MAX77960BEFV12+ [MAXIM]

25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries;
MAX77960BEFV12+
型号: MAX77960BEFV12+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries

文件: 总82页 (文件大小:939K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
Click here to ask about the production status of specific part numbers.  
MAX77960B/MAX77961B  
25V , 3A  
to 6A , USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
General Description  
Benefits and Features  
The MAX77960B/MAX77961B are high-performance  
wide-input 3A (MAX77960B)/6A (MAX77961B) buck-  
boost chargers with Smart Power Selector™ and operate  
as a reverse buck converter without an additional inductor,  
allowing the ICs to power USB on-the-go (OTG) acces-  
sories. The devices integrate low-loss power switches and  
provide high efficiency, low heat, and fast battery charging  
in a small solution size. The reverse buck has true load  
disconnect and is protected by an adjustable output cur-  
rent limit. The devices are highly flexible and programma-  
● 3.5V to 25.4V Input Operating Range, 30V  
DC  
Withstand  
● 97% Peak Efficiency for 2S Battery at  
9V /7.4V  
/1.5A  
IN  
OUT  
OUT  
● 97% Peak Efficiency for 3S Battery at  
15V /12.6V  
/2A  
IN  
OUT  
OUT  
● MAX77960B  
• 100mA to 3.15A Programmable Input Current Limit  
• 100mA to 3A Programmable Constant Current  
Charge  
2
ble through I C configuration or autonomously through re-  
sistor configuration.  
● MAX77961B  
• 100mA to 6.3A Programmable Input Current Limit  
• 100mA to 6A Programmable Constant Current  
Charge  
The battery charger includes the Smart Power Selector to  
accommodate a wide range of battery sizes and system  
loads. The Smart Power Selector allows the system to  
start up smoothly when an input source is available even  
when the battery is deeply discharged (dead battery) or  
missing. For battery safety/authentication reasons, the ICs  
can be configured to keep charging disabled, and allow  
the DC-DC to switch and regulate the SYS voltage. The  
● Remote Differential Voltage Sensing  
● 600kHz or 1.2MHz Switching Frequency Options  
● System Instant On with Smart Power Selector Power  
Path  
● Charge Safety Timer  
● Die Temperature Regulation with Thermal Foldback  
Loop  
● Input Power Management with Adaptive Input Current  
Limit (AICL) and Input Voltage Regulation  
● 10mΩ BATT to SYS Switch, Up to 10A Overcurrent  
Threshold  
2
system processor can later enable charging using I C  
commands as appropriate. Alternatively, the ICs can be  
configured to automatically start charging.  
Applications  
● USB Type-C Powered Wide-Input Charging  
● Reverse Buck Mode 5.1V/3A to Support USB OTG  
Applications  
● JEITA Compliant with NTC Thermistor Monitor  
● I C or Resistor Programmable  
● 4mm x 4mm, 30-Lead FC2QFN  
● 2- and 3-Cell Battery-Powered Devices  
● Smartphones, Tablets, and 2-in-1 Laptops  
● Medical Devices, Health and Fitness Monitors  
● Digital Still, Video, and Action Cameras  
● Handheld Computers and Terminals  
● Handheld Radios  
2
Ordering Information appears at end of data sheet.  
● Power Tools  
● Drones  
● Battery Backup  
● Wireless Speakers  
Smart Power Selector is a trademark of Maxim Integrated Products, Inc.  
19-101123; Rev 0; 6/21  
 
 
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
Simplified Block Diagram  
SYS  
CHGIN  
V
V
SYS  
BUS  
SYSA  
PGND  
Q
1
Q
3
CSINN  
CSINP  
Q
Q
4
2
Q
BAT  
V
PVL  
PVL  
AVL  
BATT  
V
BATT  
BIAS AND  
REFERENCE  
V
AVL  
GATE DRIVER  
V
AVL  
OPTIONAL I2C  
COMMUNICATION  
JEITA  
THM  
THM  
PK+  
SCL  
SDA  
INTB  
SCL  
SDA  
INTB  
BATSP  
2
I
C INTERFACE AND  
INTERRUPT  
CHARGER AND OTG CONTROL  
PK-  
BATSN  
OTGEN  
DISQBAT  
STBY  
OTGEN  
DISQBAT  
STBY  
2/3-CELL LI-ION BATTERY  
ISET  
ITO  
INLIM  
VSET  
OPTIONAL RESISTOR  
PROGRAMMABILITY  
STAT  
STAT  
CNFG  
V
PVL  
UVLO  
OVLO  
OCP  
INOKB  
GND  
THERMAL MONITOR  
INOKB  
THERMAL SHDN  
MAX77960B  
MAX77961B  
www.maximintegrated.com  
Maxim Integrated | 2  
 
