MAX77734CENPT [MAXIM]

Ultra-Low Power Tiny PMIC with Power Path Charger for Small Li and 150mA LDO;
MAX77734CENPT
型号: MAX77734CENPT
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Ultra-Low Power Tiny PMIC with Power Path Charger for Small Li and 150mA LDO

集成电源管理电路
文件: 总76页 (文件大小:1582K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
Click here for production status of specific part numbers.  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
General Description  
Benefits and Features  
The MAX77734 is a tiny PMIC for applications where size  
and simplicity are critical. The IC integrates a linear-mode  
Li+ battery charger, low-dropout linear regulator (LDO),  
analog multiplexer, and dual-channel current sink driver.  
Extends Battery Life  
• 200nA Factory-Ship Mode for Long Shelf Life  
• 500nA Shutdown Current  
4.5μA Quiescent Current with LDO Enabled  
• Charger Allows Battery to Relax after Charging  
The charger is designed for small-battery systems  
that require accurate termination as low as 0.375mA.  
The circuit can instantly regulate the system voltage  
when an input source is connected even if the battery is  
depleted.  
Linear Charger Optimized for Small Battery Size  
• 7.5mA to 300mA Fast-Charge Current  
• Battery Regulation Voltage from 3.6V to 4.6V  
• Accurate Termination Current as low as 0.375mA  
• Instant-On Functionality provided by Maxim's  
Smart Power Selector™  
The 150mA LDO's output is programmable between 0.8V  
2
and 3.975V with I C. The analog MUX enables an exter-  
• JEITA Battery Temperature Monitors for Safe  
Charging  
nal ADC to perform conversions on battery V&I signals  
for power monitoring. The current sinks are capable of  
sinking 12.8mA each and can be programmed for LEDs  
to blink in custom patterns.  
Highly Integrated  
• 150mA LDO with Power-OK Output  
• Dual-Channel Current Sink for LEDs  
• Analog Multiplexer for Power Monitoring  
• Watchdog Timer  
The MAX77734 is available in a 20-bump, 0.4mm pitch  
wafer-level package (WLP). For a similar product with  
additional regulators, see the MAX77650.  
• On-Key Input for LDO Enable and Manual Reset  
Applications  
Small Size  
Hearables: Headsets, Headphones, Earbuds  
Fitness Bands and other Bluetooth Wearables  
Action Cameras, Wearable/Body Cameras  
Low-Power Internet of Things (IoT) Gadgets  
• 2.23mm x 1.97mm (0.5mm max height) WLP  
• 20-Bump, 0.4mm Pitch, 4 x 5 Array  
Ordering Information appears at end of data sheet.  
Simplified Application Circuit  
5V DC INPUT  
CHGIN  
4.5V  
12.25mm2 SOLUTION SIZE  
3.43mm  
SYS  
SYSTEM  
V
L
4.7μF  
1μF  
MAX77734  
22μF  
INLDO  
LDO  
GND  
1.8V/3.3V  
OUTPUT  
CCHGIN  
CVL  
nENLDO  
2.2μF  
ON-KEY  
V
IO  
BATT  
THM  
POKLDO  
SDA  
POWER-OK  
4.7μF  
Li+  
TBIAS  
SCL  
SERIAL HOST  
NTC  
CLDO  
nIRQ  
SYS  
SNK1  
SNK2  
PMLDO  
AMUX  
LDO MODE CONTROL  
TO SYSTEM ADC  
0.2mm COMPONENT PITCH  
● PULLUP RESISTORS NOT DRAWN  
● BLANK SPACE NOT EXCLUDED  
POWER PATH LINEAR CHARGER WITH 0.375mA TERMINATION AND DUAL-CHANNEL CURRENT SINKS  
Smart Power Selector is a trademark of Maxim Integrated Products, Inc.  
19-100062; Rev 5; 7/20  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
TABLE OF CONTENTS  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Benefits and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Simplified Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Electrical Characteristics—Smart Power Selector Charger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Electrical Characteristics—Adjustable Thermistor Temperature Monitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Electrical Characteristics—Linear Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Electrical Characteristics—Dual-Channel Current Sink Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2
Electrical Characteristics—I C Serial Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Bump Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Bump Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Simplified Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Detailed Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
On/Off Controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Factory-Ship Mode State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Shutdown (Bias Off) State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Standby (Bias On) State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Resource On State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Hardware Enable (nENLDO). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Manual Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
Push-Button vs. Slide-Switch Functionality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
nENLDO Pullup Resistors to V  
(V  
Internal). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
CCINT  
CC  
Interrupts (nIRQ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Thermal Alarms and Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Register Reset Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Factory Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Detailed Description—Smart Power Selector Charger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Charger Symbol Reference Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Smart Power Selector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Input Current Limiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Minimum Input Voltage Regulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
(
)
TABLE OF CONTENTS continued  
Minimum System Voltage Regulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Die Temperature Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Charger State Machine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Charger Off State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Prequalification State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Fast-Charge States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Top-Off State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Done State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Prequalification Timer Fault State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Fast-Charge Timer Fault State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Battery Temperature Fault State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
JEITA-Modified States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Typical Charge Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Charger Applications Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Configuring a Valid System Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
CHGIN/SYS/BATT Capacitor Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Detailed Description—Adjustable Thermistor Temperature Monitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Thermistor Bias. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Configurable Temperature Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Thermistor Applications Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Using Different Thermistor β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Detailed Description—Analog Multiplexer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Measuring Battery Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
Method for Measuring Discharging Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
Method for Measuring Charging Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
Detailed Description—Linear Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
LDO Enable Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
LDO Power Mode (PMLDO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
LDO Power-OK Output (POKLDO). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
LDO Applications Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
Input/Output Capacitor Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
Startup Rate and Inrush Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
PCB Layout Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Detailed Description—Dual-Channel Current Sink Driver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
2
Detailed Description—I C Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
(
)
TABLE OF CONTENTS continued  
MAX77734 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
INT_GLBL (0x00). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
INT_CHG (0x01). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52  
STAT_CHG_A (0x02). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
STAT_CHG_B (0x03). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
ERCFLAG (0x04) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
STAT_GLBL (0x05) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
INTM_GLBL (0x06) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
INT_M_CHG (0x07). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
CNFG_GLBL (0x08) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
CID (0x09) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
CNFG_WDT (0x0A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
CNFG_CHG_A (0x20). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
CNFG_CHG_B (0x21) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
CNFG_CHG_C (0x22). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
CNFG_CHG_D (0x23). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
CNFG_CHG_E (0x24). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
CNFG_CHG_F (0x25) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
CNFG_CHG_G (0x26). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
CNFG_CHG_H (0x27). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
CNFG_CHG_I (0x28) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
CNFG_LDO_A (0x30) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
CNFG_LDO_B (0x31) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
CNFG_SNK1_A (0x40) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
CNFG_SNK1_B (0x41) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
CNFG_SNK2_A (0x42) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
CNFG_SNK2_B (0x43) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
CNFG_SNK_TOP (0x44). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73  
Typical Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74  
Battery Charger using LDO Hardware Enable Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Battery Charger using LDO Software Enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
LIST OF FIGURES  
Figure 1. On/Off Controller State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 2. On/Off Controller Action Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 3. nENLDO Dual-Functionality Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 4. nENLDO Pullup Resistor Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 5. Watchdog Timer State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 6. Charger Simplified Control Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 7. Charger State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 8. Example Battery Charge Profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 9. Thermistor Logic Functional Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 10. Safe-Charging Profile Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 11. Thermistor Bias State Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Figure 12. Thermistor Circuit with Adjusting Series and Parallel Resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 13. LDO Simplified Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 14. Dynamic LDO Power Mode Control Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 15. PCB Top-Metal and Component Layout Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 16. LED Current Sinks Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
LIST OF TABLES  
Table 1. On/Off Controller Transitions List. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 2. On/Off Controller Internal Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 3. On/Off Controller State Transition Priority. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 4. Watchdog Timer Factory-Programmed Safety Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 5. Register Reset Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 6. Factory-Programmed Defaults (OTP Options). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Table 7. Charger Quick Symbol Reference Guide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 8. Input Current Limit Factory Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Table 9. Trip Temperatures vs. Trip Voltages for Different NTC β. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Table 10. Example R and R Correcting Values for NTC β Above 3380K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
S
P
Table 11. NTC Thermistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Table 12. AMUX Signal Transfer Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Table 13. Battery Current Direction Decode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Table 14. LDO Power Mode Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
2
Table 15. I C Slave Address Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
Absolute Maximum Ratings  
nIRQ, POKLDO to GND............................-0.3V to V  
+ 0.3V  
LDO to GND.......................................... -0.3V to V  
+ 0.3V  
+ 0.3V  
SYS  
INLDO  
SCL, SDA, PMLDO to GND.........................-0.3V to V + 0.3V  
INLDO, V to GND ..................................-0.3V to V  
IO  
IO SYS  
nENLDO to GND (Note 1)..................... -0.3V to V  
CHGIN to GND...................................................-0.3V to +30.0V  
SYS, BATT to GND ..............................................-0.3V to +6.0V  
+ 0.3V  
SNK1, SNK2 to GND ...........................................-0.3V to +6.0V  
Operating Temperature Range........................... -40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range............................ -65°C to +150°C  
Soldering Temperature (reflow).......................................+260°C  
Continuous Power Dissipation (70°C ambient)...........................  
WLP (derate 18mW/°C above +70°C) ..........................1440mW  
CCINT  
V to GND ............................................................-0.3V to +6.0V  
L
AMUX, THM, TBIAS to GND................................-0.3V to +6.0V  
nIRQ, POKLDO Continuous Current..................................±3mA  
SDA, AMUX Continuous Current .....................................±20mA  
CHGIN, SYS, BATT Continuous Current ......................1.2A  
RMS  
Note 1: V  
is internally connected to either BATT or V . Refer to nENLDO Pullup Resistors to V  
(V  
Internal) section.  
CCINT  
L
CCINT CC  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Package Information  
PACKAGE CHARACTERISTICS  
Package Code  
VALUES  
N201B2+1  
Outline Number  
21-100154  
Land Pattern Number  
Refer to Application Note 1891  
Thermal Resistance, Four-Layer Board:  
Junction to Ambient (θ  
)
55.49 °C/W  
JA  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board.  
For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
Electrical Characteristics  
(V  
= 0V, V  
= V  
= V  
= 3.7V, V = 1.8V, limits are 100% production tested at T = +25°C, limits over the operating  
CHGIN  
SYS  
BATT  
INLDO IO A  
temperature range (T = -40°C to +85°C) are guaranteed by design and characterization, unless otherwise noted.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SYS Voltage Range  
V
2.7  
5.5  
V
SYS  
Factory-ship mode (BATT to SYS  
BATT Factory-Ship Mode  
Current  
I
switch open), T = +25°C, V  
0.2  
0.5  
1
1
μA  
μA  
BATT-FSM  
A
BATT  
= 3.7V, V  
= V  
= 0V  
SYS  
INLDO  
Shutdown state (all resources  
and bias off), BATT to SYS switch  
closed, T = +25°C, no load  
A
BATT Shutdown Current  
BATT Standby Current  
I
BATT-SHDN  
Bias enabled in  
low-power mode  
(BIAS_REQ = 1,  
BIAS_LPM = 1)  
Standby state  
(all resources  
off), BATT to  
1.5  
30  
I
μA  
BATT-STDBY  
SYS switch  
closed, no  
load  
Bias enabled in  
normal mode  
(BIAS_REQ = 1,  
BIAS_LPM = 0)  
Bias is in  
low-power mode  
(BIAS_LPM = 1),  
LDO enabled in  
4.5  
22  
40  
10  
40  
60  
Resource on  
state, BATT  
to SYS switch  
closed,  
low-power mode  
Bias is in  
low-power mode  
current sinks  
(BIAS_LPM = 1),  
and analog  
LDO enabled in  
MUX  
BATT Quiescent Current  
I
μA  
BATT-Q  
normal mode  
disabled,  
V
= 1.2V,  
LDO  
Bias is in  
no load  
normal mode  
(BIAS_LPM = 0)  
LDO enabled in  
normal mode  
,
POWER-ON RESET (POR)  
POR Threshold  
V
V
V
falling  
falling  
1.5  
1.9  
2.1  
V
POR  
SYS  
POR Threshold Hysteresis  
100  
mV  
UNDERVOLTAGE LOCKOUT (UVLO)  
UVLO Threshold  
V
2.65  
2.85  
150  
3.05  
V
SYSUVLO  
SYS  
UVLO Threshold Hysteresis  
V
mV  
SYSUVLO_HYS  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
Electrical Characteristics (continued)  
(V  
= 0V, V  
= V  
= V  
= 3.7V, V = 1.8V, limits are 100% production tested at T = +25°C, limits over the operating  
CHGIN  
SYS  
BATT  
INLDO IO A  
temperature range (T = -40°C to +85°C) are guaranteed by design and characterization, unless otherwise noted.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
OVERVOLTAGE LOCKOUT (OVLO)  
OVLO Threshold  
V
V
rising  
5.55  
5.85  
6.15  
V
SYSOVLO  
SYS  
THERMAL MONITORS  
Over-Temperature Lockout  
Threshold  
T
T rising  
165  
°C  
OTLO  
J
Thermal Alarm Temperature 1  
Thermal Alarm Temperature 2  
T
T rising  
80  
°C  
°C  
JAL1  
J
T
T rising  
100  
JAL2  
J
Thermal Alarm Temperature  
Hysteresis  
15  
°C  
ENABLE INPUT (nENLDO)  
V
V
5.5V  
= 5.5V,  
T = +25°C  
-1  
±0.001  
±0.01  
+1  
BATT  
A
nENLDO Leakage Current  
I
=
μA  
nENLDO-LKG  
nENLDO  
T = +85°C  
A
V
V
CCINT  
- 1.4  
CCINT  
- 1.0  
nENLDO Falling Threshold  
nENLDO Rising Threshold  
V
nENLDO Falling  
nENLDO Rising  
V
V
TH_nENLDO_F  
V
V
CCINT  
- 0.9  
CCINT  
- 0.6  
V
TH_nENLDO_R  
V
= 0V,  
CHGIN  
battery is present  
V
BATT  
(V  
is valid)  
BATT  
V
Internal  
V
(Note 2)  
Pullup to  
V
CC  
CCINT  
V
= 5V, not  
CHGIN  
USB suspended  
(USBS = 0)  
V
L
PU_DIS = 0  
PU_DIS = 1  
200  
nENLDO Pullup  
Debounce Time  
R
kΩ  
μs  
nEN-PU  
V
CCINT  
10000  
200  
DB_nENLDO = 0  
(Note 3)  
Rising and  
falling, not in  
factory-ship  
mode  
t
DBNC_nENLDO  
DB_nENLDO = 1  
30  
ms  
Falling only, factory-ship mode  
(Note 4)  
t
250  
FSM-EXDB  
T_MRST = 0  
5
8
10  
20  
Manual Reset Time  
t
s
s
MRST  
T_MRST = 1  
10  
89  
16  
Watchdog Timer Period  
t
WDT_PER[1:0] = 0b11  
128  
154  
WD  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
Electrical Characteristics (continued)  
(V  
= 0V, V  
= V  
= V  
= 3.7V, V = 1.8V, limits are 100% production tested at T = +25°C, limits over the operating  
CHGIN  
SYS  
BATT  
INLDO IO A  
temperature range (T = -40°C to +85°C) are guaranteed by design and characterization, unless otherwise noted.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
0.4  
UNITS  
INTERRUPT OUTPUT (nIRQ)  
nIRQ Output Low Voltage  
V
Sinking 2mA  
V
nIRQ-LO  
V
= V  
SYS  
IO  
= 5.5V, nIRQ  
set to be high  
impedance  
(i.e., no  
T = +25°C  
-1  
±0.001  
±0.01  
+1  
A
nIRQ Leakage Current  
I
μA  
nIRQ-LKG  
interrupts),  
T = +85°C  
A
V
= 0V  
nIRQ  
and 3.6V  
Electrical Characteristics—Smart Power Selector Charger  
(V  
= 5.0V, V  
= 4.5V, V  
= 4.2V, limits are 100% production tested at T = +25°C, limits over the operating temperature  
CHGIN  
SYS  
BATT A  
range (T = -40°C to +85°C) are guaranteed by design and characterization, unless otherwise noted.)  
A
PARAMETER  
DC INPUT  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Initial CHGIN voltage before  
enabling charging  
CHGIN Valid Voltage Range  
V
4.10  
7.25  
V
V
V
CHGIN  
CHGIN Standoff  
Voltage Range  
V
DC rising  
DC rising  
28  
STANDOFF  
CHGIN Overvoltage  
Threshold  
V
7.25  
3.9  
7.50  
7.75  
4.1  
CHGIN_OVP  
CHGIN Overvoltage  
Hysteresis  
100  
4.0  
mV  
V
CHGIN Undervoltage Lockout  
V
DC rising  
CHGIN_UVLO  
CHGIN Undervoltage-Lockout  
Hysteresis  
500  
mV  
V
= V  
- 100mV,  
SYS  
SYS-REG  
Input Current-Limit Range  
Input Current-Limit Accuracy  
I
95  
90  
475  
100  
mA  
mA  
CHGIN-LIM  
programmable in 95mA steps  
I
= 95mA,  
CHGIN-LIM  
95  
V
= V  
- 100mV  
SYS  
SYS-REG  
V
falling due to loading  
CHGIN  
conditions and/or high-impedance  
charge source, programmable in  
100mV increments with  
Minimum Input Voltage  
Regulation Range  
V
4.0  
4.7  
V
CHGIN-MIN  
VCHGIN_MIN[2:0]  
V
= 4.5V  
CHGIN-MIN  
Minimum Input Voltage  
Regulation Accuracy  
(VCHGIN_MIN[2:0] = 0b101),  
4.32  
100  
4.50  
120  
4.68  
140  
V
I
reduced by 10%  
CHGIN  
V
= 5V, time before CHGIN  
CHGIN  
Charger Input Debounce  
Timer  
t
is allowed to deliver current to  
SYS or BATT  
ms  
CHGIN-DB  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
Electrical Characteristics—Smart Power Selector Charger (continued)  
(V  
= 5.0V, V  
= 4.5V, V  
= 4.2V, limits are 100% production tested at T = +25°C, limits over the operating temperature  
CHGIN  
SYS  
BATT A  
range (T = -40°C to +85°C) are guaranteed by design and characterization, unless otherwise noted.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SUPPLY AND QUIESCENT CURRENTS  
V
= 5V, charger is not in USB  
CHGIN  
suspend (USBS = 0), charging is  
finished (CHG_DTLS[3:0] indicate  
1.0  
1.8  
mA  
CHGIN Supply Current  
I
CHGIN  
done), I  
= 0mA  
SYS  
V
V
= 0V to 1V,  
CHGIN  
50  
50  
μA  
μA  
= 3.3V, I  
= 0mA  
BATT  
SYS  
CHGIN Suspend Supply  
Current  
V
= 5V, charger in USB  
CHGIN  
I
CHGIN-SUS  
suspend (USBS = 1)  
V
= 5V, charger is not in USB  
CHGIN  
suspend (USBS = 0), charging is  
finished (CHG_DTLS[3:0] indicate  
BATT Bias Current  
I
5
1
μA  
BATT-BIAS  
done), I  
= 0mA  
SYS  
PREQUALIFICATION  
Charge Current Soft-Start  
Slew Time  
Zero to full-scale  
ms  
V
Prequalification Voltage  
Threshold Range  
Programmable in 100mV steps  
with CHG_PQ[2:0]  
V
2.3  
-3  
3.0  
+3  
PQ  
Prequalification Voltage  
Threshold Accuracy  
V
= 3.0V  
%
PQ  
V
V
= 2.5V,  
= 3.0V,  
BATT  
I_PQ = 0  
I_PQ = 1  
10  
PQ  
Prequalification Mode Charge  
Current  
I
t
expressed as a  
percentage of  
%
PQ  
20  
30  
I
FAST-CHG  
Prequalification Safety Timer  
V
< V  
= 3.0V  
27  
33  
minutes  
V
PQ  
BATT  
PQ  
FAST-CHARGE  
I
= 0mA, programmable in  
BATT  
Fast-Charge Voltage Range  
V
3.6  
4.6  
FAST-CHG  
25mV steps with CHG_CV[5:0]  
V
FAST-CHG  
= 4.3V,  
-0.5  
+0.5  
V
= 4.5V,  
SYS  
T
= +25°C  
A
Fast-Charge Voltage  
Accuracy  
I
= 0mA  
%
BATT  
V
FAST-CHG  
= 3.6V to  
4.6V,  
1.0  
V
