACTUAL  
ACTUAL  
ACTUAL  
ACTUAL  
COLD  
COOL  
WARM  
°C  
40.02  
60.04  
37.79  
54.56  
39.76  
60.37  
37.43  
53.68  
39.40  
60.02  
36.82  
52.21  
39.48  
60.4  
(60°C expected)  
HOT  
Table 6. NTC Thermistors  
Β-CONSTANT  
(25°C/50°C)  
MANUFACTURER  
PART  
R (Ω) AT 25°C  
CASE SIZE  
TDK  
NTCG063JF223HTBX  
NCP03XH103F05RL  
NCP15XH103F03RC  
NTCG103JX103DT1  
CMFX3435103JNT  
3380K  
3380K  
3380K  
3380K  
3435K  
3900K  
4050K  
4100K  
4250K  
22k  
10k  
10k  
10k  
10k  
10k  
47k  
47k  
100k  
0201  
0201  
0402  
0402  
0402  
0402  
0201  
0402  
0402  
Murata  
Murata  
TDK  
Cantherm  
Murata  
Panasonic  
Panasonic  
Murata  
NCP15XV103J03RC  
ERT-JZEP473J  
ABNTC-0402-473J-4100F-T  
NCP15WF104F03RC  
Maxim Integrated  
61  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
device's main bias is active and a channel is selected  
(MUX_SEL[3:0] ≠ 0b0000). Disable the buffer by pro-  
gramming to MUX_SEL[3:0] to 0b0000 when not actively  
converting the voltage on AMUX.  
Analog Multiplexer & Power Monitor AFEs  
An external ADC can be used to measure the chip's vari-  
ous signals for general functionality or on-the-fly power  
monitoring. The MUX_SEL[3:0] bitfield controls the inter-  
nal analog multiplexer responsible for connecting the  
proper channel to the AMUX pin. Each measurable signal  
is listed below with its appropriate multiplexer channel.  
The voltage on the AMUX pin is a buffered output that  
Table 7 shows how to translate the voltage signal on the  
AMUX pin to the value of the parameter being measured.  
See the Electrical Characteristics—Analog Multiplexer and  
Power Monitor AFEs table and refer to the Programmer’s  
Guide for more details.  
ranges from 0V to V  
(1.25V typ). The buffer has a  
FS  
50μA quiescent current draw and is only active when the  
Table 7. AMUX Signal Transfer Functions  
MUX_SEL  
FULL-SCALE  
SIGNAL  
MEANING  
ZERO-SCALE  
SIGNAL  
MEANING  
SIGNAL  
TRANSFER FUNCTION  
[3:0]  
(V  
= 1.25V)  
(V  
= 0V)  
AMUX  
AMUX  
V
CHGIN pin  
voltage  
AMUX  
0b0001  
7.5V  
0V  
V
=
=
=
CHGIN  
G
VCHGIN  
V
CHGIN pin  
current  
AMUX  
0b0010  
0b0011  
0b0100  
0.475A  
4.6V  
0A  
0V  
I
CHGIN  
G
ICHGIN  
V
BATT pin  
voltage  
AMUX  
V
BATT  
G
VBATT  
BATT pin  
charging  
current  
V
100% of I  
0% of  
AMUX  
FAST-CHG  
I
=
× I  
FAST − CHG  
BATT CHG  
(
)
V
(CHG_CC[5:0])  
I
FAST-CHG  
FS  
BATT pin  
discharge  
current  
100% of  
V
− V  
(
)
AMUX  
NULL  
)
0% of  
0b0101  
0b0110  
I
I
=
)
× I  
DISCHG-SCALE  
DISCHG − SCALE  
BATT DISCHG  
(
I
DISCHG-SCALE  
0V  
V
− V  
(
FS  
NULL  
(IMON_DISCHG_SCALE[3:0])  
BATT pin  
discharge  
current NULL  
1.25V  
V
= V  
AMUX  
NULL  
THM pin  
voltage  
0b0111  
0b1000  
0b1001  
1.25V  
1.25V  
1.25V  
0V  
0V  
0V  
V
= V  
AMUX  
THM  
TBIAS pin  
voltage  
V
= V  
TBIAS  
AMUX  
AGND pin  
voltage*  
V
= V  
AGND  
AMUX  
V
SYS pin  
voltage  
AMUX  
0b1010  
4.8V  
0V  
V
=
SYS  
G
VSYS  
*AGND pin voltage is accessed through a 100Ω (typ) pulldown resistor. Setting MUX_SEL[3:0] to 0b0000 disables the multiplexer  
and changes the AMUX pin to a high-impedance state.  
Maxim Integrated  
62  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
Convert the voltage on AMUX pin and use the following  
Measuring Battery Current  
transfer function to determine the discharge current.  
It is possible to sample the current in the BATT pin at any  
time or in any mode with an external ADC. For improved  
accuracy, the analog circuitry used for monitoring battery  
discharge current is different from the circuitry monitoring  
battery charge current. Table 8 outlines how to determine  
the direction of battery current.  
V
V
(
)
AMUX  
V
NULL  
I
=
)
× I  
DISCHG − SCALE  
BATT DISCHG  
(
− V  
(
)
FS  
NULL  
V
is 1.25V (typ). I  
is programmable  
FS  
DISCHG-SCALE  
through IMON_DISCHG_SCALE[3:0]. The default value  
is 300mA. If smaller currents are anticipated, then  
Method for Measuring Discharging Current  
I
can be reduced for improved measure-  
Program the multiplexer to switch to the discharge  
NULL measurement by changing MUX_SEL[3:0] to  
0b0110. A NULL conversion must always be per-  
formed first to cancel offsets.  
● Wait the appropriate channel switching time (0.3μs  
typ).  
DISCHG-SCALE  
ment accuracy.  
Method for Measuring Charging Current  
Program the multiplexer to switch to the charge  
current measurement by changing MUX_SEL[3:0] to  
0b0100.  
● Wait the appropriate channel switching time (0.3μs  
typ).  
Convert the voltage on the AMUX pin and store as  
V
NULL  
.
Program the multiplexer to switch to the battery  
discharge current measurement by changing MUX_  
SEL[3:0] to 0b0101. A nonnulling conversion should  
be done immediately after a NULL conversion.  
● Wait the appropriate channel switching time (0.3μs  
typ).  
Convert the voltage on the AMUX pin and use the fol-  
lowing transfer function to determine charging current.  
V
AMUX  
I
=
)
× I  
FAST − CHG  
BATT CHG  
(
V
FS  
V
is 1.25V (typ). I  
the charger's fast-charge  
FS  
FAST-CHG  
constant-current setting and is programmable through  
CHG_CC[5:0].  
Table 8. Battery Current Direction Decode  
CHARGING OR DISCHARGING INDICATORS  
MEASUREMENT  
CHG BIT  
CHG_DTLS[3:0]  
CHGIN_DTLS[1:0]  
Discharging Battery Current  
(Positive Battery Terminal Sourcing Current  
into the BATT pin of MAX77650/MAX77651)  
0b00  
0b01  
0b10  
Don't care  
1
Don't care  
Charging Battery Current  
(Positive Battery Terminal Sinking Current from  
the BATT pin of MAX77650/MAX77651)  
0b0001–0b0111  
0b11  
Maxim Integrated  
63  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
SIMO Benefits and Features  
3 Output Channels  
Ideal for Low-Power Designs  
• Delivers > 300mA at 1.8V from a 3.7V Input  
• ±3% Accurate Output Voltage  
Small Solution Size  
Multiple Outputs from a Single 1.5μH (0603) Inductor  
Small 10μF (0402) Output Capacitors  
Flexible and Easy to Use  
SIMO Buck-Boost  
The device has a micropower single-inductor, multiple-out-  
put (SIMO) buck-boost DC-to-DC converter designed for  
applications that emphasize low supply current and small  
solution size. A single inductor is used to regulate three  
separate outputs, saving board space while delivering  
better total system efficiency than equivalent power solu-  
tions using one buck and linear regulators.  
The SIMO configuration utilizes the entire battery voltage  
range due to its ability to create output voltages that are  
above, below, or equal to the input voltage. Peak induc-  
tor current for each output is programmable to optimize  
the balance between efficiency, output ripple, EMI, PCB  
design, and load capability.  
• Single Mode of Operation  
• Programmable Peak Inductor Current  
• Programmable On-Chip Active Discharge  
Long Battery Life  
High Efficiency, > 87% at 3.3V Output  
Better Total System Efficient than Buck + LDOs  
Low Quiescent Current, 1μA per Output  
• Low Input Operating Voltage, 2.7V (min)  
3300pF  
(0201)  
1.5µH  
LXA  
LXB  
BST  
IN_SBB  
SBB0  
MAX77650/MAX77651  
SYNCHRONOUS RECTIFIER  
MAIN POWER STAGE  
IN_SBB  
REVERSE  
BLOCKING  
SYS  
10µF  
(0402)  
PGND  
M1  
BST  
10µF  
(0402)  
DRV_SBB  
M3_0  
DIS_SBB1  
IZX  
ERROR COMPARATOR  
ACTIVE-DISCHARGE  
ILIM  
DRV_SBB  
CHG  
M2  
M4  
REG0  
DIS  
R
AD_SSB0  
AD_SBB0  
(140Ω)  
SBB1  
SBB2  
I.LIM  
I.ZX  
REG[2:0]  
SYNCHRONOUS  
RECTIFIER (M3_1)  
AND  
ERROR COMPARATOR  
AND  
CHG  
DIS  
DIS_SBB[2:0]  
BST  
DRV_SBB  
DIS_SBB1  
10µF  
(0402)  
SIMO  
CONTROLLER  
REG1  
VREF  
VIREF  
AD_SBB1  
ACTIVE-DISCHARGE  
DIGITAL AND  
REGISTERS  
CNFG_SBB_TOP,  
CNFG_SBBX_A,  
CNFG_SBBX_B  
SYNCHRONOUS  
RECTIFIER (M3_2)  
AND  
ERROR COMPARATOR  
AND  
COMM  
FPS  
DRV_SBB  
AD_SBB[2:0]  
BST  
DRV_SBB  
DIS_SBB2  
10µF  
(0402)  
REG2  
SYS_RST  
AD_SBB2  
ACTIVE-DISCHARGE  
Figure 18. SIMO Detailed Block Diagram  
Maxim Integrated  
64  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
For example, given the following conditions, the peak  