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
TABLE OF CONTENTS  
General Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Benefits and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Simplified Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
30-Lead FC2QFN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Pin Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
MAX77960B/MAX77961B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Charger Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Device Configuration Input (CNFG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
CHGIN Standby Input (STBY) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Battery to SYS Q  
Disable Input (DISQBAT). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
BAT  
Q
BAT  
and DC-DC Control—Configuration Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Thermistor Input (THM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Autonomous Charging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Charger Input Current Limit Setting Input (INLIM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Fast-Charge Current Setting Input (ISET). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Top-Off Current Setting Input (ITO). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Charge Termination Voltage Setting Input (VSET) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Switch Mode Charger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Smart Power Selector (SPS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
CHGIN Regulation Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
SYS Regulation Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Power States. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Powering Up with the Charger Disabled by Default . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Input Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Adaptive Input Current Limit (AICL) and Input Voltage Regulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Input Self-Discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
System Self-Discharge with No Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Charger States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
No Input Power or Charger Disabled Idle State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Precharge State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Trickle Charge State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Fast-Charge Constant Current State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
www.maximintegrated.com  
Maxim Integrated | 3  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
TABLE OF CONTENTS (CONTINUED)  
Fast-Charge Constant Voltage State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Top-Off State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Done State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Timer Fault State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Watchdog Timer Suspend State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Thermal Shutdown State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Thermal Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Thermal Foldback. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
JEITA Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Thermal Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Factory Ship Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Minimum System Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Battery Differential Voltage Sense (BATSP, BATSN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Battery Overcurrent Alert. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Charger Interrupt Debounce Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Input Power-OK/OTG Power-OK Output (INOKB). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Charge Status Output (STAT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Reverse Buck Mode (OTG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
OTG Enable (OTGEN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Analog Low-Noise Power Input (AVL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Low-Side Gate Driver Power Supply (PVL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
System Faults. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Interrupt Output (INTB). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
2
I C Serial Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
System Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Bit Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
START and STOP Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Acknowledge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Slave Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Clock Stretching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
General Call Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Communication Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Communication Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Writing to a Single Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Writing to Sequential Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Writing Multiple Bytes using Register-Data Pairs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Reading from a Single Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Reading from Sequential Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
www.maximintegrated.com  
Maxim Integrated | 4  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
TABLE OF CONTENTS (CONTINUED)  
FUNC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Register Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Inductor Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
CHGIN Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
SYS Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Battery Insertion Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
PCB Layout Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Typical Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
2
Wide-Input I C Programmable Charger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
2
Wide-Input I C Programmable Charger with Charger Disabled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Wide-Input Autonomous Charger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
www.maximintegrated.com  
Maxim Integrated | 5  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
LIST OF FIGURES  
Figure 1. Li Battery Charge Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 2. Charger State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 3. Charge Currents vs. Junction Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 4. JEITA Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 5. B2SOVRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 6. Functional Logic Diagram for Communications Controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
2
Figure 7. I C Bit Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
2
Figure 8. I C Start Stop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 9. Writing to a Single Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 10. Writing to Sequential Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 11. Writing to Multiple Registers with “Multiple Byte Register-Data Pairs” Protocol . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 12. Reading from a Single Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Figure 13. Reading from Sequential Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Figure 14. Battery Insertion Protection with 2S Battery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Figure 15. Battery Insertion Protection with 3S Battery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Figure 16. PCB Layout Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
www.maximintegrated.com  
Maxim Integrated | 6  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
LIST OF TABLES  
Table 1. CNFG Program Options Lookup Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table 2. Q and DC-DC Control Configuration Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
BAT  
Table 3. Trip Temperatures for Different Thermistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 4. INLIM, ITO, ISET, and VSET Pin Connections for Autonomous Charging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 5. INLIM Program Options Lookup Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 6. ISET Program Options Lookup Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 7. ITO Program Options Lookup Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 8. VSET Program Options Lookup Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 9. List of Charger Interrupt Debounce Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Table 10. Charge Status Indicator by STAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Table 11. Recommended Inductance for Combinations of Switching Frequency and Maximum Nominal CHGIN  
Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Table 12. Suggested Inductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Table 13. Suggested CHGIN Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Table 14. Suggested SYS Capacitors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
www.maximintegrated.com  
Maxim Integrated | 7  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
Absolute Maximum Ratings  
CHGIN to GND.................................................... -0.3V to +30.0V  
CSINP, CSINN to CHGIN...................................... -0.3V to +0.3V  
LX1 to PGND....................................................... -0.3V to +30.0V  
LX2 to PGND....................................................... -0.3V to +16.0V  
BST1 to PVL........................................................ -0.3V to +30.0V  
BST2 to PVL........................................................ -0.3V to +16.0V  
BST_ to LX ............................................................ -0.3V to +2.2V  
SYS, SYSA to GND............................................. -0.3V to +16.0V  
BATT to GND ...................................................... -0.3V to +16.0V  
SYS to BATT ....................................................... -0.3V to +16.0V  
PVL, AVL, ISET, VSET, INLIM, ITO, CNFG, THM to GND . -0.3V  
to +2.2V  
AVL to PVL ............................................................-0.3V to +0.3V  
DISQBAT, OTGEN, STBY, STAT, INOKB, INTB, SDA, SCL to  
GND.......................................................................-0.3V to +6.0V  
CHGIN Continuous Current ........................................... 6.5A  
LX_, PGND Continuous Current.................................... 6.5A  
SYS, BATT Continuous Current .................................. 10.0A  
RMS  
RMS  
RMS  
Continuous Power Dissipation (Multilayer Board) (T = +70°C,  
A
derate 40.37mW/°C above +70°C.) ...........................3229.71mW  
Operating Temperature Range.............................-40°C to +85°C  
Storage Temperature Range ..............................-65°C to +150°C  
BATSP to GND..........................................-0.3V to V  
BATSN, PGND to GND ......................................... -0.3V to +0.3V  
+ 0.3V  
BATT  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the  
device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability.  
Package Information  
30-Lead FC2QFN  
Package Code  
F304A4F+1  
21-100278  
90-100100  
Outline Number  
Land Pattern Number  
Thermal Resistance, Four-Layer Board:  
Junction-to-Ambient (θ  
)
24.77°C/W  
1.67°C/W  
JA  
Junction-to-Case Thermal Resistance (θ  
)
JC  
www.maximintegrated.com  
Maxim Integrated | 8  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages.  
Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different  
suffix character, but the drawing pertains to the package regardless of RoHS status.  
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a  
four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/  
thermal-tutorial.  
www.maximintegrated.com  
Maxim Integrated | 9  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
Electrical Characteristics  
(V  
= 7.6V, V  
= 7.6V, V  
= 9V, T = -40°C to +85°C. T = +25°C (typ). Limits are production tested at T = +25°C. Limits  
SYS  
BATT  
CHGIN A A A  
over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
GENERAL ELECTRICAL CHARACTERISTICS  
CHGIN Voltage Range  
V
Operating voltage  
3.5  
25.4  
26.7  
V
V
CHGIN  
CHGIN Overvoltage  
Threshold  
V
V
rising, 365mV hysteresis  
25.4  
26.05  
CHGIN_OVLO  
CHGIN  
V
V
rising, 100mV overdrive  
falling, 100mV overdrive  
10  
7
μs  
CHGIN Overvoltage  
Delay  
t
CHGIN  
D_CHGIN_OVL  
O
ms  
CHGIN  
CHGIN Undervoltage  
Threshold  
V
V
V
rising, 20% hysteresis  
3.43  
3.5  
3.57  
V
CHGIN_UVLO  
CHGIN  
= 2.4V, the input is undervoltage  
CHGIN  
0.075  
0.17  
and R  
is the only loading  
INSD  
V
= 9.0V, charger disabled  
0.5  
4
CHGIN  
I
CHGIN  
CHGIN Quiescent  
V
V
= 9.0V, charger enabled, V  
= 8.7V (2S configuration), no  
=
CHGIN  
SYS  
mA  
Current (I  
= 0A)  
SYS  
2.7  
BATT  
switching  
MODE[3:0] = 0x0 (DC-DC off), STBY = H  
or STBY_EN = 1, V = 5V  
I
1
CHGIN_STBY  
CHGIN  
FSHIP_MODE = 1 or DISQBAT = high,  
I
2.3  
100  
0.01  
10  
5.0  
200  
10  
SHDN  
V
= 0V, I  
= 0A, V  
= 13.5V  
CHGIN  
SYS  
2
BATT  
DISQBAT = low, I C enabled, V  
=
CHGIN  
0V, I  
= 0A, V  
= 13.5V  
SYS  
BATT  
V
SYS  
= 7.6V, V  
= 0V, charger  
BATT  
I
BATT  
disabled, T = +25°C  
A
V
SYS  
= 7.6V, V  
BATT  
= 0V, charger  
BATT Quiescent Current  
(I = 0A)  
disabled, T = +85°C  
A
µA  
SYS  
V
= 9V, V  
= 8.4V, Q is off,  
BAT  
CHGIN  
BATT  
battery overcurrent protection disabled,  
charger is enabled but in its done mode,  
57  
57  
65  
T
A
= +25°C  
I
BATTDN  
V
= 9V, V  
= 8.4V, Q  
is off,  
BAT  
CHGIN  
BATT  
battery overcurrent protection disabled,  
charger is enabled but in its done mode,  
T
A
= +85°C  
Guaranteed by V  
and  
SYSUVL  
O rising  
SYSOVL  
O rising  
SYSUVLO  
SYS Operating Voltage  
V
V
V
SYS  
V
V
V
SYSOVLO  
SYS Undervoltage  
Lockout Threshold  
V
V
falling, 530mV hysteresis  
3.95  
4.1  
4.25  
SYSUVLO  
SYS  
rising, 430mV hysteresis, 2S  
SYS  
10.65  
10.9  
11.15  
battery  
SYS Overvoltage  
Lockout Threshold  
V
SYSOVLO  
V
SYS  
rising, 267mV hysteresis, 3S  
13.75  
1.7  
14.1  
1.8  
14.45  
1.9  
battery  
PVL Output Voltage  
V
V
PVL  
Thermal Shutdown  
Threshold  
T
T rising  
J
165  
°C  
SHDN  
Thermal Shutdown  
Hysteresis  
15  
°C  
www.maximintegrated.com  
Maxim Integrated | 10  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
Electrical Characteristics (continued)  
(V  
= 7.6V, V  
= 7.6V, V  
= 9V, T = -40°C to +85°C. T = +25°C (typ). Limits are production tested at T = +25°C. Limits  
CHGIN A A A  
SYS  
BATT  
over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
CHGIN Self-Discharge  
Resistance  
R
V
V
V
= 3V  
44  
kΩ  
INSD  
CHGIN  
CHGIN  
CHGIN  
BATT Self-Discharge  
Resistance  
R
R
= 9V, V  
= 9V, V  
= V  
= V  
= 5V  
= 5V  
600  
600  
300  
Ω
Ω
BATSD  
SYSSD  
SYS  
BATT  
SYS Self-Discharge  
Resistance  
SYS  
BATT  
Self-Discharge Latch  
Time  
ms  
SWITCH MODE CHARGER / CHARGER  
Programmable from 8.0V to 9.26V (2S  
battery) and 12.0V to 13.05V (3S  
battery), production tested at 8V, 8.38V,  
8.8V and 9.26V only (2S battery) and  
12V, 12.57V, 13.2V, and 13.89V only (3S  
battery)  
BATT Regulation  
Voltage Range  
V
8.00  
13.05  
V
BATTREG  
8.8V or 13.2V settings, T = +25°C  
-0.9  
-1  
-0.3  
-0.3  
+0.3  
+0.5  
A
BATT Regulation  
Voltage Accuracy  
%
8.8V or 13.2V settings, T = 0°C to  
A
+85°C (Note 1)  
BATT Overvoltage  
Lockout Threshold  
V
rising above V  
, 2%  
BATTREG  
BATT  
V
V
75  
240  
2.5  
375  
3.0  
mV/cell  
V
BATTOVLO  
hysteresis  
BATT Undervoltage  
Lockout Threshold  
V
BATT  
rising, 100mV hysteresis  
2.0  
BATTUVLO  
MAX77960B; 100mA to 3A; production  
tested at 100mA, 200mA, 500mA,  
1000mA, 1500mA, 2000mA, and 3000mA  
settings  
0.10  
0.10  
3
6
Fast-Charge Current  
Program Range  
I
A
FC  
MAX77961B; 100mA to 6A; production  
tested at 100mA, 200mA, 500mA,  
1000mA, 1500mA, 2000mA, 3000mA,  
3500mA, and 3800mA settings  
T
= +25°C, V  
> V  
,
,
,
,
,
,
A
BATT  
SYSMIN  
SYSMIN  
SYSMIN  
SYSMIN  
80  
100  
200  
120  
220  
programmed for 100mA  
T
A
= +25°C, V > V  
BATT  
180  
programmed for 200mA  
T
A
= +25°C, V > V  
BATT  
481  
500  
519  
programmed for 500mA  
T
A
= +25°C, V > V  
BATT  
962  
1000  
2000  
3000  
3500  
3800  
1038  
2075  
3113  
3631  
3943  
programmed for 1000mA  
= +25°C, V > V  
SYSMIN  
Fast-Charge Current  
Accuracy  
mA  
T
A
BATT  
1925  
2887  
3369  
3657  
programmed for 2000mA  
= +25°C, V > V  
SYSMIN  
T
A
BATT  
programmed for 3000mA  
MAX77961B. T = +25°C, V  
V
>
A
BATT  
, programmed for 3500mA  
SYSMIN  
MAX77961B. T = +25°C, V  
V
>
BATT  
A
, programmed for 3800mA  
SYSMIN  
www.maximintegrated.com  
Maxim Integrated | 11  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
Electrical Characteristics (continued)  
(V  
= 7.6V, V  
= 7.6V, V  
= 9V, T = -40°C to +85°C. T = +25°C (typ). Limits are production tested at T = +25°C. Limits  
CHGIN A A A  
SYS  
BATT  
over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.)  
PARAMETER  
SYMBOL  
CONDITIONS  
-40°C < T < +85°C, V  
MIN  
TYP  
MAX  
UNITS  
> V ,  
SYSMIN  
A
BATT  
-20  
+20  
mA  
programmed for 200mA or less (Note 1)  
Fast-Charge Current  
Accuracy (Over  
Temperature)  
-40°C < T < +85°C, V > V  
,
SYSMIN  
A
BATT  
programmed for greater than 200mA  
(Note 1)  
-5  
+5  
%
V
CHGIN Adaptive  
Voltage Regulation  
Range  
2
V
I C programmable  
4.025  
4.42  
19.05  
4.68  
CHGIN_REG  
CHGIN Adaptive  
Voltage Regulation  
Accuracy  
4.55V setting  
4.55  
V
MAX77960B; programmable; production  
tested at 100mA, 150mA, 200mA,  
500mA, 1000mA, 1500mA, and 3000mA  
settings only  
0.1  
0.1  
3.15  
6.3  
CHGIN Current Limit  
Range  
CHGIN_ILIM  
A
MAX77961B; programmable; production  
tested at 100mA, 150mA, 200mA,  
500mA, 1000mA, 1500mA, 3000mA,  
4000mA, and 6300mA settings only  
Charger enabled, 100mA input current  
88  
98  
108  
215  
setting, T = +25°C  
A
Charger enabled, 200mA input current  
175  
195  
setting, T = +25°C  
A
Charger enabled, 500mA input current  
475  
488  
500  
setting, T = +25°C  
A
CHGIN Current Limit  
Accuracy  
Charger enabled, 1000mA input current  
950  
975  
1000  
3000  
4000  
6300  
mA  
setting, T = +25°C  
A
Charger enabled, 3000mA input current  
2850  
3800  
5985  
2925  
3900  
6143  
setting, T = +25°C  
A
MAX77961B; charger enabled, 4000mA  
input current setting, T = +25°C  
A
MAX77961B; charger enabled, 6300mA  
input current setting, T = +25°C  
A
Charger enabled, 200mA or less input  
current setting, -40°C < T < +85°C (Note  
1)  
-22.5  
-7.5  
+17.5  
+2.5  
A
CHGIN Current Limit  
Accuracy (Over  
Temperature)  
%
Charger enabled, greater than 200mA  
input current setting, -40°C < T < +85°C  
A
(Note 1)  
Precharge Voltage  
Threshold  
V
V
BATT  
rising, voltage threshold per cell  
2.4  
35  
2.5  
50  
2.6  
65  
V/Cell  
mA  
PRECHG  
I
PRECHG  
Precharge Current  
Prequalification  
Threshold Hysteresis  
V
PQ-H  
Applies to V  
150  
mV/Cell  
PRECHG  
www.maximintegrated.com  
Maxim Integrated | 12  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
Electrical Characteristics (continued)  
(V  
= 7.6V, V  
= 7.6V, V  
= 9V, T = -40°C to +85°C. T = +25°C (typ). Limits are production tested at T = +25°C. Limits  
CHGIN A A A  
SYS  
BATT  
over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Programmable from 5.535V to 6.970V  
(2S battery) and 8.303V to 10.455V (3S  
Minimum SYS Voltage  
Accuracy  
V
-3  
+3  
%
SYSMIN  
battery), V  
= 5.6V (2S battery) or  
BATT  
8.4V (3S battery), tested at 3V/cell setting  
Default setting = enabled; ITRICKLE[1:0]  
= 00  
75  
100  
200  
300  
400  
125  
250  
375  
500  
600  
Default setting = enabled; ITRICKLE[1:0]  
= 01 (Note 1)  
150  
225  
300  
100  
Trickle Charge Current  
I
mA  
TRICKLE  
Default setting = enabled; ITRICKLE[1:0]  
= 10 (Note 1)  
Default setting = enabled; ITRICKLE[1:0]  
= 11  
Top-Off Current  
Program Range  
I
Programmable from 100mA to 600mA  
2mV overdrive, 100ns rise/fall time  
mA  
ms  
TO  
Charge Termination  
Deglitch Time  
t
160  
TERM  
Program options for disabled, 100mV/  
cell, 150mV/cell, and 200mV/cell with  
CHG_RSTRT[1:0]  
Charger Restart  
Threshold Range  
V
100  
200  
mV/cell  
RSTRT  
Charger Restart  
Deglitch Time  
10mV overdrive, 100ns rise time  
130  
30  
ms  
ms  
Charger State Change  
Interrupt Deglitch Time  
Excludes transition to timer fault state,  
watchdog timer state  
t
SCIDG  
SWITCH MODE CHARGER / CHARGE TIMER  
Applies to both low-battery  
Prequalification Time  
t
prequalification and dead-battery  
prequalification modes  
30  
min  
PQ  
Fast-Charge Constant  
Current + Fast-Charge  
Constant Voltage Time  
Adjustable from 3hrs, 4hrs, 5hrs, 6hrs,  
7hrs, 8hrs, 10hrs including a disable  
setting; 3hrs default  
t
3
hrs  
FC  
Adjustable from 30s to 70min in 10min  
steps  
Top-Off Time  
t
30  
min  
TO  
SWITCH MODE CHARGER / WATCHDOG TIMER  
Watchdog Timer Period (Note 2)  
t
80  
s
WD  
SWITCH MODE CHARGER / BUCK-BOOST  
CHGIN OK to Start  
Switching Delay  
Delay from INOKB H → L to LX_ start  
switching  
t
150  
5
ms  
START  
MAX77960B, V  
= 9V, V  
=
CHGIN  
SYS  
4.3  
8.6  
5.7  
V
BATT  
= 7.6V  
Buck-Boost Current  
Limit  
HSILIM  
A
MAX77961B, V  
= 7.6V  
= 9V, V  
=
CHGIN  
SYS  
10  
11.4  
V
BATT  
SWITCH MODE CHARGER / BUCK-BOOST / SWITCH IMPEDANCE AND LEAKAGE CURRENT  
LX1 High-Side  
Resistance  
R
V
= 9V, V  
= V = 7.6V  
BATT  
16.5  
26  
mΩ  
LX1_HS  
CHGIN  
SYS  
www.maximintegrated.com  
Maxim Integrated | 13  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
Electrical Characteristics (continued)  
(V  
= 7.6V, V  
= 7.6V, V  
= 9V, T = -40°C to +85°C. T = +25°C (typ). Limits are production tested at T = +25°C. Limits  
CHGIN A A A  
SYS  
BATT  
over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.)  
PARAMETER  
LX1 Low-Side  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
R
V
V
V
= 9V, V  
= 9V, V  
= 9V, V  
= V  
= V  
= V  
= 7.6V  
= 7.6V  
= 7.6V  
17  
30  
mΩ  
LX1_LS  
CHGIN  
CHGIN  
CHGIN  
SYS  
SYS  
SYS  
BATT  
BATT  
BATT  
Resistance  
LX2 High-Side  
Resistance  
R
9
21  
0.01  
1
18  
33  
10  
mΩ  
mΩ  
LX2_HS  
LX2 Low-Side  
Resistance  
R
LX2_LS  
LX1 = PGND or CHGIN, LX2 = PGND or  
SYS, T = +25°C  
A
LX_ Leakage Current  
BST_ Leakage Current  
µA  
µA  
LX1 = PGND or CHGIN, LX2 = PGND or  
SYS, T = +85°C  
A
BST_ = 1.8V, T = +25°C  
0.01  
1
10  
10  
A
BST_ = 1.8V, T = +85°C  
A
V
SYS  
= V  
= 8.4V, V  
BATT  
= 0V,  
= 0V,  
SYSA  
0.01  
1
charger disabled, T = +25°C  
SYS, SYSA Leakage  
Current  
A
µA  
µA  
V
SYS  
= V  
= 8.4V, V  
SYSA BATT  
charger disabled, T = +85°C  
A
CSINP, CSINN Leakage  
Current  
V
= 26.05V, V  
= V  
=
CSINN  
CHGIN  
CSINP  
I
, I  
-1  
+1  
17  
CSINP CSINN  
26.05V, T = +25°C  
A
SWITCH MODE CHARGER / SMART POWER SELECTOR  
BAT to SYS Dropout  
Resistance  
R
10  
90  
mΩ  
mV  
BAT2SYS  
BATT to SYS Reverse  
Regulation Voltage  
V
BSREG  
SWITCH MODE CHARGER / BATT TO SYS OVERCURRENT ALERT  
Battery Overcurrent  
Threshold Range  
Programmable from 3A to 10A. Option to  
disable.  
I
t
3
10  
A
BOVCR  
BOVRC  
Battery Overcurrent  
Debounce Time  
Response time for generating the  
overcurrent interrupt (Note 2)  
3.3  
ms  
SWITCH MODE CHARGER / THERMAL FOLDBACK  
Junction Temperature  
Thermal Regulation  
Loop Setpoint Program  
Range  
Junction temperature when charge  
current is reduced; programmable from  
85°C to 130°C in 5°C steps; default value  
is 115°C  
T
REG  
85  
130  
°C  
www.maximintegrated.com  
Maxim Integrated | 14  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
Electrical Characteristics (continued)  
(V  
= 7.6V, V  
= 7.6V, V  
= 9V, T = -40°C to +85°C. T = +25°C (typ). Limits are production tested at T = +25°C. Limits  
CHGIN A A A  
SYS  
BATT  
over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
The charge current is decreased 5% of  
the fast-charge current setting for every  
degree that the junction temperature  
exceeds the thermal regulation  
temperature. This slope ensures that the  
full-scale current of 3A (MAX77960B)/6A  
(MAX77961B) is reduced to 0A by the  
time the junction temperature is 20°C  
above the programmed loop set point.  
For lower programmed charge currents  
such as 480mA, this slope is valid for  
charge current reductions down to 80mA;  
below 100mA the slope becomes  
shallower but the charge current still  
reduced to 0A if the junction temperature  
is 20°C above the programmed loop set  
point.  
Thermal Regulation  
Gain  
A
-5  
%/°C  
TJREG  
SWITCH MODE CHARGER / THERMISTOR MONITOR  
V
/V  
rising, 1% hysteresis  
THM AVL  
THM Threshold, COLD  
THM Threshold, COOL  
THM Threshold, WARM  
THM Threshold, HOT  
THM_COLD  
THM_COOL  
THM_WARM  
THM_HOT  
73.36  
58.8  
33.68  
21.59  
4.9  
74.56  
60  
75.76  
61.2  
%
%
%
%
%
%
(thermistor temperature falling)  
V
/V rising, 1% hysteresis  
THM AVL  
(thermistor temperature falling)  
V
/V falling, 1% hysteresis  
THM AVL  
34.68  
22.5  
5.9  
35.68  
23.41  
6.9  
(thermistor temperature rising)  
V
/V falling, 1% hysteresis  
THM AVL  
(thermistor temperature rising)  
THM Threshold,  
Disabled  
VTHM/AVL falling, 1% hysteresis, THM  
function is disabled below this voltage  
THM Threshold, Battery  
Removal Detection  
V
/V  
rising, 1% hysteresis, battery  
THM AVL  
85.6  
87  
88.4  
1
removal  
V
= GND or V  
= GND or V  
; T = +25°C  
0.1  
0.1  
THM Input Leakage  
Current  
THM  
THM  
AVL  
AVL  
A
µA  
V
; T = +85°C  
A
REVERSE BUCK  
Buck Current Limit  
HSILIM_REV  
f
= 600kHz  
4.3  
5
5.7  
A
SW  
Reverse Buck  
Quiescent Current  
Not switching: output forced 200mV  
above its target regulation voltage  
1150  
µA  
Minimum BATT Voltage  
in OTG Mode  
V
V
= V  
, SYS UVLO falling  
SYS  
BATT.MIN.OT  
G
BATT  
5.96  
4.94  
6.14  
5.1  
6.32  
5.26  
V
V
threshold in OTG mode  
CHGIN Voltage in OTG  
Mode  
V
V
V
V
= V  
, OTGEN = high  
BATT.MIN.OTG  
CHGIN.OTG  
BATT  
CHGIN Undervoltage  
Threshold in OTG Mode  
V
CHGIN.OTG.U  
V
falling, OTGEN = high  
rising, OTGEN = high  
85  
%
%
CHGIN  
CHGIN  
CHGIN Overvoltage  
Threshold in OTG Mode  
V
CHGIN.OTG.  
OV  
110  
www.maximintegrated.com  
Maxim Integrated | 15  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
Electrical Characteristics (continued)  
(V  
= 7.6V, V  
= 7.6V, V  
= 9V, T = -40°C to +85°C. T = +25°C (typ). Limits are production tested at T = +25°C. Limits  
CHGIN A A A  
SYS  
BATT  
over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.)  
PARAMETER  
SYMBOL  
CONDITIONS  
, T = +25°C,  
MIN  
TYP  
MAX  
UNITS  
V
BATT  
= V  
BATT.MIN.OTG  
A
500  
550  
OTG_ILIM[2:0] = 0b000, OTGEN = high  
V
= V , T = +25°C,  
BATT  
BATT.MIN.OTG  
A
900  
1500  
3000  
±150  
±150  
990  
1650  
3300  
OTG_ILIM[2:0] = 0b001, OTGEN = high  
CHGIN Output Current  
Limit in OTG Mode  
I
CHGIN.OTG.LI  
M
mA  
V
BATT  
= V , T = +25°C,  
BATT.MIN.OTG  
A
OTG_ILIM[2:0] = 0b011, OTGEN = high  
V
BATT  
= V , T = +25°C,  
BATT.MIN.OTG  
A
OTG_ILIM[2:0] = 0b111, OTGEN = high  
Discontinuous inductor current (i.e., skip  
mode), OTGEN = high  
CHGIN Output Voltage  
Ripple in OTG Mode  
mV  
kΩ  
Continuous inductor current, OTGEN =  
high  
IO CHARACTERISTICS  
R
, R  
, R  
,
INLIM ISET VSET  
R , R  
TO CNFG  
Resistor  
R
5.49  
-1  
226  
PROG_  
Range  
Output Low Voltage  
INOKB, STAT  
I
= 1mA, T = +25°C  
0.4  
+1  
V
SINK  
A
5.5V, T = +25°C  
0
Output High Leakage  
INOKB, STAT  
A
µA  
5.5V, T = +85°C  
A
0.1  
DISQBAT, OTGEN,  
STBY Logic Input Low  
Threshold  
V
0.4  
V
V
IL  
DISQBAT, OTGEN,  
STBY Logic Input High  
Threshold  
V
IH  
1.4  
DISQBAT, OTGEN,  
STBY Logic Input  
Leakage Current  
5.5V (including current through pulldown  
resistor)  
5.5  
10  
µA  
kΩ  
DISQBAT, OTGEN,  
STBY Pulldown Resistor  
R
1000  
1200  
DISQBAT  
2
INTERFACE / I C INTERFACE AND INTERRUPT  
SCL, SDA Input Low  
Level  
0.3 x  
V
V
V
AVL  
SCL, SDA Input High  
Level  
0.7 x  
V
AVL  
SCL, SDA Input  
Hysteresis  
0.05 x  
V
V
AVL  
SCL, SDA Logic Input  
Current  
SDA = SCL = 5.5V  
-10  
+10  
0.4  
µA  
pF  
V
SCL, SDA Input  
Capacitance  
10  
SDA Output Low  
Voltage  
Sinking 20mA  
www.maximintegrated.com  
Maxim Integrated | 16  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
Electrical Characteristics (continued)  
(V  
= 7.6V, V  
= 7.6V, V  
= 9V, T = -40°C to +85°C. T = +25°C (typ). Limits are production tested at T = +25°C. Limits  
CHGIN A A A  
SYS  
BATT  
over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
0.4  
UNITS  
Output Low Voltage  
INTB  
I
= 1mA  
V
SINK  
V
V
= 5.5V, T = +25°C  
-1  
0
+1  
Output High Leakage  
INTB  
INTB  
A
μA  
= 5.5V, T = +85°C  
0.1  
INTB  
A
2
INTERFACE / I C COMPATIBLE INTERFACE TIMING FOR STANDARD, FAST, AND FAST-MODE PLUS  
Clock Frequency  
f
1000  
kHz  
µs  
SCL  
Hold Time (Repeated)  
START Condition  
t
0.26  
HD;STA  
CLK Low Period  
CLK High Period  
t
0.5  
µs  
µs  
LOW  
t
0.26  
HIGH  
Set-Up Time Repeated  
START Condition  
t
0.26  
0
µs  
SU;STA  
HD:DAT  
DATA Hold Time  
DATA Valid Time  
t
µs  
µs  
t
0.45  
0.45  
VD:DAT  
DATA Valid  
Acknowledge Time  
t
µs  
ns  
µs  
VD:ACK  
DATA Set-Up time  
t
50  
SU;DAT  
Set-Up Time for STOP  
Condition  
t
0.26  
SU;STO  
Bus-Free Time Between  
STOP and START  
t
0.5  
µs  
ns  
BUF  
Pulse Width of Spikes  
that Must be  
Suppressed by the Input  
Filter  
50  
2
INTERFACE / I C COMPATIBLE INTERFACE TIMING FOR HS-MODE (C = 100pF)  
B
Clock Frequency  
f
3.4  
MHz  
ns  
SCL  
Set-Up Time Repeated  
START Condition  
t
160  
160  
SU;STA  
Hold Time (Repeated)  
START Condition  
t
ns  
HD;STA  
CLK Low Period  
CLK High Period  
DATA Set-Up Time  
DATA Hold Time  
t
160  
60  
10  
0
ns  
ns  
ns  
ns  
LOW  
t
HIGH  
t
SU;DAT  
HD:DAT  
t
t
Set-Up Time for STOP  
Condition  
160  
ns  
SU;STO  
Pulse Width of Spikes  
that Must be  
Suppressed by the Input  
Filter  
10  
ns  
2
INTERFACE / I C COMPATIBLE INTERFACE TIMING FOR HS-MODE (C = 400pF)  
B
Clock Frequency  
f
1.7  
MHz  
SCL  
www.maximintegrated.com  
Maxim Integrated | 17  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
Electrical Characteristics (continued)  
(V  
= 7.6V, V  
= 7.6V, V  
= 9V, T = -40°C to +85°C. T = +25°C (typ). Limits are production tested at T = +25°C. Limits  
CHGIN A A A  
SYS  
BATT  
over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Set-Up Time Repeated  
START Condition  
t
160  
ns  
SU;STA  
Hold Time (Repeated)  
START Condition  
t
160  
ns  
HD;STA  
CLK Low Period  
CLK High Period  
DATA Set-Up time  
DATA Hold Time  
t
320  
120  
10  
ns  
ns  
ns  
ns  
LOW  
t
HIGH  
t
SU;DAT  
HD:DAT  
t
t
0
Set-Up Time for STOP  
Condition  
160  
ns  
SU;STO  
Pulse Width of Spikes  
that Must be  
Suppressed by the Input  
Filter  
10  
ns  
Note 1: Guaranteed by design. Not production tested.  
Note 2: Guaranteed by design. Production tested through scan.  
www.maximintegrated.com  
Maxim Integrated | 18  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
Typical Operating Characteristics  
(C  
= 10μF, C  
= 2 x 47μF, L = 3.3μH (PA5007.332NLT) or 1.5μH (PA5003.152NLT), T = +25°C unless otherwise noted.)  
SYS A  
CHGIN  
www.maximintegrated.com  
Maxim Integrated | 19  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
Pin Configuration  
MAX77960B/MAX77961B  
TOP VIEW  
30  
29  
28  
27  
26  
25  
24  
23  
MAX77960B  
MAX77961B  
BST1  
1
CNFG  
22  
21  
20  
19  
18  
INLIM  
GND  
CHGIN  
LX1  
2
3
SYSA  
PGND  
LX2  
4
5
6
INTB  
17  
16  
15  
INOKB  
STAT  
SDA  
SYS  
7
8
9
10  
11  
12  
13  
14  
30-LEAD FC2QFN  
(4mm x 4mm)  
Pin Description  
PIN  
NAME  
FUNCTION  
High-Side Input MOSFET Driver Supply. Bypass BST1 to LX1 with a 0.22μF/6.3V capacitor.  
1
BST1  
www.maximintegrated.com  
Maxim Integrated | 20  
 