= 4.8V  
SYS  
Programmable in 7.5mA steps  
with CHG_CC[5:0]  
Fast-Charge Current Range  
I
7.5  
300  
mA  
FAST-CHG  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
Electrical Characteristics—Smart Power Selector Charger (continued)  
(V  
= 5.0V, V  
= 4.5V, V  
= 4.2V, limits are 100% production tested at T = +25°C, limits over the operating temperature  
CHGIN  
SYS  
BATT A  
range (T = -40°C to +85°C) are guaranteed by design and characterization, unless otherwise noted.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
FAST-CHG  
-1.5  
+1.5  
T
V
= +25°C,  
A
= 15mA  
Fast-Charge Current  
Accuracy  
= V  
%
BATT  
FAST-  
I
FAST-CHG  
- 300mV  
CHG  
-1.5  
-10  
+1.5  
+10  
= 300mA  
Across all current settings,  
= V - 300mV,  
Fast-Charge Current  
Accuracy over Temperature  
V
%
BATT  
FAST-CHG  
T
= -40°C to +85°C  
A
Programmable in 2 hour  
increments or disabled with  
T_FAST_CHG[1:0], time  
measured from prequal done to  
timer fault  
Fast-Charge Safety Timer  
Range  
t
3
7
hours  
%
FC  
Fast-Charge Safety Timer  
Accuracy  
t
= 3 hours  
-10  
+10  
FC  
Fast-charge CC mode, fast-  
charge safety timer paused  
when charge current drops below  
this threshold, expressed as a  
Fast-Charge Safety Timer  
Suspend Threshold  
20  
%
°C  
percentage of I  
FAST-CHG  
Junction Temperature Regu-  
lation Setting Range  
Programmable in 10°C steps  
with TJ_REG[2:0]  
T
60  
100  
J-REG  
Rate at which I  
/I  
FAST-CHG PQ  
is reduced to maintain T  
expressed a percentage of  
,
J-REG  
Junction Temperature Regu-  
lation Loop Gain  
G
-5.4  
%/°C  
TJ-REG  
I
/I per degree  
FAST-CHG PQ  
centigrade rise  
TERMINATION AND TOPOFF  
I_TERM = 0b00 (expressed as a  
percentage of I  
5
)
FAST-CHG  
I_TERM = 0b01 (expressed as a  
percentage of I  
7.5  
10  
15  
)
FAST-CHG  
End-of-Charge Termination  
Current  
I
%
TERM  
I_TERM = 0b10 (expressed as a  
percentage of I  
8.5  
11.5  
)
FAST-CHG  
I_TERM = 0b11 (expressed as a  
percentage of I  
)
FAST-CHG  
I
< I  
,
BATT  
TERM  
Top-Off Timer Range  
t
programmable in 5 minute steps  
with T_TOPOFF[2:0]  
0
35  
minutes  
%
TO  
Top-Off Timer Accuracy  
t
= 10 minutes  
-10  
+10  
TO  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
Electrical Characteristics—Smart Power Selector Charger (continued)  
(V  
= 5.0V, V  
= 4.5V, V  
= 4.2V, limits are 100% production tested at T = +25°C, limits over the operating temperature  
CHGIN  
SYS  
BATT A  
range (T = -40°C to +85°C) are guaranteed by design and characterization, unless otherwise noted.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
Charging is finished  
MIN  
TYP  
MAX  
UNITS  
(CHG_DTLS[3:0] indicate done),  
charging resumes when  
Charge Restart Threshold  
V
65  
150  
mV  
RESTART  
V
< V  
FAST-CHG  
- V  
RESTART  
BATT  
I
= 15mA, I  
=
FAST-CHG  
TERM  
1.5mA (10% of I  
),  
1.35  
27  
1.5  
1.65  
33  
FAST-CHG  
T
= +25°C  
A
End-of-Charge Termination  
Current Accuracy  
mA  
I
= 300mA, I  
=
FAST-CHG  
TERM  
30mA (10% of I  
),  
30  
60  
FAST-CHG  
T
= +25°C  
A
End-of-Charge Termination  
Current Glitch Filter  
μs  
DEVICE ON-RESISTANCE AND LEAKAGE  
V
V
= 3.7V, I  
= 300mA,  
BATT  
BATT  
BATT to SYS On-Resistance  
= 0V, battery is  
100  
150  
1.0  
mΩ  
CHGIN  
discharging to SYS  
V
V
= 4.5V,  
= 0V,  
T
T
T
T
= +25°C  
= +85°C  
= +25°C  
0.1  
1
SYS  
A
A
A
A
BATT  
charger disabled  
Charger FET Leakage  
Current  
μA  
V
V
= 0V,  
= 4.2V,  
0.1  
1.0  
1.0  
SYS  
BATT  
= +85°C  
= 400mA  
1
factory-ship mode  
CHGIN to SYS On-Resistance  
Input FET Leakage Current  
V
= 4.65V, I  
600  
mΩ  
μA  
CHGIN  
CHGIN  
V
V
= 0V,  
= 4.2V,  
CHGIN  
T
T
= +25°C  
= +85°C  
0.1  
1
A
A
SYS  
body-switched  
diode reverse  
biased  
SYSTEM NODE  
System Voltage Regulation  
Range  
Programmable in 25mV steps  
with VSYS_REG[4:0]  
V
4.1  
4.41  
4.365  
4.8  
4.59  
4.635  
V
V
SYS-REG  
V
= 4.5V,  
= 1mA  
SYS-REG  
T
= +25°C  
4.50  
4.5  
A
I
SYS  
System Voltage Regulation  
Accuracy  
V
SYS  
VSYS-REG =  
T
= -40°C  
A
4.5V, ISYS = 1mA to +85°C  
V
V
= 5V, V = 4.5V,  
SYS-REG  
CHGIN  
SYS  
< V  
due to I =  
SYS-REG  
CHGIN  
Minimum System Voltage  
Regulation Loop Setpoint  
I
(input in current limit),  
CHGIN-LIM  
V
4.34  
4.4  
4.45  
V
V
SYS-MIN  
battery charging, I  
reduced to  
BATT  
(minimum  
50% of I  
FAST-CHG  
system voltage regulation active)  
Supplement Mode System  
Voltage Regulation  
V
BATT  
- 0.15V  
I
= 150mA  
SYS  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
Electrical Characteristics—Adjustable Thermistor Temperature Monitors  
(V  
= 5.0V, V  
= 4.5V, V  
= 4.2V, limits are 100% production tested at T = +25°C, limits over the operating temperature  
CHGIN  
SYS  
BATT A  
range (T = -40°C to +85°C) are guaranteed by design and characterization, unless otherwise noted.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
JEITA TEMPERATURE MONITORS  
TBIAS Voltage  
V
THM_EN = 1, V  
= 5V  
1.25  
V
V
TBIAS  
CHGIN  
Voltage rising threshold, programmable  
with THM_COLD[1:0] in 5ºC increments  
when using an NTC β = 3380K  
JEITA Cold Threshold  
Range  
V
0.867  
0.747  
0.367  
0.291  
1.024  
0.923  
0.511  
0.411  
COLD  
COOL  
WARM  
Voltage rising threshold, programmable  
with THM_COOL[1:0] in 5ºC increments  
when using an NTC β = 3380K  
JEITA Cool Threshold  
Range  
V
V
V
V
Voltage falling threshold, programmable  
with THM_WARM[1:0] in 5ºC increments  
when using an NTC β = 3380K  
JEITA Warm Threshold  
Range  
V
Voltage falling threshold, programmable  
with THM_HOT[1:0] in 5ºC increments  
when using an NTC β = 3380K  
JEITA Hot Threshold  
Range  
V
HOT  
Temperature Threshold  
Accuracy  
Voltage threshold accuracy expressed  
as temperature for an NTC β = 3380K  
±3  
3
°C  
°C  
Temperature Threshold  
Hysteresis  
Temperature hysteresis set on each  
voltage threshold for an NTC β = 3380K  
JEITA Modified  
Fast-Charge Voltage  
Range  
I
= 0mA, programmable in 25mV  
BATT  
V
3.6  
7.5  
4.6  
V
FAST-CHG_JEITA  
steps, battery is either cool or warm  
JEITA Modified  
Fast-Charge Current  
Range  
Programmable in 7.5mA steps, battery  
is either cool or warm  
I
300  
mA  
FAST-CHG_JEITA  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
Electrical Characteristics—Analog Multiplexer  
(V  
= 5.0V, V  
= 4.5V, V  
= 4.2V, limits are 100% production tested at T = +25°C, limits over the operating temperature  
CHGIN  
SYS  
BATT A  
range (T = -40°C to +85°C) are guaranteed by design and characterization, unless otherwise noted.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ANALOG MULTIPLEXER  
Full-Scale Voltage  
V
1.25  
0.3  
1
V
FS  
Channel Switching Time  
μs  
nA  
T = +25°C  
500  
A
V
= 0V, AMUX is  
AMUX  
Off Leakage Current  
high impedance  
T = +85°C  
1
μA  
A
CHGIN POWER MEASUREMENT  
V
corresponds to maximum  
FS  
CHGIN Current Monitor Gain  
CHGIN Voltage Monitor Gain  
G
G
2.632  
0.167  
V/A  
V/V  
ICHGIN  
I
setting  
CHGIN-LIM  
V
corresponds to V  
CHGIN_OVP  
VCHGIN  
FS  
BATT AND SYS POWER MEASUREMENT  
Battery Charge Current  
Monitor Gain  
V
corresponds to 100% of I  
FAST-CHG  
FS  
G
12.5  
mV/%  
%
IBATT-CHG  
setting (CHG_CC[5:0])  
I
= 15mA, T = +25°C,  
FAST-CHG  
A
-3.5  
-3.5  
-10  
8.2  
+3.5  
+3.5  
+10  
300  
+15  
+0.8  
V
= V  
- 300mV  
BATT  
FAST-CHG  
Charge Current Monitor  
Accuracy  
I
= 300mA, T = +25°C,  
A
FAST-CHG  
V
= V  
- 300mV  
BATT  
FAST-CHG  
Charge Current Monitor  
Accuracy over Temperature  
Across all current settings,  
V = V - 300mV  
BATT  
%
FAST-CHG  
Battery Discharge Monitor  
Full-Scale Current Range  
Programmable with  
IMON_DISCHG_SCALE[3:0]  
I
mA  
%
DISCHG-SCALE  
Battery Discharge Current  
Monitor Accuracy  
15mA to 300mA battery discharge  
current, I  
-15  
-0.5  
= 300mA  
DISCHG-SCALE  
Battery Discharge Current  
Monitor Offset  
I
= 0mA  
mA  
V/V  
V/V  
BATT  
V
V
corresponds to maximum  
FS  
Battery-Voltage Monitor Gain  
SYS Voltage Monitor Gain  
G
0.272  
0.26  
VBATT  
setting  
FAST-CHG  
V
V
corresponds to maximum  
FS  
G
VSYS  
setting  
SYS-REG  
THM AND TBIAS VOLTAGE MEASUREMENT  
THM Voltage Monitor Gain  
TBIAS Voltage Monitor Gain  
G
1
1
V/V  
V/V  
VTHM  
G
VTBIAS  
Maxim Integrated  
14  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
Electrical Characteristics—Linear Regulator  
(V  
= V  
= 3.7V, C  
= 22μF, C  
= 2.2μF, limits are 100% production tested at T = +25°C, limits over the operating  
SYS  
INLDO  
SYS  
LDO A  
temperature range (T = -40°C to +85°C) are guaranteed by design and characterization, unless otherwise noted.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
LDO  
INLDO Voltage Range  
V
INLDO cannot exceed V  
by 0.3V  
1.7  
5.5  
V
INLDO  
SYS  
V
= 1.2V, no load  
= 1.2V, no load  
Low-power mode  
1.5  
12  
LDO  
LDO  
INLDO Supply Current  
I
μA  
INLDO-Q  
V
Normal mode  
Target regulation voltage. Programmable in  
25mV steps with LDO_VREG[6:0].  
LDO Output Voltage Range  
V
0.8  
-2  
3.975  
+2  
V
LDO-REG  
I
= 0.1mA to  
LDO  
150mA,  
T
= -5°C to +85°C,  
A
normal mode  
V
= V  
+
INLDO  
LDO  
LDO Output Voltage  
Accuracy  
0.3V to 5.5V, across  
I
= 0.1mA to  
LDO  
V
%
LDO  
all V settings,  
150mA, T = -40°C,  
normal mode  
-3  
+3  
LDO-REG  
A
bias in normal mode  
I
= 0.1mA to  
LDO  
5mA, low-power  
-6.5  
+6.5  
mode  
Normal mode (Note 7)  
150  
5
LDO Maximum Output  
Current  
I
mA  
%
LDO  
Low-power mode (Note 7)  
I
= 0.1mA to  
LDO  
150mA, normal  
mode  
0.5  
0.5  
V
= V  
+
INLDO  
LDO  
Load Regulation  
Line Regulation  
0.3V to 5.5V, across  
I
= 0.1mA to  
LDO  
all V settings  
LDO-REG  
5mA, low-power  
mode  
I
= 0.1mA,  
LDO  
Normal mode  
0.05  
0.05  
60  
V
= V  
+
INLDO  
LDO  
%/V  
0.3V to 5.5V, across  
Low-power mode  
all V settings  
LDO-REG  
I
= 150mA, normal  
V
V
= 3.0V,  
LDO  
INLDO  
LDO-REG  
150  
560  
mode (Note 6)  
= 3.3V  
Dropout Voltage  
V
mV  
mA  
DO  
I
= 150mA, Nor-  
V
V
= 1.7V,  
INLDO  
LDO  
100  
mal Mode (Note 6)  
= 1.85V  
LDO-REG  
Normal mode  
160  
1.1  
300  
40  
V
= 90% of pro-  
LDO  
LDO Current Limit  
I
LDO-LIM  
grammed target  
Low-power mode  
LDO Output Capacitance  
for Stability  
C
(Note 5)  
2.2  
20  
μF  
LDO  
LDO Startup Ramp Rate  
ΔV  
/Δt  
10% to 90% of final value  
mV/μs  
LDO  
Maxim Integrated  
15  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
Electrical Characteristics—Linear Regulator (continued)  
(V  
= V  
= 3.7V, C  
= 22μF, C  
= 2.2μF, limits are 100% production tested at T = +25°C, limits over the operating  
SYS  
INLDO  
SYS  
LDO A  
temperature range (T = -40°C to +85°C) are guaranteed by design and characterization, unless otherwise noted.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
= V  
=
SYS  
INLDO  
100  
2.7V, V  
= 0.8V  
LDO  
LDO  
LDO  
LDO  
V
= V  
=
SYS  
INLDO  
150  
200  
300  
2.7V, V  
= 1.0V  
LDO and bias in  
normal mode,  
f = 10Hz to 100kHz,  
V
= V  
=
SYS  
INLDO  
2.7V, V  
= 2.0V  
=
Output Noise  
μV  
RMS  
V
= V  
I
= 15mA  
SYS  
INLDO  
LDO  
3.7V, V  
= 3.0V  
V
= V  
=
SYS  
INLDO  
5.5V,  
400  
V
= 3.975V  
LDO  
LDO in normal-power mode, bias in  
low-power mode, V =3.6V,  
Power-Supply Rejection  
Ratio  
SYS  
PSRR  
60  
dB  
V
V
=2.8V+20mVpp, f = 10Hz to 1kHz,  
INLDO  
=1.8V, I  
=15mA  
LDO  
LDO  
Active Discharge Resistance  
R
100  
Ω
AD_LDO  
LDO POWER-OK OUTPUT (POKLDO)  
V
V
rising, expressed as a percentage of  
LDO  
V
82.5  
79  
87.5  
84  
92.5  
POKLDO_R  
LDO-REG  
POKLDO Threshold  
%
V
V
V
falling, expressed as a percentage of  
LDO  
V
89  
0.4  
+1  
POKLDO_F  
LDO-REG  
POKLDO Low Voltage  
POKLDO Leakage Current  
V
POKLDO = low, sinking 2mA  
POKLDO  
V
= V = 5.5V,  
IO  
SYS  
T
= +25°C  
= +85°C  
-1  
±0.001  
±0.01  
A
A
POKLDO is high-Z,  
I
μA  
POKLDO-LKG  
V
= 0V or  
POKLDO  
T
5.5V  
LDO POWER-MODE INPUT (PMLDO)  
PMLDO Logic-High  
Threshold  
0.7 x  
V
IO  
V
V
PMLDO_HI  
0.3 x  
PMLDO Logic-Low Threshold  
PMLDO Debounce Timer  
V
V
PMLDO_LO  
V
IO  
t
(Note 3)  
200  
μs  
PMLDO-DB  
T
T
= +25°C  
= +85°C  
-1  
±0.001  
±0.01  
+1  
A
A
V
V
= V = 5.5V,  
IO  
SYS  
PMLDO Leakage Current  
I
μA  
PMLDO-LKG  
= 0V or 5.5V  
PMLDO  
Maxim Integrated  
16  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
Electrical Characteristics—Dual-Channel Current Sink Driver  
(V  
= 3.7V, V  
= 0.2V, limits are 100% production tested at T = +25°C, limits over the operating temperature range (T = -40°C  
SYS  
SNKx A A  
to +85°C) are guaranteed by design and characterization, unless otherwise noted.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DUAL-CHANNEL CURRENT SINK DRIVER  
Current Sink Quiescent  
Current  
Change in supply current when one channel is  
ΔI  
6
µA  
µA  
BATT-Q  
enabled and delivering 12.8mA, V  
= 0.2V  
SNKx  
All current sink  
drivers combined,  
outputs disabled,  
T
T
= +25ºC  
+0.1  
+1.0  
+1.0  
A
Current Sink Leakage  
= +85ºC  
A
V
= 5.5V,  
SNKx  
SNK_FSx[1:0] = 0b01  
SNK_FSx[1:0] = 0b10  
SNK_FSx[1:0] = 0b11  
0.1  
0.2  
0.4  
3.2  
6.4  
Programmable with  
BRT_SNKx[4:0]  
Sink Current Range  
I
mA  
SNKx  
12.8  
3.2mA CURRENT SINK RANGE (SNK_FSx[1:0]=0b01)  
Current Sink DAC Bits  
5
bits  
mA  
SNK_FSx[1:0] = 0b01,  
3.10  
3.20  
3.25  
3.425  
70  
T
= +25ºC  
A
BRT_SNKx[4:0] =  
0b11111  
Current Sink Accuracy  
SNK_FSx[1:0] = 0b01,  
= -40ºC to +85ºC  
2.975  
3.20  
35  
T
A
BRT_SNKx[4:0] =  
0b11111  
SNK_FSx[1:0] = 0b01,  
= 2.9mA  
Dropout Voltage  
V
mV  
DO  
I
SNKx  
6.4mA CURRENT SINK RANGE (SNK_FSx[1:0] =0b10)  
SNK_FSx[1:0] = 0b10,  
= +25ºC  
6.30  
5.95  
6.40  
6.40  
35  
6.50  
6.85  
70  
T
A
BRT_SNKx[4:0] =  
0b11111  
Current Sink Accuracy  
mA  
mV  
SNK_FSx[1:0] = 0b10,  
= -40ºC to +85ºC  
T
A
BRT_SNKx[4:0] =  
0b11111  
SNK_FSx[1:0] = 0b10,  
= 5.75mA  
Dropout Voltage  
V
DO  
I
SNKx  
12.8mA CURRENT SINK RANGE (SNK_FSx[1:0]=0b11)  
SNK_FSx[1:0] = 0b11,  
= +25ºC  
12.6  
11.9  
12.8  
12.8  
35  
13.0  
13.7  
70  
T
A
BRT_SNKx[4:0] =  
0b11111  
Current Sink Accuracy  
Dropout Voltage  
mA  
SNK_FSx[1:0] = 0b11,  
= -40ºC to +85ºC  
T
A
BRT_SNKx[4:0] =  
0b11111  
SNK_FSx[1:0] = 0b11,  
= 11.5mA  
V
mV  
Hz  
DO  
I
SNKx  
TIMING CHARACTERISTICS  
Root Clock Frequency  
25.6  
32.0  
38.4  
Maxim Integrated  
17  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
Electrical Characteristics—Dual-Channel Current Sink Driver (continued)  
(V  
= 3.7V, V  
= 0.2V, limits are 100% production tested at T = +25°C, limits over the operating temperature range (T = -40°C  
SYS  
SNKx A A  
to +85°C) are guaranteed by design and characterization, unless otherwise noted.)  
PARAMETER SYMBOL CONDITIONS  
TIMING CHARACTERISTICS / BLINK PERIOD SETTINGS  
MIN  
TYP  
MAX  
UNITS  
0.5  
s
Minimum Blink Period  
P_SNKx[3:0] = 0b0000  
16  
8
clocks  
s
Maximum Blink Period  
Blink Period LSB  
P_SNKx[3:0] = 0b1111  
256  
0.5  
16  
clocks  
s
clocks  
TIMING CHARACTERISTICS / BLINK DUTY CYCLE  
Minimum Blink Duty Cycle  
Maximum Blink Duty Cycle  
Blink Duty Cycle LSB  
D_SNKx[3:0] = 0b0000  
D_SNKx[3:0] = 0b1111  
6.25  
100  
%
%
%
6.25  
2
Electrical Characteristics—I C Serial Interface  
(V  
= 3.7V, V = 1.8V, limits are 100% production tested at T = +25°C, limits over the operating temperature range (T = -40°C to  
SYS  
IO A A  
+85°C) are guaranteed by design and characterization, unless otherwise noted.)  
PARAMETER SYMBOL CONDITIONS  
SERIAL INTERFACE/I/O STAGE  
MIN  
TYP  
MAX  
UNITS  
V
V
Voltage Range  
Bias Current  
V
1.7  
-1  
3.6  
+1  
V
IO  
IO  
T = +25°C  
0
μA  
IO  
A
SCL, SDA Input High  
Voltage  
0.7 x  
V
V
V
IH  
V
IO  
SCL, SDA Input Low  
Voltage  
0.3 x  
V
IL  
V
IO  
0.05 x  
SCL, SDA Input Hysteresis  
V
V
HYS  
V
IO  
SCL, SDA Input Leakage  
Current  
I
V
= 3.6V, V  
= V = 0V or 3.6V  
SDA  
-10  
10  
0.4  
μA  
I
IO  
SCL  
SDA Output Low Voltage  
SCL, SDA Pin Capacitance  
V
Sinking 20mA  
(Note 8)  
V
OL  
10  
pF  
Input Filter Suppressed  
Spike Maximum Pulse  
Width  
t
(Note 8)  
50  
ns  
SP  
Maxim Integrated  
18  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
2
Electrical Characteristics—I C Serial Interface (continued)  
(V  
= 3.7V, V = 1.8V, limits are 100% production tested at T = +25°C, limits over the operating temperature range (T = -40°C to  
SYS  
IO A A  
+85°C) are guaranteed by design and characterization, unless otherwise noted.)  
PARAMETER  
SERIAL INTERFACE/TIMING  
Clock Frequency  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
f
1
MHz  
SCL  
Bus Free Time between  
STOP and START  
Condition  
t
0.5  
μs  
BUF  
Setup Time REPEATED  
START Condition  
t
260  
260  
ns  
ns  
SU;STA  
Hold Time REPEATED  
START Condition  
t
HD;STA  
SCL Low Period  
SCL High Period  
Data Setup Time  
Data Hold Time  
t
500  
260  
50  
ns  
ns  
ns  
μs  
LOW  
t
HIGH  
t
SU;DAT  
HD;DAT  
t
0
Setup Time for STOP  
Condition  
t
260  
ns  
SU;STO  
Note 2: See the nENLDO Pullup Resistors to V  
(V  
Internal) section of the data sheet.  
CCINT CC  
Note 3: Digitally debounced for two consecutive 100μs clock periods. Typical debounce time is at least 200μs and up to 300μs due  
to synchronization to the digital clock.  
Note 4: This is the amount of additional debounce time required to exit factory-ship mode (250ms, typ additional time).  
Note 5: For stability, guaranteed by design and not production tested.  
Note 6: The dropout voltage is the difference between the input voltage and the output voltage when the input voltage is within the  
valid input voltage range, but below the output voltage setpoint. For example, if the output voltage setpoint is 1.85V, the  
input voltage is 1.7V, and the actual output voltage is 1.65V, then the dropout voltage is 50mV (V  
Note 7: The "Maximum Output Current" is guaranteed by the "Output Voltage Accuracy" tests.  
Note 8: Design guidance only. Not production tested.  
= V  
- V  
).  
DO  
INLDO  
LDO  
Maxim Integrated  
19  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
Typical Operating Characteristics  
(Typical Application Circuits, V  
= 0V, V  
= V  
= V  
= 3.7V, V = 1.8V, V = 4.5V, BIAS in low-power mode,  
SYS-REG  
CHGIN  
SYS  
BATT  
INLDO  
IO  
LDO in normal mode, T = +25°C, unless otherwise noted.) (T = +25°C, unless otherwise noted.)  
A
A
SHUTDOWN SUPPLY CURRENT vs.  
BATTERY VOLTAGE  
QUIESCENT SUPPLY CURRENT vs.  
BATTERY VOLTAGE  
QUIESCENT SUPPLY CURRENT vs.  
TEMPERATURE  
toc01  
toc02  
toc03  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
UVLO FALLING = 2.8V  
TA = +25°C  
VBATT FALLING  
IC IN SHUTDOWN STATE  
LDO NORMAL MODE  
LDO NORMAL MODE  
LDO LOW-POWER MODE  
LDO LOW-POWER MODE  
VLDO = 1.8V  
6
6
TA = +85°C  
TA = +25°C  
TA = -40°C  
4
4
VLDO = 1.8V  
VBATT = 3.7V  
2
2
0
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
-50  
-25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
VBATT (V)  
VBATT (V)  
LDO POWER-UP CAUSED BY  
BUTTON PRESS (LDO_WAKE)  
10mA LOAD  
LDO POWER-DOWN CAUSED  
BY SOFTWARE  
FACTORY-SHIP MODE CURRENT  
toc06  
toc05  
toc04  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
VBATT FALLING  
VLDO  
VLDO  
2V/div  
VPOKLDO  
2V/div  
2V/div  
VnENLDO  
2V/div  
TA = +85°C  
TA = +25°C  
TA = -40°C  
VPOKLDO  
IBATT  
100mA/div  
2V/div  
0
800µs/div  
2ms/div  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
VBATT (V)  
LDO LOAD REGULATION AND  
CURRENT LIMIT  
LDO LINE TRANSIENT RESPONSE  
LDO LINE REGULATION  
toc09  
toc07  
toc08  
1.90  
1.88  
1.86  
1.84  
1.82  
1.80  
1.78  
1.76  
1.74  
1.72  
1.70  
1.9  
1.88  
1.86  
1.84  
1.82  
1.8  
VLDO-REG = 1.8V  
10mALOAD  
VLDO-REG = 1.8V  
VLDO  
20mV/div  
TA = +25°C  
TA = +85°C  
TA = -40°C  
4.2V  
VINLDO  
200mV/div  
1.78  
1.76  
1.74  
1.72  
1.7  
VIN = 3.0  
VIN = 3.7  
VIN = 4.2  
3.7V  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
0
100  
200  
300  
400  
40µs/div  
LOAD (mA)  
VINLDO (V)  
Maxim Integrated  
20  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
Typical Operating Characteristics (continued)  
(Typical Application Circuits, V  
= 0V, V  
= V  
= V  
= 3.7V, V = 1.8V, V = 4.5V, BIAS in low-power mode,  
CHGIN  
SYS  
BATT  
INLDO  
IO  
SYS-REG  
LDO in normal mode, T = +25°C, unless otherwise noted.) (T = +25°C, unless otherwise noted.)  
A
A
LDO POWER SUPPLY REJECTION  
LDO LOAD TRANSIENT RESPONSE  
LDO LOAD TRANSIENT RESPONSE  
RATIO (PSRR)  
toc10  
toc11  
toc12  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
15mA LOAD  
AVERAGE VLDO = 1.8V  
AVERAGE VINLDO = 3.7V  
1.8V  
1.8V  
VLDO  
VLDO  
50mV/div  
50mV/div  
150mA  
75mA  
1mA  
1mA  
ILDO  
ILDO  
100mA/div  
100mA/div  
-10  
40µs/div  
40µs  
10  
1000  
100000  
10000000  
FREQUENCY (Hz)  
CHGIN SUPPLY CURRENT vs.  
CHGIN VOLTAGE  
(USB NOT SUSPENDED)  
CHGIN SUPPLY CURRENT vs.  
CHGIN VOLTAGE  
BATT BIAS CURRENT vs.  
BATT VOLTAGE  
(USB SUSPENDED)  
toc13  
toc14  
toc15  
1.8  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
10  
9
8
7
6
5
4
3
2
1
0
CHARGER DISABLED  
VCHGIN = 5V  
ISYS = 0mA  
VCHGIN RISING  
VBATT = 2.7V  
VBATT = 3.6V  
VBATT = 4.4V  
1.6 VCHGIN RISING  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
TA = +85°C  
TA = +25°C  
TA = -40°C  
3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5  
VCHGIN (V)  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
2.5  
3.0  
3.5  
4.0  
4.5  
VCHGIN (V)  
VBATT (V)  
CHARGE PROFILE, 110mAh BATTERY  
BATT TO SYS FET IMPEDANCE  
CHARGE PROFILE, 40mAh BATTERY  
toc17  
toc18  
toc16  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0.150  
0.135  
0.120  
0.105  
0.090  
0.075  
0.060  
0.045  
0.030  
0.015  
0.000  
150  
140  
130  
120  
110  
100  
90  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0.060  
0.054  
0.048  
0.042  
0.036  
0.030  
0.024  
0.018  
0.012  
0.006  
0.000  
VPQ = 3V, IPQ = 10%  
IFAST-CHG = 75mA, VFAST-CHG = 4.2V  
VPQ = 3V, IPQ = 10%  
IFAST-CHARGE = 30mA, VFAST-CHARGE = 4.2V  
VBATT (V)  
VBATT (V)  
IBATT = 600mA  
IBATT = 300mA  
IBATT = 150mA  
IBATT = 10mA  
IBATT (A)  
IBATT (A)  
BATTERY LOADED  
DURING THE 'DONE'  
STATE TO SHOW  
THE RESTART  
BATTERY LOADED  
DURING THE 'DONE'  
STATE TO SHOW  
THE RESTART  
80  
70  
60  
BEHAVIOR  
BEHAVIOR  
50  
0.0  
1.0  
2.0  
TIME (hr)  
3.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
0.0  
1.0  
2.0  
3.0  
TIME (hr)  
VBATT (V)  
Maxim Integrated  
21  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
Bump Configuration  
TOP VIEW  
(BUMP SIDE DOWN)  
MAX77734  
1
2
3
4
5
+
A
CHGIN  
AMUX  
nENLDO  
nIRQ  
SDA  
SCL  
LDO  
V
L
B
SYS  
THM  
TBIAS  
SNK1  
PMLDO POKLDO  
GND  
C
BATT  
V
IO  
D
GND  
SNK2  
INLDO  
WLP  
(2.23mm x 1.97mm x 0.5mm, 0.4mm PITCH)  
Bump Description  
PIN  
NAME  
FUNCTION  