SIMO Control Scheme  
input current (I ) during soft-start is ~71mA:  
IN  
The SIMO buck-boost is designed to service multiple out-  
puts simultaneously. A proprietary controller ensures that  
all outputs get serviced in a timely manner, even while  
multiple outputs are contending for the energy stored in  
the inductor. When no regulator needs service, the state  
machine rests in a low-power rest state.  
Given:  
V is 3.5V  
IN  
V  
C  
is 3.3V  
= 10µF  
SBB2  
SBB2  
dV/dt = 5mV/µs  
SS  
R  
● ξ is 80%  
= 330Ω (I  
= 3.3V/330Ω = 10mA)  
LOAD2  
LOAD2  
When the controller determines that a regulator requires  
service, it charges the inductor (M1 + M4) until the peak  
current limit is reached (I  
= I  
). The inductor  
Calculation:  
LIM  
P_SBB  
energy then discharges (M2 + M3_x) into the output until  
I  
I  
= 10µF x 5mV/µs (from Equation 1)  
= 50mA  
CSBB  
CSBB  
the current reaches zero (I ). In the event that multiple  
ZX  
output channels need servicing at the same time, the con-  
troller ensures that no output utilizes all of the switching  
cycles. Instead, cycles interleave between all the outputs  
that are demanding service, while outputs that do not  
need service are skipped.  
3.3V  
3.5V  
50mA + 10mA  
=
0.85  
(
)
(from Equation1)  
I
IN  
I ~ 71mA  
IN  
SIMO Registers  
SIMO Soft-Start  
The soft-start feature of the SIMO limits inrush current dur-  
ing startup. The soft-start feature is achieved by limiting  
the slew rate of the output voltage during startup to dV/dt  
(5mV/μs typ).  
Each SIMO buck-boost channel has a dedicated register  
to program its target output voltage (TV_SBBx) and its  
peak current limit (IP_SBBx). Additional controls are avail-  
able for enabling/disabling the active discharge resistors  
(ADE_SBBx), as well as enabling/disabling the SIMO  
buck-boost channels (EN_SBBx). For a full description of  
bits, registers, default values, and reset conditions, refer  
to the Programmer’s Guide.  
SS  
More output capacitance results in higher input current  
surges during startup. The following set of equations and  
example describes the input current surge phenomenon  
during startup.  
SIMO Active Discharge Resistance  
The current into the output capacitor (I ) during soft-start is:  
CSBB  
Each SIMO buck-boost channel has an active-discharge  
resistor (R  
) that is automatically enabled/dis-  
AD_SBBx  
abled based on a ADE_SBBx and the status of the SIMO  
regulator. The active discharge feature can be enabled  
(ADE_SBBx = 1) or disabled (ADE_SBBx = 0) indepen-  
dently for each SIMO channel. Enabling the active dis-  
charge feature helps ensure a complete and timely power  
down of all system peripherals. If the active-discharge  
resistor is enabled by default, then the active-discharge  
dV  
I
= C  
(Equation 1)  
CSBB  
SBB  
dt  
SS  
where C  
is the capacitance on the output of the regula-  
tor, and dV/dt is the voltage change rate of the output.  
SBB  
SS  
The input current (I ) during soft-start is:  
IN  
resistor is on whenever V  
is below V  
and  
SYS  
SYSUVLO  
above V  
.
POR  
V
SBBx  
I
+ I  
These resistors discharge the output when ADE_SBBx  
= 1, and their respective SIMO channel is off. Note if  
the regulator is forced on through EN_SBBx = 0b110 or  
0b111, then the resistors do not discharge the output even  
if the regulator is disabled by the main-bias.  
(
)
CSBB LOAD  
V
IN  
I
=
(Equation 2)  
IN  
ξ
where I  
is from the calculation above, I  
is cur-  
LOAD  
CSBB  
rent consumed from the external load, V  
is the output  
Note that when V  
tors that control the active discharge resistors lose their  
gate drive and become open.  
is less than 1.0V, the NMOS transis-  
SBBx  
SYS  
voltage, and V is the input voltage, ξ is the efficiency of  
IN  
the regulator.  
Maxim Integrated  
65  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
Choose the inductor saturation current to be greater than  
or equal to the maximum peak current limit setting that is  
SIMO Applications Information  
SIMO Available Output Current  
used for all of the SIMO buck-boost channels (I  
).  
P_SBB  
The available output current on a given SIMO channel is  
a function of the input voltage, output voltage, peak cur-  
rent limit setting, and the output current of the other SIMO  
channels. Maxim offers a SIMO calculator that outlines  
the available capacity for specific conditions. See Support  
Materials for more information on this and other engineer-  
ing resources. Table 9 is an extraction from the calculator.  
For example, if SBB0 is set for 0.5A, SBB1 is set for  
0.866A, and SBB2 is set for 1.0A, then choose the satura-  
tion current to be greater than or equal to 1.0A.  
Choose the RMS current rating of the inductor (typically  
the current at which the temperature rises appreciably)  
based on the expected load currents for the system. For  
systems where the expected load currents are not well  
known, be conservative and choose the RMS current to  
be greater than or equal to the half of higher maximum  
Inductor Selection  
Choose an inductance from 1.0μH to 2.2uH; 1.5μH induc-  
tors work best for most designs. Larger inductances  
transfer more energy to the output for each cycle and  
typically result in larger output voltage ripple and better  
efficiency. See the Output Capacitor Selection section for  
more information on how to size your output capacitor in  
order to control ripple.  
peak current limit setting [I  
>=MAX(IP_SBB0, IP_  
RMS  
SBB1, IP_SBB2)/2]. This is a safe/conservative choice  
because the SIMO buck-boost regulator implements a  
discontinuous conduction mode (DCM) control scheme,  
which returns the inductor current to zero each cycle.  
Consider the DC-resistance (DCR), AC-resistance (ACR)  
and solution size of the inductor. Typically, smaller  
sized inductors have larger DC-resistance and larger  
AC-resistance that reduces efficiency and the available  
output current. Note that many inductor manufacturers  
have inductor families which contain different versions  
of core material in order to balance trade-offs between  
DCR, ACR (i.e., core losses), and component cost. For  
this SIMO regulator, inductors with the lowest ACR in  
the 1.0MHz to 2.0MHz region tend to provide the best  
efficiency.  
Table 9. SIMO Available Output Current  
for Common Applications  
PARAMETERS EXAMPLE 1 EXAMPLE 2 EXAMPLE 3  
V.IN.MIN  
R.L.DCR  
SBB1  
2.7V  
3.2V  
3.4V  
0.1Ω  
0.1Ω  
0.12Ω  
1V at 100mA 1.2V at 50mA 1.2V at 20mA  
2.05V at  
SBB0  
1.2V at 75mA  
2.05V at 80mA  
100mA  
1.8V at 50mA 3.3V at 30mA 3.3V at 10mA  
SBB2  
See Table 10 for examples of inductors that work well  
with this device. This table was created in 2016. Inductor  
technology advances rapidly. Always consider the most  
current inductor technology for new designs to achieve  
the best possible performance.  
I.PEAK.0  
I.PEAK.1  
I.PEAK.2  
1A  
1A  
1A  
0.866A  
0.707A  
1A  
0.5A  
0.5A  
0.5A  
Utilized  
Capacity  
73  
79  
73  
*R.C.IN = R.C.OUT = 5mΩ, L = 1.5μH  
Table 10. Example Inductors  
MANUFACTURER  
Samsung  
Murata  
PART  
CIGT201610EH2R2MN  
DFE201610E-2R2M  
DFE201610E-1R5M  
DFE201210S-2R2M  
DFE201210S-1R5M  
CIGT201208EH2R2MN  
DFE201208S-1R5M  
DFE201208S-2R2M  
L (µH)  
2.2  
I
(A)  
I
(A) DCR (Ω) X (mm) Y (mm) Z (mm)  
RMS  
SAT  
2.9  
2.7  
0.073  
0.117  
0.076  
0.127  
0.086  
0.095  
0.110  
0.170  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
1.6  
1.6  
1.6  
1.2  
1.2  
1.25  
1.2  
1.2  
1.0  
1.0  
1.0  
1.0  
1.0  
0.8  
0.8  
0.8  
2.2  
2.6  
2.4  
2.3  
2.2  
2.0  
2.4  
2.0  
1.9  
3.2  
1.80  
2.6  
1.8  
2.0  
1.6  
Murata  
1.5  
Murata  
2.2  
Murata  
1.5  
Samsung  
Murata  
2.2  
1.5  
Murata  
2.2  
Maxim Integrated  
66  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
Note that most designs concern themselves with having  
Input Capacitor Selection  
enough capacitance on the output but there is also a  