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
Buck-Boost Charger Input. CHGIN is also the buck output when the charger is operating in the  
reverse mode. Bypass with two 10μF/35V ceramic capacitors from CHGIN to PGND.  
2
CHGIN  
3
4
5
LX1  
PGND  
LX2  
Inductor Connection One. Connect an inductor between LX1 and LX2.  
Power Ground for Buck-Boost Low-Side MOSFETs  
Inductor Connection Two. Connect an inductor between LX1 and LX2.  
System Supply Output. Bypass SYS to PGND with a minimum of two 47µF/25V ceramic  
capacitors.  
6
SYS  
Active-High Input. Connect the OTGEN pin to high enables the OTG function. When OTGEN pin is  
2
7
OTGEN  
pulled low, the OTG enable function is controlled by I C. To pull the OTGEN pin low with a  
pulldown resistor, the resistance must be lower than 44kΩ.  
Active-High Input. Connect high to disable the integrated Q  
FET between SYS and BATT.  
BAT  
Charging is disabled when DISQBAT connects to high. When DISQBAT is pulled low, Q  
FET  
BAT  
8
DISQBAT  
control is defined in the Q  
and DC-DC Control—Configuration Table. To pull the DISQBAT pin  
BAT  
low with a pulldown resistor, the resistance must be lower than 44kΩ.  
9
BST2  
High-Side Output MOSFET Driver Supply. Bypass BST2 to LX2 with a 0.22μF/6.3V capacitor.  
Battery Voltage Differential Sense Negative Input. Connect to the negative terminal of the battery  
pack.  
10  
BATSN  
Battery Voltage Differential Sense Positive Input. Connect to the positive terminal of the battery  
pack.  
11  
12  
BATSP  
BATT  
Battery Power Connection. Connect to the positive terminal of the battery pack. Bypass BATT to  
PGND with a 10μF/25V capacitor. All BATT pins must be connected together externally.  
Thermistor Input. Connect a negative temperature coefficient (NTC) thermistor from THM to GND.  
Connect a resistor equal to the thermistor +25°C resistance from THM to AVL. JEITA-controlled  
charging available with JEITA_EN = 1. Charging is suspended when the thermistor voltage is  
outside of the hot and cold limits. Connect THM to GND to disable the thermistor temperature  
sensor. Connect THM to AVL to emulate battery removal and prevent charging.  
13  
THM  
2
14  
15  
SCL  
SDA  
Serial Interface I C Clock Input  
2
Serial Interface I C Data. Open-drain output.  
Charger Status Output. Active-low, open-drain output, connect to the pullup through a 10kΩ  
resistor. Pulls low when the charging is in progress. Otherwise, STAT is high impedance.  
16  
STAT  
STAT toggles between low and high (when connected to a pullup rail) during charge. STAT  
becomes low when top-off threshold is detected and charger enters the done state. STAT  
becomes high (when connected to a pullup rail) when charge faults are detected.  
Input Power-OK/OTG Power-OK Output. Active-low, open-drain output pulls low when the CHGIN  
voltage is valid.  
17  
INOKB  
18  
19  
20  
INTB  
SYSA  
GND  
Active-Low Open-Drain Interrupt Output. Connect a pullup resistor to the pullup power source.  
SYS Voltage Sensing Input for SYS UVLO and OVLO Detection  
Analog Ground  
Charger Input Current Limit Setting Input. Connect a resistor (R  
programs the charger input current limit. Refer to Table 5.  
) from INLIM to GND  
INLIM  
21  
22  
23  
INLIM  
CNFG  
ISET  
Device Configuration Input. Connect a resistor (R  
following parameter, see Table 1.  
) from CNFG to GND to program the  
CNFG  
● Switching frequency (600kHz or 1.2MHz)  
● Number of battery cells in series connection (2S or 3S)  
Fast-Charge Current Setting Input. Connect a resistor (R  
fast charge current. See Table 6.  
) from ISET to GND programs the  
ISET  
www.maximintegrated.com  
Maxim Integrated | 21  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
Charge Termination Voltage Setting Input. Connect a resistor (R  
programs the charge termination voltage. See Table 8.  
) from VSET to GND  
VSET  
24  
VSET  
Top-Off Current Setting Input. Connect a resistor (R ) from ITO to GND programs the top-off  
ITO  
current. See Table 7.  
25  
26  
ITO  
Analog Voltage Supply for On-Chip, Low-Noise Circuits. Bypass with a 4.7μF/6.3V ceramic  
capacitor to GND and connect AVL to PVL with a 4.7Ω resistor.  
AVL  
Internal Bias Regulator High Current Output Bypass. Supports internal noisy and high current gate  
drive loads. Bypass to GND with a minimum 4.7μF/6.3V ceramic capacitor, and connect AVL to  
PVL with a 4.7Ω resistor. Powering external loads from PVL is not recommended, other than pullup  
resistors.  
27  
28  
PVL  
Active-High Input. Connect high to disable the DC-DC between CHGIN input and SYS output.  
Battery supplies the system power if the Q  
is on. See Table 2. Connect low to control the DC-  
BAT  
STBY  
DC with the power-path state machine. To pull the STBY pin low with a pulldown resistor, the  
resistance must be lower than 44kΩ.  
29  
30  
CSINP  
CSINN  
Input Current-Sense Positive Input  
Input Current-Sense Negative Input  
www.maximintegrated.com  
Maxim Integrated | 22  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
Detailed Description  
Charger Configuration  
The MAX77960B/MAX77961B are highly flexible, highly integrated switch mode charger. Autonomous charging inputs  
2
configure the charger without host I C interface, see the Autonomous Charging section for more details. The  
2
MAX77960B/MAX77961B have an I C interface that allows the host controller to program and monitor the charger.  
Charger configuration registers, interrupt, interrupt mask, and status registers are described in the Register Map.  
Device Configuration Input (CNFG)  
CNFG is the MAX77960B/MAX77961B's configuration input for the following parameters:  
● Switching frequency (600kHz or 1.2MHz)  
● Number of battery cells in series connection (2S or 3S)  
Connect a resistor (R  
) from CNFG to GND to program. See Table 1. Note that for 1.2MHz switching frequency,  
CNFG  
only 2S battery is supported.  
Table 1. CNFG Program Options Lookup Table  
NUMBER OF  
SERIES BATTERY  
CELLS  
PART NUMBER  
SWITCHING FREQUENCY (MHz)  
R
CNFG  
(Ω)  
Tied to PVL or  
86600  
2
3
2
MAX77960BEFV06+  
MAX77961BEFV06+  
0.6  
1.2  
8660  
MAX77960BEFV12+  
MAX77961BEFV12+  
Tied to PVL or  
69800  
CHGIN Standby Input (STBY)  
The host can reduce the MAX77960B/MAX77961B's CHGIN supply current by driving STBY pin to high or setting  
STBY_EN bit to 1. When STBY is pulled high or STBY_EN bit is set to 1, the DC-DC turns off. When STBY is pulled low  
and STBY_EN bit is set to 0, the DC-DC is controlled by the power-path state machine. To pull the STBY pin low with a  
pulldown resistor, the resistance must be lower than 44kΩ.  
Battery to SYS Q  
BAT  
The host can disable the Q  
Disable Input (DISQBAT)  
switch by setting DISIBS bit to 1 or driving DISQBAT pin to high. Charging stops when  
BAT  
Q
BAT  
switch is disabled.  
When DISQBAT is pulled low and DISIBS bit is set to 0, Q  
FET control is defined in Table 2. To pull the DISQBAT  
BAT  
pin low with a pulldown resistor, the resistance must be lower than 44kΩ.  
Q
and DC-DC Control—Configuration Table  
BAT  
The Q  
control and the DC-DC control depend on both hardware pins (OTGEN, DISQBAT, and STBY) and their  
BAT  
2
associated I C registers.  
Table 2. Q  
and DC-DC Control Configuration Table  
BAT  
OTGEN (PIN) OR  
DISQBAT (PIN) STBY (PIN) OR  
OR DISIBS (I C) STBY_EN (I C)  
MODE [3:0] = 0xA  
Q
BAT  
DC-DC  
2
2
2
(I C)  
Power-path state  
machine/internal logic  
control  
Power-path state machine/internal logic  
control  
0
0
0
www.maximintegrated.com  
Maxim Integrated | 23  
 