TYPE  
CHARGER  
Charger Input. Connect to a 5V DC charging source. Bypass to GND with a 4.7μF  
ceramic capacitor.  
A1  
A2  
A3  
B1  
B2  
C1  
CHGIN  
power input  
power  
Internal Charger 3V Logic Supply Powered from CHGIN. Bypass to GND with a  
V
L
1μF ceramic capacitor. Do not load V externally.  
L
Analog Multiplexer Output. Connect to system ADC to perform conversions on  
charger power signals. Leave this pin unconnected if unused.  
AMUX  
SYS  
analog output  
power output  
analog input  
power i/o  
System Power Output. SYS provides power to the system resources as well as  
the control logic of the IC. Bypass to GND with a 22μF ceramic capacitor.  
Thermistor Monitor. Thermally couple an NTC to the battery and connect between  
THM and GND.  
THM  
Li+ Battery Connection. Connect to positive battery terminal. Bypass to GND with  
a 4.7μF ceramic capacitor.  
BATT  
Thermistor Bias Supply. Connect a resistor equal to the NTC's room  
temperature resistance between TBIAS and THM. Do not load TBIAS with other  
external circuitry.  
C2  
TBIAS  
GND  
analog  
ground  
Ground. Connect to the negative battery terminal and the low-impedance ground  
plane of the PCB.  
C3, D1  
Maxim Integrated  
22  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
Bump Description (continued)  
PIN  
NAME  
FUNCTION  
TYPE  
LINEAR REGULATOR  
Active-Low LDO Enable Input. This digital input also causes the IC to exit  
A4  
B3  
B4  
nENLDO  
factory-ship mode. Pulled up internally to V  
(nENLDO) section.  
. See the Hardware Enable  
digital input  
digital input  
digital output  
CCINT  
LDO Power-Mode Control Input. This digital input causes the LDO to change  
between low-power mode and normal mode when the MSB of LDO_PM[1:0] is set.  
See the LDO Power Mode (PMLDO) section.  
PMLDO  
Open-Drain Linear Regulator Power-OK Output. Connect a 100kΩ pullup resistor  
between POKLDO and a voltage equal to or less than V  
Leave unconnected if unused.  
POKLDO  
if this pin is used.  
SYS  
D4  
D5  
INLDO  
LDO  
Linear Regulator Input. Connect to GND if unused.  
power input  
Linear Regulator Output. Bypass to GND with a 2.2μF ceramic capacitor.  
Leave unconnected if unused.  
power output  
DUAL-CHANNEL CURRENT SINK  
Current Sink Port 1. SNK1 is typically connected to the cathode of an LED and is  
capable of sinking up to 12.8mA. Connect to GND if unused.  
D2  
D3  
SNK1  
SNK2  
power  
power  
Current Sink Port 2. SNK2 is typically connected to the cathode of an LED and is  
capable of sinking up to 12.8mA. Connect to GND if unused.  
2
I C SERIAL INTERFACE  
Active-Low, Open-Drain Interrupt Output. Connect a 100kΩ pullup resistor between  
A5  
nIRQ  
digital output  
nIRQ and a voltage equal to or less than V  
.
SYS  
2
B5  
C4  
C5  
SDA  
I C Serial Interface Data  
digital i/o  
power input  
digital input  
2
V
I C Serial Interface Voltage Supply  
IO  
2
SCL  
I C Serial Interface Clock  
Maxim Integrated  
23  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
Simplified Block Diagram  
MAX77734  
BODY-  
SWITCH  
SYS  
4.5V  
CHGIN  
5V DC INPUT  
4.7μF  
22μF  
SYSTEM LOADS  
CHARGE  
CONTROLLER  
VL REG  
V
L
BATT  
1μF  
TEMPERATURE  
4.7μF  
MONITORS  
TBIAS  
THM  
GND  
NTC  
ANALOG MUX  
LDO  
AMUX  
TO SYSTEM ADC  
V
IO  
V
CCINT  
SDA  
SCL  
nIRQ  
nENLDO  
INLDO  
SYS  
2
WAKE SOURCE  
SERIAL  
HOST  
I C CONTROL AND  
DIGITAL  
LDO  
REGULATOR  
PMLDO  
SNK1  
V
(0.8V – 3.975V)  
LDO  
LDO  
SYS  
100kΩ  
2.2μF  
POKLDO  
REGULATED  
LOADS  
SNK2  
GND  
Maxim Integrated  
24  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
2
Detailed Description—I C Serial Interface). The active-  
Detailed Description  
The MAX77734 is a tiny power-management integrated  
circuit (PMIC) that integrates the following:  
low nENLDO input can be used to wake-up the LDO using  
an external on-key. See Hardware Enable (nENLDO).  
A low-I (0.2μA typ) factory-ship mode can be entered to  
Q
Instant-on linear-mode lithium-ion/lithium-polymer  
(Li+) battery charger optimized for small battery cells  
(see Detailed Description—Smart Power Selector  
Charger)  
isolate the battery node (BATT) from the system (SYS)  
to prevent slow cell discharge due to a high combined  
shutdown current of all external SYS loads (see Factory-  
Ship Mode State).  
NTC thermistor monitor for automatic JEITA-safe-  
charging (see Detailed Description—Adjustable  
Thermistor Temperature Monitors)  
2
A watchdog timer can be enabled through I C (or factory-  
enabled and locked) to provide supervisory reset in the  
event that serial activity from the host controller suddenly  
stops (see Watchdog Timer).  
Analog Multiplexer (MUX) which enables an external  
ADC to monitor power (see Detailed Description—  
Analog Multiplexer)  
Additionally, a SYS voltage supervisory function is accom-  
plished by the undervoltage (UVLO), overvoltage (OVLO),  
and power-on reset (POR) comparators.  
150mA linear regulator (see Detailed Description—  
Linear Regulator)  
On/Off Controller  
Dual-channel current sinks with individual pattern  
control (see Detailed Description—Dual-Channel  
Current Sink Driver)  
The IC top-level on/off controller uses a synchronous  
digital state machine with a 100μs clock. Asynchronous  
inputs to the state machine can take up to 100μs to take  
effect due to clock synchronization.  
The ICs internal top-level digital logic is described in the  
On/Off Controller section of the data sheet. The IC is  
The state machine is drawn in Figure 1 and Figure 2.  
State transition conditions are listed in Table 1.  
2
fully configurable through I C (see the Register Map and  
STATE  
FACTORY-SHIP MODE  
BATT TO SYS SWITCH  
FORCED OPEN  
ACTION  
SEQUENCE  
ANY  
STATE2  
1
X
2
POWER-ON RESET  
(SYSPOR = 1)  
X AND Y  
TRANSITION NAME.  
SEE TABLE 3.  
SHUTDOWN (BIAS OFF)  
SPS1 CONTROL  
0A  
0C  
ALL RESOURCES OFF  
0B  
0D  
RESET ACTIONS  
OFF ACTIONS  
4
3
STANDBY (BIAS ON)  
SPS1 CONTROL  
NOTE  
ALL RESOURCES OFF  
1: SPS = SMART POWER SELECTOR  
2: ANY STATE EXCEPT FACTORY-SHIP MODE  
6
5
RESOURCE ON  
SPS1 CONTROL  
BIAS AND AT LEAST ONE  
RESOURCE IS ON  
8 AND 8A  
LDO POWER-DOWN  
7 AND 7A  
8B  
7B  
LDO POWER-UP  
Figure 1. On/Off Controller State Machine  
Maxim Integrated  
25  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
Table 1. On/Off Controller Transitions List  
TRANSITION  
NUMBER  
CONDITION (TRANSITION HAPPENS WHEN...)  
Software cold reset (SFT_CTRL[1:0] = 0b01) OR  
0A  
0B  
Watchdog timer expired causes reset (WDT_EXP = 1 and WDT_MODE = 1)  
Reset actions completed  
Software power-off (SFT_CTRL[1:0] = 0b10) OR  
Watchdog expired causes power-off (WDT_EXP = 1 and WDT_MODE = 0) OR  
Device over-temperature lockout (T >T  
) OR  
+ V  
J
OTLO  
0C  
SYS undervoltage lockout (V  
< V  
) OR  
SYS  
SYSUVLO  
SYSUVLO_HYS  
SYS overvoltage lockout (V  
> V  
) OR  
SYS  
SYSOVLO  
Manual reset occurred (MAN_RST = 1)  
0D  
1
Off Actions completed  
CHGIN inserted and debounced valid (CHGIN_DTLS[1:0] = 0b11) OR  
nENLDO asserted for 250ms debounce timer (t ) OR  
FSM-DB  
Power to the IC is removed (V  
< approx. 1.8V) and then reapplied (V  
> V  
)
BATT  
BATT  
POR  
Factory-ship mode requested (SFT_CTRL[1:0] = 0b11) AND  
CHGIN unplugged (CHGIN_DTLS[1:0] = 0b00)  
2
NOT(4) OR  
Factory-ship mode requested (SFT_CTRL[1:0] = 0b11) OR  
Software cold reset (SFT_CTRL[1:0] = 0b01) OR  
Software power-off (SFT_CTRL[1:0] = 0b10) OR  
Watchdog timer expired (WDT_EXP = 1) OR  
Manual reset occurred (MAN_RST = 1) OR  
3
4
Device over-temperature lockout (T >T  
) OR  
J
OTLO  
SYS undervoltage lockout (V  
< V  
) OR  
SYS  
SYSUVLO  
SYS overvoltage lockout (V  
> V  
)
SYS  
SYSOVLO  
2
Main bias requested enabled through I C (BIAS_REQ = 1) OR 6  
NOT(6) OR  
Factory-ship mode requested (SFT_CTRL[1:0] = 0b11) OR  
Software cold reset (SFT_CTRL[1:0] = 0b01) OR  
Software power-off (SFT_CTRL[1:0] = 0b10) OR  
Watchdog timer expired (WDT_EXP = 1) OR  
Manual reset occurred (MAN_RST = 1) OR  
5
Device over-temperature lockout (T >T  
) OR  
J
OTLO  
SYS undervoltage lockout (V  
< V  
) OR  
SYS  
SYSUVLO  
SYS overvoltage lockout (V  
> V  
)
SYS  
SYSOVLO  
At least one current sink is enabled (EN_SNK1 or EN_SNK2 = 1) OR  
AMUX is being used (MUX_SEL[3:0] ≠ 0b0000) OR  
CHGIN inserted and debounced valid (CHGIN_DTLS[1:0] = 0b11) OR  
LDO is forced enabled (LDO_EN[1:0] = 0b01) OR  
LDO wake-up flag is set (LDO_WAKE = 1) OR  
Internal wake-up flag is set (SFT_WAKE = 1)  
6
7
LDO power-up sequence has not happened yet  
Maxim Integrated  
26  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
Table 1. On/Off Controller Transitions List (continued)  
TRANSITION  
NUMBER  
CONDITION (TRANSITION HAPPENS WHEN...)  
LDO is forced enabled (LDO_EN[1:0] = 0b01) OR  
LDO wake-up flag is set (LDO_WAKE = 1) OR  
Internal wake-up flag is set (SFT_WAKE = 1)  
7A  
7B  
8
Done with LDO power-up  
LDO power-down sequence has not happened yet  
LDO is forced disabled (LDO_EN[1:0] = 0b00) OR  
Software cold reset (SFT_CTRL[1:0] = 0b01) OR  
Software power-off (SFT_CTRL[1:0] = 0b10) OR  
Watchdog timer expired (WDT_EXP = 1) OR  
Factory-ship mode requested (SFT_CTRL[1:0] = 0b11) OR  
Manual reset occurred (MAN_RST = 1) OR  
8A  
8B  
Device over-temperature lockout (T >T  
) OR  
J
OTLO  
SYS undervoltage lockout (V  
< V  
+ V  
) OR  
SYS  
SYSUVLO  
SYSUVLO_HYS  
SYS overvoltage lockout (V  
> V  
)
SYS  
SYSOVLO  
Done with LDO power-down  
RESET ACTIONS  
OFF ACTIONS  
LDO POWER-UP  
LDO POWER-DOWN  
8 AND 8A  
UVLO OR  
OVLO OR  
OTLO  
0A  
0C  
WAIT 60ms  
POKLDO BLANKED1  
WAIT 10.24ms  
(NO WAITS)  
7 AND 7A  
EVENT RECORDER  
(ERCFLAG) LOGS  
RESET CAUSE  
EVENT RECORDER  
(ERCFLAG) LOGS  
POWER-OFF CAUSE  
POKLDO BLANKED1  
LDO ENABLED  
OFF FLAGS CLEARED:  
WDT_EXP = 0  
RESET FLAGS CLEARED:  
WDT_EXP = 0  
MAN_RST = 0  
WAIT 5.12ms  
LDO DISABLED  
RESET CONFIG  
REGISTERS:  
RESET CONFIG  
REGISTERS:  
PULSE SYSRST = 1  
PULSE SYSRST = 1  
POKLDO UNBLANKED2  
7B  
WAKE FLAGS CLEARED:  
LDO_WAKE = 0  
SFT_WAKE = 0  
WAKE FLAG SET:  
SFT_WAKE = 1  
LDO_WAKE = 0  
WAKE FLAGS CLEARED:  
SFT_WAKE = 0  
LDO_WAKE = 0  
WAIT 125ms  
8B  
0B  
0D  
NOTE  
1: POKLDO = LOW REGARDLESS OF V  
LDO  
2: POKLDO DETERMINED BY V  
LDO  
Figure 2. On/Off Controller Action Sequences  
Maxim Integrated  
27  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
The on/off controller operates on internally latched signals decoded in Table 2.  
Table 2. On/Off Controller Internal Signals  
SIGNAL  
NAME  
TYPE  
DESCRIPTION  
SET CONDITION  
CLEAR CONDITION  
Watchdog timer expired flag.  
See Watchdog Timer.  
During Reset Actions,  
Off Actions  
WDT_EXP  
Off/Reset Flag  
Off/Reset Flag  
Watchdog timer expires  
Manual reset occurred.  
See Manual Reset.  
MAN_RST  
LDO_WAKE  
SFT_WAKE  
EN_SNKx  
nENLDO asserted for t  
During Off Actions  
MRST  
nENLDO debounced low or CHGIN  
debounced valid. LDO_EN[1:0]  
must be 0b10 for this flag to set.  
LDO wakeup flag.  
See LDO Enable Control.  
During LDO Power-Down,  
Off Actions, Reset Actions  
Wake Flag  
Wake Flag  
Wake Flag  
LDO software wakeup flag.  
See LDO Enable Control.  
Software reset (Reset Actions) and During Power-Down,  
LDO_EN[1:0] reset value is 0b10.  
Off Actions  
EN_SNK_MSTR = 1 and either  
SNK_FS1[1:0] 0b00 or  
SNK_FS2[1:0] 0b00  
EN_SNK_MSTR = 0 or  
both SNK_FS1[1:0] = 0b00  
and SNK_FS2[1:0] = 0b00  
Final enable signal for  
current sink 1 and 2.  
The state machine places a higher priority on events that cause shutdown versus events that cause power-on. In other  
words, moving the IC to a lower-power state is prioritized over moving the IC to a higher-power state. When two transi-  
tions are true at the same time, the state machine prioritizes action according to Table 3.  
Table 3. On/Off Controller State Transition Priority  
STATE  
TRANSITION PRIORITY TO EXIT  
N/A (single exit path)  
FACTORY-SHIP MODE  
SHUTDOWN  
2 > 0C > 0A > 4  
STANDBY  
SYSPOR > 3 > 6  
RESOURCE ON  
SYSPOR > (8 AND 8A) > 5 >(7 AND 7A)  
Maxim Integrated  
28  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
The IC shuts down when V  
becomes invalid  
Factory-Ship Mode State  
SYS  
(<V  
or >V  
) or the ICs junction tem-  
SYSUVLO  
SYSOVLO  
Factory-ship mode internally disconnects the battery  
(BATT) from the system (SYS). The battery does not  
power the system in this mode. Use this mode to preserve  
battery life if external circuits on SYS cause the battery  
to leak.  
perature exceeds approximately 165°C (T  
). A man-  
OTLO  
ual reset (MAN_RST), watchdog timer expiration (WDT_  
EXP), or software power-off request (SFT_CTRL[1:0] =  
0b10) also causes shutdown.  
The IC exits shutdown when transition 4 in Table 1 is true.  
2
Write SFT_CTRL[1:0] = 0b11 using I C to enter factory-  
ship mode. The IC responds in two different ways  
depending on the state of the charger input (CHGIN):  
Standby (Bias On) State  
Standby state is a transitional state used to activate the  
IC’s central bias supply before a resource is allowed to  
operate. Bias activation is automatically managed by the  
on/off controller.  
If CHGIN is valid (CHGIN_DTLS[1:0] = 0b11) while  
SFT_CTRL[1:0] = 0b11, then the IC enters factory-  
ship mode (internally disconnects BATT from SYS)  
but SYS is still powered from CHGIN (regulating  
Resource On State  
to V  
). SYS decays to 0V when CHGIN is  
SYS-REG  
The IC is in resource on state when at least one resource  
is enabled:  
disconnected.  
If CHGIN is invalid (CHG_DTLS[1:0] ≠ 0b11) while  
SFT_CTRL[1:0] = 0b11, then the IC enters factory-  
ship mode and SYS decays to 0V.  
CHGIN is valid (CHGIN_DTLS[1:0] = 0b11) indicating  
the charger resource is ready to be enabled through  
CHG_EN  
Factory-ship mode causes many configuration registers  
The analog multiplexer output buffer is being used  
to reset (SYSRST). Consult the Register Map section of  
2
(MUX_SEL[3:0] ≠ 0b0000)  
the data sheet for details. I C reads and writes can not  
happen in factory-ship mode.  
The LDO is enabled  
Factory-ship mode only exits after SYS decays below  
approximately 1.8V. Once this condition is met, there are  
two ways to exit factory-ship mode:  
At least one of the current sinks is activated  
(EN_SNK_MSTR = 1 and SNK_FS1/2 ≠ 0b00)  
The wake flags in Table 2 also cause the on/off controller  
to enter this state.  
Apply a valid DC source at CHGIN for t  
CHGIN-DB  
(120ms typical). Factory-ship mode is unlatched (exit-  
ed) when the charger input becomes valid from  
a previously invalid state (CHGIN_DTLS[1:0] =  
0b00 → 0b11).  
Hardware Enable (nENLDO)  
nENLDO is an active-low, internally debounced digital  
input with internal pullup resistors. nENLDO's input signal  
typically comes from a physical on-key. Asserting nEN-  
LDO sets LDO_WAKE (see Table 2). This input is also  
used to exit factory-ship mode (see Factory-Ship Mode  
State).  
Assert nENLDO for t  
(250ms typical) +  
FSM-EXDB  
t
(0.2ms or 30ms typical).  
DBNC-nENLDO  
Furthermore, this state is unlatched if power is removed  
from the IC (BATT voltage falls below approximately  
1.8V). In all exit cases, the Smart Power Selector controls  
the interaction between BATT and SYS until factory-ship  
mode is entered again (see Smart Power Selector).  
The debounce time is programmable with DB_nENLDO  
to either 200μs or 30ms. Both rising and falling edges  
are debounced. Maskable rising and falling interrupts  
(nENLDO_R and nENLDO_F) are available to signal a  
change in nENLDO's status. The debounced status of this  
input is continuously mirrored by the STAT_ENLDO bit.  
Consult the Register Map for more details.  
Shutdown (Bias Off) State  
The on/off controller is in shutdown (bias off) state when  
2
no resources are enabled and CHGIN is invalid. I C is still  
active as long as V is valid.  
IO  
Maxim Integrated  
29  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
The default value of nENLDO_MODE is factory-  
Manual Reset  
programmable. Figure 3 shows a visual example of how  
nENLDO_MODE changes how t is counted.  
Asserting nENLDO for an extended period of time causes  
the IC to shutdown (MAN_RST = 1).  
MRST  
nENLDO Pullup Resistors to V  
CC  
If nENLDO is continuously asserted for t  
(8 or 16  
CCINT  
MRST  
(V  
Internal)  
seconds depending on T_MRST bit), then the on/off con-  
troller shuts down the IC and resets configuration registers  
(SYSRST). The default value of T_MRST can be factory-  
programmed. See the Register Map for additional details.  
V
is an always-on internal voltage domain. The  
CCINT  
nENLDO logic thresholds are referenced to V  
.
CCINT  
There are internal pullup resistors between nENLDO and  
(R ). See Figure 4. The pullup strength can  
V
CCINT nEN-PU  
The manual reset function is useful for forcing a register  
reset and power-down in case communication with the  
host controller fails. End-applications frequently call this  
a "hard reset".  
be modified with the PU_DIS bit. While PU_DIS = 0, the  
pullup value is approximately 200kΩ (typ). While PU_DIS  
= 1, the pullup value is 10MΩ (typ).  
V
is defined by the following conditions:  
CCINT  
The manual reset timer counts differently based on the  
type of on-key (push-button or slide-switch). See Push-  
Button vs. Slide-Switch Functionality.  
If CHGIN is valid (CHGIN_DTLS[1:0] = 0b11) and not  
USB suspended (USBS = 0), then V  
(3V typ).  
equals V  
CCINT  
L
Push-Button vs. Slide-Switch Functionality  
● If CHGIN is invalid (CHGIN_DTLS[1:0] ≠ 0b11) or  
The nENLDO manual reset ("hard-reset") can be config-  
ured to work with a push-button switch or a slide-switch  
using the nENLDO_MODE bit.  
CHGIN is valid but USB suspended (USBS = 1) then  
V
equals V  
.
CCINT  
BATT  
Applications using a slide-switch on-key connected to  
nENLDO can optimize quiescent current consumption by  
changing pullup strength to 10MΩ by setting PU_DIS to  
1. This is because a slide-switch in the "on position" con-  
nects nENLDO to ground and creates a path for BATT to  
Use nENLDO_MODE = 0 for normally-open, momentary,  
and push-buttons. In this mode, the manual reset timer  
counts t  
while nENLDO is low (a long button press  
MRST  
and hold).  
Use nENLDO_MODE = 1 for persistent slide-switches.  
In this mode, the manual reset timer counts t  
leak (since V  
= V  
while CHGIN is not present).  
CCINT  
BATT  
MRST  
Applications using normally-open, momentary, and push-  
button on-keys (as shown in Figure 4) do not create this  
leakage path and should use the stronger 200kΩ pullup  
option (PU_DIS = 0).  
while nENLDO is high (switch in off position). If the host  
controller fails to issue a software shutdown command in  
t
after nENLDO goes high, then the on/off controller  
MRST  
automatically causes a register reset and shutdown.  
NOT DRAWN TO SCALE  
STATE  
SHUTDOWN  
LDO POWER-UP  
RESOURCE ON  
LDO POWER-DOWN  
BATTERY  
INSERTION  
V
/ V  
CCINT BATT  
t
DBNC_nENLDO  
nENLDO  
“A LONG PRESS AND HOLD”  
t
t
DBNC_nENLDO  
DBNC_nENLDO  
t
MRST  
PUSH-BUTTON MODE (nENLDO_MODE = 0)  
t
DBNC_nENLDO  
“SWITCHED OFF”  
nENLDO  
t
MRST  
t
DBNC_nENLDO  
SLIDE-SWITCH MODE (nENLDO_MODE = 1)  
Figure 3. nENLDO Dual-Functionality Timing Diagram  
Maxim Integrated  
30  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
All interrupts are masked by default. Masked interrupt  
bits do not cause the nIRQ pin to change. Unmask the  
interrupt bits to allow nIRQ to assert.  
Interrupts (nIRQ)  
nIRQ is an active-low, open-drain output that is typically  
routed to the host processor's interrupt input to signal an  
important change in the ICs status. See the Register Map  
for a full list of available status and interrupt bits.  
Watchdog Timer  
The IC features a watchdog timer function for operational  
safety. If this timer expires without being cleared, then an  
internal signal called WDT_EXP asserts and the on/off  
controller causes the IC to enter the shutdown state and  
resets configuration registers. See the On/Off Controller  
and List of Transitions (transitions 0A and 0C) for more  
details.  
A pullup resistor to a voltage less than or equal to V  
is required for this node. nIRQ is the logical NOR of all  
unmasked interrupt bits in the ICs register map.  
SYS  
V
CCINT  
2
Write WDT_EN = 1 through I C to enable the timer. The  
watchdog timer period (t ) is configurable from 16 to  
128 seconds in 4 steps with WDT_PER[1:0]. The default  
WD  
SWITCH CONTROL  
PU_DIS  
0b0  
SWITCH  
CLOSED  
OPEN  
R
nEN-PU  
10MΩ  
~200kΩ  
10MΩ  
timer period is 128 seconds. The WDT_CLR bit must be  
2
200kΩ  
0b1  
set through I C periodically (within t ) to reset the timer  
WD  
nENLDO  
and prevent shutdown. Consult the Register Map and  
Watchdog Timer State Machine (Figure 5) for additional  
details.  
ON-KEY  
Figure 4. nENLDO Pullup Resistor Configuration  
SHUTDOWN (BIAS OFF) STATE**  
WATCHDOG TIMER  
RESET  
(THE ON/OFF CONTROLLER FORCES THIS  
TRANSITION WHEN THE TIMER EXPIRES)  
INTERNAL COUNT = t  
WDT_CLR = 0  
WD  
CLEAR CONTROL SET (WDT_CLR = 1)  
CLEAR CONTROL NOT SET (WDT_CLR = 0)  
AND  
OR  
TIMER DISABLED (WDT_EN = 0)  
TIMER ENABLED (WDT_EN = 1)  
AND  
NOT IN SHUTDOWN (BIAS OFF) STATE*  
OR  
SHUTDOWN (BIAS OFF) STATE*  
OR  
t
CHANGED (NEW BITS IN WDT_PER[1:0])  
WD  
WATCHDOG TIMER  
ENABLED AND OK  
TIMER COUNTING DOWN  
WATCHDOG TIMER  
EXPIRED  
INTERNAL COUNT = 0  
INTERNAL WDT_EXP = 1  
TIME ELAPSED < t  
WD  
TIME ELAPSED = t  
WD  
INTENAL COUNT < t  
WD  
*WATCHDOG TIMER DOES NOT RUN WHILE IN SHUTDOWN STATE.  
WDT_MODE BIT CAN CAUSE THE ON/OFF CONTROLLER TO EXIT  
SHUTDOWN AUTOMATICALLY. SEE REGISTER MAP.  
**SEE ON/OFF CONTROLLER STATE MACHINE  
Figure 5. Watchdog Timer State Machine  
Maxim Integrated  
31  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
The timer can be factory-programmed to be enabled by  
default, disabled by default, or locked from accidental  
disable. The WDT_LOCK bit is read-only and must be  
configured at the factory. See Table 4 for a full description.  
interrupts are available to signal a change in either of  
these bits. Consult the Register Map for details.  
Register Reset Conditions  
The IC's registers reset to default values when the corre-  
sponding reset condition for each particular bit becomes  
true. Table 5 lists all register reset conditions. See the  
Register Map for a list of every configuration and status  
bit and the associated reset value and reset condition.  
Thermal Alarms and Protection  
The IC has thermal alarms to monitor if the junction tem-  
perature rises above 80°C (T  
) and 100°C (T  
).  
JAL1  
JAL2  