maximum capacitance limitation that is calculated within  
the SIMO Calculator; take care not to exceed the maxi-  
mum capacitance.  
Choose the input bypass capacitance (C  
) to be  
IN_SBB  
10µF. Larger values of C  
for the SIMO regulator.  
improve the decoupling  
IN_SBB  
C
reduces the current peaks drawn from the battery  
IN_SBB  
C
is required to keep the output voltage ripple small.  
SBBx  
or input power source during SIMO regulator operation and  
reduces switching noise in the system. The ESR/ESL of the  
input capacitor should be very low (i.e., ≤ 5mΩ + ≤ 500pH)  
for frequencies up to 2MHz. Ceramic capacitors with X5R  
or X7R dielectric are highly recommended due to their  
small size, low ESR, and small temperature coefficients.  
The impedance of the output capacitor (ESR, ESL) should  
be very low (i.e., ≤ 5mΩ + ≤ 500pH) for frequencies up to  
2MHz. Ceramic capacitors with X5R or X7R dielectric are  
highly recommended due to their small size, low ESR,  
and small temperature coefficients.  
A capacitor's effective capacitance decreases with  
increased DC bias voltage. This effect is more pro-  
nounced as capacitor case sizes decrease. Due to this  
characteristic, it is possible for an 0603 case size capaci-  
tor to perform well, while an 0402 case size capacitor of  
the same value performs poorly. The SIMO regulator is  
stable with low output capacitance (1μF) but the output  
voltage ripple would be large; consider the effective out-  
put capacitance value after initial tolerance, bias voltage,  
aging, and temperature derating.  
To fully utilize the available input voltage range of the  
SIMO (5.5V max), use a 6.3V capacitor voltage rating.  
IN_SBB is a critical discontinuous current path that  
requires careful bypassing. When the SIMO detects that  
an output is below its regulation threshold, a switching  
cycle begins and the IN_SBB current ramps up as a func-  
tion of the input voltage and inductor (di/dt = V  
/L)  
IN_SBB  
until it reaches the peak current limit (I  
). Once  
P_SBB  
I
is reached, the IN_SBB current falls to zero  
P_SBB  
rapidly (~5ns). This rapid current decrease makes the  
parasitic inductance in the PGND to input capacitor to  
SBBx is a critical discontinuous current path that requires  
careful bypassing. When the SIMO detects that an output  
is below its target, it charges the inductor to a peak cur-  
IN_SBB path critical. In the PCB layout, place C  
as  
IN_SBB  
close as possible to the power pins (IN_SBB and PGND)  
to minimize parasitic inductance. If making connections  
to the input capacitor through vias, ensure that the vias  
are rated for the expected input current so they do not  
contribute excess inductance and resistance between the  
bypass capacitor and the power pins.  
rent limit (I  
) and then discharges that inductor into  
P_SBB  
the output. At the moment the charge is applied to the  
output, the current increases rapidly and then decays  
relatively slowly (dt/dt = V  
/L). This rapid current  
OUT  
increase is a function of the drive strength setting (DRV_  
SBB) and makes the parasitic inductance in the SBBx to  
output capacitor to PGND path critical. In the PCB layout,  
Boost Capacitor Selection  
Choose the boost capacitance (C  
) to be 3.3nF. Smaller  
place C  
as close as possible to SBBx and PGND  
BST  
SBBx  
values of C  
(< 1nF) result in insufficient gate drive for  
to minimize parasitic inductance. If making connections  
to the output capacitor through vias, ensure that the vias  
are rated for the expected output current so they do not  
contribute excess inductance and resistance.  
BST  
M3. Larger values of C  
(> 10nF) have the potential  
BST  
to degrade the startup performance. Ceramic capacitors  
with 0201 or 0402 case size are recommended.  
Output Capacitor Selection  
SIMO Switching Frequency  
Choose each output bypass capacitance (C  
) based  
The SIMO buck-boost regulator utilizes a pulse frequency  
modulation (PFM) control scheme. The switching fre-  
quency for each output is a function of the input voltage,  
output voltage, load current, and inductance. Maxim  
offers a SIMO calculator to aid in the understanding of the  
switching frequency.  
SBBx  
on the desired output voltage ripple; typical values are  
10µF. Larger values of C improve the output volt-  
SBBx  
age ripple but increase the input surge currents during  
soft-start and output voltage changes. The output voltage  
ripple is a function of the inductance, the output voltage,  
and the peak current limit setting. Maxim offers a SIMO  
calculator to aid in the selection of the output capacitance.  
See Support Materials for more information on this and  
other engineering resources.  
Maxim Integrated  
67  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
At no load, switching frequencies can be as low as 10Hz.  
It is possible to get SIMO switching frequencies that are  
high (5.7MHz) with all of the worst-case conditions: high  
input voltage (4.5V), low inductance (1.0µH), high output  
voltage (5.0V), low peak current limit (0.5A), and high  
utilization (80% which is 90mA with these conditions).  
With these high switching frequencies, the SIMO effi-  
ciency is poor. The maximum switching frequencies for  
designs should be no more than 3MHz. For example, in  
the 5.7MHz example above if we change the inductance  
to peak current limit from 0.5A to 0.707A while leaving the  
load current at 90mA, then the switching frequency drops  
to 2.4MHz. If we put the peak current limit at 0.866A and  
change the inductance to 1.5µH, then the switching fre-  
quency drops to 1MHz which provides a “nice” efficiency.  
external component for the unused output. Unlike the  
option above, this connection is preferred in cases  
where the unused output voltage bias level is always  
above the unused output voltage target because no  
energy packages are provided to the unused output.  
• Note that some OTP options of the device have the  
active-discharge resistors enabled by default (ADE_  
SBBx). If the other power output used to bias the  
unused output is normally off, then the active-dis-  
charge resistor of the unused output does not cre-  
ate a continuous current draw. Remember that once  
the system is enabled, it should turn off the unused  
output's active-discharge resistor (ADE_SBBx = 0).  
LDO  
The device includes one on-chip low-dropout linear regu-  
lator (LDO). This LDO is optimized to have low-quiescent  
current and low dropout voltage. The input voltage range  
Unused Outputs  
Do not leave unused outputs unconnected. If an output  
left unconnected is accidentally enabled, inductor current  
dumps into an open pin, and the output voltage can soar  
above the absolute maximum rating, potentially causing  
damage to the device. If the unused output is always  
disabled (EN_SBBx = 0x4 or 0x5), connect that output to  
ground. If an unused output can be enabled at any point  
during operation (such as startup or accidental software  
access), then implement one of the following:  
of this LDO (V  
) allows it to be powered directly  
IN_LDO  
from the main energy source such as a Li-Poly battery or  
from an intermediate regulator. The linear regulator deliv-  
ers up to 150mA.  
Features  
150mA LDO  
1.8V to 5.5V Input Voltage Range  
Adjustable Output Voltage  
180mV Maximum Dropout Voltage  
Programmable On-Chip Active Discharge  
Bypass the unused output with a 1µF ceramic capacitor  
to ground.  
Connect the unused output to the power input (IN_  
SBB). This connection is beneficial because it does  
not require an external component for the unused  
output. The power input and its capacitance receives  
the energy packets when the regulator is enabled  
LDO Simplified Block Diagram  
The LDO has one input (IN_LDO) and one output (LDO)  
and several ports that exchange information with the rest  
of the device (VREF, EN_LDO, ADE_LDO). VREF comes  
from the main bias circuits. EN_LDO and ADE_LDO  