 
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
Table 2. Q  
and DC-DC Control Configuration Table (continued)  
BAT  
OTGEN (PIN) OR  
DISQBAT (PIN) STBY (PIN) OR  
OR DISIBS (I C) STBY_EN (I C)  
MODE [3:0] = 0xA  
Q
BAT  
DC-DC  
2
2
2
(I C)  
Enable  
(SYS is powered from battery through  
switch while DC-DC is disabled)  
0
0
0
1
1
0
Disable  
Q
BAT  
Power-path state  
machine/internal logic  
control  
Disable  
Disable  
(SYS is powered from battery through  
0
1
x
1
x
Disable  
Q
BAT  
body diode while DC-DC is  
disabled)  
Power-path state  
machine/internal logic  
control  
1
Enable  
Thermistor Input (THM)  
The thermistor input can be utilized to achieve functions that include charge suspension, JEITA-compliant charging, and  
battery removal detection. Thermistor monitoring feature can be disabled by connecting the THM pin to ground.  
Charge Suspension  
The THM input connects to an external negative temperature coefficient (NTC) thermistor to monitor battery or system  
temperature. Charging stops when the thermistor temperature is out of range (T < T  
or T > T  
). The charge  
COLD  
HOT  
timers are reset and the CHG_DTLS[3:0], CHG_OK register bits report the charging suspension status and CHG_I  
interrupt bit is set. When the thermistor comes back into range (T  
timer restarts.  
< T < T  
), charging resumes and the charge  
COLD  
HOT  
JEITA-Compliant Charging  
JEITA-compliant charging is available with JEITA_EN = 1. See the JEITA Compliance section for more details.  
Battery Removal Detection  
Connecting THM to AVL emulates battery removal and prevents charging.  
Disable Thermistor Monitoring  
Connecting THM to GND disables the thermistor monitoring function, and JEITA-controlled charging is unavailable in this  
configuration. The MAX77960B/MAX77961B detect an always-connected battery when THM is grounded, and charging  
starts automatically when a valid adapter is plugged in. In applications with removable batteries, do not connect THM to  
GND because the MAX77960B/MAX77961B cannot detect battery removal when THM is grounded. Instead, connecting  
THM to the thermistor pin in the battery pack is recommended.  
www.maximintegrated.com  
Maxim Integrated | 24  
 
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
Since the thermistor monitoring circuit employs an external bias resistor from THM to AVL, the thermistor is not limited  
only to 10kΩ (at +25ºC). Any resistance thermistor can be used as long as the value is equivalent to the thermistors  
+25ºC resistance. For example, with a 10kΩ at R  
resistor, the charger enters a temperature suspend state when  
TB  
the thermistor resistance falls below 3.97kΩ (too hot) or rises above 28.7kΩ (too cold). This corresponds to 0ºC to  
+50ºC range when using a 10kΩ NTC thermistor with a beta of 3500. The general relation of thermistor resistance to  
temperature is defined by the following equation:  
1
1
{βx(  
)}  
T+273°C 298°C  
R = R xe  
T
25  
where:  
R = The resistance in Ω of the thermistor at temperature T in Celsius  
T
R
= The resistance in Ω of the thermistor at +25ºC  
25  
β = The material constant of the thermistor, which typically ranges from 3000k to 5000k  
T = The temperature of the thermistor in °C  
Some designs might prefer other thermistor temperature limits. Threshold adjustment can be accommodated by changing  
R
, connecting a resistor in series and/or in parallel with the thermistor, or using a thermistor with different β. For  
TB  
example, a +45ºC hot threshold and 0°C cold threshold can be realized by using a thermistor with a β to 4250 and  
connecting 120kΩ in parallel. Since the thermistor resistance near 0ºC is much higher than it is near +50ºC, a large  
parallel resistance lowers the cold threshold, while only slightly lowering the hot threshold. Conversely, a small series  
resistance raises the cold threshold, while only slightly raising the hot threshold. Raising R raises both the hot and cold  
TB  
threshold, while lowering R lowers both thresholds.  
TB  
Since AVL is active whenever a valid power is provided at CHGIN or BATT, thermistor bias current flows at all times,  
even when charging is disabled. When using a 10kΩ thermistor and a 10kΩ pullup to AVL, this results in an additional  
90μA load. This load can be reduced to 9μA by instead using a 100kΩ thermistor and 100kΩ pullup resistor.  
Table 3. Trip Temperatures for Different Thermistors  
THERMISTOR  
TRIP TEMPERATURES  
(˚C) (˚C)  
R
(Ω)  
β
R
TB  
(Ω)  
R
15  
(Ω)  
R
(Ω)  
T
(˚C)  
T
T
T
HOT  
(˚C)  
25  
45  
COLD  
COOL  
WARM  
10000  
10000  
47000  
100000  
3380  
3940  
4050  
4250  
10000  
10000  
47000  
100000  
14826  
15826  
75342  
164083  
4900  
4354  
-0.8  
+14.7  
+42.6  
+40.0  
+39.6  
+38.8  
+61.4  
+55.7  
+54.8  
+53.2  
+2.6  
+3.2  
+4.1  
+16.1  
+16.4  
+16.8  
19993  
40781  
Autonomous Charging  
2
2
The MAX77960B/MAX77961B support autonomous charging without I C. In applications without I C serial  
communication, use the following pins to configure the MAX77960B/MAX77961B charger:  
CNFG, INLIM, ITO, ISET, VSET, OTGEN, DISQBAT, STBY.  
The INLIM, ITO, ISET, and VSET pins are used to program the charger's input current limit, top-off current, constant  
charging current, and termination voltage.  
Connect a valid resistor from each of these pins to ground to program the charger. See the Pin Description for details.  
Connect all four pins (INLIM, ITO, ISET, VSET) to PVL to use the default values for the associated charger registers.  
For autonomous charging, it is considered an abnormal condition if some of these pins (INLIM, ITO, ISET, VSET) connect  
to a valid resistor, but others do not (for example open or connects to PVL or connects to a resistor that is out of range).  
When this happens, the MAX77960B/MAX77961B allow the DC-DC to switch and regulate the SYS voltage, but disable  
charging for safety reasons. The STAT pin reports no charge.  
www.maximintegrated.com  
Maxim Integrated | 25  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
Table 4. INLIM, ITO, ISET, and VSET Pin Connections for Autonomous Charging  
INLIM PIN  
Valid resistor  
Tied to PVL  
ITO PIN  
Valid resistor  
Tied to PVL  
ISET PIN  
Valid resistor  
Tied to PVL  
VSET PIN  
Valid resistor  
Tied to PVL  
AUTONOMOUS CHARGING  
Normal, charger configuration is programmed by resistors  
Normal, charger configuration uses default values  
Abnormal, no charging  
All other connections  
Charger Input Current Limit Setting Input (INLIM)  
When a valid charge source is applied to CHGIN, the MAX77960B/MAX77961B limit the current drawn from the charge  
source to the value programmed with INLIM pin.  
The default charger input current limit is programmed with the resistance from INLIM to GND. See Table 5.  
2
If I C is used in the application, the CHGIN input current limit can also be reprogrammed with CHGIN_ILIM[6:0] register  
2
bits after the devices power up. Connect INLIM pin to PVL to use I C default settings.  
Table 5. INLIM Program Options Lookup Table  
MAX77960B  
MAX77961B  
R
(Ω)  
CHGIN INPUT CURRENT LIMIT (mA)  
DEFAULT VALUE OF CHGIN_ILIM[6:0]  
CHGIN INPUT CURRENT LIMIT (mA)  
DEFAULT VALUE OF CHGIN_ILIM[6:0]  
INLIM  
Tied to PVL  
226000  
178000  
140000  
110000  
86600  
69800  
54900  
39200  
22600  
17800  
14000  
11000  
8660  
500  
100  
500  
100  
200  
200  
300  
300  
400  
400  
500  
500  
1000  
1500  
2000  
2500  
3000  
N/A  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
4500  
5000  
6000  
N/A  
N/A  
6980  
N/A  
5490  
N/A  
Fast-Charge Current Setting Input (ISET)  
When a valid input source is present, the battery charger attempts to charge the battery with a fast-charge current  
programmed with ISET pin.  
The default fast-charge current is programmed with the resistance from ISET to GND. See Table 6.  
2
If I C is used in the application, the fast-charge current can also be reprogrammed with CHGCC[5:0] register bits after  
2
the devices power up. Connect ISET pin to PVL to use I C default settings.  
Table 6. ISET Program Options Lookup Table  
MAX77960B  
MAX77961B  
R
ISET  
(Ω)  
FAST-CHARGE CURRENT SELECTION (mA)  
DEFAULT VALUE OF CHGCC[5:0]  
FAST-CHARGE CURRENT SELECTION (mA)  
DEFAULT VALUE OF CHGCC[5:0]  
Tied to PVL  
226000  
450  
100  
450  
100  
www.maximintegrated.com  
Maxim Integrated | 26  
 
 
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
Table 6. ISET Program Options Lookup Table (continued)  
MAX77960B  
MAX77961B  
R
ISET  
(Ω)  
FAST-CHARGE CURRENT SELECTION (mA)  
DEFAULT VALUE OF CHGCC[5:0]  
FAST-CHARGE CURRENT SELECTION (mA)  
DEFAULT VALUE OF CHGCC[5:0]  
178000  
140000  
110000  
86600  
69800  
54900  
39200  
22600  
17800  
14000  
11000  
8660  
200  
300  
200  
300  
400  
400  
500  
500  
1000  
1500  
2000  
2500  
3000  
N/A  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
4500  
5000  
6000  
N/A  
N/A  
6980  
N/A  
5490  
N/A  
Top-Off Current Setting Input (ITO)  
When the battery charger is in the top-off state, the top-off charge current is programmed by ITO pin.  
The default top-off charge current is programmed with the resistance from ITO to GND. See Table 7.  
2
If I C is used in the application, the top-off current can also be reprogrammed with TO_ITH[2:0] register bits after the  
2
device powers up. Connect ITO pin to PVL to use I C default settings.  
Table 7. ITO Program Options Lookup Table  
TOP-OFF CURRENT THRESHOLD (mA)  
R
(Ω)  
ITO  
DEFAULT VALUE OF TO_ITH[2:0]  
Tied to PVL  
226000  
178000  
140000  
110000  
86600  
100  
100  
200  
300  
400  
500  
600  
69800  
Charge Termination Voltage Setting Input (VSET)  
The default charge termination voltage is programmed with the resistance from VSET to GND. See Table 8.  
2
If I C is used in the application, the charge termination voltage can also be reprogrammed with CHG_CV_PRM[5:0]  
2
register bits after the device powers up. Connect the VSET pin to PVL to use I C default settings.  
www.maximintegrated.com  
Maxim Integrated | 27  
 
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
Table 8. VSET Program Options Lookup Table  
CHARGE TERMINATION VOLTAGE SETTING - 2S (V) CHARGE TERMINATION VOLTAGE SETTING - 3S (V)  
R
VSET  
(Ω)  
DEFAULT VALUE OF CHG_CV_PRM[5:0]  
DEFAULT VALUE OF CHG_CV_PRM[5:0]  
Tied to PVL  
226000  
178000  
140000  
110000  
86600  
69800  
54900  
39200  
22600  
17800  
14000  
11000  
8660  
8.0  
8.0  
12.0  
12.0  
8.1  
8.2  
8.3  
8.4  
8.5  
8.6  
8.7  
8.8  
8.9  
9.0  
9.1  
9.2  
9.26  
9.26  
12.15  
12.3  
12.45  
12.6  
12.75  
12.9  
13.05  
N/A  
N/A  
N/A  
N/A  
N/A  
6980  
N/A  
5490  
N/A  
Switch Mode Charger  
The MAX77960B/MAX77961B feature a switch mode buck-boost charger for a two-cell or three-cell lithium ion (Li+) or  
lithium polymer (Li-polymer) battery. The charger operates from a wide input range from 3.5V to 25.4V, ideal for USB-C  
charging applications. The charger input current limit is programmable from 100mA to 3.15A (MAX77960B)/100mA to  
6.3A (MAX77961B), which is flexible to operate from either an AC-to-DC wall charger or a USB-C adapter.  
The MAX77960B/MAX77961B offer a high level of integration and do not require any external MOSFETs to operate,  
which significantly reduces the solution size. They operate with a programmable switching frequency of 600kHz or  
1.2MHz, which is ideal for portable devices that benefit from small solution size and high efficiency. The battery charging  
current is programmable from 100mA to 3A (MAX77960B)/100mA to 6A (MAX77961B) to accommodate small or large  
capacity batteries.  
When the input source is not available, the MAX77960B/MAX77961B can be enabled in a reverse buck mode, delivering  
energy from the battery to the input, CHGIN, commonly known as USB on-the-go (OTG). In OTG mode, the regulated  
CHGIN voltage is 5.1V with programmable current limit up to 3A.  
Maxim’s Smart Power Selector architecture makes the best use of the limited adapter power and the battery power to  
power the system. Adapter power that is not used for the system charges the battery. When system load exceeds the  
input limit, battery provides additional current to the system up to the BATT to SYS overcurrent threshold, programmable  
2
with B2SOVRC[3:0] I C register bits. All power switches for charging and switching the system load between battery and  
adapter power are integrated on chip—no external MOSFETs required.  
Maxim’s proprietary process technology allows for low-R  
devices in a small solution size. The resistance between  
DSON  
BATT and SYS is 10mΩ (typ), allowing low power dissipation and long battery life.  
A multitude of safety features ensure reliable charging. Features include charge timers, watchdog, junction thermal  
regulation, and over-/undervoltage protection.  
www.maximintegrated.com  
Maxim Integrated | 28  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
Smart Power Selector (SPS)  
The smart power selector (SPS) architecture includes a network of internal switches and control loops that efficiently  
distributes energy between an external power source (CHGIN), the battery (BAT) and the system (SYS). This architecture  
allows power path operation with system instant on with a dead battery.  
The Simplified Block Diagram shows the smart power selector switches and gives them the following names: Q Q , Q ,  
1,  
2
3
Q and Q  
4
.
BAT  
Power Switches and Current Sense Resistor Descriptions  
● CHGIN Current-Sense Resistor: As shown in the Simplified Block Diagram, the CHGIN current is monitored with the  
input current sensing resistor, R , connected between CSINP and CSINN pins.  
S1  
● DC-DC Switches: Q Q , Q , and Q are the DC-DC switches that can operate as a buck (step down) or a boost  
1,  
2
3
4
(step up), depending on the external power source and battery voltage conditions.  
● Battery-to-System Switch: Q  
is used to control battery charging and discharging operations.  
BAT  
2
I C Configuration Register Bits  
● MODE[3:0] configures the Smart Power Selector mode to be Charging, OTG or DC-DC mode respectively. See  
MODE[3:0] register bits in the Register Map for details.  
● VCHGIN_REG[4:0] sets the CHGIN regulation voltage, when the MAX77960B/MAX77961B operate in forward mode  
(CHGIN has a valid power source). See the CHGIN Regulation Voltage section for details.  
● MINVSYS[2:0] sets the minimum system regulation voltage. See the SYS Regulation Voltage section for details.  
● B2SOVRC[3:0] sets the battery to system discharge overcurrent protection threshold.  
Energy Distribution Priority  
● With a valid external power source at CHGIN:  
• The external power source is the primary source of energy.  
• The battery is the secondary source of energy.  
• Energy delivery to SYS has the highest priority.  
• Any remaining energy from the power source that is not required by the system is available to the battery charger.  
● With no valid external power source at CHGIN:  
• The battery is the primary source of energy.  
• When OTG mode is enabled, energy delivery to SYS has the highest priority.  
• Any remaining energy from the battery that is not required by the system is available to power the CHGIN.  
CHGIN Regulation Voltage  
● In forward mode (when CHGIN is powered from a valid external source), CHGIN voltage is regulated to  
VCHGIN_REG[4:0] when a high impedance or current limited source is applied. VCHGIN might experience significant  
voltage droop from the high-impedance source when the MAX77960B/MAX77961B extract high power from the  
source. Regulating VCHGIN allows the MAX77960B/MAX77961B to extract the most power from the power source.  
See the Adaptive Input Current Limit (AICL) and Input Voltage Regulation section for more detail.  
● In reverse mode (OTG), CHGIN voltage is regulated to 5.1V with programmable current limit up to 3A  
(OTG_ILIM[2:0]).  
SYS Regulation Voltage  
With a valid external power source at CHGIN:  
● When the DC-DC is disabled (MODE[3:0] = 0x00 or STBY_EN = 0b1 or STBY pin = high), the Q  
switch is fully on  
BAT  
and V  
= V  
- I  
x R  
SYS  
BATT BATT BAT2SYS.  
● When the DC-DC is enabled and the charger is disabled (MODE[3:0] = 0x04), V  
is regulated to V  
BATTREG  
SYS  
(CHG_CV_PRM) and Q  
is off.  
BAT  
● When the DC-DC is enabled and the charger is enabled (MODE[3:0] = 0x05), but in a noncharging state such as  
Done, Thermistor Suspend, Watchdog Suspend, or Timer Fault, V is regulated to V (CHG_CV_PRM)  
SYS  
BATTREG  
and Q  
is off.  
BAT  
● When the DC-DC is enabled and the charger is enabled (MODE[3:0] = 0x05) and in a valid charging state such as  
www.maximintegrated.com  
Maxim Integrated | 29  
 