Over-temperature lockout (OTLO) is entered if the junc-  
tion temperature exceeds T (approximately 165°C,  
OTLO  
Factory Options  
typ). OTLO causes all resources to turn off immediately.  
Resources may not enable until the temperature falls  
Table 6 shows the factory-programmable (OTP) options  
for the IC. Refer to the Ordering Information and Register  
Map for more information about the different default  
register functions.  
below T  
by approximately 15ºC.  
OTLO  
The TJAL1_S and TJAL2_S status bits continuously  
indicate the junction temperature alarm status. Maskable  
Table 4. Watchdog Timer Factory-Programmed Safety Options  
WDT_LOCK  
WDT_EN  
FUNCTION  
2
0
0
0
1
Watchdog timer is disabled by default. Timer can be enabled or disabled by I C writes.  
2
Watchdog timer is enabled by default. Timer can be enabled or disabled by I C writes.  
2
Watchdog timer is disabled by default. Timer can be enabled by an I C write, but only a  
2
1
1
0
1
SYSRST can reset the WDT_EN value back to 0. Timer can not be disabled by direct I C  
writes to WDT_EN (write from 1 → 0 is ignored, write from 0 → 1 is accepted).  
Watchdog timer is enabled by default. Nothing can disable the timer.  
Table 5. Register Reset Conditions  
RESET CONDITION  
NAME  
RESET CAUSE AND DETAILS  
SYSPOR  
System Power-On Reset  
V
SYS  
< 1.9V (typ)  
SYSPOR OR  
SYSRST  
System Reset  
On/off controller (see transitions 0A and 0C in Table 1)  
CHGPOR OR  
CHGPOK  
CHGPOR  
Charger Power-OK  
USB suspend (USBS = 1) OR  
V
< V  
(typ. 4V rising, 3.5V falling)  
CHGIN  
CHGIN_UVLO  
Charger Power-On Reset  
V
< 1.9V (typ)  
CHGIN  
Maxim Integrated  
32  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
Table 6. Factory-Programmed Defaults (OTP Options)  
MAX77734BENP MAX77734CENP MAX77734GENP MAX77734QENP  
Option Letter  
B
C
G
Q
Chip Identification  
CID[3:0] = 0x1  
0x48  
CID[3:0] = 0x3  
0x48  
CID[3:0] = 0x4  
0x48  
CID[3:0] = 0x7  
0x48  
2
I C Device Address (7-bit)  
V
(falling UVLO threshold)  
2.85V  
2.85V  
2.85V  
2.85V  
SYSUVLO  
V
(UVLO hysteresis)  
0.15V  
0.15V  
0.15V  
0.15V  
SYSUVLO_HYS  
CHG_EN (default charger enable bit)  
(default input current limit)  
0 (disabled)  
475mA  
0 (disabled)  
95mA  
1 (enabled)  
95mA  
1 (enabled)  
475mA  
I
CHGIN-LIM  
LDO_VREG[6:0] (default LDO voltage)  
LDO_EN[1:0] (default LDO enable)  
0x28 (1.8V)  
0x64 (3.3V)  
0x64 (3.3V)  
0x64 (3.3V)  
0b10 (hardware  
enabled)  
0b10 (hardware  
enabled)  
0b10 (hardware  
enabled)  
0b00 (disabled)  
DB_nENLDO (nENLDO input debounce time) 1 (30ms)  
1 (30ms)  
1 (30ms)  
1 (30ms)  
nENLDO_MODE (button type)  
0 (push-button)  
0 (push-button)  
0 (8s)  
0 (push-button)  
0 (8s)  
0 (push-button)  
0 (8s)  
T_MRST (manual reset time)  
0 (8s)  
WDT_EN (watchdog timer enable)  
WDT_LOCK (watchdog timer enable lock)  
0 (disabled)  
0 (unlocked)  
0 (disabled)  
0 (unlocked)  
0 (disabled)  
0 (unlocked)  
1 (enabled)  
0 (unlocked)  
Charger Symbol Reference Guide  
Table 7 lists the names and functions of charger-specific  
signals and if they can be programmed through I C.  
Consult the Electrical Characteristics and Register Map  
Detailed Description—Smart Power  
Selector Charger  
2
The linear Li+ charger implements power path with  
Maxim's Smart Power Selector. This allows separate  
input current limit and battery charge current settings.  
Batteries charge faster under the supervision of the Smart  
Power Selector because charge current is independently  
regulated and not shared with variable system loads. See  
the Smart Power Selector section for more information.  
for more information.  
Figure 6 indicates the high-level functions of each control  
circuit within the linear charger.  
Smart Power Selector  
The Smart Power Selector seamlessly distributes power  
from the input (CHGIN) to the battery (BATT) and the sys-  
tem (SYS). The Smart Power Selector basic functions are:  
The programmable constant-current charge rate (7.5mA  
to 300mA) supports a wide range of battery capacities.  
The programmable input current limit (95mA to 475mA)  
supports a range of charge sources, including USB. The  
charger's programmable battery regulation voltage range  
(3.6V–4.6V) supports a wide variety of cell chemistries.  
Small battery capacities are supported; the charger  
accurately terminates charging by detecting battery  
currents as low as 0.375mA.  
When the system load current is less than the input  
current limit, the battery is charged with residual power  
from the input.  
When a valid input source is connected, the system  
regulates to V  
to power system loads regard-  
SYS-REG  
less of the battery's voltage (instant on).  
When the system load current exceeds the input cur-  
rent limit, the battery provides additional current to the  
system (supplement mode).  
Additionally, the robust charger input withstands  
overvoltages up to 28V. To enhance charger safe-  
ty, an NTC thermistor provides temperature monitor-  
ing in accordance with the JEITA recommenda-  
tions. See the Detailed Description—Adjustable  
Thermistor Temperature Monitors section for more  
information.  
When the battery is finished charging and an input  
source is present to power the system, the battery  
remains disconnected from the system.  
When the battery is connected and there is no input  
power, the system is powered from the battery.  
Maxim Integrated  
33  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
Table 7. Charger Quick Symbol Reference Guide  
2
SYMBOL  
NAME  
CHGIN overvoltage threshold  
CHGIN undervoltage-lockout threshold  
Minimum CHGIN voltage regulation setpoint  
CHGIN input current limit  
I C PROGRAMMABLE?  
V
No  
No  
CHGIN_OVP  
V
CHGIN_UVLO  
V
Yes, through VCHGIN_MIN[2:0]  
Yes, through ICHGIN_LIM[2:0]  
Yes, through VSYS_REG[4:0]  
CHGIN-MIN  
CHGIN-LIM  
I
V
SYS voltage regulation target  
Minimum SYS voltage regulation setpoint  
Fast-charge constant-voltage level  
Fast-charge constant-current level  
Prequalification current level  
Prequalification voltage threshold  
Termination current level  
SYS-REG  
V
No, tracks V  
SYS-REG  
SYS-MIN  
V
Yes, through CHG_CV[5:0]  
Yes, through CHG_CC[5:0]  
Yes, through I_PQ  
FAST-CHG  
FAST-CHG  
I
I
PQ  
V
Yes, through CHG_PQ[2:0]  
Yes, through I_TERM[1:0]  
Yes, through TJ_REG[2:0]  
No  
PQ  
I
TERM  
T
Die temperature regulation setpoint  
Prequalification safety timer  
J-REG  
t
PQ  
t
Fast-charge safety timer  
Yes, through T_FAST_CHG[1:0]  
Yes, through T_TOPOFF[2:0]  
FC  
TO  
t
Top-off timer  
BODY-  
SWITCH  
CHGIN  
SYS  
V
SYS-MIN  
I
V
CHGIN-LIM  
SYS-REG  
INPUT  
CONTROLLER  
CHARGE CONTROLLER  
V
CHGIN-MIN  
V
CHGIN_OVP  
V
CHGIN_UVLO  
I
I
I
FAST-CHG  
PQ  
V
V
FAST-CHG  
PQ  
DIE TEMP  
MONITOR  
T
J-REG  
TERM  
BATT  
TIMER  
t
PQ  
t
FC  
TO  
t
Figure 6. Charger Simplified Control Loops  
Maxim Integrated  
34  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
The input voltage regulation loop improves performance  
with current limited adapters. If the charger’s input current  
Input Current Limiter  
The input current limiter limits CHGIN current to not  
exceed I (programmed by ICHGIN_LIM[2:0]).  
limit is programmed above the current limit of the given  
adapter, the input voltage loop allows the input to regulate  
at the current limit of the adapter. The input voltage regu-  
lation loop also allows the charger to perform well with  
adapters that have poor transient load response times.  
CHGIN-LIM  
A maskable interrupt (CHGIN_CTRL_I) signals when the  
input current limit engages. The ICHGIN_LIM_STAT bit  
reflects the state of the current limiter loop.  
The default value of I  
is factory-programmable  
CHGIN-LIM  
A maskable interrupt (CHGIN_CTRL_I) signals when the  
minimum input voltage regulation loop engages. The state  
of this loop is reflected by VCHGIN_MIN_STAT.  
to either 95mA or 475mA. The decoding of the ICHGIN_  
LIM[2:0] bitfield changes depending on the factory-pro-  
grammed default value (see Table 8). The reset value of  
this bitfield is always 0b000 regardless of factory option.  
Minimum System Voltage Regulation  
The minimum system voltage regulation loop ensures that  
the system rail remains close to the programmed SYS  
CHGIN is capable of standing off 28V from ground.  
CHGIN suspends power delivery to the system and bat-  
tery when V  
exceeds V  
(7.5V, typ).  
falls below  
CHGIN  
CHGIN_OVP  
regulation voltage (V  
) regardless of system load-  
SYS-REG  
The input circuit also suspends when V  
CHGIN  
ing. The loop engages when the combined battery charge  
current and system load current causes the CHGIN input  
V
minus 500mV of hysteresis (3.5V, typ).  
CHGIN_UVLO  
While in OVP or UVLO, the charger remains off and the  
battery provides power to the system.  
to current limit at I  
. When this happens, the  
CHGIN-LIM  
minimum system voltage loop reduces charge current in  
Power transfer to SYS is delayed by a 120ms debounce  
an attempt to keep the input out of current limit, thereby  
timer (t  
) after a valid DC source is connected to  
keeping the system voltage above V  
(V  
CHGIN-DB  
SYS-MIN SYS-REG  
CHGIN. SYS does not begin regulating to V  
after the timer expires.  
until  
- 100mV, typ). If this loop reduces battery current to 0  
and the system is in need of more current than the input  
can provide, then the Smart Power Selector overrides the  
minimum system voltage regulation loop and allows SYS  
to collapse to BATT for the battery to provide supplement  
current to the system. The Smart Power Selector auto-  
matically reenables the minimum system voltage loop  
when the supplement event has ended.  
SYS-REG  
The CHGIN_DTLS[1:0] bitfield continuously indicates the  
state of CHGIN's voltage quality. A maskable interrupt  
(CHGIN_I) asserts when CHGIN_DTLS[1:0] changes.  
Minimum Input Voltage Regulation  
In the event of a poor-quality charge source, the mini-  
mum input voltage regulation loop works to reduce input  
A maskable interrupt (SYS_CTRL_I) asserts to signal a  
change in VSYS_MIN_STAT. This status bit asserts when  
the minimum system voltage regulation loop is active.  
current if V  
falls below V  
(programmed  
CHGIN  
CHGIN-MIN  
by VCHGIN_MIN[2:0]). This is important because many  
commonly used charge adapters feature foldback protec-  
tion mechanisms where the adapter completely shuts off if  
its output drops too low. The minimum input voltage regu-  
Die Temperature Regulation  
If the die temperature exceeds T  
(programmed  
J-REG  
lation loop also prevents V  
from dropping below  
CHGIN  
by TJ_REG[2:0]) the charger attempts to limit the tem-  
perature increase by reducing battery charge current. The  
TJ_REG_STAT bit asserts whenever charge current is  
reduced due to this loop. The charger's current sourcing  
capability to SYS remains unaffected when TJ_REG_  
STAT is high. A maskable interrupt (TJ_REG_I) asserts  
to signal a change in TJ_REG_STAT. Use the TJ_REG_I  
interrupt to signal the system processor to reduce loads  
on SYS to reduce total system temperature.  
V
if the cable between the charge source  
CHGIN_UVLO  
and the charger's input is long or highly resistive.  
Table 8. Input Current Limit Factory  
Options  
95mA  
475mA  
ICHGIN_LIM  
[2:0]  
FACTORY-  
DEFAULT  
FACTORY-  
DEFAULT  
Charger State Machine  
0b000  
0b001  
95mA  
190mA  
285mA  
380mA  
475mA  
475mA  
380mA  
285mA  
190mA  
95mA  
The battery charger follows a strict state-to-state progres-  
sion to ensure that a battery is charged safely. The status  
bitfield CHG_DTLS[3:0], reflects the charger's current  
operational state. A maskable interrupt (CHG_I) is avail-  
able to signal a change in CHG_DTLS[3:0].  
0b010  
0b011  
0b100 - 0b111  
Maxim Integrated  
35  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
CHGIN INVALID  
(CHGIN_DTLS[1:0] = 0b00 or 0b01)  
OR  
CHGIN INSERTED  
(CHGIN_DTLS[1:0] = 0b10)  
CHARGER DISABLED  
(CHG_EN = 0)  
DEBOUNCE  
CHG_DTLS[3:0] = 0b0000  
CHG = 0  
CHARGER OFF  
CHG_DTLS[3:0] = 0b0000  
CHG = 0  
ANY STATE  
CHGIN DEBOUNCED  
THM_EN = 1  
AND  
CHG_EN = 1  
AND  
TIME ELAPSED >= t  
(CHGIN_DTLS[1:0] = 0b11)  
CHGIN-DB  
RETURNS TO SAME STATE WHEN:  
THM_EN = 0  
OR  
CHARGER ENABLED (CHG_EN = 1)  
AND  
CHGIN DEBOUNCED AND VALID (CHGIN_DTLS[1:0] = 0b11)  
TIME ELAPSED < t  
CHGIN-DB  
(T  
BATT  
< T  
AND T  
> T  
)
COLD  
HOT  
BATT  
(T  
> T  
OR T  
< T  
)
COLD  
BATT  
HOT  
BATT  
AND  
BATTERY LOW BY V  
(V  
< V  
– 150mV)  
FAST-CHG  
RESTART BATT  
BATTERY TEMPERATURE  
FAULT  
CHG_DTLS[3:0] = 0b1100  
CHG = 0  
PREQUALIFICATION  
CHG_DTLS[3:0] = 0b0001  
CHG = 1  
PREQUALIFICATION  
TIMER FAULT  
CHG_DTLS[3:0] = 0b1010  
CHG = 0  
TIME ELAPSED > t  
PQ  
I
= I  
BATT PQ  
V
< V – 100mV  
PQ  
BATT  
V
> V  
PQ  
BATT  
V
< V – 100mV  
PQ  
BATT  
THM_EN = 1 AND  
(T > T OR T  
< T )  
COOL  
BATT  
WARM  
BATT  
JEITA-MODIFIED  
ANY FAST-CHARGE OR  
JEITA-MODIFIED FAST-CHARGE  
STATE  
CHG_DTLS[3:0] = 0b0010-0b0101  
CHG = 1  
FAST-CHARGE (CC)  
CHG_DTLS[3:0] = 0b0010  
CHG = 1  
FAST-CHARGE (CC)  
CHG_DTLS[3:0] = 0b0011  
CHG = 1  
I
= I  
**  
BATT FAST-CHG  
I
= I  
**  
THM_EN = 0 OR  
(T < T  
BATT FAST-CHG_JEITA  
AND T  
> T  
)
COOL  
BATT  
WARM  
BATT  
V
<
BATT  
V
= V  
TIME ELAPSED* > t  
FC  
BATT  
FAST-CHG_JEITA  
V
< V  
V
= V  
FAST-CHG  
BATT  
FAST-CHG  
BATT  
V
FAST-CHG_JEITA  
THM_EN = 1 AND  
(T > T OR T  
< T  
)
BATT  
WARM  
BATT  
COOL  
JEITA-MODIFIED  
FAST-CHARGE  
TIMER FAULT  
CHG_DTLS[3:0] = 0b1011  
CHG = 0  
FAST-CHARGE (CV)  
CHG_DTLS[3:0] = 0b0100  
CHG = 1  
FAST-CHARGE (CV)  
CHG_DTLS[3:0] = 0b0101  
CHG = 1  
V
BATT  
= V  
FAST-CHG  
V
= V  
FAST-CHG_JEITA  
BATT  
THM_EN = 0 OR  
(T < T  
AND T  
> T  
)
COOL  
BATT  
WARM  
BATT  
I
> I  
I
< I  
BATT TERM  
BATT TERM  
I
< I  
BATT TERM  
I
> I  
BATT TERM  
THM_EN = 1 AND  
(T > T OR T  
< T )  
COOL  
BATT  
WARM  
BATT  
JEITA-MODIFIED  
TOP-OFF  
CHG_DTLS[3:0] = 0b0111  
CHG = 1  
TOP-OFF  
CHG_DTLS[3:0] = 0b0110  
CHG = 1  
*TIME ELAPSED IS AGGREGATED  
THROUGHOUT THE FAST-CHARGE AND  
JEITA-MODIFIED FAST-CHARGE  
V
BATT  
= V  
FAST-CHG  
V
= V  
FAST-CHG_JEITA  
BATT  
THM_EN = 0 OR  
(T < T  
STATES. ALL FAST-CHARGE STATES  
(REGARDLESS OF JEITA STATUS)  
SHARE THE SAME SAFETY TIMER.  
AND T  
> T  
)
COOL  
BATT  
WARM  
BATT  
TIME ELAPSED > t  
TO  
TIME ELAPSED > t  
TO  
**I  
CAN BE REDUCED BY THE  
FAST-CHG  
MINIMUM INPUT VOLTAGE REGULATION  
LOOP, THE MINIMUM SYSTEM VOLTAGE  
REGULATION LOOP, OR THE DIE  
JEITA-MODIFIED DONE  
CHG_DTLS[3:0] = 0b1001  
CHG = 0  
DONE  
CHG_DTLS[3:0] = 0b1000  
CHG = 0  
TEMPERATURE REGULATION LOOP.  
THM_EN = 0 OR  
(T < T  
AND T  
> T  
)
COOL  
BATT  
WARM  
BATT  
Figure 7. Charger State Diagram  
Maxim Integrated  
36  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
A fast-charge safety timer starts when the state machine  
Charger Off State  
enters fast-charge (CC) or JEITA-modified fast-charge  
(CC) from a non-fast-charge state. The timer continues to  
run through all fast-charge states regardless of JEITA sta-  
The charger is off when CHGIN is invalid, the charger is  
disabled, or the battery is fresh.  
CHGIN is invalid when the CHGIN input is invalid  
tus. The timer length (t ) is programmable from 3 hours  
FC  
(V  
< V  
or V  
> V  
).  
CHGIN  
CHGIN_UVLO  
CHGIN  
CHGIN_OVP  
to 7 hours in 2 hour increments with T_FAST_CHG[1:0].  
If it is desired to charge without a safety timer, program  
T_FAST_CHG[1:0] with 0b00 to disable the feature. If the  
timer expires before the fast-charge states are exited, the  
charger faults. See the Fast-Charge Timer Fault State  
section for more information.  
While CHGIN is invalid, the battery is connected to the  
system. CHGIN voltage quality can be separately moni-  
tored by the CHGIN_DTLS[1:0] status bitfield. Refer to  
the Register Map for details.  
The charger is disabled when the charger enable bit is 0  
(CHG_EN = 0). The battery is connected or disconnected  
If the charge current falls below 20% of the programmed  
value during fast-charge (CC), the safety timer pauses.  
The timer also pauses for the duration of supplement  
mode events. The TIME_SUS bit indicates the status of  
the fast-charge safety timer. Refer to the Register Map for  
more details.  
to the system depending on the validity of V  
while  
CHGIN  
CHG_EN = 0. See the Smart Power Selector section.  
The battery is fresh when CHGIN is valid and the charger  
is enabled (CHG_EN = 1) and the battery is not low by  
V
(V  
BATT  
> V  
- V ). The bat-  
RESTART  
RESTART  
FAST-CHG  
tery is disconnected from the system and not charged  
while the battery is fresh. The charger state machine exits  
this state and begins charging when the battery becomes  
Top-Off State  
Top-off state is entered when the battery charge  
current falls below I  
during the fast-charge (CV)  
low by V  
(150mV, typ). This condition is function-  
TERM  
RESTART  
state. I  
is a percentage of I  
and is  
ally similar to done state. See Done State section.  
TERM  
FAST-CHG  
programmable through I_TERM[1:0]. While in the top-off  
state, the battery charger continues to hold the battery's  
Prequalification State  
The prequalification state is intended to assess a low-volt-  
age battery's health by charging at a reduced rate. If the  
battery voltage is less than the V  
voltage at V . A programmable top-off timer  
FAST-CHG  
starts when the charger state machine enters the top-off  
state. When the timer expires, the charger enters the  
threshold, the charger  
PQ  
is automatically in prequalification. If the cell voltage does  
not exceed V in 30 minutes (t ), the charger faults.  
done state. The top-off timer value (t ) is programmable  
TO  
from 0 minutes to 35 minutes with T_TOPOFF[2:0]. If it is  
desired to stop charging as soon as battery current falls  
PQ  
PQ  
The prequalification charge rate is a percentage of I  
FAST-  
and is programmable with I_PQ. The prequalifica-  
below I  
, program t  
to 0 minutes.  
CHG  
TERM  
TO  
tion voltage threshold (V ) is programmable through  
PQ  
Done State  
CHG_PQ[2:0].  
The charger enters the done state when the top-off timer  
expires. The battery remains disconnected from the sys-  
tem during done. The charger restarts if the battery volt-  
Fast-Charge States  
When the battery voltage is above V , the charger  
transitions to the fast-charge (CC) state. In this state, the  
charger delivers a constant current (I  
cell. The constant current level is programmable from  
PQ  
age falls more than V  
programmed V  
(150mV, typ) below the  
RESTART  
value.  
) to the  
FAST-CHG  
FAST-CHG  
Prequalification Timer Fault State  
7.5mA to 300mA by CHG_CC[5:0].  
The prequalification timer fault state is entered when the  
When the cell voltage reaches V  
state machine transitions to fast-charge (CV). V  
, the charger  
FAST-CHG  
battery's voltage fails to rise above V  
in t  
(30 min-  
PQ  
TO  
FAST-  
utes, typ) from when the prequalification state was first  
entered. If a battery is too deeply discharged, damaged,  
or internally shorted, the prequalification timer fault state  
can occur. During the timer fault state, the charger stops  
delivering current to the battery and the battery remains  
disconnected from the system. To exit the prequalification  
timer fault state, toggle the charger enable (CHG_EN)  
bit or unplug and replug the external voltage source  
connected to CHGIN.  
is programmable with CHG_CV[5:0] from 3.6V to  
CHG  
4.6V. The charger holds the battery's voltage constant  
at V while in the fast-charge (CV) state. As  
FAST-CHG  
the battery approaches full, the current accepted by the  
battery reduces. When the charger detects that battery  
charge current has fallen below I  
machine enters the top-off state.  
, the charger state  
TERM  
Maxim Integrated  
37  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
The THM_DTLS[2:0] bitfield reports battery temperature  
Fast-Charge Timer Fault State  
status. See the Electrical Characteristics—Adjustable  
Thermistor Temperature Monitors section and refer to the  
Register Map for more information.  
The charger enters the fast-charge timer fault state if the  
fast-charge safety timer expires. While in this state, the  
charger stops delivering current to the battery and the  
battery remains disconnected from the system. To exit  
the fast-charge timer fault state, toggle the charger enable  
bit (CHG_EN) or unplug and replug the external voltage  
source connected to CHGIN.  
JEITA-Modified States  
If the thermistor is enabled (THM_EN = 1), then the char-  
ger state machine is allowed to enter the JEITA-modified  
states. These states are entered if the charger's tem-  
perature monitors indicate that the battery temperature  
Battery Temperature Fault State  
is either warm (greater than T  
) or cool (lesser than  
WARM  
If the thermistor monitoring circuit reports that the battery  
is either too hot or too cold to charge (as programmed by  
THM_HOT[1:0] and THM_COLD[1:0]), the state machine  
enters the battery temperature fault state. While in this  
state, the charger stops delivering current to the battery  
and the battery remains disconnected from the system.  
This state can only be entered if the thermistor is enabled  
(THM_EN = 1). Battery temperature fault state has prior-  
ity over any other fault state, and can be exited when the  
thermistor is disabled (THM_EN = 0) or when the battery  
returns to an acceptable temperature. When this fault  
state is exited, the state machine returns to the last state it  
was in before battery temperature fault state was entered.  
T
). See the Electrical Characteristics—Adjustable  
COOL  
Thermistor Temperature Monitors section for more infor-  
mation about setting the temperature thresholds.  
The charger's current and voltage parameters change  
from I  
and V  
to I  
and  
FAST-CHG  
FAST-CHG  
FAST-CHG_JEITA  
V
while in the JEITA-modified states. The  
FAST-CHG_JEITA  
JEITA modified parameters can be independently set to  
lower voltage and current values so that the battery can  
charge safely over a wide range of ambient temperatures.  
If the battery temperature returns to normal, or the therm-  
istor is disabled (THM_EN = 0), the charger exits the  
JEITA-modified states.  
All active charger timers (fast-charge safety timer,  
prequalification timer, or top-off timer) are paused in this  
state. When the charger exits this state, the prequalifica-  
tion timer resumes while the fast-charge safety and top-off  
timers reset.  
Typical Charge Profile  
A typical battery charge profile (and state progression) is  