are register bits for controlling the enable and active-  
discharge feature of the LDO. Refer to the Programmer’s  
Guide for more information.  
and V  
is below the target output voltage of  
IN_SBB  
the unused output. Circulating the energy back to the  
power input ensures that the unused output voltage  
does not fly high.  
• Note that some OTP options of the device have the  
active-discharge resistors enabled by default (ADE_  
SBBx) such that connecting an unused output SBBx  
LDO Active Discharge Resistor  
The LDO has an active-discharge resistor (R  
that automatically enables/disables based on a configura-  
tion bit (ADE_LDO) and the status of the LDO regulator.  
Enabling the active discharge feature helps ensure a  
complete and timely power down of all system peripherals.  
The default condition of the active-discharge resistor fea-  
)
AD_LDO  
to IN_SBB creates a 140Ω (R  
) to ground  
AD_SBBx  
until software can be ran to disable the active-dis-  
charge resistor. Connecting an unused SBBx to  
IN_SBB is not recommended if the regulator's  
active-discharge resistor is enabled by default.  
ture is enabled such that whenever V  
is above V  
SYS  
POR  
Connect the unused output to another power output  
that is above the target voltage of the unused output.  
In the same way as the option listed above, this con-  
nection is beneficial because it does not require an  
and V  
is above 1.0V, the LDO active discharge  
IN_LDO  
resistor is turned on. Note that when V  
is less than  
IN_LDO  
1.0V, the NMOS transistor that controls the LDO active  
discharge resistor loses its gate drive and becomes open.  
Maxim Integrated  
68  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
the LDO, then the two nodes can share the SBB0 output  
LDO Soft-Start  
The soft-start feature of the LDO limits inrush current dur-  
ing startup. The soft-start feature is achieved by limiting the  
capacitor (C  
). C  
SBB0  
reduces the current peaks  
IN_LDO  
drawn from the battery or input power source during LDO  
regulator operation.  
slew rate of the output voltage during startup (dV/dt ).  
SS  
Choose the output capacitor (C  
) so that the effective  
LDO  
More output capacitance results in higher input cur-  
rent surges during startup. The equation and example  
describes the input current surge phenomenon during  
startup.  
capacitance is equal to or greater than the value found  
in Figure 19, based on expected load conditions for the  
application. A single 10μF, 1005/0402 (mm/inch) capacitor  
is recommended for typical applications, but ensure that  
the load current and derated capacitance does not com-  
promise the stability curve in Figure 19. Larger values of  
The input current (I ) during soft-start is:  
IN  
dV  
I
= C  
+ I  
LDO  
IN  
LDO  
dt  
C
improve stability and output PSRR, but increases  
SS  
LDO  
the input surge currents during soft-start and output volt-  
age changes. The effective output capacitance should not  
exceed 100μF to maintain LDO stability.  
where C  
tor, and dV/dt  
is the capacitance on the output of the regula-  
LDO  
is the voltage change rate of the output.  
SS  
For example, given the following conditions, the input  
current (I ) during soft-start is 22.5mA:  
For example, consider the case of the MAX77650A  
where:  
IN  
Given:  
1. Size is very important.  
• C  
= 10µF  
LDO  
• dV/dt = 1.25mV/µs  
2. The LDO input is powered by SBB0, which is 2.05V.  
3. The LDO output is 1.85V.  
SS  
• R  
= 185Ω (I  
= 1.85V/185Ω = 10mA)  
LDO  
LDO  
Calculation:  
• I = 10µF x 1.25mV/µs + 10mA  
4. The LDO output current is ≤80mA.  
IN  
A small 1005/0402 (mm/inch) capacitor such as the  
GRM155R60J106ME15 (Murata, 10μF, 6.3V X5R) gives  
5.7μF at 60°C and 5.4μF at -20°C with the 1.85V bias  
voltage and has a ± 20% tolerance, so the worst-case  
effective capacitance is 4.3μF (5.4μF derated by 20%  
tolerance). With just 4.3μF of capacitance at the output,  
Figure 19 shows the LDO is stable with load currents of  
≤35mA. To get stability at 80mA, 6μF is required. There  
are a few options to consider:  
• I = 22.5mA  
IN  
LDO Applications Information  
Input and Output Capacitor Selection  
Sufficient input bypass capacitance (C  
) and output  
IN_LDO  
capacitance (C  
) is required for stable operation of the  
LDO  
LDO. Figure 19 provides guidance on capacitor selection  
and refers to required effective capacitance, which is the  
actual value of capacitance seen by the LDO during oper-  
ation. Effective capacitance is almost always lower than  
the nominal capacitance and is a commonly overlooked  
design parameter. Determine the effective capacitance  
by assessing the capacitor’s initial tolerance, variation  
with temperature, and variation with DC bias. Consult the  
capacitor manufacturer for specific details of derating.  
Add more capacitors to the design.  
Replace the 1005/0402 (mm/inch) capacitor with a  
1608/0603 (mm/inch) capacitor.  
Consider point-of-load capacitance in your assess-  
ment of effective capacitance. For example, if there  
is a point-of-load capacitor downstream from the  
LDO that is sufficiently close to the local LDO output  
capacitor, it can cover the gap. The capacitor can be  
considered “sufficiently close” if the PCB does not  
add more than 25nH and 25mΩ of extra ESR and  
ESL (more or less within 1”).  
Choose the input capacitor (C  
) so that the effective  
IN_LDO  
capacitance is equal to or greater than the value found in  
Figure 19, based on expected load conditions for the  
application. A single 10μF, 1005/0402 (mm/inch) capaci-  
tor, is recommended for typical applications but ensure  
that the load current and derated capacitance does not  
compromise the stability curve in Figure 19. Larger values  
Note the impedance of either the input or output capacitor  
(ESR, ESL) should be very low (i.e., ≤ 50mΩ + ≤ 5nH) for  
frequencies up to 0.5MHz. Ceramic capacitors with X5R  
or X7R dielectric are highly recommended due to their  
small size, low ESR, and small temperature coefficients.  
of C  
improve stability and decoupling for the LDO  
IN_LDO  
regulator. The floorplan of the device is such that SBB0  
is adjacent to IN_LDO, and if SBB0 powers the input of  
Maxim Integrated  
69  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
EFFECTIVE LDO CAPACITANCE  
REQUIRED FOR STABILITY  
EFFECTIVE LDO CAPACITANCE  
REQUIRED FOR STABILITY  
8
7
6
5
4
3
2
1
0
8
STABLE REGION  
STABLE REGION  
7
6
5
INPUT CAPACITANCE  
OUTPUT CAPACITANCE  
4
3
2
1
UNSTABLE REGION  
UNSTABLE REGION  
0
0
25  
50  
75  
100  
125  
150  
0
25  
50  
75  
100  
125  
150  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 19. LDO Capacitance for Stability  
IN_LDO  
SBB0  
10µF*  
(0402)  
*THE FLOORPLAN IS SUCH  
THAT THE SBB0 OUTPUT  
CAPACITOR IS ALSO THE  
IN_LDO INPUT CAPACITOR.  
VREF  
EN_LDO  
150mA  
LDO  
ADE_LDO  
LDO  
LDO  
10µF  
(0402)  
R
ADE_LDO  
Figure 20. LDO Simplified Block Diagram  
Maxim Integrated  
70  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
Current Sink Applications Information  
LED Assignment  
The three current sinks (LED0, LED1, LED2) are identi-  
cal. In a typical application where a red, green, blue LED  
cluster is used (RGB), the assignment of the RGB ele-  
ments to the LED0/1/2 pins should be done in whatever  
way makes the PCB layout the easiest.  
Current Sinks  
The device has a 3-channel current sink driver designed  
to drive LED's in portable devices. This block can also be  
used as a general-purpose current sink driver for other  
applications. The driver's on-time and frequency are  
independently programmable for each output to achieve  
a desired blink pattern. Alternatively, the LEDs can be  
continuously on (i.e., not blinking). The blink period is  
programmable from 0.5s to 8s,with an on-time duty cycle  
from 6.25% to 100%.  
Unused Current Sink Ports  
If a current sink port is not utilized in a given applica-  
tion, connect that port to ground. Additionally, software  