 
 
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
Precharge or Trickle Charge (V  
< V  
- 500mV), V  
is regulated to V  
(CHG_CV_PRM). The  
BATTREG  
BATT  
SYSMIN  
SYS  
charger operates as a linear regulator, and the power dissipation can be calculated with P = (V  
- V  
) x  
BATTREG  
BATT  
I
.
BATT  
● When the DC-DC is enabled and the charger is enabled (MODE[3:0] = 0x05) and in a valid charging state such as  
Fast Charge (CC or CV) or Top-Off (V > V - 500mV), the Q switch is fully on, and V = V  
+
BATT  
BATT  
SYSMIN  
BAT  
SYS  
I
x R  
.
BAT2SYS  
BATT  
● In all the modes described above when the power demand on SYS exceeds the input source power limit, the battery  
automatically provides supplemental power to the system. If the Q  
switch is initially off when V drops to V  
SYS BATT  
BAT  
- V  
, the Q  
switch turns on, and V  
is regulated to V  
- V  
.
BSREG  
BAT  
SYS  
BATT  
BSREG  
Without a valid external power source at CHGIN, including with OTG mode (MODE[3:0] = 0x0A):  
● The Q switch is fully on, and V = V - I x R  
BAT  
SYS  
BATT BATT  
BAT2SYS.  
Power States  
The MAX77960B/MAX77961B transition between power states as input/battery and load conditions dictate.  
The MAX77960B/MAX77961B provide four (4) power states and one (1) no power state. Under power limited conditions,  
the power path feature maintains SYS and USB-OTG loads at the expense of battery charge current. In addition, the  
battery supplements the input power when needed. See the Smart Power Selector (SPS) section for more details. As  
shown, transitions between power states are initiated by detection/removal of valid power sources, OTG events, and  
undervoltage conditions.  
1. NO INPUT POWER, MODE[3:0] = undefined: No input adapter or battery is detected. The charger and system are off.  
Battery is disconnected.  
2. BATTERY-ONLY, MODE[3:0] = any mode: CHGIN is invalid or outside the input voltage operating range. Battery is  
connected to power the SYS load (Q  
= on).  
BAT  
3. NO CHARGE - DC-DC in FORWARD mode, MODE[3:0] = 0x04: CHGIN input is valid, DC-DC supplies power to SYS.  
DC-DC operates from a valid input. Battery is disconnected (Q  
DC can supply.  
= off) when SYS load is less than the power that DC-  
BAT  
4. CHARGE - DC-DC in FORWARD mode, MODE[3:0] = 0x05: CHGIN input is valid, DC-DC supplies power to SYS and  
charges the battery with IBATT. DC-DC operates from a valid input.  
5. OTG - DC-DC in REVERSE mode (OTG), MODE[3:0] = 0x0A: OTG is active. Battery is connected to support SYS and  
OTG loads (Q  
= on), and charger operates in REVERSE buck mode.  
BAT  
Powering Up with the Charger Disabled by Default  
The MAX77960B/MAX77961B's default power state is CHARGE - DC-DC in FORWARD mode, MODE[3:0] = 0x05. For  
battery authentication/safety purposes, the MAX77960B/MAX77961B can be configured to keep charging disabled while  
allowing the DC-DC to switch and regulate the SYS voltage when power is applied to CHGIN. To implement this and  
enable the charger when appropriate:  
● Connect at least one of the INLIM, ITO, ISET or VSET pins to a valid resistor while tying the others (at least one) to  
PVL. CHG_DTLS = 0x05 and CHG_OK = 0.  
2
● The system processor can configure the charger through the I C interface.  
● The system processor enables charging by setting COMM_MODE to 1 (default is 0).  
2
See Wide-Input I C Programmable Charger with Charger Disabled for a pin connection example. Pin INLIM is connected  
to a valid resistor while ITO, ISET and VSET tie to PVL. The default input current limit is programmed by R  
, while  
INLIM  
default top-off current, constant charging current, and termination voltage use their default value. The system processor  
2
can re-program all four settings through the I C interface if needed.  
www.maximintegrated.com  
Maxim Integrated | 30  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
Input Validation  
The charger input is compared with several voltage thresholds to determine if it is valid. A charger input must meet the  
following characteristics to be valid:  
● CHGIN must be above V  
to be valid. Once CHGIN is above UVLO threshold, the information is latched  
CHGIN_UVLO  
and can only be reset when charger is in adaptive input current loop (AICL) and input current is lower than IULO  
threshold of 30mA.  
● CHGIN must be below its overvoltage lockout threshold (V  
).  
CHGIN_OVLO  
The devices generate a CHGIN_I interrupt (maskable with CHGIN_M bit) when the CHGIN status changes. Read the  
CHGIN input status with CHGIN_OK and CHGIN_DTLS[1:0] register bits.  
Adaptive Input Current Limit (AICL) and Input Voltage Regulation  
The MAX77960B/MAX77961B feature input power management to extract maximum input power while avoiding input  
source overload. The adaptive input current limit (AICL) and the input voltage regulation (CHGIN_REG) features allow the  
charger to extract more energy from relatively high resistance charge sources with long cables, noncompliant USB hubs  
or current limited adapters. In addition, the input power management allows the MAX77960B/MAX77961B to perform  
well with adapters that have poor transient load responses.  
With a high-resistance source, the charger input voltage drops substantially when it draws large current from the source.  
The charger's input voltage regulation loop automatically reduces the current drawn from the input to regulate the input  
voltage at V  
. If the input current is reduced to I  
(50mA typ) and the input voltage is still below  
CHGIN_REG  
CHGIN_REG_OFF  
V
, the charger input turns off. V  
is programmable with VCHGIN_REG[4:0] register bits.  
CHGIN_REG  
CHGIN_REG  
With a current limited source, if the MAX77960B/MAX77961B’s input current limit is programmed above the current limit  
of the adapter, the charger input voltage starts to drop when the input current drawn exceeds the source current limit.  
The charger's input voltage regulation loop allows the MAX77960B/MAX77961B to reduce its input current and operate  
at the current limit of the adapter.  
When operating with the input voltage regulation loop active, an AICL_I interrupt is generated, AICL_OK sets to 0. The  
device prioritize system energy delivery over battery charging. See the Smart Power Selector (SPS) section for more  
details.  
To extract most input power from a current limited charge source, monitor the AICL_OK status while decreasing the  
CHGIN_ILIM[6:0] register setting. Setting the CHGIN_ILIM[6:0] to a reduced to a value below the current limit of the  
adapter causes the input voltage to rise. Although the CHGIN_ILIM[6:0] is lowered, more power can be extracted from  
the adapter when the input voltage rises.  
Input Self-Discharge  
To ensure that a rapid removal and reinsertion of a charge source always results in a charger input interrupt, the charger  
input presents loading to the input capacitor to ensure that when the charge source is removed, the input voltage decays  
below the UVLO threshold in a reasonable time (t  
). The input self-discharge is implemented by with a 44kΩ resistor  
INSD  
(R  
) from CHGIN input to ground.  
INSD  
System Self-Discharge with No Power  
To ensure a timely, complete, repeatable, and reliable reset behavior when the system has no power, the MAX77960B/  
MAX77961B actively discharge the BATT and SYS nodes when the adapter is missing, the battery is removed and V  
SYS  
is less than V  
. The BATT and SYS discharge resistors are both 600Ω.  
SYSUVLO  
Charger States  
The MAX77960B/MAX77961B utilize several charging states to safely and quickly charge batteries as shown in Figure  
1 and Figure 2. Figure 1 shows an exaggerated view of a Li+/Li-Poly battery progressing through the following charge  
states when there is no system load and the die and battery are close to room temperature: Prequalification → Fast-  
charge → Top-off → Done.  
www.maximintegrated.com  
Maxim Integrated | 31  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
V
BATTREG  
V
RSTRT  
V
- 500mV  
SYSMIN  
V
PRECHG  
0V  
TIME  
I
I  
CHG SET  
I
TRICKLE  
I
TO  
I
PRECHG  
0A  
TIME  
CHARGER  
ENABLED  
NOT TO SCALE, V  
= 5.0V, I  
= 0A, T = +25°C  
SYS J  
CHGIN  
Figure 1. Li Battery Charge Profile  
www.maximintegrated.com  
Maxim Integrated | 32  
 
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
IDLE (POR)  
CHG_DTLS = 0x8  
CHG_OK = 1  
I
CHG = 0  
CHG TIMER = 0  
WD TIMER = 0  
MODE[3:0] PROGRAMS THE CHARGER ON AND  
CHG_EN = 1 AND CONV_RDY = 1  
V
V  
BATT  
PRECHG  
CHG TIMER t  
CHG TIMER SUSPEND  
WD TIMER SUSPEND  
PQ  
AND PQEN = 0  
(SOFT-START)  
T
< T  
SHDN  
J
PRECHARGE  
CHG_DTLS = 0x0  
CHG_OK = 1  
(RESET O-TYPE  
REGISTERS)  
I
CHG IPRECHG  
THERMAL SHUTDOWN  
CHG_DTLS = 0xA  
CHG_OK = 0  
V
< V  
PRECHG  
BATT  
V
V  
BATT  
PRECHG  
I
= 0  
CHG  
(SOFT-START)  
AND PQEN = 1  
(SOFT-START)  
CHG TIMER t  
CHG TIMER SUSPEND  
WD TIMER SUSPEND  
PQ  
TRICKLE CHARGE  
CHG_DTLS = 0x0  
CHG_OK = 1  
WDTCLR = 1  
OR WDTEN = 0  
I
I  
CHG TRICKLE  
CHG TIMER = 0 IF CHG_DTLS  
TRANSITIONS FROM 0x01  
T
T  
SHDN  
J
T
T  
SHDN  
J
CHG TIMER SUSPEND  
WD TIMER SUSPEND  
V
< V  
- 500mV  
BATT  
SYSMIN  
V
- 500mV V  
BATT  
SYSMIN  
TIMER FAULT  
CHG_DTLS = 0x6  
CHG_OK = 0  
(SOFT-START)  
OR PQEN = 0  
AND V  
V  
BATT  
PRECHG  
WATCHDOG SUSPEND  
CHG_DTLS = 0xB  
CHG_OK = 0  
AND PQEN = 1  
I
= 0  
CHG  
I
= 0  
CHG  
V
< V  
PRECHG  
BATT  
(SOFT-START)  
CHG TIMER t  
CHG TIMER SUSPEND  
WD TIMER SUSPEND  
FC  
FAST CHARGE (CC)  
CHG_DTLS = 0x1  
CHG_OK = 1  
MODE[3:0] PROGRAMS THE  
CHARGER OFF OR CHG_EN = 0 OR  
CONV_RDY = 0  
CHG TIMER SUSPEND  
WD TIMER SUSPEND  
WDTEN = 1  
AND WD TIMER > t  
CHG TIMER SUSPEND  
WD TIMER SUSPEND  
I
I  
CHG FC  
WD  
CHG TIMER = 0 IF CHG_DTLS  
TRANSITIONS FROM  
0x00 OR 0x03 OR 0x04  
I
< I  
FC CHG  
V
V  
BATTREG BATT  
ANY STATE  
CHG TIMER t  
FC  
CHG TIMER SUSPEND  
WD TIMER SUSPEND  
FAST CHARGE (CV)  
CHG_DTLS = 0x2  
CHG_OK = 1  
I
< I  
I  
TO CHG FC  
OUTPUT VOLTAGE LOOP IN CONTROL AND I  
CHG  
INTERNAL SIGNAL TO ENABLE CHARGER; REFER TO TRUTH TABLE  
CHG_EN  
CONV_RDY  
I FOR tTERM  
TO  
CONV_RDY = 1 WHEN ADC CONVERSION COMPLETES AND CHARGER TARGET  
THRESHOLDS ARE SET, EITHER BASED ON PIN OR I2C  
TOP OFF  
CHG_DTLS = 0x3  
CHG_OK = 1  
I
I  
CHG TO  
CHG TIMER = 0 IF CHG_DTLS  
TRANSITIONS FROM  
0x02  
CHARGER STATE WHERE CHARGE IS DISABLED (BATTERY CHARGE  
STOPPED)  
V
< (V  
- V  
)
RSTRT  
BATT  
BATTREG  
OR I  
> I  
CHG TO  
(NO SOFT-START)  
CHARGER STATE WHERE CHARGE IS ENABLED (BATTERY CHARGE  
ON-GOING)  
CHG TIMER t  
CHG TIMER SUSPEND  
WD TIMER SUSPEND  
TO  
CONDITION NEEDED TO TRANSITION BETWEEN 2 CHARGER STATES  
V
< V  
PQLB  
BATT  
DONE  
CHG TIMER AND WD TIMER STATE STATUS  
TRANSITION BETWEEN 2 CHARGER STATES  
CHG_DTLS = 0x4  
CHG_OK = 0  
CHG TIMER = 0  
I
CHG = 0  
CHG TIMER = 0  
WD TIMER = 0  
V
< (V  
- V  
)
RSTRT  
BATT  
BATTREG  
(NO SOFT-START)  
CHG TIMER RESUME  
WD TIMER RESUME  
Figure 2. Charger State Diagram  
No Input Power or Charger Disabled Idle State  
From any state shown in Figure 2 except thermal shutdown, the no input power or charger disabled state is entered  
whenever the charger is programmed to be off or the charger input CHGIN is invalid. After being in this state for t  
CHG_DTLS is set to 0x08 and CHG_OK is set to 1. A CHG_I interrupt is generated if CHG_OK was 0 previously.  
,
SCIDG  
While in the no input power or charger disabled state, the charger current is 0mA, the watchdog and charge timers are  
forced to 0, and the power to the system is provided by either the battery or the adapter. When both battery and adapter  
power are available, the adapter provides primary power to the system and the battery contributes supplemental energy  
to the system if necessary.  
www.maximintegrated.com  
Maxim Integrated | 33  
 