illustrated in Figure 8.  
(V)  
(mA)  
500  
400  
CHGIN  
5
SYS  
V
= 4.5V  
SYS-REG  
V
= 4.25V  
BATT  
FAST-CHG  
4
3
2
1
I
= 300mA  
FAST-CHG  
300  
200  
V
= 2.3V  
PQ  
I
BATT  
100  
t
TO  
I
= 30mA  
PQ  
I
= 30mA  
TERM  
(TIME)  
DONE  
FAST-CHARGE (CV)  
TOP-OFF  
CHGIN  
FAST-CHARGE (CC)  
INVALID  
PREQUALIFICATION  
Figure 8. Example Battery Charge Profile  
Maxim Integrated  
38  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
limit the maximum CHGIN input capacitance based on  
the appropriate USB specification (i.e., typically no more  
than 10μF).  
Charger Applications Information  
Configuring a Valid System Voltage  
The Smart Power Selector begins to regulate SYS to  
when CHGIN is connected to a valid source. To  
Bypass SYS to GND with a 22μF ceramic capacitor. This  
capacitor is needed to ensure stability of SYS while it  
is being regulated from CHGIN. Larger values of SYS  
capacitance increase decoupling for all SYS loads. The  
effective value of the SYS capacitor must be greater than  
4μF and no more than 100μF. Bypass BATT to GND with  
a 4.7μF ceramic capacitor. This capacitor is required to  
ensure stability of the BATT voltage regulation loop. The  
effective value of the BATT capacitor must be greater  
than 1μF.  
V
SYS-REG  
ensure the charger's accuracy specified in the Electrical  
Characteristics table, the system voltage must always  
be programmed at least 200mV above the charger's  
constant-voltage level (V  
). If this condition is not  
FAST-CHG  
met, then the charger's internal configuration logic forces  
to reduce to satisfy the 200mV requirement. If  
V
FAST-CHG  
this happens, the charger asserts the SYS_CNFG_I inter-  
rupt to alert the user that a configuration error has been  
made and that the bits in CHG_CV[5:0] have changed to  
Ceramic capacitors with X5R or X7R dielectric are highly  
recommended due to their small size, low ESR, and small  
temperature coefficients. All ceramic capacitors derate  
with DC bias voltage (effective capacitance goes down as  
DC bias goes up). Generally, small case size capacitors  
derate heavily compared to larger case sizes (0603 case  
size performs better than 0402). Consider the effective  
capacitance value carefully by consulting the manufac-  
turer's data sheet.  
reduce V  
.
FAST-CHG  
CHGIN/SYS/BATT Capacitor Selection  
Bypass CHGIN to GND with a 4.7μF ceramic capacitor to  
minimize inductive kick caused by long cables between  
the DC charge source and the product/IC. Larger values  
increase decoupling for the linear charger, but increase  
inrush current from the DC charge source when the prod-  
uct/IC is first connected to a source through a cable/plug.  
If the DC charging source is an upstream USB device,  
CHG_CV[5:0]  
D0  
D1  
1.25V  
V
FAST-CHG  
TBIAS  
CHG_CV_JEITA[5:0]  
S0  
S0  
TBIAS SWITCH  
CONTROL  
(FIGURE 11)  
CHG_CC[5:0]  
D0  
D1  
R
BIAS  
I
FAST-CHG  
CHG_CC_JEITA[5:0]  
THM  
INTERNAL COOL/WARM SIGNAL  
THM_DTLS[2:0] = 0b000 OR 0b101 (NTC  
DISABLED OR BATTERY NORMAL).  
CHARGER V&I PARAMETERS FOLLOW  
THM_COLD[1:0]  
0b0  
NTC  
NORMAL SETTINGS.  
THM_DTLS[2:0] = 0b010 OR 0b011  
(BATTERY COOL OR WARM). CHARGER  
V&I PARAMETERS SWITCH TO JEITA  
THM_EN  
THM_COOL[1:0]  
THM_WARM[1:0]  
THM_HOT[1:0]  
0b1  
SETTINGS.  
INTERNAL HOT/COLD SIGNAL  
THM_DTLS[2:0] 0b001 OR 0b100  
(BATTERY NOT COLD OR HOT). CHARGER  
V&I PARAMETERS FOLLOW NORMAL OR  
0b0  
JEITA SETTINGS.  
THM_DTLS[2:0] = 0b001 OR 0b100  
0b1 (BATTERY COLD OR HOT). CHARGING IS  
PAUSED REGARDLESS OF CHG_EN.  
Figure 9. Thermistor Logic Functional Diagram  
Maxim Integrated  
39  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
values, V  
and I  
, are  
FAST-CHG_JEITA  
FAST-CHG_JEITA  
Detailed Description—Adjustable  
Thermistor Temperature Monitors  
programmable through CHG_CV_JEITA[5:0] and  
CHG_CC_JEITA[5:0], respectively. These values are  
independently programmable from the nonmodified  
The optional use of a negative temperature coeffi-  
cient (NTC) thermistor (thermally coupled to the battery)  
enables the charger to operate safely over the JEITA  
temperature range. When the thermistor is enabled  
(THM_EN = 1), the charger continuously monitors the  
voltage at the THM pin to sense the temperature of the  
battery being charged.  
V
and I  
values and can even  
FAST-CHG  
FAST-CHG  
be programmed to the same values if an automatic  
response to a warm or cool battery is not desired. The  
charger state machine enters JEITA-modified states  
while the battery temperature is outside of normal.  
If the battery temperature is either above T or below  
HOT  
See Figure 10 for a visual example of the following text:  
T , the charger follows the JEITA recommendation  
COLD  
and pauses charging. The charger state machine enters  
battery temperature fault state while charging is paused  
due to extreme high or low temperatures.  
If the battery temperature is higher than T  
and  
COOL  
lower than T , the battery charges normally with  
WARM  
the normal values for V  
and I  
. The  
FAST-CHG  
FAST-CHG  
charger state machine does not enter JEITA-modified  
states while the battery temperature is normal.  
The battery's temperature status is reflected by the  
THM_DTLS[2:0] status bitfield. A maskable interrupt  
(THM_I) signals a change in THM_DTLS[2:0]. Refer to  
the Register Map for more information. To completely dis-  
able the charger's automatic response to battery tempera-  
ture, disable the feature by programming THM_EN = 0.  
If the battery temperature is either above T  
WARM  
but below T  
, or below T  
but above  
HOT  
COOL  
T
, the battery charges with the JEITA-modified  
COLD  
voltage and current values. These modified  
EXAMPLE TEMPERATURES  
FOR NTC β = 3380K  
THM_COLD[1:0] = 0b10 (0°C)  
THM_COOL[1:0] = 0b11 (15°C)  
THM_WARM[1:0] = 0b10 (45°C)  
THM_HOT[1:0] = 0b11 (60°C)  
4.4V  
4.3V  
4.2V  
4.1V  
4.0V  
V
= 4.2V  
FAST-CHG  
(CHG_CV[5:0] = 0b011000)  
V
= 4.075V  
FAST-CHG_JEITA  
(CHG_CV_JEITA[5:0] = 0b010011)  
COLD  
COOL  
NORMAL  
25°C  
WARM  
HOT  
75°C  
-40°C  
-25°C  
0°C  
15°C  
45°C  
60°C  
85°C  
T
T
T
T
HOT  
COLD  
COOL  
BATTERY TEMPERATURE  
WARM  
I
= 150mA  
FAST-CHG  
(CHG_CC[5:0] = 0b010011)  
0.15  
0.1  
0.05  
0
I
= 75mA  
FAST-CHG_JEITA  
(CHG_CC_JEITA[5:0] = 0b001001)  
COLD  
COOL  
NORMAL  
WARM  
HOT  
-40°C  
-25°C  
0°C  
15°C  
25°C  
45°C  
60°C  
75°C  
85°C  
T
T
T
T
HOT  
COLD  
COOL  
BATTERY TEMPERATURE  
WARM  
Figure 10. Safe-Charging Profile Example  
Maxim Integrated  
40  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
The voltage thresholds corresponding to the JEITA  
temperature thresholds are independently programma-  
ble through THM_HOT[1:0], THM_WARM[1:0], THM_  
COOL[1:0], and THM_COLD[1:0]. Each threshold can  
be programmed to one of four voltage options spanning  
15°C for an NTC beta of 3380K. See the Configurable  
Temperature Thresholds section and refer to the Register  
Map for more information.  
the function of the on-chip temperature monitors. Both  
functions can be used simultaneously with no ill effect.  
Configurable Temperature Thresholds  
Temperature thresholds for different NTC thermistor beta  
values are listed in Table 9. The largest possible program-  
mable temperature range can be realized by using an NTC  
with a beta of 3380K. Using a larger beta compresses the  
temperature range. The trip voltage thresholds are pro-  
grammable with the THM_HOT[1:0], THM_WARM[1:0],  
THM_COOL[1:0], and THM_COLD[1:0] bitfields. All pos-  
sible programmable trip voltages are listed in Table 9.  
Thermistor Bias  
An external ADC can optionally perform conversions on  
the THM and TBIAS pins to measure the battery's tem-  
perature. An on-chip analog multiplexer is used to route  
these nodes to the AMUX pin. The operation of the analog  
multiplexer does not interfere with the charger's tempera-  
ture monitoring comparators or the charger's automatic  
JEITA response. See the Detailed Description—Analog  
Multiplexer section for more information.  
These are theoretical values computed by a formula.  
Refer to the particular NTC's data sheet for more accurate  
measured data. In all cases, select the value of R  
to  
BIAS  
be equal to the NTC's effective resistance at +25°C.  
The NTC thermistor's bias source (TBIAS) follows the  
simple operation outlined as follows:  
THERMISTOR BIASED  
TBIAS = 1.25V  
If CHGIN is valid and the thermistor is enabled (THM_  
EN = 1), then the thermistor is biased so the charger  
can automatically respond to battery temperature  
changes.  
MUX_SEL ≠ 0b0111 OR 0b1000  
AND  
(THM_EN = 0 OR CHGIN INVALID)  
MUX_SEL = 0b0111 OR 0b1000  
OR  
(THM_EN = 1 AND CHGIN VALID)  
If the analog multiplexer is connecting THM or TBIAS  
to AMUX, then the thermistor is biased so an external  
ADC can perform a meaningful temperature conversion.  
THERMISTOR OFF  
TBIAS = GND  
The AMUX pin is a buffered output. The operation of the  
analog multiplexer and external ADC does not collide with  
Figure 11. Thermistor Bias State Diagram  
Table 9. Trip Temperatures vs. Trip Voltages for Different NTC β  
TRIP TEMPERATURES (°C)  
TRIP  
VOLTAGE (V)  
3380K  
-10.0  
-5.0  
3435K  
-9.5  
3940K  
-5.6  
4050K  
-4.8  
4100K  
-4.5  
4250K  
-3.5  
0.6  
1.024  
0.976  
0.923  
0.867  
0.807  
0.747  
0.511  
0.459  
0.411  
0.367  
0.327  
0.291  
-4.6  
-1.1  
-0.5  
-0.2  
0.0  
0.3  
3.3  
3.8  
4.1  
4.8  
5.0  
5.3  
7.7  
8.1  
8.3  
8.9  
10.0  
15.0  
35.0  
40.0  
45.0  
50.0  
55.0  
60.0  
10.2  
15.1  
34.8  
39.8  
44.7  
49.6  
54.5  
59.4  
12.0  
16.4  
33.5  
37.8  
42.0  
46.2  
50.4  
54.6  
12.4  
16.6  
33.3  
37.4  
41.5  
45.6  
49.7  
53.7  
12.5  
16.7  
33.2  
37.3  
41.3  
45.3  
49.3  
53.3  
12.9  
17.0  
32.9  
36.8  
40.7  
44.6  
48.4  
52.2  
Maxim Integrated  
41  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
Thermistor Applications Information  
Using Different Thermistor β  
TBIAS  
If an NTC with a beta larger than 3380K is used and the  
resulting available programmable temperature range is  
undesirably small, then two adjusting resistors can be  
R
BIAS  
THM  
used to expand the temperature range. R and R can  
S
P
be optionally added to the NTC thermistor circuit (shown  
in Figure 12) to expand the range of programmable  
temperature thresholds.  
R
S
R
P
NTC  
Select values for R and R based on the information  
S
P
shown in Table 10.  
NTC Thermistor Selection  
Figure 12. Thermistor Circuit with Adjusting Series and Parallel  
Resistors  
Popular NTC thermistor options are listed in Table 11.  
Table 10. Example R and R Correcting Values for NTC β Above 3380K  
S
P
DESIGN  
TARGET  
CASE  
PARAMETER  
UNIT  
CASE 1  
CASE 2  
CASE 3  
NTC thermistor beta  
25°C NTC resistance  
K
3380  
10  
3940  
10  
4050  
47  
4250  
100  
R
10  
10  
47  
100  
BIAS  
Adjusting parallel resistor, R  
open  
short  
45.24  
22.61  
5.81  
open  
200  
0.62  
open  
680  
3.3  
open  
1300  
9.1  
P
Adjusting series resistor, R  
short  
45.24  
22.61  
5.81  
short  
212.6  
106.3  
27.3  
short  
452.4  
226.1  
58.1  
S
kΩ  
R
R
R
R
at 1.024V  
at 0.867V  
at 0.459V  
at 0.291V  
threshold  
threshold  
threshold  
578.5  
248.8  
5.36  
306.1  
122.7  
25.1  
684.8  
264.7  
51.7  
NTC  
COLD  
COOL  
WARM  
NTC  
NTC  
threshold  
HOT  
3.04  
3.04  
2.46  
14.3  
112.7  
-11.14  
5.33  
30.4  
22.0  
NTC  
T
T
T
T
at V  
at V  
at V  
at V  
(-10°C expected)  
(5°C expected)  
(40°C expected)  
-10.03  
4.98  
-5.56  
7.66  
-9.96  
5.76  
-4.82  
8.10  
-3.55  
8.86  
-10.46  
5.94  
ACTUAL  
ACTUAL  
ACTUAL  
ACTUAL  
COLD  
COOL  
WARM  
°C  
40.02  
60.04  
37.79  
54.56  
39.76  
60.37  
37.43  
53.68  
39.40  
60.02  
36.82  
52.21  
39.48  
60.4  
(60°C expected)  
HOT  
Table 11. NTC Thermistors  
MANUFACTURER  
PART#  
Β-CONSTANT (25°C/50°C)  
R (Ω) AT 25°C  
CASE SIZE  
TDK  
NTCG063JF223HTBX  
NCP03XH103F05RL  
NCP15XH103F03RC  
NTCG103JX103DT1  
CMFX3435103JNT  
3380K  
3380K  
3380K  
3380K  
3435K  
3900K  
4050K  
4100K  
4250K  
22k  
10k  
10k  
10k  
10k  
10k  
47k  
47k  
100k  
0201  
0201  
0402  
0402  
0402  
0402  
0201  
0402  
0402  
Murata  
Murata  
TDK  
Cantherm  
Murata  
NCP15XV103J03RC  
ERT-JZEP473J  
Panasonic  
Panasonic  
Murata  
ABNTC-0402-473J-4100F-T  
NCP15WF104F03RC  
Maxim Integrated  
42  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
of quiescent current consumption and is only active when  
a channel is selected (MUX_SEL[3:0] ≠ 0b0000). Disable  
the buffer by programming MUX_SEL[3:0] to 0b0000  
when not actively converting the voltage on AMUX. The  
AMUX output is high-impedance while MUX_SEL[3:0] is  
0b0000.  
Detailed Description—Analog  
Multiplexer  
An external ADC can be used to measure the chip's  
various signals for general functionality or on-the-fly power  
monitoring. The MUX_SEL[3:0] bitfield controls the inter-  
nal analog multiplexer responsible for connecting the prop-  
er channel to the AMUX pin. Each measurable signal is  
listed in Table 12 with its appropriate multiplexer channel.  
Table 12 shows how to translate the voltage signal on the  
AMUX pin to the value of the parameter being measured.  
See the Electrical Characteristics table and refer to the  
Register Map for more details.  
The voltage on the AMUX pin is a buffered output that  
ranges from 0V to V (1.25V, typ). The buffer has 50μA  
FS  
Table 12. AMUX Signal Transfer Functions  
FULL-SCALE  
SIGNAL MEANING  
ZERO-SCALE  
SIGNAL MEANING  
MUX_SEL  
SIGNAL  
TRANSFER FUNCTION  
[3:0]  
(V  
= 1.25V)  
(V  
= 0V)  
AMUX  
AMUX  
V
AMUX  
V
I
=
=
CHGIN pin voltage  
CHGIN pin current  
BATT pin voltage  
0b0001  
7.5V  
0V  
CHGIN  
CHGIN  
G
VCHGIN  
V
AMUX  
0b0010  
0b0011  
0.475A  
4.6V  
0A  
0V  
G
ICHGIN  
V
AMUX  
I
=
BATT  
G
VBATT  
V
BATT pin charging  
current  
100% of I  
FAST-CHG  
(CHG_CC[5:0])  
AMUX  
I
=
x I  
0b0100  
0% of I  
FAST-CHG  
BATT(CHG)  
FASTCHG  
V
FS  
V
V  
(
)
BATT pin  
discharge current  
100% of I  
0% of  
I
DISCHG-SCALE  
AMUX  
NULL  
DISCHG-SCALE  
I
=
x I  
0b0101  
0b0110  
BATT(DISCHG)  
DISCHGSCALE  
V
V  
NULL  
(
)
FS  
(IMON_DISCHG_SCALE[3:0])  
BATT pin discharge  
current NULL  
V
= V  
= V  
1.25V  
0V  
NULL  
AMUX  
THM pin voltage  
TBIAS pin voltage  
AGND pin voltage*  
0b0111  
0b1000  
0b1001  
V
1.25V  
1.25V  
1.25V  
0V  
0V  
0V  
THM  
AMUX  
V
= V  
= V  
TBIAS  
AGND  
AMUX  
V
AMUX  
V
AMUX  
V
=
SYS pin voltage  
0b1010  
4.8V  
0V  
SYS  
G
VSYS  
*AGND pin voltage is accessed through a 100Ω (typ) pulldown resistor.  
Maxim Integrated  
43  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
Measuring Battery Current  
I
=
BATT(DISCHG)  
It is possible to sample the current in the BATT pin at any  
time or in any mode with an external ADC. For improved  
accuracy, the analog circuitry used for monitoring battery  
discharge current is different from the circuitry monitoring  
battery charge current. Table 13 outlines how to deter-  
mine the direction of battery current.  
V
V  
NULL  
(
)
x I  
AMUX  
DISCHG-SCALE*  
V
V  
NULL  
(
)
FS  
V
is 1.25V typical. I  
through IMON_DISCHG_SCALE[3:0]. The default value  
is 300mA. If smaller currents are anticipated, then  
is programmable  
FS  
DISCHG-SCALE  
Method for Measuring Discharging Current  
I
can be reduced for improved measure-  
DISCHG-SCALE  
Program the multiplexer to switch to the discharge  
NULL measurement by changing MUX_SEL[3:0] to  
0b0110. A NULL conversion must always be per-  
formed first to cancel offsets.  
ment accuracy.  
Method for Measuring Charging Current  
Program the multiplexer to switch to the charge  
current measurement by changing MUX_SEL[3:0]  
to 0b0100.  
Wait the appropriate channel switching time  
(0.3μs, typ).  
Wait the appropriate channel switching time  
Convert the voltage on the AMUX pin and store as  
(0.3μs, typ).  
V
NULL  
.
Convert the voltage on the AMUX pin and use the  
following transfer function to determine charging  
current.  
Program the multiplexer to switch to the battery  
discharge current measurement by changing MUX_  
SEL[3:0] to 0b0101. A nonnulling conversion should  
be done immediately after a NULL conversion.  
V
AMUX  
I
=
x I  
FASTCHG  
BATT(DISCHG)  
V
● Wait the appropriate channel switching time (0.3μs,  
FS  
typ).  
V
is 1.25V typical. I  
the charger's fast-charge  
FAST-CHG  
FS  
Convert the voltage on AMUX pin and use the fol-  
lowing transfer function to determine the discharge  
current:  
constant-current setting and is programmable through  
CHG_CC[5:0].  
Table 13. Battery Current Direction Decode  
CHARGING OR DISCHARGING INDICATORS  
CHG_DTLS[3:0]  
MEASUREMENT  
CHG BIT  
CHGIN_DTLS[1:0]  
Discharging Battery Current  
(Positive Battery Terminal  
Sourcing Current)  
0b00  
0b01  
0b10  
Don't care  
Don't care  
Charging Battery Current  
(Positive Battery Terminal  
Sinking Current)  
1
0b0001 - 0b0111  
0b11  
Maxim Integrated  
44  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
CHGIN is inserted and debounced valid  
Detailed Description—Linear Regulator  
The IC integrates a 150mA PMOS low-dropout linear  
(CHGIN_DTLS[1:0] = 0b11)  
Software caused a cold reset (SFT_CTRL[1:0] =  
0b01) and the reset actions are finished and LDO_  
EN[1:0] is factory-programmed to 0b10  
(SFT_WAKE internal flag set)  
voltage regulator (LDO). Output voltage is programmable  
through I C between 0.8V and 3.975V in 25mV steps  
using the LDO_VREG[6:0] bitfield. The LDO features a  
2
low-I (1.5μA, typ) low-power mode which reduces system  
Q
idle power consumption. The LDO input (INLDO) can be  
connected directly to SYS or supplied by an external step-  
down regulator for increased power efficiency. A 100Ω (typ)  
active-discharge resistor is available to quickly discharge  
the LDO's output after the regulator has been disabled.  
The LDO deactivates regardless of LDO_EN[1:0] when  
any of the following conditions are true:  
SYS undervoltage-lockout  
SYS overvoltage-lockout  
Chip over-temperature lockout  
LDO Enable Control  
Software causes a power-off  
Force the LDO on by writing LDO_EN[1:0] to 0b01 with  
(SFT_CTRL[1:0] = 0b10)  
2
I C. The on/off controller begins the LDO power-up  
sequence when this bit combination is set.  
Software causes a reset (SFT_CTRL[1:0] = 0b01)  
Disable the LDO (force off) by writing LDO_EN[1:0] to  
0b00 with I C. This bit combination causes the LDO  
Software requests factory-ship mode  
2
(SFT_CTRL[1:0] = 0b11)  
power-down sequence to happen.  
The watchdog timer is enabled and expires  
Setting the bits in LDO_EN[1:0] to 0b10 causes the LDO  
to activate due to hardware inputs (nENLDO or CHGIN)  
or special software commands. This bit combination  
causes the on/off controller to begin the LDO power-up  
sequence when:  
(WDT_EXP internal flag set)  
Manual reset occurs (MAN_RST internal flag set)  
Consult the On/Off Controller section and Table 1 of the  
data sheet for more details.  
The reset value of the bits in LDO_EN[1:0] is factory-  
programmable. Consult the Ordering Information for  
details.  
nENLDO is asserted for t  
DBNC_nENLDO  
(LDO_WAKE internal flag set)  
INLDO  
SYS  
DC INPUT  
C
4.7µF  
INLDO  
(1.7V – V  
)
SYS  
ADE_LDO  
LDO_VREG[6:0]  
150mA LDO  
LDO  
GND  
LDO_EN[1:0]  
PWR_MODE  
LDO_WAKE  
V
LDO  
ON/OFF  
CONTROLLER  
(0.8V – 3.975V)  
C
2.2µF  
LDO  
LDO_PM[1:0]  
R
AD_LDO  
100kΩ  
POKLDO  
PMLDO  
POWER-OK  
PMLDO  
POWER MODE  
Figure 13. LDO Simplified Block Diagram  
Maxim Integrated  
45  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
LDO Power Mode (PMLDO)  
LDO Applications Information  
Program the LDO_PM[1:0] bitfield to 0b00 to configure  
the LDO in low-power mode. Program 0b01 to config-  
ure the LDO for normal mode. Program 0b10 or 0b11  
to enable hardware control of the power mode through  
the PMLDO pin. Code 0b10 enables normal mode when  
PMLDO is logic-high. Code 0b11 enables normal mode  
when PMLDO is logic-low. If the MSB of LDO_PM[1:0] is  
set, then always drive the PMLDO pin to prevent mode  
chatter. If the MSB is not set, then the PMLDO pin is a  
don't care. See Table 14 for a truth table of this behavior.  
Input/Output Capacitor Selection  
Bypass INLDO to GND with a minimum 10μF ceramic  
capacitor. If INLDO is connected to SYS, then a single  
22μF bypass capacitor to GND can be used for both pins.  
Bypass the LDO output to GND with a minimum 2.2μF  
ceramic capacitor that maintains 1.1μF of effective capac-  
itance at bias. Larger values of LDO capacitance improve  
decoupling but increase inrush current during LDO start-  
up. Refer to Startup Rate and Inrush Current for guidance  
on managing startup inrush current.  
The LDO can support loads of 150mA with an I  
INLDO-Q  
Ceramic capacitors with X5R or X7R dielectric are highly  
recommended due to their small size, low ESR, and small  
temperature coefficients. All ceramic capacitors derate  
with DC bias voltage (effective capacitance goes down as  
DC bias goes up). Generally, small case size capacitors  
derate heavily compared to larger case sizes (0603 case  
size performs better than 0402). Consider the effective  
capacitance value carefully by consulting the manufac-  
turer's data sheet.  
of 12μA (1.8V  
) in normal mode. Loads of 5mA with a  
LDO  
reduced I  
of 1.5μA (1.8V  
) are supported in  
INLDO-Q  
LDO  
low-power mode.  
A system similar to the block diagram in Figure 14  
can dynamically manage the LDO's power mode and  
minimize I consumption. When the low-power micro-  
Q
controller (U2) disables the dynamic load (U3) then the  
PMLDO pin is brought low indicating that the LDO goes  
to low-power mode. When the host enables the load,  
then the PMLDO pin becomes high and the LDO enters  
normal power mode to support the current demand of the  
dynamic load.  
Startup Rate and Inrush Current  
The startup ramp rate of the LDO can be controlled using  
the following equation:  
I
V  
LDO Power-OK Output (POKLDO)  
LDO – LIM  
LDO  
=
t  
8 x C  
LDO  
The IC features an open-drain LDO Power-OK (POKLDO)  
output to monitor the LDO output voltage. POKLDO  
requires an external pullup resistor to a voltage equal  
where I  
is the output current limit of the LDO in  
LDO-LIM  
normal mode (300mA, typ) and C  
capacitor (2.2μF minimum required).  
is the LDO output  
to or less than V  
. This node goes high when  
LDO  
SYS  
V
LDO  
rises above V  
(typically 87.5% of pro-  
POKLDO_R  
grammed V  
) and goes low when V  
falls  
LDO-REG  
LDO  
).  
Applications that are sensitive to inrush current from the  
battery should select an LDO output capacitor as close  