should ensure that the unused current sink is not enabled  
(EN_LEDx = 0).  
Figure 21 utilizes a common set of clock dividers to  
drive three identical current sink modules. Refer to the  
Programmer’s Guide for more information.  
BIAS  
CLK_64_S  
CLK  
CLOCK  
DIVIDER  
CLOCK DIVIDER  
AND INVERTER  
CLK_64  
CLK_32  
EN_LED_MSTR  
CURRENT SINK  
LED0  
BRT_LED0[4:0]  
DAC  
INV_LED0  
P_LED0[3:0]  
D_LED0[3:0]  
CLK_32  
EN_LED0  
PWM  
LOGIC  
2/4/8Ω  
LED_FS0[1:0]  
CURRENT SINK  
LED1  
BRT_LED1[4:0]  
INV_LED0  
P_LED1[3:0]  
D_LED1[3:0]  
CLK_32  
LED_FS1[1:0]  
CURRENT SINK  
LED2  
BRT_LED24:0]  
INV_LED0  
P_LED2[3:0]  
D_LED2[3:0]  
CLK_32  
LGND  
LED_FS2[1:0]  
Figure 21. Current Sink Block Diagram  
Maxim Integrated  
71  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
2
2
functional diagram for the I C based communications  
I C Serial Interface  
2
controller. For additional information on I C, refer to the  
I C Bus Specification and User Manual that is available  
2
The MAX77650 features a revision 3.0 I C-compatible,  
2-wire serial interface consisting of a bidirectional serial  
data line (SDA) and a serial clock line (SCL). The  
MAX77650/MAX77651 act as slave-only devices where  
they rely on the master to generate a clock signal. SCL  
2
for free on the Internet.  
Features  
2
I C Revision 3 Compatible Serial Communications  
2
clock rates from 0Hz to 3.4MHz are supported. I C is  
Channel  
an open-drain bus, and therefore, SDA and SCL require  
pullups. Optional resistors (24Ω) in series with SDA and  
SCL protect the device inputs from high-voltage spikes  
on the bus lines. Series resistors also minimize crosstalk  
and undershoot on bus signals. Figure 22 shows the  
0Hz to 100kHz (Standard Mode)  
0Hz to 400kHz (Fast Mode)  
0Hz to 1MHz (Fast Mode Plus)  
0Hz to 3.4MHz (High-Speed Mode)  
2
Does not utilize I C Clock Stretching  
COMMUNICATIONS CONTROLLER  
V
IO  
SCL  
SDA  
INTERFACE  
DECODERS  
SHIFT REGISTERS  
BUFFERS  
GND  
PERIPHERAL  
0
PERIPHERAL  
1
PERIPHERAL  
2
PERIPHERAL  
N-1  
PERIPHERAL  
N
2
Figure 22. I C Simplified Block Diagram  
Maxim Integrated  
72  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
SDA  
SCL  
MASTER  
TRANSMITTER/  
RECEIVER  
SLAVE  
TRANSMITTER/  
RECEIVER  
MASTER  
TRANSMITTER/  
RECEIVER  
SLAVE  
RECEIVER  
SLAVE  
TRANSMITTER  
2
Figure 23. I C System Configuration  
V
accepts voltages from 1.7V to 3.6V (V ). Cycling V  
IO  
IO  
IO  
2
does not reset the I C registers. When V is less than  
IO  
S
Sr  
P
V
and V  
is less than V  
, SDA and  
IOUVLO  
SYS  
SYSUVLO  
SCL are high impedance.  
SDA  
SCL  
2
I C Data Transfer  
tSU;STA  
tSU;STO  
One data bit is transferred during each SCL clock cycle.  
The data on SDA must remain stable during the high  
period of the SCL clock pulse. Changes in SDA while SCL  
tHD;STA  
tHD;STA  
2
is high are control signals. See the I C Start and Stop  
Conditions section. Each transmit sequence is framed by  
a START (S) condition and a STOP (P) condition. Each  
data packet is nine bits long: eight bits of data followed by  
the acknowledge bit. Data is transferred with the MSB first.  
2
Figure 24. I C Start and Stop Conditions  
2
I C System Configuration  
2
The I C bus is a multimaster bus. The maximum number  
of devices that can attach to the bus is only limited by bus  
capacitance.  
2
I C Start and Stop Conditions  
When the serial interface is inactive, SDA and SCL idle  
high. A master device initiates communication by issuing a  
START condition. A START condition is a high-to low tran-  
sition on SDA with SCL high. A STOP condition is a low-to-  
high transition on SDA, while SCL is high. See Figure 24.  
2
A device on the I C bus that sends data to the bus in  
called a transmitter. A device that receives data from the  
bus is called a receiver. The device that initiates a data  
transfer and generates the SCL clock signals to control  
the data transfer is a master. Any device that is being  
addressed by the master is considered a slave. The  
A START condition from the master signals the beginning  
of a transmission to the MAX77650/MAX77651. The mas-  
ter terminates transmission by issuing a not-acknowledge  
2
2
MAX77650/MAX77651 I C compatible interface oper-  
ates as a slave on the I C bus with transmit and receive  
2
followed by a STOP condition. See the I C Acknowledge  
Bit section for information on the not-acknowledge. The  
STOP condition frees the bus. To issue a series of com-  
mands to the slave, the master can issue repeated start  
(Sr) commands instead of a STOP command to maintain  
control of the bus. In general, a repeated start command  
is functionally equivalent to a regular start command.  
capabilities.  
2
I C Interface Power  
2
The MAX77650/MAX77651 I C interface derives its  
power from V . Typically a power input such as V  
would require a local 0.1μF ceramic bypass capacitor to  
ground. However, in highly integrated power distribution  
systems, a dedicated capacitor might not be necessary. If  
the impedance between V and the next closest capaci-  
tor (≥ 0.1μF) is less than 100mΩ in series with 10nH, then  
a local capacitor is not needed. Otherwise, bypass V to  
IO  
IO  
When a STOP condition or incorrect address is detected,  
the MAX77650/MAX77651 internally disconnect SCL  
from the serial interface until the next START condition,  
minimizing digital noise and feedthrough.  
IO  
IO  
GND with a 0.1µF ceramic capacitor.  
Maxim Integrated  
73  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
2
fault has occurred. In the event of an unsuccessful data  
transfer, the bus master should reattempt communication  
at a later time.  
I C Acknowledge Bit  
2
Both the I C bus master and the MAX77650/MAX77651  
(slave) generate acknowledge bits when receiving data.  
The acknowledge bit is the last bit of each nine bit data  
packet. To generate an acknowledge (A), the receiving  
device must pull SDA low before the rising edge of the  
acknowledge-related clock pulse (ninth pulse) and keep it  
low during the high period of the clock pulse. See Figure  
25. To generate a not-acknowledge (nA), the receiving  
device allows SDA to be pulled high before the rising edge  
of the acknowledge-related clock pulse and leaves it high  
during the high period of the clock pulse.  
The MAX77650/MAX77651 issue an ACK for all register  
addresses in the possible address space even if the par-  
ticular register does not exist.  
2
I C Slave Address  
2
The I C controller implements 7-bit slave addressing. An  
2
I C bus master initiates communication with the slave  
by issuing a START condition followed by the slave  
address. See Figure 26. The slave address is factory  
programmable to one of two options. See Table 11. All  
slave addresses not mentioned in the Table 11 are not  
acknowledged.  
Monitoring the acknowledge bits allows for detection  
of unsuccessful data transfers. An unsuccessful data  
transfer occurs if a receiving device is busy or if a system  
NOT ACKNOWLEDGE (NA)  
ACKNOWLEDGE (A)  
S
SDA  
tSU;DAT  
tHD;DAT  
1
2
8
9
SCL  
Figure 25. Acknowledge Bit  
S
1
1
0
2
0
3
1
4
0
5
0
6
0
7
R/W  
A
9
SDA  
ACKNOWLEDGE  
8
SCL  
Figure 26. Slave Address Example  
Maxim Integrated  
74  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
2
Table 11. I C Slave Address Options  
ADDRESS  
7-BIT SLAVE ADDRESS  
8-BIT WRITE ADDRESS  
8-BIT READ ADDRESS  
Main Address  
(ADDR = 1)*  
0x48, 0b 100 1000  
0x90, 0b 1001 0000  
0x91, 0b 1001 0001  
Main Address  
(ADDR = 0)*  
0x40, 0b 100 0000  
0x49, 0b 100 1001  
0x80, 0b 1000 0000  
0x92, 0b 1001 0010  
0x81, 0b 1000 0001  
0x93, 0b 1001 0011  
Test Mode**  
*Perform all reads and writes on the Main Address. ADDR is a factory one-time programmable (OTP) option, allowing for address  
changes in the event of a bus conflict. Contact Maxim for more information.  