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
To exit the no input power or charger disabled state, the charger input must be valid and the charger must be enabled.  
Precharge State  
As shown in Figure 2, the charger enters the precharge state when the battery voltage is less than V  
. After being  
PRECHG  
in this state for t  
, a CHG_I interrupt is generated if CHG_OK was 0 previously, CHG_OK is set to 1 and CHG_DTLS  
SCIDG  
is set to 0x00. In the precharge state, charge current into the battery is I  
.
PRECHG  
The following events cause the state machine to exit this state:  
● Battery voltage rises above V  
and the charger enters the next state in the charging cycle: Trickle Charge.  
PRECHG  
● If the battery charger remains in this state for longer than t , the charger state machine transitions to the Timer Fault  
PQ  
state.  
● If the watchdog timer is not serviced, the charger state machine transitions to the “Watchdog Suspend” state.  
Note that the precharge state works with battery voltages down to 0V. The 0V operation typically allows this battery  
charger to recover batteries that have an open internal pack protector. Typically, a battery pack's internal protection circuit  
opens if the battery has seen an overcurrent, undervoltage, or overvoltage. When a battery with an open internal pack  
protector is used with this charger, the precharge mode current flows into the 0V battery; this current raises the pack’s  
terminal voltage to the level where the internal pack protection switch closes.  
Note that a normal battery typically stays in the precharge state for several minutes or less. Therefore a battery that stays  
in the precharge for longer than t  
might be experiencing a problem.  
PQ  
Trickle Charge State  
As shown in Figure 2, the charger state machine is in trickle charge state when V  
< V  
< V  
- 500mV.  
PRECHG  
BATT  
SYSMIN  
After being in this state for t  
CHG_DTLS = 0x00.  
, a CHG_I interrupt is generated if CHG_OK was 0 previously, CHG_OK is set to 1 and  
SCIDG  
With PQEN = 1 (default) and the MAX77960B/MAX77961B are in the trickle charge state, the current in the battery is  
less than or equal to ITRICKLE. When PQEN = 0, the charger skips trickle charge state and transitions directly to fast  
charge state and the battery charging current is less than or equal to I  
.
FC  
Charge current may be less than I  
/I for any of the following reasons:  
TRICKLE FC  
● The charger input is in input current limit.  
● The charger input voltage is low.  
● The charger is in thermal foldback.  
● The system load is consuming adapter current. Note that the system load always gets priority over the battery charge  
current.  
Typical systems operate with PQEN = 1. When operating with PQEN = 0, the system’s software usually sets I to a low  
FC  
value such as 200mA and then monitors the battery voltage. When the battery exceeds a relatively low voltage such as  
6V, then the system’s software usually increases I  
.
FC  
The following events cause the state machine to exit this state:  
● When the battery voltage rises above V - 500mV or the PQEN bit is cleared, the charger enters the next state  
SYSMIN  
in the charging cycle: Fast Charge (CC).  
● If the battery charger remains in this state for longer than t , the charger state machine transitions to the Timer Fault  
PQ  
state.  
● If the watchdog timer is not serviced, the charger state machine transitions to the Watchdog Suspend state.  
Note that a normal battery typically stays in the trickle charge state for several minutes or less. Therefore, a battery that  
stays in trickle charge for longer than t  
might be experiencing a problem.  
PQ  
Fast-Charge Constant Current State  
As shown in Figure 2, the charger enters the fast-charge constant current (CC) state when V  
- 500mV (typ) <  
SYSMIN  
V
BATT  
< V  
. After being in the fast-charge CC state for t  
, a CHG_I interrupt is generated if CHG_OK was  
BATTREG  
SCIDG  
0 previously, CHG_OK is set to 1 and CHG_DTLS = 0x01.  
In the fast-charge CC state, the battery charging current is less than or equal to I . Charge current can be less than I  
FC  
FC  
for any of the following reasons:  
www.maximintegrated.com  
Maxim Integrated | 34  
 
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
● The charger input is in input current limit.  
● The charger input voltage is low.  
● The charger is in thermal foldback.  
● The system load is consuming adapter current. Note that the system load always gets priority over the battery  
charging current.  
The following events cause the state machine to exit this state:  
● When the battery voltage rises above V  
(CV).  
, the charger enters the next state in the charging cycle: Fast Charge  
BATTREG  
● If the battery charger remains in this state for longer than t , the charger state machine transitions to the Timer Fault  
FC  
state.  
● If the watchdog timer is not serviced, the charger state machine transitions to the Watchdog Suspend state.  
The battery charger dissipates the most power in the fast-charge constant current state, which causes the die  
temperature to rise. If the die temperature exceeds T  
, the thermal foldback loop is engaged and I is reduced. See  
REG  
FC  
the Thermal Foldback section for more information.  
Fast-Charge Constant Voltage State  
As shown in Figure 2, the charger enters the fast-charge constant voltage (CV) state when the battery voltage rises  
to V from the fast-charge CC state. After being in the fast-charge CV state for t , a CHG_I interrupt is  
BATTREG  
SCIDG  
generated if CHG_OK was 0 previously, CHG_OK is set to 1 and CHG_DTLS = 0x02.  
In the fast-charge CV state, the battery charger maintains V across the battery and the charge current is less  
BATTREG  
than or equal to I . As shown in Figure 1, charger current decreases exponentially in this state as the battery becomes  
FC  
fully charged.  
The smart power selector control circuitry can reduce the charge current for any of the following reasons:  
● The charger input is in input current limit.  
● The charger input voltage is low.  
● The charger is in thermal foldback.  
● The system load is consuming adapter current. Note that the system load always gets priority over the battery charge  
current.  
The following events cause the state machine to exit this state:  
● When the charger current is below I  
for t  
, the charger enters the Top-Off State.  
TERM  
TO  
● If the battery charger remains in this state for longer than t , the charger state machine transitions to the Timer Fault  
FC  
State.  
● If the watchdog timer is not serviced, the charger state machine transitions to the Watchdog Timer Suspend State.  
Top-Off State  
As shown in Figure 2, the top-off state can only be entered from the fast-charge CV state when the charger current  
decreases below I for t  
. After being in the top-off state for t  
, a CHG_I interrupt is generated if CHG_OK was  
TO  
TERM  
SCIDG  
0 previously, CHG_OK is set to 1, and CHG_DTLS = 0x03. In the top-off state the battery charger maintains V  
BATTREG  
across the battery and typically the charge current is less than or equal to I  
.
TO  
The smart power selector control circuitry can reduce the charge current for any of the following reasons:  
● The charger input is in input current limit.  
● The charger input voltage is low.  
● The charger is in thermal foldback.  
● The system load is consuming adapter current. Note that the system load always gets priority over the battery charge  
current.  
www.maximintegrated.com  
Maxim Integrated | 35  
 
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
The following events cause the state machine to exit this state:  
● After being in this state for the top-off time (t ), the charger enters the Done State.  
TO  
● If V  
< V  
- V  
the charger goes back to the Fast-Charge Constant Current State.  
BATT  
BATTREG  
RSTRT,  
● If the watchdog timer is not serviced, the charger state machine transitions to the Watchdog Timer Suspend State.  
Done State  
As shown in Figure 2, the battery charger enters its done state after the charger has been in the top-off state for t  
.
TO  
After being in this state for t  
0 and CHG_DTLS = 0x04.  
, a CHG_I interrupt is generated only if CHG_OK was 0 previously, CHG_OK is set to  
SCIDG  
The following events cause the state machine to exit this state:  
● If V < V - V the charger goes back to the Fast-Charge Constant Current State.  
BATT  
BATTREG  
RSTRT,  
● If the watchdog timer is not serviced, the charger state machine transitions to the Watchdog Timer Suspend State.  
In the done state, the battery charging current (I ) is 0A and the charger presents a very low load (I ) to the  
CHG  
MBDN  
battery. If the system load presented to the battery is low (<< 100µA), then a typical system can remain in the done  
state for many days. If left in the done state long enough, the battery voltage decays below the charging restart threshold  
(V  
) and the charger state machine transitions back into the fast-charge CC state. There is no soft-start (di/dt  
RSTRT  
limiting) during the done to fast-charge state transition.  
Timer Fault State  
The battery charger provides both a charge timer and a watchdog timer to ensure safe charging. As shown in Figure  
2, the charge timer prevents the battery from charging indefinitely. The time that the charger is allowed to remain in  
its prequalification states is t . The time that the charger is allowed to remain in the fast-charge CC and CV states  
PQ  
is t , which is programmable with FCHGTIME. Finally the time that the charger is in the top-off state is t  
which  
FC  
TO  
is programmable with TO_TIME. Upon entering the timer fault state a CHG_I interrupt is generated without a delay,  
CHG_OK is cleared and CHG_DTLS = 0x06.  
The charger is off in the timer fault state. The charger can exit the timer fault state when the charger is programmed to  
be off then on again through the MODE bits or when DISQBAT pin is toggled from L-H-L. Alternatively, the charger input  
can be removed and reinserted to exit the timer fault state (see the ANY STATE bubble in Figure 2).  
Watchdog Timer Suspend State  
The battery charger provides both a charge timer and a watchdog timer to ensure safe charging. As shown in Figure 2,  
the watchdog timer protects the battery from charging indefinitely in the event that the host hangs or otherwise cannot  
communicate correctly. The watchdog timer is disabled by default with WDTEN = 0. Enable the feature by setting WDTEN  
= 1. With watchdog timer enabled, the host controller must reset the watchdog timer within the timer period (t ) in order  
WD  
for the charger to operate properly. Reset the watchdog timer by programming WDTCLR = 0x01.  
If the watchdog timer expires, charging stops, a CHG_I interrupt is generated if CHG_OK was 1 previously, CHG_OK is  
cleared, and CHG_DTLS indicates that the charger is off because the watchdog timer expired. Once the watchdog timer  
expires, the charger can be restarted by programming WDTCLR = 0x01. The SYS node can be supported by the battery  
and/or the adapter through the DC-DC buck while the watchdog timer is expired.  
Thermal Shutdown State  
As shown in Figure 2, the state machine enters the thermal shutdown state when the junction temperature (T ) exceeds  
J
the device’s thermal shutdown threshold (T  
). When T is close to T  
the charger would have already folded  
SHDN  
J
SHDN,  
back the input current to 0A, (see the Thermal Foldback section for more details), so the charger and the DC-DC are  
effectively off. Upon entering this state, CHG_I interrupt is generated if CHG_OK was 1 previously, CHG_OK is cleared,  
and CHG_DTLS = 0x0A.  
In the thermal shutdown state, the charger is off. MODE register (CHG_CNFG_00[3:0]) is reset to its default value as  
well as all O type registers.  
www.maximintegrated.com  
Maxim Integrated | 36  
 
 
 
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
Thermal Management  
The MAX77960B/MAX77961B charger use several thermal management techniques to prevent excessive battery and  
die temperatures.  
Thermal Foldback  
Thermal foldback maximizes the battery charge current while regulating the MAX77960B/MAX77961B junction  
temperature. As shown in Figure 3, when the die temperature exceeds the value programmed by REGTEMP (T  
),  
REG  
a thermal limiting circuit reduces the battery charger’s target current by 5%/°C (A  
) with an analog control loop.  
TJREG  
When the charger transitions in and out of the thermal foldback loop, a CHG_I interrupt is generated and the host  
microprocessor can read the status of the thermal regulation loop with the TREG status bit. Note that an active thermal  
foldback loop is not an abnormal operation and the thermal foldback loop status does not affect the CHG_OK bit (only  
information contained within CHG_DTLS affects CHG_OK).  
DRAWN TO SCALE, V  
= 5.0V, V  
= 0A, CHGIN_ILIM IS SET FOR MAXIMUM  
SYS  
CHGIN  
I
= 3.15A  
FC  
BATTERY CHARGER OPERATION IN  
3.0A  
2.0A  
1.0A  
0.0A  
THERMAL REGULATION GENERATES A  
CHG_I INTERRUPT BIT AND SETS THE  
TREG STATUS BIT  
A
= -5%/°C  
TJREG  
T
T
+ 20°C  
JREG  
JREG  
JUNCTION TEMPERATURE (°C)  
Figure 3. Charge Currents vs. Junction Temperature  
www.maximintegrated.com  
Maxim Integrated | 37  
 
 
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
JEITA Compliance  
The MAX77960B/MAX77961B safely charge Li+ batteries in accordance with JEITA specifications. The MAX77960B/  
MAX77961B monitor the battery temperature with a NTC thermistor connected at THM pin and automatically adjust the  
fast-charge current and/or charge termination voltage as the battery temperature varies. JEITA-controlled charging can  
be disabled by setting JEITA_EN to 0. CHG_DTLS and THM_DTLS registers report JEITA-controlled charging status.  
The JEITA controlled fast-charging current (I  
) and charge termination voltage (V  
) for T  
CHGCV_JEITA COLD  
CHGCC_JEITA  
2
< T < T  
are programmable with I C bits I  
and V  
.
COOL  
CHGCC_COOL  
CHGCV_COOL  
The charge termination voltage for T  
4.  
< T < T  
is reduced to (CHG_CV_PRM - 180mV/cell), as shown in Figure  
HOT  
WARM  
Charging is suspended when the battery temperature is too cold or too hot (T < T  
or T  
< T).  
HOT  
COLD  
Temperature thresholds (T  
, T  
, T  
, and T  
) depend on the thermistor selection. See the Thermistor  
HOT  
COLD COOL WARM  
Input (THM) section for more details.  
When battery charge current is reduced by 50%, the charger timer is doubled.  
I
CHGCC_NORMAL  
I
CHGCC_COOL  
TEMPERATURE  
T
T
T
COLD  
T
HOT  
COOL  
WARM  
V
CHGCV_NORMAL  
V
- 180mV/cell  
CHGCV_NORMAL  
V
CHGCV_COOL  
TEMPERATURE  
T
T
T
COLD  
T
HOT  
COOL  
WARM  
Figure 4. JEITA Compliance  
www.maximintegrated.com  
Maxim Integrated | 38  
 