to the minimum stability requirement as possible (2.2μF),  
while at the same time, maximizing the INLDO and SYS  
capacitance to filter any large current spikes from BATT.  
below V  
(typically 84% of V  
POKLDO_F  
LDO-REG  
POKLDO is blanked by the on/off controller during the LDO  
power-up and power-down sequences (Figure 2). The  
blanking signal holds POKLDO low regardless of V  
.
LDO  
U1  
1.8V  
Table 14. LDO Power Mode Truth Table  
LDO  
U2  
U3  
VCC  
IN  
MAX77734  
PMIC  
LDO_PM[1:0]  
(BITFIELD)  
LDO POWER  
MODE  
PMLDO (PIN)  
LOW-POWER  
MICRO  
DYNAMIC LOAD  
EN  
LDO_PM[1:0] = 0b10  
X
X
0
1
0
1
00  
01  
10  
10  
11  
11  
Low-Power  
Normal  
POKLDO  
PMLDO  
RST  
DIG_O  
Low-Power  
Normal  
Normal  
Figure 14. Dynamic LDO Power Mode Control Idea  
Low-Power  
Maxim Integrated  
46  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
PCB Layout Guidelines  
Careful printed circuit board (PCB) layout is necessary to achieve optimal performance. Follow these guidelines when  
designing the PCB:  
1) Place decoupling components (C  
, C  
, C  
, C  
, C  
) close to the IC.  
CHGIN SYS BATT INLDO LDO  
2) A single decoupling capacitor can be used to bypass both SYS and INLDO to GND. Use a short and wide copper  
flood to connect SYS and INLDO.  
3) If INLDO has a different power source (other than SYS), then a separate INLDO decoupling capacitor (not drawn in  
Figure 15) is recommended.  
4) The value of C  
should be larger than C  
. If C  
= 2.2μF, then choose C  
= 4.7μF or greater.  
INLDO  
INLDO  
LDO  
LDO  
Figure 15 shows an example PCB top-metal layout with 0.2mm component-to-component spacing.  
GND  
CHGIN  
V
L
GND  
CCHGIN  
CVL  
AMUX  
nENLDO  
PMLDO  
POKLDO  
SYS  
nIRQ  
SDA  
SCL  
BATT  
LEGEND  
0603  
V
IO  
GND  
LDO  
CLDO  
SNK1  
SNK2  
GND  
0402  
TBIAS  
THM  
0201  
● PULLUPS NOT DRAWN  
● INLDO CONNECTS TO SYS  
VIAS  
COMPONENT SIZES  
LISTED IN IMPERIAL  
Figure 15. PCB Top-Metal and Component Layout Example  
Maxim Integrated  
47  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
2
I C is an open-drain bus and therefore SDA and SCL  
Detailed Description—Dual-Channel  
Current Sink Driver  
require pullups.  
2
The device's I C communication controller implements  
7-bit slave addressing. An I C bus master initiates com-  
The IC has a dual-channel current sink driver designed  
to drive LEDs in portable devices (see Figure 16). The  
circuit can also be used as a general-purpose current sink  
driver for other applications. The driver's on-time and fre-  
quency are independently programmable for each output  
to achieve a desired blink pattern. Alternatively, the LEDs  
can be continuously on (not blinking). The blink period is  
programmable from 0.5s to 8s, with an on-time duty cycle  
from 6.25% to 100%.  
2
munication with the slave by issuing a START condition  
followed by the slave address. The slave address is  
factory programmable to one of two options (Table 15).  
All slave addresses not mentioned in Table 15 are not  
acknowledged.  
The IC uses 8-bit registers with 8-bit register address-  
ing. They support standard communication protocols:  
(1) Writing to a single register (2) Writing to multiple  
sequential registers with an automatically increment-  
ing data pointer (3) Reading from a single register (4)  
Reading from multiple sequential registers with an auto-  
matically incrementing data pointer. For additional infor-  
mation on the I C protocols, refer to the MAX77734 I C  
Implementer’s Guide and/or the I C specification that is  
freely available on the internet.  
2
Detailed Description—I C Serial  
Interface  
2
The IC features a revision 3.0 I C-compatible, 2-wire  
serial interface consisting of a bidirectional serial data line  
(SDA) and a serial clock line (SCL). The IC is a slave-only  
device that relies on an external bus master to generate  
SCL. SCL clock rates from 0Hz to 3.4MHz are supported.  
2
2
2
SYS  
CLK_64_S  
EN_SNK_MSTR  
BRT_SNK1[4:0]  
CLOCK  
CLK_64  
CURRENT SINK 1  
SNK1  
DAC  
INV_SNK1  
P_SNK1[3:0]  
D_SNK1[3:0]  
CLK_64  
PWM  
PATTERN  
LOGIC  
EN_SNK1  
2/4/8Ω  
SNK_FS1[1:0]  
SNK2  
GND  
CURRENT SINK 2  
BRT_SNK2[4:0]  
INV_SNK2  
P_SNK2[3:0]  
D_SNK2[3:0]  
CLK_64  
SNK_FS2[1:0]  
Figure 16. LED Current Sinks Functional Block Diagram  
Maxim Integrated  
48  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
2
Table 15. I C Slave Address Options  
ADDRESS  
7-BIT SLAVE ADDRESS  
8-BIT WRITE ADDRESS  
8-BIT READ ADDRESS  
Main Address  
(ADDR = 1)*  
0x48, 0b 100 1000  
0x90, 0b 1001 0000  
0x91, 0b 1001 0001  
Main Address  
(ADDR = 0)*  
0x40, 0b 100 0000  
0x49, 0b 100 1001  
0x80, 0b 1000 0000  
0x92, 0b 1001 0010  
0x81, 0b 1000 0001  
0x93, 0b 1001 0011  
Test Mode**  
*Perform all reads and writes on the Main Address. ADDR is a factory one-time programmable (OTP) option, allowing for address  
changes in the event of a bus conflict. Contact Maxim for more information.  
**When test mode is unlocked, the additional address is acknowledged. Test mode details are confidential. If possible, leave the test  
mode address unallocated to allow for the rare event that debugging needs to be performed in cooperation with Maxim.  
Register Map  
MAX77734  
ADDRESS  
NAME  
MSB  
LSB  
GLOBAL CONFIGURATION  
POKLDO_  
I
nENLDO_ nENLDO_  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
INT_GLBL[7:0]  
RSVD  
RSVD  
RSVD  
TJAL2_R  
TJAL1_R  
RSVD  
CHG_I  
RSVD  
THM_I  
R
F
SYS_  
CNFG_I  
SYS_  
CTRL_I  
CHGIN_  
CTRL_I  
TJ_  
REG_I  
INT_CHG[7:0]  
CHGIN_I  
VCHGIN_  
MIN_STAT LIM_STAT MIN_STAT  
ICHGIN_  
VSYS_  
TJ_REG_  
STAT  
STAT_CHG_A[7:0]  
STAT_CHG_B[7:0]  
ERCFLAG[7:0]  
THM_DTLS[2:0]  
TIME_  
SUS  
CHG_DTLS[3:0]  
CHGIN_DTLS[1:0]  
CHG  
WDT_  
RST  
SYS-  
OVLO  
WDT_OFF SFT_RST SFT_OFF  
POKLDO_  
MRST  
SYSUVLO  
TOVLD  
STAT_EN-  
LDO  
STAT_  
IRQ  
STAT_GLBL[7:0]  
INTM_GLBL[7:0]  
INT_M_CHG[7:0]  
DIDM[1:0]  
TJAL2_S  
TJAL1_S  
BOK  
S
POKLDO_  
IM  
TJAL2_  
RM  
TJAL1_  
RM  
nENLDO_ nENLDO_  
RSVD  
RSVD  
RSVD  
RSVD  
RM  
FM  
SYS_  
CNFG_M  
SYS_  
CTRL_M  
CHGIN_  
CTRL_M  
TJ_  
REG_M  
CHGIN_M CHG_M THM_M  
BIAS_  
LPM  
BIAS_  
REQ  
nENLDO_ DB_nEN-  
0x08  
0x09  
0x0A  
CNFG_GLBL[7:0]  
CID[7:0]  
PU_DIS  
T_MRST  
SFT_CTRL[1:0]  
MODE  
LDO  
CID[3:0]  
WDT_  
MODE  
WDT_  
EN  
WDT_  
LOCK  
CNFG_WDT[7:0]  
RSVD  
RSVD  
WDT_PER[1:0]  
WDT_CLR  
Maxim Integrated  
49  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
MAX77734 (continued)  
ADDRESS  
NAME  
MSB  
LSB  
CHARGER CONFIGURATION  
0x20  
0x21  
CNFG_CHG_A[7:0]  
CNFG_CHG_B[7:0]  
THM_HOT[1:0]  
VCHGIN_MIN[2:0]  
THM_WARM[1:0]  
THM_COOL[1:0]  
ICHGIN_LIM[2:0]  
THM_COLD[1:0]  
CHG_  
I_PQ  
EN  
0x22  
0x23  
CNFG_CHG_C[7:0]  
CNFG_CHG_D[7:0]  
CHG_PQ[2:0]  
I_TERM[1:0]  
T_TOPOFF[2:0]  
VSYS_REG[4:0]  
TJ_REG[2:0]  
T_FAST_  
CHG[1:0]  
0x24  
0x25  
0x26  
CNFG_CHG_E[7:0]  
CNFG_CHG_F[7:0]  
CNFG_CHG_G[7:0]  
CHG_CC[5:0]  
THM_  
RSVD  
EN  
CHG_CC_JEITA[5:0]  
CHG_CV[5:0]  
USBS  
RSVD  
RSVD  
RSVD  
0x27  
0x28  
CNFG_CHG_H[7:0]  
CNFG_CHG_I[7:0]  
CHG_CV_JEITA[5:0]  
IMON_DISCHG_SCALE[3:0]  
MUX_SEL[3:0]  
LDO CONFIGURATION  
ADE_  
LDO  
0x30  
0x31  
CNFG_LDO_A[7:0]  
CNFG_LDO_B[7:0]  
LDO_VREG[6:0]  
LDO_PM[1:0]  
LDO_EN[1:0]  
CURRENT SINKS CONFIGURATION  
INV_  
SNK1  
0x40  
0x41  
0x42  
0x43  
CNFG_SNK1_A[7:0]  
CNFG_SNK1_B[7:0]  
CNFG_SNK2_A[7:0]  
CNFG_SNK2_B[7:0]  
SNK_FS1[1:0]  
BRT_SNK1[4:0]  
P_SNK1[3:0]  
D_SNK1[3:0]  
BRT_SNK2[4:0]  
D_SNK2[3:0]  
INV_  
SNK2  
SNK_FS2[1:0]  
P_SNK2[3:0]  
EN_  
SNK_  
MSTR  
CLK_  
64_S  
0x44  
CNFG_SNK_TOP[7:0]  
Maxim Integrated  
50  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
INT_GLBL (0x00)  
BIT  
7
6
5
4
3
2
1
0
Field  
RSVD  
0b0  
POKLDO_I  
0b0  
TJAL2_R  
0b0  
TJAL1_R  
0b0  
nENLDO_R nENLDO_F  
0b0 0b0  
RSVD  
0b0  
RSVD  
0b0  
Reset  
Read Clears Read Clears Read Clears Read Clears Read Clears Read Clears Read Clears Read Clears  
Access Type  
All  
All  
All  
All  
All  
All  
All  
All  
RESET-  
TYPE  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
RSVD  
7
SYSRST  
Reserved. Reads back 0.  
N/A  
0 = POKLDO_S has not changed since  
the last time this bit was read.  
1 = POKLDO_S has changed since the  
last time this bit ws read.  
POKLDO_I  
TJAL2_R  
6
5
SYSRST  
POKLDO Interrupt  
0 = The junction temperature has not  
risen above T  
since the last time  
JAL2  
this bit was read.  
1 = The junction temperature has risen  
above T since the last time this bit  
SYSRST  
SYSRST  
Thermal Alarm 2 Rising Interrupt  
Thermal Alarm 1 Rising Interrupt  
JAL2  
was read.  
0 = The junction temperature has not  
risen above T since the last time  
JAL1  
this bit was read.  
1 = The junction temperature has risen  
above T since the last time this bit  
TJAL1_R  
4
JAL1  
was read.  
0 = No nENLDO rising edges have  
occurred since the last time this bit  
was read.  
1 = A nENLDO rising edge as occurred  
since the last time this bit was read.  
nENLDO_R  
nENLDO_F  
3
2
SYSRST  
SYSRST  
nENLDO Rising Interrupt  
nENLDO Falling Interrupt  
0 = No nENLDO falling edges have  
occurred since the last time this bit  
was read.  
1 = A nENLDO falling edge as occurred  
since the last time this bit was read.  
RSVD  
RSVD  
1
0
SYSRST  
SYSRST  
Reserved. Reads back 0.  
Reserved. Reads back 0.  
N/A  
N/A  
Maxim Integrated  
51  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
INT_CHG (0x01)  
BIT  
7
6
5
4
3
2
1
0
SYS_  
CNFG_I  
SYS_  
CTRL_I  
CHGIN_  
CTRL_I  
Field  
RSVD  
TJ_REG_I  
CHGIN_I  
CHG_I  
THM_I  
Reset  
0b1  
0b0  
0b0  
0b0  
0b0  
0b0  
0b0  
0b0  
Read Clears Read Clears Read Clears Read Clears Read Clears Read Clears Read Clears Read Clears  
Access Type  
All  
All  
All  
All  
All  
All  
All  
All  
RESET-  
TYPE  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
RSVD  
7
SYSRST  
Reserved. Reads back 0.  
System Voltage Configuration Error  
Interrupt. Goes high when V  
N/A  
SYS-REG  
0 = No configuration error since the last  
time this bit was read.  
1 = The bits in CHG_CV[5:0] have been  
and V  
are programmed too  
FAST-CHG  
close to each other. Reads back 1 when  
the bit combination in CHG_CV[5:0] or  
CHG_CV_JEITA[5:0] has been forced  
to change (reduce) to ensure  
SYS_CNFG_I  
SYS_CTRL_I  
6
SYSRST  
forced to change to ensure V  
SYS-REG  
is 200mV above V  
.
FAST-CHG  
V
= V  
+ 200mV.  
SYS-REG  
FAST-CHG  
Minimum System Voltage Regulation  
Loop Related Interrupt. Signals a  
change in VSYS_MIN_STAT.  
0 = VSYS_MIN_STAT has not changed  
since the last time this bit was read.  
1 = VSYS_MIN_STAT has changed.  
5
4
SYSRST  
SYSRST  
CHGIN Control-Loop Related Interrupt.  
Signals a change in the minimum input  
voltage regulation loop (VCHGIN_MIN_  
STAT) or the input current-limit loop  
(ICHGIN_LIM_STAT).  
0 = Neither VCHGIN_MIN_STAT nor  
ICHGIN_LIM_STAT has changed since  
the last time this bit was read.  
1 = VCHGIN_MIN_STAT or  
ICHGIN_LIM_STAT has changed.  
CHGIN_  
CTRL_I  
Die Junction Temperature Regulation  
Interrupt. Signals a change in the die  
temperature regulation loop  
(TJ_REG_STAT).  
0 = TJ_REG_STAT has not changed  
since the last time this bit was read.  
1 = TJ_REG_STAT has changed.  
TJ_REG_I  
CHGIN_I  
3
2
SYSRST  
SYSRST  
0 = The bits in CHGIN_DTLS[1:0] have  
not changed since the last time this bit  
was read.  
1 = The bits in CHGIN_DTLS[1:0] have  
changed.  
CHGIN Related Interrupt. Signals a  
change in CHGIN_DTLS[1:0].  
0 = The bits in CHG_DTLS[3:0] have not  
changed since the last time this bit was  
read.  
1 = The bits in CHG_DTLS[3:0] have  
changed.  
Charger Related Interrupt. Signals a  
change in CHG_DTLS[3:0].  
CHG_I  
THM_I  
1
0
SYSRST  
SYSRST  
0 = The bits in THM_DTLS[2:0] have not  
changed since the last time this bit was  
read.  
1 = The bits in THM_DTLS[2:0] have  
changed.  
Thermistor Related Interrupt. Signals a  
change in THM_DTLS[2:0].  
Maxim Integrated  
52  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
STAT_CHG_A (0x02)  
BIT  
Field  
7
6
5
4
3
2
1
0
VCHGIN_  
MIN_STAT  
ICHGIN_  
LIM_STAT  
VSYS_  
MIN_STAT  
TJ_REG_  
STAT  
RSVD  
THM_DTLS[2:0]  
Reset  
0b0  
0b0  
0b0  
0b0  
0b0  
0b000  
Access Type  
Read Only  
Read Only  
Read Only  
Read Only  
Read Only  
Read Only  
RESET-  
TYPE  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
RSVD  
7
CHGPOK  
Reserved. Reads back 0.  
N/A  
0 = The minimum CHGIN voltage  
regulation loop has not engaged.  
1 = The loop has engaged to reduce  
CHGIN current to regulate  
VCHGIN_  
MIN_STAT  
Minimum Input Voltage Regulation Loop  
Status  
6
CHGPOK  
V
≥ V  
.
CHGIN  
CHGIN-MIN  
0 = The CHGIN current-limit loop is  
not engaged.  
1 = The loop has engaged to regulate  
ICHGIN_  
LIM_STAT  
5
4
CHGPOK  
CHGPOK  
Input Current-Limit Loop Status  
I
≤ I  
CHGIN-LIM  
CHGIN  
0 = The minimum system voltage  
regulation loop is not engaged.  
1 = The loop has engaged to regulate  
VSYS_  
MIN_STAT  
Minimum System Voltage Regulation  
Loop Status  
V
≥ V  
.
SYS  
SYS-MIN  
0 = The maximum junction temperature  
regulation loop is not engaged.  
1 = The loop has engaged and is  
reducing charge current to limit die  
temperature.  
TJ_REG_  
STAT  
Maximum Junction Temperature  
Regulation Loop Status  
3
CHGPOK  
0b000 = Thermistor is diabled  
(THM_EN = 0).  
0b001 = Battery is cold as programmed  
by THM_COLD[1:0].  
0b010 = Battery is cool as programmed  
by THM_COOL[1:0].  
0b011 = Battery is warm as programmed  
by THM_WARM[1:0].  
0b100 = Battery is hot as programmed by  
THM_HOT[1:0].  
Battery Temperature Details  
Valid Only When  
CHGIN_DTLS[1:0] = 0b11  
THM_DTLS  
2:0  
CHGPOK  
0b101 = Battery temperature is normal  
as programmed by CNFG_CHG_A  
register.  
0b110-0b111 = Reserved.  
Maxim Integrated  
53  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
STAT_CHG_B (0x03)  
BIT  
Field  
7
6
5
4
3
2
1
CHG  
0
CHG_DTLS[3:0]  
0b0000  
CHGIN_DTLS[1:0]  
0b00  
TIME_SUS  
0b0  
Reset  
0b0  
Access Type  
Read Only  
Read Only  
Read Only  
Read Only  
RESET-  
TYPE  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0b0000 = Charger off.  
0b0001 = Prequalification mode.  
0b0010 = Fast-charge constant-current  
(CC) mode.  
0b0011 = JEITA-modified fast-charge  
constant-current mode.  
0b0100 = Fast-charge constant-voltage  
(CV) mode.  
0b0101 = JEITA-modified fast-charge  
constant-voltage mode.  
0b0110 = Top-off mode.  
Charger Details. Indicates the current  
state of the charger.  
CHG_DTLS  
7:4  
CHGPOK  
0b0111 = JEITA-modified top-off mode.  
0b1000 = Done.  
0b1001 = JEITA-modified done  
(done was entered through the  
JEITA-modified fast-charge states).  
0b1010 = Prequalification timer fault.  
0b1011 = Fast-charge timer fault.  
0b1100 = Battery temperature fault.  
0b1101-0b1111 = Reserved.  
0b00 = CHGIN voltage is below the  
UVLO threshold (V  
) or  
CHGIN_UVLO  
USB suspended (USBS = 1).  
0b01 = CHGIN voltage is above the  
OVP threshold (V ).  
0b10 = The CHGIN input is being  
debounced (no power drawn from  
CHGIN during debounce).  
0b11 = The CHGIN input is debounced  
and valid.  
CHGIN_  
DTLS  
CHGIN_OVP  
3:2  
CHGPOK  
CHGIN Status Details  
0 = Charging is not happening.  
1 = Charging is happening.  
CHG  
1
0
CHGPOK  
CHGPOK  
Quick Charger Status  
Time Suspend Indicator. The fast-charge  
safety timer susepnds if any of the  
following are true: charge current has  
dropped below 20% of I  
while  
0 = Charger's timers are not active or  
not suspended.  
1 = Charger's active timer suspended.  
FAST-CHG  
TIME_SUS  
the charger state machine is in FAST  
CHARGE (CC) state, the charger is in  
suppliment mode, or the charger state  
machine is in BATTERY TEMPERATURE  
FAULT mode.  
Maxim Integrated  
54  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
ERCFLAG (0x04)  
BIT  
7
6
5
4
3
2
1
0
Field  
WDT_RST WDT_OFF  
SFT_RST  
0b0  
SFT_OFF  
0b0  
MRST  
0b0  
SYSUVLO  
0b0  
SYSOVLO  
0b0  
TOVLD  
0b0  
Reset  
0b0  
0b0  
Read  
Clears All  
Read  
Clears All  
Read  
Clears All  
Read  
Clears All  
Read  
Clears All  
Read  
Clears All  
Read Clears  
All  
Read Clears  
All  
Access Type  
BITFIELD  
RESET-  
TYPE  
BITS  
DESCRIPTION  
DECODE  
Watchdog Timer Reset Flag. This bit  
0 = Watchdog timer has not caused a power-  
sets when the watchdog timer expires reset since the last time this bit was read.  
WDT_RST  
WDT_OFF  
7
SYSPOR  
SYSPOR  
and causes a power-reset  
(WTD_EXP = 1 and  
WTD_MODE = 1).  
1 = Watchdog timer has expired and caused  
a power-reset since the last time this bit  
was read.  
0 = Watchdog timer has not caused a power-off  
since the last time this bit was read.  
1 = Watchdog timer has expired and caused  
a power-off since the last time  
Watchdog Timer OFF Flag. This bit  
sets when the watchdog timer expires  
and causes a power-off (WDT_EXP =  
1 and WDT_MODE = 0).  
6
this bit was read.  
0 = No software caused power-reset since  
the last time this bit was read.  
1 = Software has caused a power-reset since  
the last time this bit was read.  
Software Reset Flag. This bit sets  
when an I C write causes a power-  
reset (SFT_RST[1:0] = 0b01).  
2
SFT_RST  
SFT_OFF  
MRST  
5
4
3
SYSPOR  
SYSPOR  
SYSPOR  
0 = No software caused power-off since the  
last time this bit was read.  
1 = Software has caused a power-off since  
the last time this bit was read.  
Software OFF Flag. This bit sets when  
2
an I C write causes a power-off  
(SFT_CTRL[1:0] = 0b10).  
Manual Reset Timer Flag. This bit sets 0 = Manual reset has not caused power-reset  
when a manual reset event  
(MAN_RST = 1) causes a power  
reset.  
since the last time this bit was read.  
1 = Manual reset has caused power-reset  
since the last time this bit ws read.  
0 = SYS domain undervoltage lockout has  
not caused a power-off since the last time  
this bit was read.  
1 = SYS domain undervoltage lockout has  
caused a power-off since the last time this bit  
was read.  
SYS Domain Undervoltage-Lockout  
Flag. This bit sets when the SYS  
domain voltage falls below  
SYSUVLO  
2
SYSPOR  
V
and causes a power-off.  
SYSUVLO  
0 = SYS domain overvoltage lockout has  
not caused a power-off since the last time  
this bit was read.  
1 = SYS domain overvoltage lockout has  
caused a power-off since the last time this  
bit was read.  
SYS Domain Overvoltage-Lockout  
Flag. This bit sets when the SYS do-  
SYSOVLO  
TOVLD  
1
0
SYSPOR  
SYSPOR  
main voltage rises above V  
SYSOVLO  
and causes a power-off.  
0 = Thermal overload has not caused a  
power-off since the last time this bit was read.  
1 = Thermal overload has caused a power-off  
since the last time this bit was read.  
Thermal Overload Flag. This bit sets  
when the junction temperature ex-  
ceeds 165°C and causes a power-off.  
Maxim Integrated  
55  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
STAT_GLBL (0x05)  
BIT  
Field  
7
6
5
4
3
2
1
0
STAT_  
ENLDO  
DIDM[1:0]  
POKLDO_S  
TJAL2_S  
TJAL1_S  
BOK  
STAT_IRQ  
Reset  
0b10  
0b0  
0b0  
0b0  
0b0  
0b0  
0b0  
Access Type  
Read Only  
Read Only  
Read Only  
Read Only  
Read Only  
Read Only  
Read Only  
RESET-  
TYPE  
BITFIELD  
DIDM  
BITS  
7:6  
5
DESCRIPTION  
DECODE  
0b00 = Reserved for future use.  
0b01 = Reserved for future use.  
0b10 = MAX77734  
Device Identification Bits for  
Metal Options  
SYSRST  
SYSRST  
SYSRST  
0b11 = Reserved for future use.  
LDO Power-OK Status. Continuous  
software mirror of the POKLDO pin.  
0 = POKLDO is low  
1 = POKLDO is high (Hi-Z)  
POKLDO_S  
TJAL2_S  
0 = The junction temperature is less  
than T  
JAL2  
4
Thermal Alarm 2 Status  
Thermal Alarm 1 Status  
1 = The junction temperature is  
greater than T  
JAL2  
0 = The junction temperature is less  
than T  
1 = The junction temperature is greater  
JAL1  
TJAL1_S  
3
SYSRST  
than T  
JAL1  
STAT_  
ENLDO  
Debounced Status for the  
nENLDO input  
0 = nENLDO is not asserted (logic high)  
1 = nENLDO is asserted (logic low)  
2
1
SYSRST  
SYSRST  
0 = Bias not ready or not enabled.  
1 = Bias enabled and ready.  
BOK  
System Bias OK Status Bit  
0 = No interrupts pending. nIRQ would  
be high if all interrupts were unmasked.  
1 = Interrupts pending. nIRQ would be  
low if all interrupts were unmasked.  
Interrupt Status. Continuous inverted  
software mirror of the nIRQ pin as if all  
interrupts were unmasked.  
STAT_IRQ  
0
SYSRST  
Maxim Integrated  
56  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
INTM_GLBL (0x06)  
BIT  
Field  
Reset  
7
6
5
4
3
2
1
0
POKLDO_  
IM  
nENLDO_  
RM  
nENLDO_  
FM  
RSVD  
0b0  
TJAL2_RM  
0b1  
TJAL1_RM  
0b1  
RSVD  
0b0  
RSVD  
0b0  
0b1  
0b1  
0b1  
Access Type Write, Read Write, Read Write, Read Write, Read Write, Read Write, Read Write, Read Write, Read  
RESET-  
TYPE  
BITFIELD  
RSVD  
BITS  
DESCRIPTION  
DECODE  
7
SYSRST  
Reserved. Bit is a don't care.  
N/A  
POKLDO_I Interrupt Mask. Setting this  
bit prevents the POKLDO_I bit from  
causing hardware interrupts.  
0 = POKLDO_I is not masked.  
1 = POKLDO_I is masked.  
POKLDO_IM  
TJAL2_RM  
6
5
4
3
2
SYSRST  
SYSRST  
SYSRST  
SYSRST  
SYSRST  
Thermal Alarm 2 Rising Interrupt Mask.  
Setting this bit prevents the TJAL2_R  
bit from causing hardware interrupts.  
0 = TJAL2_R is not masked.  
1 = TJAL2_R is masked.  
Thermal Alarm 1 Rising Interrupt Mask.  
Setting this bit prevents the TJAL1_R  
bit from causing hardware interrupts.  
0 = TJAL1_R is not masked.  
1 = TJAL1_R is masked.  
TJAL1_RM  
nENLDO Rising Interrupt Mask. Setting  
this bit prevents the nENLDO_R bit  
from causing hardware interrupts.  
0 = nENLDO_R is unmasked.  
1 = nENLDO_R is masked.  
nENLDO_RM  
nENLDO_FM  
nENLDO Falling Interrupt Mask. Setting  
this bit prevents the nENLDO_F bit  
from causing hardware interrupts.  
0 = nENLDO_F is not masked.  
1 = nENLDO_F is masked.  
RSVD  
RSVD  
1
0
SYSRST  
SYSRST  
Reserved. Bit is a don't care.  
Reserved. Bit is a don't care.  
N/A  
N/A  
Maxim Integrated  
57  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
INT_M_CHG (0x07)  
BIT  
Field  
Reset  
7
6
5
4
3
2
1
0
SYS_  
CNFG_M  
SYS_  
CTRL_M  
CHGIN_  
CTRL_M  
RSVD  
0b1  
TJ_REG_M  
0b1  
CHGIN_M  
0b1  
CHG_M  
0b1  
THM_M  
0b1  
0b1  
0b1  
0b1  
Access Type Write, Read Write, Read Write, Read Write, Read Write, Read Write, Read Write, Read Write, Read  
RESET-  
TYPE  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
RSVD  
7
6
SYSRST  
Reserved. Bit is a don't care.  
N/A  
SYS_  
CNFG_M  
Setting this bit prevents the SYS_CNFG_I 0 = SYS_CNFG_I is not masked.  
bit from causing hardware interrupts. 1 = SYS_CNFG_I is masked.  
SYSRST  
SYSRST  
SYS_  
CTRL_M  