**When test mode is unlocked, the additional address is acknowledged. Test mode details are confidential. If possible, leave the test  
mode address unallocated to allow for the rare event that debugging needs to be performed in cooperation with Maxim.  
2
pullup resistors. Higher time constants created by the bus  
capacitance and pullup resistance (C x R) slow the bus  
operation. Therefore, when increasing bus speeds, the  
pullup resistance must be decreased to maintain a rea-  
sonable time constant. Refer to the Pullup Resistor Sizing  
I C Clock Stretching  
2
In general, the clock signal generation for the I C bus is  
the responsibility of the master device. The I C specifica-  
2
tion allows slow slave devices to alter the clock signal by  
holding down the clock line. The process in which a slave  
device holds down the clock line is typically called clock  
stretching. The MAX77650/MAX77651 do not use any  
form of clock stretching to hold down the clock line.  
2
section of the I C Bus Specification and User Manual  
that is available for free on the Internet for detailed guid-  
ance on the pullup resistor selection. In general for bus  
capacitances of 200pF, a 100kHz bus needs 5.6kΩ pullup  
resistors, a 400kHz bus needs about a 1.5kΩ pullup resis-  
tors, and a 1MHz bus needs 680Ω pullup resistors. Note  
that when the open-drain bus is low, the pullup resistor is  
dissipating power, lower value pullup resistors dissipate  
more power (V2/R).  
2
I C General Call Address  
2
The MAX77650/MAX77651 do not implement the I C  
specifications general call address. If the MAX77650/  
MAX77651 see the general call address (0b0000_0000),  
they do not issue an acknowledge.  
Operating in high-speed mode requires some special con-  
siderations. For a full list of considerations, see the I2C  
Communication Speed section. The major considerations  
with respect to the MAX77650/MAX77651:  
2
I C Device ID  
2
The MAX77650/MAX77651 do not support the I C Device  
ID feature.  
2
2
I C Communication Speed  
The I C bus master use current source pull-ups to  
shorten the signal rise.  
The I C slave must use a different set of input filters  
on its SDA and SCL lines to accommodate for the  
higher bus.  
The communication protocols need to utilize the high-  
speed master code.  
At power-up and after each stop condition, the MAX77650/  
MAX77651 input filters are set for standard mode, fast  
mode, and fast mode plus (i.e., 0Hz to 1MHz). To switch  
the input filters for high-speed mode, use the high-speed  
master code protocols that are described in the I2C  
Communication Protocols section.  
The MAX77650/MAX77651 are compatible with all 4 com-  
munication speed ranges as defined by the Revision 3  
I C specification:  
2
2
0Hz to 100kHz (Standard Mode)  
0Hz to 400kHz (Fast Mode)  
0Hz to 1MHz (Fast Mode)  
0Hz to 3.4MHz (High-Speed Mode)  
Operating in standard mode, fast mode, and fast mode  
plus does not require any special protocols. The main  
consideration when changing the bus speed through  
this range is the combination of the bus capacitance and  
Maxim Integrated  
75  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
2
The addressed slave asserts an acknowledge (A) by  
pulling SDA low.  
The master sends an 8-bit register pointer.  
The slave acknowledges the register pointer.  
The master sends a data byte.  
I C Communication Protocols  
The MAX77650/MAX77651 supports both writing and  
reading from its registers.  
Writing to a Single Register  
2
Figure 27 shows the protocol for the I C master device to  
The slave updates with the new data  
write one byte of data to the MAX77650/MAX77651. This  
protocol is the same as the SMBus specification’s write  
byte protocol.  
The slave acknowledges or not acknowledges  
the data byte. The next rising edge on SDA loads  
the data byte into its target register and the data  
becomes active.  
The master sends a stop condition (P) or a repeated  
start condition (Sr). Issuing a P ensures that the bus  
input filters are set for 1MHz or slower operation. Issuing  
an Sr leaves the bus input filters in their current state.  
The write byte protocol is as follows:  
The master sends a start command (S).  
The master sends the 7-bit slave address followed by  
a write bit (R/W = 0).  
LEGEND  
MASTER TO SLAVE  
SLAVE TO MASTER  
NUMBER  
OF BITS  
1
7
1
0
1
8
1
8
1
1
S
SLAVE ADDRESS  
A
REGISTER POINTER  
A
DATA  
A OR NA P OR SR*  
R/nW  
THE DATA IS LOADED  
INTO THE TARGET  
REGISTER AND  
BECOMES ACTIVE  
DURING THIS RISING  
EDGE.  
SDA  
SCL  
B1  
7
B0  
A
9
ACKNOWLEDGE  
8
*P FORCES THE BUS FILTERS TO  
SWITCH TO THEIR <=1MHZ MODE.  
SR LEAVES THE BUS FILTERS IN  
THEIR CURRENT STATE.  
Figure 27. Writing to a Single Register with the Write Byte Protocol  
Maxim Integrated  
76  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
The slave acknowledges the register pointer.  
The master sends a data byte.  
Writing Multiple Bytes to Sequential Registers  
Figure 28 shows the protocol for writing to a sequential  
registers. This protocol is similar to the write byte proto-  
col above, except the master continues to write after it  
receives the first byte of data. When the master is done  
writing it issues a stop or repeated start.  
The slave acknowledges the data byte. The next ris-  
ing edge on SDA load the data byte into its target  
register and the data will become active.  
Steps 6 to 7 are repeated as many times as the  
master requires.  
During the last acknowledge related clock pulse, the  
master can issue an acknowledge or a not acknowledge.  
The master sends a stop condition (P) or a repeated  
start condition (Sr). Issuing a P ensures that the bus  
input filters are set for 1MHz or slower operation.  
Issuing an Sr leaves the bus input filters in their  
current state.  
The writing to sequential registers protocol is as follows:  
The master sends a start command (S).  
The master sends the 7-bit slave address followed by  
a write bit (R/W = 0).  
The addressed slave asserts an acknowledge (A) by  
pulling SDA low.  
The master sends an 8-bit register pointer.  
LEGEND  
MASTER TO SLAVE  
SLAVE TO MASTER  
NUMBER  
OF BITS  
1
7
1
0
1
8
1
8
1
S
SLAVE ADDRESS  
A
REGISTER POINTER X  
A
DATA X  
A
Α
Α
R/NW  
NUMBER  
OF BITS  
8
1
8
1
DATA X+1  
A
DATA X+2  
A
Α
Α
REGISTER POINTER = X + 2  
REGISTER POINTER = X + 1  
8
NUMBER  
OF BITS  
1
8
1
1
A OR  
NA  
P OR  
SR*  
DATA N-1  
A
DATA N  
Β
REGISTER POINTER = N-1  
REGISTER POINTER = N  
THE DATA IS LOADED  
INTO THE TARGET  
REGISTER AND  
BECOMES ACTIVE  
DURING THIS RISING  
EDGE.  
SDA  
SCL  
B1  
7
B0  
A
9
B9  
ACKNOWLEDGE  
8
1
DETAIL: Α  
THE DATA IS LOADED  
INTO THE TARGET  
REGISTER AND  
BECOMES ACTIVE  
DURING THIS RISING  
EDGE.  
SDA  
SCL  
B1  
7
B0  
A
9
*P FORCES THE BUS  
FILTERS TO SWITCH  
TO THEIR <=1MHZ  
MODE. SR LEAVES  
THE BUS FILTERS IN  
THEIR CURRENT  
STATE.  
ACKNOWLEDGE  
8
DETAIL: Β  
Figure 28. Writing to Sequential registers X to N  
Maxim Integrated  
77  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
The addressed slave places 8-bits of data on the bus  
from the location specified by the register pointer.  
The master issues a not acknowledge (nA).  
The master sends a stop condition (P) or a repeated  
start condition (Sr). Issuing a P ensures that the bus  
input filters are set for 1MHz or slower operation.  
Issuing an Sr leaves the bus input filters in their cur-  
rent state.  
Reading from a Single Register  
2
Figure 29 shows the protocol for the I C master device to  
read one byte of data to the MAX77650/MAX77651. This  
protocol is the same as the SMBus specification’s read  
byte protocol.  
The read byte protocol is as follows:  
The master sends a start command (S).  
The master sends the 7-bit slave address followed by  
a write bit (R/W = 0).  
The addressed slave asserts an acknowledge (A) by  
pulling SDA low.  
Note that when the MAX77650/MAX77651 receive a stop  
they do not modify their register pointer.  
Reading from Sequential Registers  
The master sends an 8-bit register pointer.  