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
Thermal Shutdown  
The MAX77960B/MAX77961B have a die temperature sensing circuit. When the die temperature exceeds the thermal  
2
shutdown threshold, T  
, the MAX77960B/MAX77961B shut down and reset O type I C registers. There is a 15°C  
SHDN  
thermal hysteresis. After thermal shutdown, if the die temperature reduces by 15°C, the thermal shutdown bus deasserts  
and the devices reenable. The battery charger has an independent thermal regulation loop. See the Thermal Shutdown  
State section for more details.  
Factory Ship Mode  
The MAX77960B/MAX77961B support factory ship mode with low battery quiescent current, I  
.
SHDN  
When the input source is not valid, and the device is powered by battery, the devices enter factory ship mode if DISQBAT  
2
is pulled high or FSHIP_MODE bit is set to 1. I C communication is unavailable in factory ship mode. When a valid input  
2
source is applied to the device's CHGIN pin, the devices exit factory ship mode. I C communication is enabled, charging  
is enabled if all conditions to charge are met (e.g., DISQBAT pin is pulled low and MODE[3:0] = 0x05).  
Minimum System Voltage  
The system voltage is regulated to the minimum SYS voltage (V  
500mV).  
) when the battery is low (V  
< V  
-
SYSMIN  
SYSMIN  
BATT  
● The charging current is I  
● The charging current is I  
when V  
when V  
< V  
PRECHG  
.
PRECHG  
TRICKLE  
BATT  
< V  
< V  
- 500mV.  
SYSMIN  
PRECHG  
BATT  
● The charging current is I when V  
- 500mV < V  
.
FC  
SYSMIN  
BATT  
Battery Differential Voltage Sense (BATSP, BATSN)  
BATSP and BATSN are differential remote voltage sense lines for the battery. The MAX77960B/MAX77961B's remote  
sensing feature improves accuracy and decreases charging time. The thermistor voltage is interpreted with respect to  
BATSN. For best results, connect BATSP and BATSN as close as possible to the battery connector.  
Battery Overcurrent Alert  
Excessive battery discharge current can occur for several reasons such as exposure to moisture, a software problem, an  
IC failure, a component failure, or a mechanical failure that causes a short circuit. The battery overcurrent alert feature is  
enabled with B2SOVRC[3:0]; disabling this feature reduces the battery current consumption by I  
.
BOVRC  
When the battery (BATT) to system (SYS) discharge current (I  
) exceeds the programmed overcurrent threshold for  
BATT  
at least t  
, the Q  
switch closes to reduce the power loss in the MAX77960B/MAX77961B. A B2SOVRC_I and a  
BOVRC  
BAT  
BAT_I interrupt are generated, BAT_OK is cleared, and BAT_DTLS reports an overcurrent condition. Typically, when the  
host processor detects this overcurrent interrupt, it executes a housekeeping routine that tries to mitigate the overcurrent  
situation. If the processor cannot correct the overcurrent within t  
DC.  
, then the MAX77960B/MAX77961B turn off the DC-  
OCP  
t
time duration can be set through the B2SOVRC_DTC register bit (Battery to SYS Overcurrent Debounce Time  
OCP  
Control): 0x0 (dflt): t  
= 6ms, 0x1: t  
= 100ms.  
OCP  
OCP  
www.maximintegrated.com  
Maxim Integrated | 39  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
HOST READS B2SOVRC_I AND  
BAT_I INTERRUPT BITS  
BAT2SYS  
OVERLOAD  
B2SOVRC THRESHOLD  
OFF  
ON  
Q
BAT  
INTB  
DC-DC  
CONVERTER  
OFF  
ON  
t
t
OCP  
BOVRC  
DRAWING NOT TO SCALE  
Figure 5. B2SOVRC  
Charger Interrupt Debounce Time  
Table 9. List of Charger Interrupt Debounce Time  
DEBOUNCE TIME  
RISING FALLING  
INTERRUPT  
MIN  
30ms  
7ms  
MAX  
MIN  
MAX  
AICL_I  
30ms  
None  
None  
None  
None  
None  
CHGIN _I  
B2SOVRC_I  
3.3ms  
BAT_I (OV)  
30ms  
37.5ms  
450μs  
OTG_PLIM_I (OTG Fault)  
OTG_PLIM_I (Buck-Boost Positive Current Limit)  
Input Power-OK/OTG Power-OK Output (INOKB)  
INOKB is an open-drain and active-low output that indicates CHGIN power-OK status.  
When OTG mode is disabled, (OTGEN = low and MODE[3:0] ≠ 0x0A), INOKB pulls low when a valid input source is  
inserted at CHGIN, V < V < V  
.
CHGIN_OVLO  
CHGIN_UVLO  
CHGIN  
When OTG mode is enabled, (OTGEN = high or MODE[3:0] = 0x0A), INOKB pulls low to indicate the OTG output power  
OK when V < V < V  
.
CHGIN.OTG.OV  
CHGIN.OTG.UV  
CHGIN  
INOKB can be used as a logic output by adding a 200kΩ pullup resistor to a system IO voltage.  
INOKB can be also used as a LED indicator driver by adding a current limiting resistor and a LED to a pullup voltage  
source.  
Charge Status Output (STAT)  
STAT is an open-drain and active-low output that indicates charge status. STAT can be used as a logic input to the host  
processor by adding a 200kΩ pullup resistor to a system IO rail and a rectifier (a diode and a capacitor).  
www.maximintegrated.com  
Maxim Integrated | 40  
 
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
Table 10. Charge Status Indicator by STAT  
CHARGE STATUS  
STAT  
LOGIC STATE  
No input  
High impedance  
High  
High  
No DC-DC/no charge:  
valid adapter with STBY_EN = 1 or MODE High impedance  
= 0x0/1/2/3/4  
Repeat low and high impedance with 1Hz,  
50% duty cycle  
High, rectified with an external diode  
and a capacitor  
Trickle, precharge, fast charge  
Top-off and done  
Faults  
Low  
Low  
High impedance  
High  
Reverse Buck Mode (OTG)  
The DC-DC converter topology of the MAX77960B/MAX77961B allows it to operate as a forward buck-boost converter  
or as a reverse buck converter. The modes of the DC-DC converter are controlled with MODE[3:0] register bits. When  
MODE[3:0] = 0x0A or OTGEN = high, the DC-DC converter operates in reverse buck mode, allowing it to source current  
to CHGIN, commonly referred to as USB OTG mode.  
In OTG mode, the DC-DC converter operates in reverse buck mode and regulates V  
to V  
(5.1V  
CHGIN.OTG  
CHGIN  
typ). The current through the CHGIN current-sensing resistor (CSINN, CSINP) is limited to the value programmed by  
OTG_ILIM[2:0]. There are eight OTG_ILIM options to program CHGIN current limit from 500mA to 3A. When the OTG  
mode is enabled, the unipolar CHGIN transfer function measures current going out of CHGIN. When OTG mode is  
disabled, the unipolar CHGIN transfer function measures current going into CHGIN.  
OTG_I, OTG_M, OTG_OK are the interrupt bit, interrupt mask bit and interrupt status bit associated with OTG function.  
OTG_DTLS[1:0] reports the status of the OTG operation. OTG_DTLS[1:0] is latched until the host reads the register.  
If the external OTG load at CHGIN exceeds I  
current limit for a minimum of 37.5ms, an OTG_I interrupt  
CHGIN.OTG.ILIM  
is generated, OTG_OK = 0 and OTG_DTLS[1:0] = 01. The reverse buck operates as a current limited voltage source  
when overloaded. The DC-DC converter stops switching when the OTG_ILIM condition lasts for 60ms and automatically  
resumes switching after 300ms off time. If the OTG_ILIM fault condition at CHGIN persists, the DC-DC toggles on and  
off with ~60ms on and ~300ms off.  
VBUS is normally an external-facing pin in the application, and it might have a risk of being shorted to GND. In  
this case, the MAX77960B/MAX77961B can experience a short-circuit condition at its output. If such risk is real, it is  
recommended to add a current-limited load switch at VBUS for overcurrent protection. The load switch guarantees the  
OTG output current does not exceed its current limit under any circumstances. The current limit should be set no lower  
than I  
of the MAX77960B/MAX77961B.  
CHGIN.OTG.ILIM  
When CHGIN voltage drops below V  
OTG_OK = 0 and OTG_DTLS[1:0] = 00.  
, the DC-DC stops switching and an OTG_I interrupt is generated.  
, the DC-DC stops switching and an OTG_I interrupt is generated.  
CHGIN.OTG.UVLO  
When CHGIN voltage exceeds V  
CHGIN.OTG.OV  
OTG_OK = 0 and OTG_DTLS[1:0] = 10.  
If the DC-DC stops switching due to a OTG_UV or OTG_OV fault condition, it automatically retries after 300ms off time.  
INOKB is the hardware indication of the OTG power good. See the Input Power-OK/OTG Power-OK Output (INOKB)  
section for details.  
OTG Enable (OTGEN)  
The OTGEN is an active high input. When OTGEN pin is pulled high, the OTG function is enabled. When the OTGEN  
2
pin is pulled low, the OTG function can be enabled through I C by setting MODE[3:0] = 0x0A. To pull the OTGEN pin low  
with a pulldown resistor, the resistance must be lower than 44kΩ.  
The devices enable reverse buck operation only when the voltage on the CHGIN bypass cap, V  
, falls below  
CHGIN  
V
.
CHGIN_UVLO  
In case V  
is above V  
threshold at the OTG enable, the devices ensure V  
node discharge  
CHGIN  
CHGIN  
CHGIN_UVLO  
through a 8kΩ pulldown resistor before enabling the OTG function and reverse buck switching.  
www.maximintegrated.com  
Maxim Integrated | 41  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
Pulldown is released once V  
is reached.  
CHGIN_UVLO  
Analog Low-Noise Power Input (AVL)  
AVL is the power input for the MAX77960B/MAX77961B’s analog circuitry. Do not power external devices from this pin.  
Bypass with a 4.7Ω resistor between AVL and PVL and a 4.7μF capacitor from AVL to GND.  
Low-Side Gate Driver Power Supply (PVL)  
PVL is an internal 1.8V LDO output that powers the MAX77960B/MAX77961B’s low-side gate driver circuitry. Do not  
power external devices other than pullup resistors from this pin. Bypass with a 4.7μF capacitor to GND.  
System Faults  
V
SYS  
Fault  
The MAX77960B/MAX77961B monitor the V  
node for undervoltage and overvoltage events. The following sections  
SYS  
describe the devices' behavior if any of these events is to occur.  
V
SYS  
Undervoltage Lockout (V  
)
SYSUVLO  
When the voltage from SYS to GND (V  
) is less than the undervoltage lockout threshold (V  
), the  
SYSUVLO  
SYS  
MAX77960B/MAX77961B generate a SYSUVLO_I interrupt immediately. If V  
the device shuts down and resets O Type I C registers.  
is undervoltage for greater than 8ms,  
SYS  
2
V
SYS  
Overvoltage Lockout (V  
)
SYSOVLO  
When the V  
exceeds V  
, the MAX77960B/MAX77961B generate a SYSOVLO_I interrupt immediately and  
SYSOVLO  
SYS  
2
the device shuts down and resets O Type I C registers.  
Thermal Fault  
The MAX77960B/MAX77961B have a die temperature sensing circuit. When the die temperature exceeds the thermal  
2
shutdown threshold, 165°C (T  
), the MAX77960B/MAX77961B shut down and reset O Type I C registers. There is  
SHDN  
a 15°C thermal hysteresis. After thermal shutdown, if the die temperature reduces by 15°C, the thermal shutdown bus  
deasserts and IC reenables. The battery charger has an independent thermal regulation loop. See the Thermal Foldback  
section for more details.  
Interrupt Output (INTB)  
The INTB is an active-low, open-drain output. Connect a pullup resistor to the pullup power source.  
The MAX77960B/MAX77961B's INTB can be connected to the host's interrupt input and signals to the host when  
unmasked interrupt events occur within the MAX77960B/MAX77961B.  
2
I C Serial Interface  
2
2
The I C serial bus consists of a bidirectional serial-data line (SDA) and a serial clock (SCL). I C is an open-drain  
bus. SDA and SCL require pullup resistors (500Ω or greater). Optional 24Ω resistors in series with SDA and SCL help  
to protect the device inputs from high-voltage spikes on the bus lines. Series resistors also minimize crosstalk and  
undershoot on bus lines.  
System Configuration  
2
The I C bus is a multimaster bus. The maximum number of devices that can attach to the bus is only limited by bus  
capacitance.  
2
2
Figure 6 shows an example of a typical I C system. A device on I C bus that sends data to the bus is called a transmitter.  
A device that receives data from the bus is called a receiver. The device that initiates a data transfer and generates SCL  
clock signals to control the data transfer is a master. Any device that is being addressed by the master is considered a  
2
2
slave. When the MAX77960B/MAX77961B I C-compatible interface is operating, it is a slave on I C bus and it can be  
both a transmitter and a receiver.  
www.maximintegrated.com  
Maxim Integrated | 42  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
SDA  
SCL  
MASTER  
TRANSMITTER/  
RECEIVER  
SLAVE  
TRANSMITTER/  
RECEIVER  
MASTER  
TRANSMITTER /  
RECEIVER  
SLAVE  
RECEIVER  
SLAVE  
TRANSMITTER  
Figure 6. Functional Logic Diagram for Communications Controller  
Bit Transfer  
One data bit is transferred for each SCL clock cycle. The data on SDA must remain stable during the high portion of SCL  
clock pulse. Changes in SDA while SCL is high are control signals (START and STOP conditions).  
SCL  
SDA  
DATA LINE STABLE  
DATA VALID  
CHANGE OF DATA  
ALLOWED  
2
Figure 7. I C Bit Transfer  
START and STOP Conditions  
2
When I C serial interface is inactive, SDA and SCL idle high. A master device initiates communication by issuing a  
START condition. A START condition is a high-to-low transition on SDA with SCL high. A STOP condition is a low-to-high  
transition on SDA, while SCL is high.  
A START condition from the master signals the beginning of a transmission to the IC. The master terminates transmission  
by issuing a NOT ACKNOWLEDGE followed by a STOP condition.  
A STOP condition frees the bus. To issue a series of commands to the slave, the master can issue REPEATED START  
(Sr) commands instead of a STOP command in order to maintain control of the bus. In general, a REPEATED START  
command is functionally equivalent to a regular START command.  
2
When a STOP condition or incorrect address is detected, the ICs internally disconnect SCL from the I C serial interface  
until the next START condition, minimizing digital noise and feed-through.  
www.maximintegrated.com  
Maxim Integrated | 43  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
S
Sr  
P
t
SU_START  
SCL  
SDA  
t
SU_STOP  
t
t
HD_START  
HD_START  
2
Figure 8. I C Start Stop  
Acknowledge  
2
Both the I C bus master and the IC (slave) generate acknowledge bits when receiving data. The acknowledge bit is the  
last bit of each nine bit data packet. To generate an ACKNOWLEDGE (A), the receiving device must pull SDA low before  
the rising edge of the acknowledge-related clock pulse (ninth pulse) and keep it low during the high period of the clock  
pulse. To generate a NOT-ACKNOWLEDGE (nA), the receiving device allows SDA to be pulled high before the rising  
edge of the acknowledge-related clock pulse and leaves it high during the high period of the clock pulse.  
Monitoring the acknowledge bits allows for detection of unsuccessful data transfers. An unsuccessful data transfer occurs  
if a receiving device is busy or if a system fault has occurred. In the event of an unsuccessful data transfer, the bus  
master should reattempt communication at a later time.  
Slave Address  
The devices act as a slave transmitter/receiver. The slave address of the IC is 0xD2h/0xD3h. The least significant bit is  
the read/write indicator (1 for read, 0 for write).  
Clock Stretching  
2
2
In general, the clock signal generation for I C bus is the responsibility of the master device. I C specification allows slow  
slave devices to alter the clock signal by holding down the clock line. The process in which a slave device holds down  
the clock line is typically called clock stretching. The IC does not use any form of clock stretching to hold down the clock  
line.  
General Call Address  
2
The devices do not implement an I C specification general call address. If the devices see a general call address  
(00000000b), they do not issue an ACKNOWLEDGE (A).  
Communication Speed  
2
The devices provide I C 3.0-compatible (1MHz) serial interface.  
2
● I C Revision 3 Compatible Serial Communications Channel  
• 0Hz to 100kHz (standard mode)  
• 0Hz to 400kHz (fast mode)  
• 0Hz to 1MHz (fast-mode plus)  
2
● Does not utilize I C clock stretching  
Operating in standard mode, fast mode, and fast-mode plus does not require any special protocols. The main  
consideration when changing the bus speed through this range is the combination of the bus capacitance and pullup  
resistors. Higher time constants created by the bus capacitance and pullup resistance (C x R) slow the bus operation.  
Therefore, when increasing bus speeds the pullup resistance must be decreased to maintain a reasonable time constant.  
2
Refer to the Pullup Resistor Sizing section of the I C revision 3.0 specification for detailed guidance on the pullup resistor  
selection. In general, for bus capacitance of 200pF, a 100kHz bus needs 5.6kΩ pullup resistors, a 400kHz bus needs  
www.maximintegrated.com  
Maxim Integrated | 44  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
about a 1.5kΩ pullup resistors, and a 1MHz bus needs 680Ω pullup resistors. Note that the pullup resistor dissipates  
2
power when the open-drain bus is low. The lower the value of the pullup resistor, the higher the power dissipation (V /R).  
2
Operating in high-speed mode requires some special considerations. For the full list of considerations, refer to the I C  
3.0 specification. The major considerations with respect to the IC are:  
2
2
● I C bus master uses current source pullups to shorten the signal rise times.  
● I C slave must use a different set of input filters on its SDA and SCL lines to accommodate for the higher bus speed.  
● The communication protocols need to utilize the high-speed master code.  
At power-up and after each STOP condition, the IC input filters are set for standard mode, fast mode, or fast-mode plus  
(i.e., 0Hz to 1MHz). To switch the input filters for high-speed mode, use the high-speed master code protocols that are  
described in the Communication Protocols section.  
Communication Protocols  
The devices support both writing and reading from their registers.  
Writing to a Single Register  
Figure 9 shows the protocol for the I C master device to write one byte of data to the ICs. This protocol is the same as  
2
SMBus specification’s Write Byte protocol.  
The Write Byte protocol is as follows:  
1. The master sends a START command (S).  
2. The master sends the 7-bit slave address followed by a write bit (R/W = 0).  
3. The addressed slave asserts an ACKNOWLEDGE (A) by pulling SDA low.  
4. The master sends an 8-bit register pointer.  
5. The slave acknowledges the register pointer.  
6. The master sends a data byte.  
7. The slave acknowledges the data byte. At the rising edge of SCL, the data byte is loaded into its target register and  
the data becomes active.  
8. The master sends a STOP condition (P) or a REPEATED START condition (Sr). Issuing a P ensures that the bus  
input filters are set for 1MHz or slower operation. Issuing a REPEATED START (Sr) leaves the bus input filters in  
their current state.  
LEGEND  
MASTER TO  
SLAVE  
SLAVE TO  
MASTER  
* P FORCES THE BUS FILTERS TO SWITCH TO THEIR ≤ 1MHz MODE.  
Sr LEAVES THE BUS FILTERS IN THEIR CURRENT STATE.  
NUMBER  
OF BITS  
1
7
1
0
1
8
1
8
1
1
S
SLAVE ADDRESS  
A
REGISTER POINTER  
A
DATA  
A
P or Sr *  
R/nW  
THE DATA IS LOADED INTO  
THE TARGET REGISTER  
AND BECOMES ACTIVE  
DURING THIS RISING EDGE.  
SDA  
SCL  
B1  
7
B0  
8
A
9
ACKNOWLEDGE  
Figure 9. Writing to a Single Register  
www.maximintegrated.com  
Maxim Integrated | 45  
 