Setting this bit prevents the SYS_CTRL_I 0 = SYS_CTRL_I is not masked.  
bit from causing hardware interrupts.  
5
4
1 = SYS_CTRL_I is masked.  
Setting this bit prevents the CHGIN_  
CTRL_I bit from causing hardware  
interrupts.  
CHGIN_  
CTRL_M  
0 = CHGIN_CTRL_I is not masked.  
1 = CHGIN_CTRL_I is masked.  
SYSRST  
Setting this bit prevents the TJ_REG_I bit 0 = TJ_REG_I is not masked.  
TJ_REG_M  
CHGIN_M  
CHG_M  
3
2
1
0
SYSRST  
SYSRST  
SYSRST  
SYSRST  
from causing hardware interrupts.  
1 = TJ_REG_I is masked.  
Setting this bit prevents the CHGIN_I bit  
from causing hardware interrupts.  
0 = CHGIN_I is not masked.  
1 = CHGIN_I is masked.  
Setting this bit prevents the CHG_I bit  
from causing hardware interrupts.  
0 = CHG_I is not masked.  
1 = CHG_I is masked.  
Setting this bit prevents the THM_I bit  
from causing hardware interrupts.  
0 = THM_I is not masked.  
1 = THM_I is masked.  
THM_M  
Maxim Integrated  
58  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
CNFG_GLBL (0x08)  
BIT  
Field  
Reset  
7
6
5
4
3
2
1
0
nENLDO_  
MODE  
DB_nEN-  
LDO  
PU_DIS  
0b0  
T_MRST  
OTP  
BIAS_LPM  
0b1  
BIAS_REQ  
0b0  
SFT_CTRL[1:0]  
OTP  
OTP  
0b00  
Access Type Write, Read Write, Read Write, Read Write, Read Write, Read Write, Read  
Write, Read  
RESET-  
TYPE  
BITFIELD  
PU_DIS  
BITS  
DESCRIPTION  
DECODE  
0 = 200kΩ pullup resistor for momentary  
push buttons  
1 = 10MΩ pullup resistor for persistent  
slide switches  
nENLDO Internal Pullup Resistor  
7
6
SYSRST  
Control to V  
CCINT  
0 = 8 seconds  
1 = 16 seconds  
T_MRST  
SYSRST  
SYSRST  
Sets the Manual Reset Time (t  
)
MRST  
0 = Bias requested to be in normal-power  
mode whenever it is enabled.  
1 = Bias requested to be in low-power  
mode whenever it is enabled.  
System Bias Low-Power Mode Software  
Request  
BIAS_LPM  
5
0 = Bias not requested on by software.  
1 = Bias forced on by software.  
BIAS_REQ  
4
3
2
SYSRST  
SYSRST  
SYSRST  
System Bias Enable Software Request  
nENLDO_  
MODE  
nENLDO (ONKEY) Default Configuration 0 = Push-button mode  
Mode  
1 = Slide-switch mode  
0 = 200μs debounce  
1 = 30ms debounce  
DB_nENLDO  
Debounce Timer for the nENLDO pin  
0b00 = No Action  
0b01 = Software Reset. Causes a  
power-reset. The IC powers down,  
configuration registers reset (SYSRST),  
and the IC powers up and turns the LDO  
on again.  
0b10 = Software Off. The IC powers  
down, configuration registers reset, and  
the IC remains off and waits for a wake-  
up event to turn on again.  
SFT_CTRL  
1:0  
SYSRST  
Software Control Functions  
0b11 = Factory-Ship Mode Enter (FSM).  
The IC powers down, configuration  
registers reset, and the internal BATT to  
SYS switch opens. The device remains  
this way until a factory-ship mode exit  
event occurs.  
Maxim Integrated  
59  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
CID (0x09)  
BIT  
Field  
7
6
5
4
3
2
1
0
CID[3:0]  
OTP  
Reset  
Access Type  
Read Only  
RESET-  
TYPE  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
CID  
3:0  
SYSPOR  
Chip Identification Code for OTP Options Varies depending on Factory Options.  
CNFG_WDT (0x0A)  
BIT  
7
6
5
4
3
2
1
0
WDT_  
MODE  
Field  
Reset  
RSVD  
0b0  
RSVD  
0b0  
WDT_PER[1:0]  
0b11  
WDT_CLR  
0b0  
WDT_EN  
OTP  
WDT_LOCK  
OTP  
0b0  
Write 1 to  
Clear, Read  
Access Type Write, Read Write, Read  
Write, Read  
Write, Read  
Write, Read  
Read Only  
RESET-  
TYPE  
BITFIELD  
RSVD  
BITS  
DESCRIPTION  
DECODE  
7
6
SYSRST  
SYSRST  
Reserved. Bit is a don't care.  
Reserved. Bit is a don't care.  
N/A  
N/A  
RSVD  
Watchdog Timer Period. Sets t  
Watchdog timer is reset to the  
programmed value as soon as this  
.
0b00 = 16 seconds  
0b01 = 32 seconds  
0b10 = 64 seconds  
0b11 = 128 seconds  
WD  
WDT_PER  
5:4  
SYSRST  
bitfield is changed.  
0 = Watchdog timer expire causes  
power-off.  
1 = Watchdog timer expire causes  
power-reset.  
Watchdog Timer Expired Action.  
Determines what the IC does after the  
watchdog timer expires.  
WDT_MODE  
WDT_CLR  
3
2
SYSRST  
SYSRST  
Watchdog Timer Clear Control. Set this  
bit to feed (reset) the watchdog timer.  
0 = Watchdog timer period is not reset.  
1 = Watchdog timer is reset back to t  
.
WD  
0 = Watchdog timer is not enabled.  
WDT_EXP = 0 always.  
1 = Watchdog timer is enabled. If the  
timer expires without being fed (reset)  
then WDT_EXP = 1.  
Watchdog Timer Enable. Write protected  
depending on WDT_LOCK.  
WDT_EN  
1
0
SYSRST  
SYSRST  
0 = Watchdog timer can be enabled and  
disabled with WDT_EN.  
1 = Watchdog timer can not be disabled  
with WDT_EN. (WDT_EN can still be  
used to enable the watchdog timer.)  
Factory-Set Safety Bit for the Watchdog  
Timer. Determines if the timer can be  
disabled through WTD_EN or not.  
WDT_LOCK  
Maxim Integrated  
60  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
CNFG_CHG_A (0x20)  
BIT  
Field  
7
6
5
4
3
2
1
0
THM_HOT[1:0]  
THM_WARM[1:0]  
0b00  
THM_COOL[1:0]  
0b11  
THM_COLD[1:0]  
0b11  
Reset  
0b00  
Access Type  
Write, Read  
Write, Read  
Write, Read  
Write, Read  
RESET-  
TYPE  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0b00 = 0.411V  
Sets the V  
Temperature Threshold  
JEITA  
0b01 = 0.367V  
0b10 = 0.327V  
0b11 = 0.291V  
HOT  
THM_HOT  
7:6  
SYSRST  
0b00 = 0.511V  
0b01 = 0.459V  
0b10 = 0.411V  
0b11 = 0.367V  
Sets the V  
Temperature Threshold  
JEITA  
WARM  
THM_WARM  
THM_COOL  
THM_COLD  
5:4  
3:2  
1:0  
SYSRST  
SYSRST  
SYSRST  
0b00 = 0.923V  
0b01 = 0.867V  
0b10 = 0.807V  
0b11 = 0.747V  
Sets the V  
JEITA  
COOL  
Temperature Threshold  
0b00 = 1.024V  
0b01 = 0.976V  
0b10 = 0.923V  
0b11 = 0.867V  
Sets the V  
JEITA  
COLD  
Temperature Threshold  
Maxim Integrated  
61  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
CNFG_CHG_B (0x21)  
BIT  
Field  
7
6
5
4
3
2
1
0
VCHGIN_MIN[2:0]  
0b000  
ICHGIN_LIM[2:0]  
0b000  
I_PQ  
0b0  
CHG_EN  
OTP  
Reset  
Access Type  
Write, Read  
Write, Read  
Write, Read Write, Read  
RESET-  
TYPE  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0b000 = 4.0V  
0b001 = 4.1V  
0b010 = 4.2V  
0b011 = 4.3V  
0b100 = 4.4V  
0b101 = 4.5V  
0b110 = 4.6V  
0b111 = 4.7V  
VCHGIN_  
MIN  
Sets the Minimum CHGIN Regulation  
Voltage (V  
7:5  
SYSRST  
)
CHGIN-MIN  
This bitfield decoding changes depending  
on factory option. See Table 8 for details.  
0b000 = 95mA/475mA  
0b001 = 190mA/380mA  
0b010 = 285mA  
Sets the CHGIN Input Current Limit  
(I  
ICHGIN_LIM  
4:2  
CHGPOK  
)
CHGIN-LIM  
0b011 = 380mA/190mA  
0b100-0b111 = 475mA/95mA  
Sets the prequalification charge current  
0 = 10%  
1 = 20%  
I_PQ  
1
0
SYSRST  
SYSRST  
(I ) as a percentage of I  
.
FAST-CHG  
PQ  
0 = Disabled  
1 = Enabled  
CHG_EN  
Charger enable  
Maxim Integrated  
62  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
CNFG_CHG_C (0x22)  
BIT  
Field  
7
6
5
4
3
2
1
0
CHG_PQ[2:0]  
0b111  
I_TERM[1:0]  
0b11  
T_TOPOFF[2:0]  
0b000  
Reset  
Access Type  
Write, Read  
Write, Read  
Write, Read  
RESET-  
TYPE  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0b000 = 2.3V  
0b001 = 2.4V  
0b010 = 2.5V  
0b011 = 2.6V  
0b100 = 2.7V  
0b101 = 2.8V  
0b110 = 2.9V  
0b111 = 3.0V  
Sets the Battery Prequalification  
Voltage Threshold (V  
CHG_PQ  
7:5  
SYSRST  
SYSRST  
SYSRST  
)
PQ  
0b00 = 5%  
0b01 = 7.5%  
0b10 = 10%  
0b11 = 15%  
Sets the Battery Charge Termination  
Current (I ) as a Percentage of  
I_TERM  
4:3  
2:0  
TERM  
FAST-CHG  
I
0b000 = 0 minutes  
0b001 = 5 minutes  
0b010 = 10 minutes  
0b011 = 15 minutes  
0b100 = 20 minutes  
0b101 = 25 minutes  
0b110 = 30 minutes  
0b111 = 35 minutes  
T_TOPOFF  
Sets the Top-Off Timer Value (t  
)
TO  
Maxim Integrated  
63  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
CNFG_CHG_D (0x23)  
BIT  
Field  
7
6
5
4
3
2
1
0
TJ_REG[2:0]  
0b000  
VSYS_REG[4:0]  
0b10000  
Reset  
Access Type  
Write, Read  
Write, Read  
RESET-  
TYPE  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0b000 = 60°C  
0b001 = 70°C  
0b010 = 80°C  
0b011 = 90°C  
Sets the Die Junction Temperature  
Regulatoin Point (T  
TJ_REG  
7:5  
SYSRST  
)
J-REG  
0b100-0b111 = 100°C  
0b00000 = 4.100V  
0b00001 = 4.125V  
Sets the System Voltage Regulation Point 0b00010 = 4.150V  
While CHGIN is Valid (V ). ...  
This 5-bit configuration is a linear transfer 0b10000 = 4.500V  
SYS-REG  
VSYS_REG  
4:0  
SYSRST  
function that starts at 4.1V and ends at  
4.8V, with 25mV increments.  
...  
0b11010 = 4.750V  
0b11011 = 4.775V  
0b11100-0b11111 = 4.800V  
CNFG_CHG_E (0x24)  
BIT  
Field  
7
6
5
4
3
2
1
0
CHG_CC[5:0]  
T_FAST_CHG[1:0]  
0b01  
Reset  
0b000001  
Access Type  
Write, Read  
Write, Read  
RESET-  
TYPE  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
Sets the Fast-Charge Constant Current  
Value (I ).  
This 6-bit configuration is a linear  
transfer function that starts at 7.5mA and  
ends at 300mA, with 7.5mA increments.  
0b000000 = 7.5mA  
0b000001 = 15mA  
...  
FAST-CHG  
CHG_CC  
7:2  
SYSRST  
SYSRST  
0b100111-0b111111 = 300mA  
0b00 = timer disabled  
0b01 = 3 hours  
0b10 = 5 hours  
T_FAST_  
CHG  
1:0  
Sets the Fast-Charge Safety Timer (t  
)
FC  
0b11 = 7 hours  
Maxim Integrated  
64  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
CNFG_CHG_F (0x25)  
BIT  
Field  
7
6
5
4
3
2
1
0
CHG_CC_JEITA[5:0]  
0b000001  
THM_EN  
0b0  
RSVD  
0b0  
Reset  
Access Type  
Write, Read  
Write, Read Write, Read  
RESET-  
TYPE  
BITFIELD  
BITS  
DESCRIPTION  
for when the  
DECODE  
Sets I  
FAST-CHG_JEITA  
battery is either cool or warm as defined  
by the T and T temperature  
thresholds. This register is a don't care if  
the battery temperature is normal or if  
THM_EN = 0.  
This 6-bit configuration is a linear transfer  
function that starts at 7.5mA and ends  
at 300mA, with 7.5mA increments.  
COOL  
WARM  
0b000000 = 7.5mA  
0b000001 = 15mA  
...  
CHG_  
CC_JEITA  
7:2  
SYSRST  
0b100111-0b111111 = 300mA  
Thermistor Enable. Setting this bit causes  
the charger to enable the thermistor bias  
(TBIAS) and continuously monitor battery  
temperature. Does not collide with  
0 = Disabled  
1 = Enabled  
THM_EN  
RSVD  
1
0
SYSRST  
SYSRST  
MUX_SEL[3:0] settings 0x7 or 0x8.  
Reserved Control Bit. Write to 0.  
N/A  
CNFG_CHG_G (0x26)  
BIT  
Field  
7
6
5
4
3
2
1
0
CHG_CV[5:0]  
USBS  
0b0  
RSVD  
0b0  
Reset  
0b000000  
Access Type  
Write, Read  
Write, Read Write, Read  
RESET-  
TYPE  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
Sets fast-charge battery regulation  
voltage (V ). Internal logic  
FAST-CHG  
0b000000 = 3.600V  
0b000001 = 3.625V  
...  
clamps the maximum V  
value  
FAST-CHG  
CHG_CV  
7:2  
SYSRST  
to 200mV less than V  
.
SYS-REG  
This 6-bit configuration is a linear transfer  
function that starts at 3.6V and ends at  
4.6V, with 25mV increments.  
0b1010000-0b111111 = 4.6V  
Setting this bit places CHGIN in USB  
suspend mode. CHGIN can not draw  
power from an external source while in  
USB suspend mode.  
0 = CHGIN is not suspended.  
1 = CHGIN is suspended.  
USBS  
RSVD  
1
0
CHGPOR  
SYSRST  
Reserved. Bit is a don't care.  
N/A  
Maxim Integrated  
65  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
CNFG_CHG_H (0x27)  
BIT  
Field  
7
6
5
4
3
2
1
0
CHG_CV_JEITA[5:0]  
0b000000  
RSVD  
0b0  
RSVD  
0b0  
Reset  
Access Type  
Write, Read  
Write, Read Write, Read  
RESET-  
TYPE  
BITFIELD  
BITS  
DESCRIPTION  
for when the  
DECODE  
Sets V  
FAST-CHG_JEITA  
battery is either cool or warm as defined  
by the T and T temperature  
COOL  
WARM  
thresholds. This register is a don't care  
if the battery temperature is normal or  
if THM_EN = 0.  
0b000000 = 3.600V  
0b000001 = 3.625V  
...  
CHG_  
CV_JEITA  
7:2  
SYSRST  
Internal logic clamps the maximum  
V
value to 200mV less  
0b1010000-0b111111 = 4.6V  
FAST-CHG_JEITA  
than V  
.
SYS-REG  
This 6-bit configuration is a linear transfer  
function that starts at 3.6V and ends at  
4.6V, with 25mV increments.  
RSVD  
RSVD  
1
0
SYSRST  
SYSRST  
Reserved. Bit is a don't care.  
Reserved. Bit is a don't care.  
N/A  
N/A  
Maxim Integrated  
66  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
CNFG_CHG_I (0x28)  
BIT  
Field  
7
6
5
4
3
2
1
0
IMON_DISCHG_SCALE[3:0]  
0b1111  
MUX_SEL[3:0]  
Reset  
0b0000  
Access Type  
Write, Read  
Write, Read  
RESET-  
TYPE  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0b0000 = 8.2mA  
0b0001 = 40.5mA  
0b0010 = 72.3mA  
0b0011 = 103.4mA  
0b0100 = 134.1mA  
0b0101 = 164.1mA  
0b0110 = 193.7mA  
0b0111 = 222.7mA  
0b1000 = 251.2mA  
0b1001 = 279.3mA  
0b1010-0b1111 = 300mA  
Selects the battery discharge current  
full-scale current value.  
This 4-bit configuration starts at 8.2  
and ends at 300mA.  
IMON_  
DISCHG_  
SCALE  
7:4  
SYSRST  
0b0000 = Multiplexer is disabled and  
AMUX is high-impedance.  
0b0001 = CHGIN voltage monitor.  
0b0010 = CHGIN current monitor.  
0b0011 = BATT voltage monitor.  
0b0100 = BATT charge current monitor.  
Valid only while battery charging is  
happening (CHG = 1).  
0b0101 = BATT discharge current  
monitor normal measurement.  
0b0110 = BATT discharge current  
monitor nulling measurement.  
0b0111 = THM voltage monitor.  
0b1000 = TBIAS voltage monitor.  
0b1001 = AGND voltage monitor  
(through 100Ω pulldown resistor).  
0b1010-0b1111 = SYS voltage monitor.  
Selects the analog channel to connect to  
AMUX. The AMUX output buffer  
consumes current unless it is in the  
0b0000 state. When measurements are  
not needed, configure  
MUX_SEL  
3:0  
SYSRST  
MUX_SEL[3:0] = 0b0000.  
Maxim Integrated  
67  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
CNFG_LDO_A (0x30)  
BIT  
Field  
Reset  
7
6
5
4
3
2
1
0
ADE_LDO  
0b1  
LDO_VREG[6:0]  
OTP  
Access Type Write, Read  
Write, Read  
RESET-  
TYPE  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0 = Disabled  
1 = Enabled  
ADE_LDO  
7
SYSRST  
LDO Active Discharge Resistor Control  
0x00 = 0.800V  
0x01 = 0.825V  
...  
0x27 = 1.775V  
0x28 = 1.800V  
...  
LDO Target Regulation Voltage  
(V  
).  
LDO-REG  
LDO_VREG  
6:0  
SYSRST  
This 7-bit configuration is a linear  
transfer function that starts at 0.8V and  
ends at 3.975V, with 25mV increments.  
0x7E = 3.950V  
0x7F = 3.975V  
CNFG_LDO_B (0x31)  
BIT  
Field  
3
2
1
0
LDO_PM[1:0]  
LDO_EN[1:0]  
Reset  
0b01  
OTP  
Access Type  
Write, Read  
Write, Read  
RESET-  
TYPE  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0b00 = Forced low-power mode  
0b01 = Forced normal mode  
0b10 = Pin-controlled, active high  
(normal mode when PMLDO pin is high)  
0b11 = Pin-controlled, active low  
LDO_PM  
3:2  
SYSRST  
SYSRST  
LDO Power Mode Control  
(normal mode when PMLDO pin is low)  
0b00 = LDO is forced disabled  
0b01 = LDO is forced enabled  
0b10 = LDO enables when nENLDO  
asserts or when CHGIN is valid.  
0b11 = Same as 0b10.  
LDO_EN  
1:0  
LDO Enable Control  
Maxim Integrated  
68  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
CNFG_SNK1_A (0x40)  
BIT  
Field  
7
6
5
4
3
2
1
0
SNK_FS1[1:0]  
INV_SNK1  
0b0  
BRT_SNK1[4:0]  
0b00100  
Reset  
0b00  
Access Type  
Write, Read  
Write, Read  
Write, Read  
RESET-  
TYPE  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0b00 = Disabled  
0b01 = Enabled with 3.2mA full-scale  
range (0.1mA LSB)  
0b10 = Enabled with 6.4mA full-scale  
range (0.2mA LSB)  
SNK1 Enable and Full-Scale Range  
Control  
SNK_FS1  
7:6  
SYSRST  
0b11 = Enabled with 12.8mA full-scale  
range (0.4mA LSB)  
0 = Positive-Duty Operation. SNK1 is  
on during the beginning of each period  
for the programmed duty length.  
1 = Negative-Duty Operation. SNK1 is  
off during the beginning of each period  
for the programmed duty length.  
INV_SNK1  
5
SYSRST  
SNK1 Invert Control  
SNK1 Current (Brightness) Control  
SNK_FS1[1:0] = 0b00  
don't care  
0x00 = 0.1mA/0.2mA/0.4mA  
0x01 = 0.2mA/0.4mA/0.8mA  
...  
SNK_FS1[1:0] = 0b01  
0.1mA–3.2mA in 0.1mA steps  
BRT_SNK1  
4:0  
SYSRST  
SNK_FS1[1:0] = 0b10  
0.2mA–6.4mA in 0.2mA steps  
0x1F = 3.2mA/6.4mA/12.8mA  
SNK_FS1[1:0] = 0b11  
0.4mA–12.8mA in 0.4mA steps  
Maxim Integrated  
69  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
CNFG_SNK1_B (0x41)  
BIT  
Field  
7
6
5
4
3
2
1
0
P_SNK1[3:0]  
0b0000  
D_SNK1[3:0]  
0b1111  
Reset  
Access Type  
Write, Read  
Write, Read  
RESET-  
TYPE  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0x0 = 0.5s  
0x1 = 1.0s  
0x2 = 1.5s  
0x3 = 2.0s  
0x4 = 2.5s  
0x5 = 3.0s  
0x6 = 3.5s  
0x7 = 4.0s  
0x8 = 4.5s  
0x9 = 5.0s  
0xA = 5.5s  
0xB = 6.0s  
0xC = 6.5s  
0xD = 7.0s  
0xE = 7.5s  
0xF = 8s  
P_SNK1  
7:4  
SYSRST  
SNK1 Period Control  
0x0 = 6.25%  
0x1 = 12.5%  
0x2 = 18.75%  
0x3 = 25%  
0x4 = 31.25%  
0x5 = 37.5%  
0x6 = 43.75%  
0x7 = 50%  
0x8 = 56.25%  
0x9 = 62.5%  
0xA = 68.75%  
0xB = 75%  
D_SNK1  
3:0  
SYSRST  
SNK1 Duty Cycle Control  
0xC = 81.25%  
0xD = 87.5%  
0xE = 93.75%  
0xF = 100%  
Maxim Integrated  
70  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
CNFG_SNK2_A (0x42)  
BIT  
Field  
7
6
5
4
3
2
1
0
SNK_FS2[1:0]  
INV_SNK2  
0b0  
BRT_SNK2[4:0]  
0b00100  
Reset  
0b00  
Access Type  
Write, Read  
Write, Read  
Write, Read  
RESET-  
TYPE  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0b00 = Disabled  
0b01 = Enabled with 3.2mA full-scale  
range (0.1mA LSB)  
0b10 = Enabled with 6.4mA full-scale  
range (0.2mA LSB)  
SNK2 Enable and Full-Scale  
Range Control  
SNK_FS2  
7:6  
SYSRST  
0b11 = Enabled with 12.8mA full-scale  
range (0.4mA LSB)  
0 = Positive-Duty Operation. SNK2 is  
on during the beginning of each period  
for the programmed duty length.  
1 = Negative-Duty Operation. SNK2 is  
off during the beginning of each period  
for the programmed duty length.  
INV_SNK2  
5
SYSRST  
SNK2 Invert Control  
SNK2 Current (Brightness) Control  
SNK_FS2[1:0] = 0b00  
don't care  
0x00 = 0.1mA/0.2mA/0.4mA  
0x01 = 0.2mA/0.4mA/0.8mA  
...  
SNK_FS2[1:0] = 0b01  
0.1mA–3.2mA in 0.1mA steps  
BRT_SNK2  
4:0  
SYSRST  
SNK_FS2[1:0] = 0b10  
0x1F = 3.2mA/6.4mA/12.8mA  
0.2mA–6.4mA in 0.2mA steps  
SNK_FS2[1:0] = 0b11  
0.4mA–12.8mA in 0.4mA steps  
Maxim Integrated  
71  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
CNFG_SNK2_B (0x43)  
BIT  
Field  
7
6
5
4
3
2
1
0
P_SNK2[3:0]  
0b0000  
D_SNK2[3:0]  
0b1111  
Reset  
Access Type  
Write, Read  
Write, Read  
RESET-  
TYPE  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0x0 = 0.5s  
0x1 = 1.0s  
0x2 = 1.5s  
0x3 = 2.0s  
0x4 = 2.5s  
0x5 = 3.0s  
0x6 = 3.5s  
0x7 = 4.0s  
0x8 = 4.5s  
0x9 = 5.0s  
0xA = 5.5s  
0xB = 6.0s  
0xC = 6.5s  
0xD = 7.0s  
0xE = 7.5s  
0xF = 8s  
P_SNK2  
7:4  
SYSRST  
SNK2 Period Control  
0x0 = 6.25%  
0x1 = 12.5%  
0x2 = 18.75%  
0x3 = 25%  
0x4 = 31.25%  
0x5 = 37.5%  
0x6 = 43.75%  
0x7 = 50%  
0x8 = 56.25%  
0x9 = 62.5%  
0xA = 68.75%  
0xB = 75%  
D_SNK2  
3:0  
SYSRST  
SNK2 Duty Cycle Control  
0xC = 81.25%  
0xD = 87.5%  
0xE = 93.75%  
0xF = 100%  
Maxim Integrated  
72  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
CNFG_SNK_TOP (0x44)  
BIT  
Field  
7
6
5
4
3
2
1
0
EN_SNK_  
MSTR  
CLK_64_S  
Reset  
0b0  
0b0  
Access Type  
Read Only  
Write, Read  
RESET-  
TYPE  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
RSVD  
7:2  
64Hz Clock Mirror. CLK_64_S is  
internally driven by the same clock that  
drives the current sink PWM logic.  
This signal has a 10% duty cycle.  
Allows software to align LED blink  
patterns between SNK1 and SNK2.  
0 = Root clock is low.  
1 = Root clock is high.  
CLK_64_S  
1
0
SYSRST  
EN_SNK_  
MSTR  
0 = Current sinks disabled.  
1 = Current sinks enabled.  
SYSRST  
Master Sink Enable Bit  
Maxim Integrated  
73  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
Typical Application Circuits  
Battery Charger using LDO Hardware Enable Key  
4.5V  
5V DC INPUT  
CHGIN  
SYS  
C 22μF  
SYS  
C
4.7μF  
CHGIN  
SYSTEM LOADS  
MAX77734  
10V (0603)  
25V (0402)  
INLDO  
V
L
C
1μF  
nENLDO  
LDO  
VL  
6V (0402)  
C
2.2μF  
ON-KEY  
LDO  
GND  
6V (0402)  
V
(0.8V – 3.975V)  
LDO  
BATT  
THM  
V
IO  
C
4.7μF  
BATT  
Li+  
10V (0402)  
POKLDO  
SDA  
TBIAS  
NTC 3380K  
= 10kΩ  
10kΩ  
R
25  
μC  
SCL  
SYS  
nIRQ  
SNK1  
SNK2  
PMLDO  
AMUX  
ADC  
Battery Charger using LDO Software Enable  
4.5V  
5V DC INPUT  
CHGIN  
SYS  
C
22μF  
SYS  
C
4.7μF  
25V (0402)  
CHGIN  
MAX77734  
SYSTEM LOADS  
10V (0603)  
INLDO  
V
L
nENLDO  
LDO  
C
1μF  
VL  
V
(0.8V – 3.975V)  
LDO  
6V (0402)  
C
2.2μF  
6V (0402)  
LDO  
GND  
100k  
150mA LOAD  
POKLDO  
BATT  
THM  
C
4.7μF  
BATT  
C
0.1μF  
VIO  
Li+  
10V (0402)  
6V (0402)  
V
IO  
TBIAS  
NTC 3380K  
= 10kΩ  
10kΩ  
SDA  
SCL  
IO SUPPLY  
R
25  
SYS  
μC  
SNK1  
SNK2  
nIRQ  
PMLDO  
AMUX  
ADC  
Maxim Integrated  
74  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
Ordering Information  
PART NUMBER  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
20 WLP  
FACTORY OPTIONS  
MAX77734ENP+*  
Engineering samples with custom options  
MAX77734AENP+T**  
MAX77734BENP+T  
MAX77734CENP+T  
MAX77734GENP+T  
MAX77734QENP+T  
20 WLP  
A
B
20 WLP  
20 WLP  
C
G
Q
20 WLP  
20 WLP  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
T = Tape and reel.  
*Custom samples only. Not for production or stock. Contact factory for information.  
**Future product—contact factory for availability.  
Maxim Integrated  
75  
www.maximintegrated.com  
MAX77734  
Ultra-Low Power Tiny PMIC with Power Path  
Charger for Small Li+ and 150mA LDO  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
0
6/17  
Initial release  
Updated General Description and Applications sections, replaced Simplified  
Application Circuit, Figure 5, Figure 8, Figure 13, and Figure 15, updated Typical  
Operating Characteristics, Table 1 changed to Table 3, Table 3 changed to Table 1,  
corrected symbology  
1, 15, 17, 20,  
21, 25−28,  
30−33, 38, 39,  
45, 47, 73, 74  
1
2
9/17  
5/18  
1, 3, 7, 9, 19,  
20, 26, 29, 30,  
33, 42, 45-47,  
66, 73, 74  
Updated Electrical Characteristics tables, updated TOC6, replaced Table 10, updated  
Figure 13, added new section called PCB Layout Guidelines, updated  
CNFG_CHG_I (0x28) in Register Map, updated Ordering Information table  
1, 26,  
33, 74, 75  
Updated Table 1, added new part number to Table 6, added new part number to  
Ordering Information table  
3
4
7/18  
1, 10, 33,  
40, 53, 75  
Updated Electrical Characteristics table, updated descriptions in Register Map section,  
added MAX77734Q to the Ordering Information table  
11/18  
1, 29, 36, 38,  
59, 69, 71  
Updated Benefits and Features, Shutdown (Bias Off) State section, Figure 7, Battery  
Temperature Fault State section, and descriptions in Register Map section  
5
7/20  
For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2020 Maxim Integrated Products, Inc.  
76  