The slave acknowledges the register pointer.  
The master sends a repeated start command (Sr).  
The master sends the 7-bit slave address followed by  
a read bit (R/W = 1).  
Figure 30 shows the protocol for reading from sequential  
registers. This protocol is similar to the read byte protocol  
except the master issues an acknowledge to signal the  
slave that it wants more data: when the master has all the  
data it requires it issues a not acknowledge (nA) and a  
stop (P) to end the transmission.  
The addressed slave asserts an acknowledge by  
pulling SDA low.  
LEGEND  
*P FORCES THE BUS FILTERS TO SWITCH  
TO THEIR <=1MHZ MODE. SR LEAVES THE  
BUS FILTERS IN THEIR CURRENT STATE.  
MASTER TO SLAVE  
SLAVE TO MASTER  
8
NUMBER  
OF BITS  
1
7
1
0
1
1
1
7
1
1
1
8
1
1
S
SLAVE ADDRESS  
A
REGISTER POINTER X A Sr SLAVE ADDRESS  
R/nW  
A
DATA X  
nA P or Sr*  
R/nW  
Figure 29. Reading from a Single Register with the Read Byte Protocol  
LEGEND  
*P FORCES THE BUS FILTERS TO SWITCH TO  
THEIR <=1MHZ MODE. SR LEAVES THE BUS  
FILTERS IN THEIR CURRENT STATE.  
MASTER TO SLAVE  
SLAVE TO MASTER  
8
NUMBER  
OF BITS  
1
7
1
0
1
1
1
7
1
1
1
8
1
S
SLAVE ADDRESS  
A
REGISTER POINTER X A SR SLAVE ADDRESS  
A
DATA X  
A
R/NW  
R/nW  
NUMBER  
OF BITS  
8
1
8
1
8
1
DATA X+1  
A
DATA X+2  
A
DATA X+3  
A
REGISTER POINTER = X + 1 REGISTER POINTER = X + 2 REGISTER POINTER = X + 3  
NUMBER  
OF BITS  
8
1
8
1
8
1
1
P OR  
SR*  
DATA N-2  
A
DATA N-1  
A
DATA N  
NA  
REGISTER POINTER =  
N-2  
REGISTER POINTER =  
N-1  
REGISTER POINTER =  
N
Figure 30. Reading Continuously from Sequential Registers X to N  
Maxim Integrated  
78  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
The continuous read from sequential registers protocol is  
as follows:  
The master sends a start command (S).  
The master sends the 7-bit slave address followed by  
a write bit (R/W = 0).  
The master sends a stop condition (P) or a repeated  
start condition (Sr). Issuing a stop (P) ensures that  
the bus input filters are set for 1MHz or slower opera-  
tion. Issuing an Sr leaves the bus input filters in their  
current state.  
The addressed slave asserts an acknowledge (A) by  
pulling SDA low.  
Note that when the MAX77650/MAX77651 receive a stop,  
they do not modify their register pointers.  
The master sends an 8-bit register pointer.  
The slave acknowledges the register pointer.  
The master sends a repeated start command (Sr).  
The master sends the 7-bit slave address followed  
by a read bit (R/W = 1). When reading the RTC time-  
keeping registers, secondary buffers are loaded with  
the timekeeping register data during this operation.  
The addressed slave asserts an acknowledge by  
pulling SDA low.  
The addressed slave places 8-bits of data on the bus  
from the location specified by the register pointer.  
The master issues an acknowledge (A) signaling the  
slave that it wishes to receive more data.  
Steps 9 to 10 are repeated as many times as the  
master requires. Following the last byte of data, the  
master must issue a not acknowledge (nA) to signal  
that it wishes to stop receiving data.  
Engaging HS-mode for operation up to 3.4MHz  
Figure 31 shows the protocol for engaging HS-mode  
operation. HS-mode operation allows for a bus operating  
speed up to 3.4MHz.  
The engaging HS mode protocol is as follows:  
Begin the protocol while operating at a bus speed of  
1MHz or lower  
The master sends a start command (S).  
The master sends the 8-bit master code of 0b0000  
1XXX where 0bXXX are don’t care bits.  
The addressed slave issues a not acknowledge (nA).  
The master may now increase its bus speed up to  
3.4MHz and issue any read/write operation.  
The master can continue to issue high-speed read/write  
operations until a stop (P) is issued. To continue opera-  
tions in high speed mode, use repeated start (Sr).  
LEGEND  
MASTER TO SLAVE  
SLAVE TO MASTER  
1
8
1
1
ANY R/W PROTOCOL  
FOLLOWED BY SR  
ANY R/W PROTOCOL  
FOLLOWED BY SR  
ANY READ/WRITE  
PROTOCOL  
S
HS-MASTER CODE  
nA SR  
SR  
SR  
P
FAST-MODE  
HS-MODE  
FAST-MODE  
Figure 31. Engaging HS Mode  
Maxim Integrated  
79  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
Typical Application Circuit  
MAX77650/MAX77651  
DC CHARGING SOURCE  
CHGIN  
SYS  
V
SYS  
4.7µF  
BATT  
25V  
(0603)  
4.7µF  
6.3V  
(0603)  
GND  
+
T
LITHIUM ION  
BATTERY  
LITHIUM ION BATTERY CHARGER  
V
L
TBIAS  
THM  
1µF  
10V  
(0402)  
IN_SBB  
PGND  
V
SYS  
C
SYS  
SBB0  
SBB1  
SBB2  
22µF/6.3V  
(0603)  
V
V
V
SBB0  
SBB1  
SBB2  
SYSTEM  
RESOURCES  
SIMO BUCK-BOOST  
L
LXA  
LXB  
10µF  
6.3V  
(0402)  
1.5µH  
C
BST  
BST  
3300pF/6.3V  
(0201)  
GPIO  
BIAS  
SUCH AS:  
SYS, BATT, SBB2  
IN_LDO  
LDO  
LED0  
LED1  
LED2  
LGND  
V
SBB0  
CURRENT  
LDO  
SINKS  
V
LDO  
10µF  
6.3V  
(0402)  
GPIO  
V
IO  
GPIO  
GPIO  
V
/POWER  
IO  
SDA  
SCL  
2
I C  
SDA  
SCL  
AMUX  
ANALOG  
MULTIPLEXER  
AMUX  
PROCESSOR  
nRST  
nIRQ  
*
*
nRST  
nIRQ  
nEN  
TOP LEVEL  
PWR_HLD  
PWR_HLD  
AMUX  
ADC INPUT  
*THE PROCESSOR HAS INTERNAL  
PULLUP RESISTORS FOR NRST AND  
NIRQ.  
Maxim Integrated  
80  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
Ordering Information  
PART  
TEMP RANGE  
PIN-PACKAGE  
OPTIONS  
MAX77650EWV+T*  
-40°C to +85°C  
30 WLP  
Samples with various OTP options  
SBB0/SBB1/SBB2 values 2.05V/1.2V/3.3V,  
production device, DIDM = 0b00, CID = 0b0011**  
MAX77650AEWV+T  
MAX77650BEWV+T  
MAX77650CEWV+T  
-40°C to +85°C  
30 WLP  
SBB0/SBB1/SBB2 values 1.8V/1.2V/3.15V, production device,  
DIDM = 0b00, CID = 0b1110**  
-40°C to +85°C  
-40°C to +85°C  
30 WLP  
30 WLP  
SBB0/SBB1/SBB2 values 1.8V/1.0V/1.2V,  
production device, DIDM = 0b00, CID = 0b1010**  
SBB0/SBB1/SBB2 values 1.8V/1.2V/3.15V, production device,  
DIDM = 0b00, CID = 0b1000**  
MAX77650MEWV+T  
MAX77651EWV+T*  
MAX77651AEWV+T  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
30 WLP  
30 WLP  
30 WLP  
Samples with various OTP options  
SBB0/SBB1/SBB2 values 1.8V/4.6V/3.6V,  
production device, DIDM = 0b01, CID = 0b0110**  
SBB0/SBB1/SBB2 values 1.9V/3.2V/5.2V,  
production device, DIDM = 0b01, CID = 0b1000**  
MAX77651BEWVA+T  
-40°C to +85°C  
30 WLP  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
T = Tape and reel.  
*Custom samples only. Not for production or stock. Contact factory for more information.  
**See the Programmer’s Guide for the options associated with a specified DIDM and CID.  
Maxim Integrated  
81  
www.maximintegrated.com  
MAX77650/MAX77651  
Ultra-Low Power PMIC with 3-Output SIMO  
and Power Path Charger for Small Li+  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
0
2/17  
Initial release  
Updated Electrical Characteristics—SIMO Buck-Boost table, Typical Operating  
Characteristics, Table 1. Regulator Summary, Manual Reset in Features and Benefits  
section, Inductor Selection section, and LDO Applications Information section, added  
1, 9, 19, 25,  
26, 30, 32, 36,  
1
5/17  
new Figure 19, removed future product notation from MAX77651AEWV+T in Ordering 38, 65, 68, 79  
Information table  
Updated solution size in Benefits and Features section, updated Absolute Maximum  
Ratings section and Figure 18  
2
3
6/17  
7/17  
1, 7, 63  
7, 10−12, 17,  
18, 20, 21, 24,  
30, 36, 68, 69,  
Fixed typos, added common conditions to Electrical Characteristics tables, updated  
Typical Operating Characteristics, updated Figure 19, updated Typical Application  
Circuit  
79  
21, 37, 40, 52,  
55, 56, 59, 62,  
65, 68, 71, 81  
Added hyperlink to Programmer’s Guide, added MAX77650CEWV+ to Ordering  
Information table  
4
5
7/17  
7/18  
1, 7, 17-19, 23,  
26, 27, 33, 35,  
36, 39-42, 44,  
48-51, 61, 65,  
66, 68, 72, 74,  
77, 78, 80, 82  
Updated various sections, added and removed part numbers to Ordering Information  
table  
6
7
7/18  
9/18  
Updated Ordering Information table  
Updated Ordering Information table  
81  
81  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2018 Maxim Integrated Products, Inc.  
82  

相关型号:

MAX77650BEWVT

Ultra-Low Power PMIC with 3-Output SIMO and Power Path Charger for Small Li
MAXIM

MAX77650CEWVT

Ultra-Low Power PMIC with 3-Output SIMO and Power Path Charger for Small Li
MAXIM

MAX77650EVKIT

GUI Drives I2C Interface
MAXIM

MAX77650EWVT

Ultra-Low Power PMIC with 3-Output SIMO and Power Path Charger for Small Li
MAXIM

MAX77650MEWVT

Ultra-Low Power PMIC with 3-Output SIMO and Power Path Charger for Small Li
MAXIM

MAX77651

GUI Drives I2C Interface
MAXIM

MAX77651AEWVT

Ultra-Low Power PMIC with 3-Output SIMO and Power Path Charger for Small Li
MAXIM

MAX77651BEWVAT

Ultra-Low Power PMIC with 3-Output SIMO and Power Path Charger for Small Li
MAXIM

MAX77651EWVT

Ultra-Low Power PMIC with 3-Output SIMO and Power Path Charger for Small Li
MAXIM

MAX77680

Evaluates Both Push-Button and Slider-Switch On-Key Options
MAXIM

MAX77680EVKIT

Evaluates Both Push-Button and Slider-Switch On-Key Options
MAXIM

MAX77681

Evaluates Both Push-Button and Slider-Switch On-Key Options
MAXIM