相关型号:

MAX77734ENP

Ultra-Low Power Tiny PMIC with Power Path Charger for Small Li and 150mA LDO
MAXIM

MAX77734GENPT

Ultra-Low Power Tiny PMIC with Power Path Charger for Small Li and 150mA LDO
MAXIM

MAX77734QENPT

Ultra-Low Power Tiny PMIC with Power Path Charger for Small Li and 150mA LDO
MAXIM

MAX77751

3.15A USB-C Autonomous Charger for 1-Cell Li Batteries
MAXIM

MAX77751AEFG

3.15A USB-C Autonomous Charger for 1-Cell Li Batteries
MAXIM

MAX77751BEFG

3.15A USB-C Autonomous Charger for 1-Cell Li Batteries
MAXIM

MAX77751CEFG

3.15A USB-C Autonomous Charger for 1-Cell Li Batteries
MAXIM

MAX77751CEVKIT

Up to 16V Protection
MAXIM

MAX77751DEFG

3.15A USB-C Autonomous Charger for 1-Cell Li Batteries
MAXIM

MAX77751FEFG

3.15A USB-C Autonomous Charger for 1-Cell Li Batteries
MAXIM

MAX77751GEFG

3.15A USB-C Autonomous Charger for 1-Cell Li Batteries
MAXIM

MAX77751HEFG

3.15A USB-C Autonomous Charger for 1-Cell Li Batteries
MAXIM