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
Writing to Sequential Registers  
Figure 10 shows the protocol for writing to sequential registers. This protocol is similar to the Write Byte protocol, except  
the master continues to write after it receives the first byte of data. When the master is done writing, it issues a STOP or  
REPEATED START.  
The Writing to Sequential Registers protocol is as follows:  
1. The master sends a START command (S).  
2. The master sends the 7-bit slave address followed by a write bit (R/W = 0).  
3. The addressed slave asserts an ACKNOWLEDGE (A) by pulling SDA low.  
4. The master sends an 8-bit register pointer.  
5. The slave acknowledges the register pointer.  
6. The master sends a data byte.  
7. The slave acknowledges the data byte. At the rising edge of SCL, the data byte is loaded into its target register and  
the data becomes active.  
8. Steps 6 to 7 are repeated as many times as the master requires.  
9. During the last acknowledge related clock pulse, the slave issues an ACKNOWLEDGE (A).  
10. The master sends a STOP condition (P) or a REPEATED START condition (Sr). Issuing a P ensures that the bus  
input filters are set for 1MHz or slower operation. Issuing a REPEATED START (Sr) leaves the bus input filters in  
their current state.  
LEGEND  
MASTER TO  
SLAVE  
SLAVE TO  
MASTER  
*P FORCES THE BUS FILTERS TO SWITCH TO THEIR ≤1MHz  
MODE. Sr LEAVES THE BUS FILTERS IN THEIR CURRENT STATE.  
NUMBER  
OF BITS  
1
7
1
0
1
8
1
8
1
S
SLAVE ADDRESS  
A
REGISTER POINTER X  
A
DATA 1  
A
R/nW  
α
α
NUMBER  
OF BITS  
8
1
8
1
DATA 2  
A
DATA 3  
A
REGISTER POINTER = X + 2  
REGISTER POINTER = X + 1  
α
1
NUMBER  
OF BITS  
8
8
1
1
DATA N-1  
A
DATA N  
A
P or Sr*  
β
α
REGISTER POINTER  
= X + (N-2)  
REGISTER POINTER  
= X + (N-1)  
THE DATA IS LOADED INTO  
THE TARGET REGISTER AND  
BECOMES ACTIVE DURING  
THIS RISING EDGE.  
SDA  
SCL  
B1  
7
B0  
8
A
9
B9  
ACKNOWLEDGE  
1
DETAIL: α  
THE DATA IS LOADED INTO  
THE TARGET REGISTER AND  
BECOMES ACTIVE DURING  
THIS RISING EDGE.  
SDA  
SCL  
B1  
7
B0  
8
A
9
ACKNOWLEDGE  
DETAIL: β  
Figure 10. Writing to Sequential Registers  
www.maximintegrated.com  
Maxim Integrated | 46  
 
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
Writing Multiple Bytes using Register-Data Pairs  
2
Figure 11 shows the protocol for the I C master device to write multiple bytes to the devices using register data pairs.  
2
This protocol allows the I C master device to address the slave only once and then send data to multiple registers in a  
random order. Registers can be written continuously until the master issues a STOP condition.  
The Multiple Byte Register Data Pair protocol is as follows:  
1. The master sends a START command.  
2. The master sends the 7-bit slave address followed by a write bit.  
3. The addressed slave asserts an ACKNOWLEDGE (A) by pulling SDA low.  
4. The master sends an 8-bit register pointer.  
5. The slave acknowledges the register pointer.  
6. The master sends a data byte.  
7. The slave acknowledges the data byte. At the rising edge of SCL, the data byte is loaded into its target register and  
the data becomes active.  
8. Steps 4 to 7 are repeated as many times as the master requires.  
9. The master sends a STOP condition. During the rising edge of the stop related SDA edge, the data byte that was  
previously written is loaded into the target register and becomes active.  
LEGEND  
MASTER TO  
SLAVE  
SLAVE TO  
MASTER  
NUMBER  
OF BITS  
1
7
1
0
1
8
1
8
1
S
SLAVE ADDRESS  
A
REGISTER POINTER X  
A
DATA X  
A
α
α
R/nW  
NUMBER  
OF BITS  
8
1
8
1
REGISTER POINTER N  
A
DATA N  
A
NUMBER  
OF BITS  
8
1
8
1
1
REGISTER POINTER Z  
A
DATA Z  
A
P
β
THE DATA IS LOADED INTO THE  
TARGET REGISTER AND BECOMES  
ACTIVE DURING THIS RISING  
EDGE.  
SDA  
SCL  
B1  
7
B0  
8
A
9
B9  
ACKNOWLEDGE  
1
DETAIL: α  
THE DATA IS LOADED INTO THE  
TARGET REGISTER AND BECOMES  
ACTIVE DURING THIS RISING  
EDGE.  
SDA  
SCL  
B1  
7
B0  
8
A
9
ACKNOWLEDGE  
DETAIL: β  
Figure 11. Writing to Multiple Registers with “Multiple Byte Register-Data Pairs” Protocol  
www.maximintegrated.com  
Maxim Integrated | 47  
 
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
Reading from a Single Register  
2
The I C master device reads one byte of data to the devices. This protocol is the same as SMBus specification’s Read  
Byte protocol.  
The Read Byte protocol is as follows:  
1. The master sends a START command (S).  
2. The master sends the 7-bit slave address followed by a write bit (R/W = 0).  
3. The addressed slave asserts an ACKNOWLEDGE (A) by pulling SDA low.  
4. The master sends an 8-bit register pointer.  
5. The slave acknowledges the register pointer.  
6. The master sends a REPEATED START command (Sr).  
7. The master sends the 7-bit slave address followed by a read bit (R/W = 1).  
8. The addressed slave asserts an ACKNOWLEDGE (A) by pulling SDA low.  
9. The addressed slave places 8 bits of data on the bus from the location specified by the register pointer.  
10. The master issues a NOT-ACKNOWLEDGE (nA).  
11. The master sends a STOP condition (P) or a REPEATED START condition (Sr). Issuing a P ensures that the bus  
input filters are set for 1MHz or slower operation. Issuing a REPEATED START (Sr) leaves the bus input filters in  
their current state.  
LEGEND  
MASTER TO  
SLAVE  
SLAVE TO  
MASTER  
*P FORCES THE BUS FILTERS TO SWITCH TO THEIR ≤1MHz MODE.  
Sr LEAVES THE BUS FILTERS IN THEIR CURRENT STATE.  
NUMBER  
OF BITS  
1
7
1
0
1
8
1
1
7
1
1
1
8
1
1
S
SLAVE ADDRESS  
A
REGISTER POINTER A Sr SLAVE ADDRESS  
R/nW  
A
DATA  
nA P or Sr*  
R/nW  
Figure 12. Reading from a Single Register  
www.maximintegrated.com  
Maxim Integrated | 48  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
Reading from Sequential Registers  
Figure 13 shows the protocol for reading from sequential registers. This protocol is similar to the Read Byte protocol  
except the master issues an ACKNOWLEDGE (A) to signal the slave that it wants more data—when the master has all  
the data it requires, it issues a not-acknowledge (nA) and a STOP (P) to end the transmission.  
The Continuous Read from Sequential Registers protocol is as follows:  
1. The master sends a START command (S).  
2. The master sends the 7-bit slave address followed by a write bit (R/W = 0).  
3. The addressed slave asserts an ACKNOWLEDGE (A) by pulling SDA low.  
4. The master sends an 8-bit register pointer.  
5. The slave acknowledges the register pointer.  
6. The master sends a REPEATED START command (Sr).  
7. The master sends the 7-bit slave address followed by a read bit (R/W = 1).  
8. The addressed slave asserts an ACKNOWLEDGE (A) by pulling SDA low.  
9. The addressed slave places 8 bits of data on the bus from the location specified by the register pointer.  
10. The master issues an ACKNOWLEDGE (A) signaling the slave that it wishes to receive more data.  
11. Steps 9 to 10 are repeated as many times as the master requires. Following the last byte of data, the master must  
issue a NOT-ACKNOWLEDGE (nA) to signal that it wishes to stop receiving data.  
12. The master sends a STOP condition (P) or a REPEATED START condition (Sr). Issuing a STOP (P) ensures that  
the bus input filters are set for 1MHz or slower operation. Issuing a REPEATED START (Sr) leaves the bus input  
filters in their current state.  
LEGEND  
MASTER TO  
SLAVE  
SLAVE TO  
MASTER  
*P FORCES THE BUS FILTERS TO SWITCH TO THEIR ≤1MHz MODE.  
Sr LEAVES THE BUS FILTERS IN THEIR CURRENT STATE.  
NUMBER  
OF BITS  
1
7
1
0
1
8
1
1
7
1
1
1
8
1
S
SLAVE ADDRESS  
A
REGISTER POINTER X A Sr SLAVE ADDRESS  
A
DATA 1  
A
R/nW  
R/nW  
NUMBER  
OF BITS  
8
1
8
1
8
1
DATA 2  
A
DATA 3  
A
DATA 4  
A
REGISTER POINTER = X + 1 REGISTER POINTER = X + 2 REGISTER POINTER = X + 3  
NUMBER  
OF BITS  
8
1
8
1
8
1
1
DATA N-2  
A
DATA N-1  
A
DATA N  
nA P or Sr*  
REGISTER POINTER  
= X + (N-3)  
REGISTER POINTER  
= X + (N-2)  
REGISTER POINTER  
= X + (N-1)  
Figure 13. Reading from Sequential Registers  
www.maximintegrated.com  
Maxim Integrated | 49  
 
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
Register Map  
FUNC  
ADDRESS  
NAME  
MSB  
LSB  
TOP  
0x00  
CID[7:0]  
REVISION[2:0]  
VERSION[4:0]  
0x01  
SWRST[7:0]  
SW_RST[7:0]  
TSHDN_ SYSOVL SYSUVL  
0x02  
0x03  
0x04  
TOP_INT[7:0]  
SPR[4:0]  
SPR[4:0]  
SPR[4:0]  
I
O_I  
TSHDN_ SYSOVL SYSUVL  
O_M O_M  
TSHDN_ SYSOVL SYSUVL  
OK O_OK O_OK  
O_I  
TOP_INT_MASK[7:0]  
TOP_INT_OK[7:0]  
M
CHARGER_FUNC  
B2SOVR  
C_I  
CHGINIL DISQBA OTG_PL  
IM_I T_I IM_I  
0x10  
0x11  
0x12  
CHG_INT[7:0]  
AICL_I  
CHGIN_I  
CHG_I  
CHG_M  
BAT_I  
BAT_M  
BAT_OK  
CHGIN_ B2SOVR  
C_M  
CHGINIL DISQBA OTG_PL  
IM_M T_M IM_M  
CHG_INT_MASK[7:0]  
CHG_INT_OK[7:0]  
AICL_M  
M
AICL_O  
K
CHGIN_ B2SOVR CHG_O  
OK C_OK  
CHGINIL DISQBA OTG_PL  
K
IM_OK  
T_OK  
IM_OK  
QB_DTL  
S
0x13  
0x14  
CHG_DETAILS_00[7:0]  
CHG_DETAILS_01[7:0]  
SPR7  
TREG  
CHGIN_DTLS[1:0]  
BAT_DTLS[2:0]  
OTG_DTLS[1:0]  
SPR2_1[1:0]  
CHG_DTLS[3:0]  
FSW_DTLS[1:0]  
APP_MO  
DE_DTL  
S
NUM_C  
ELL_DT  
LS  
0x15  
0x16  
CHG_DETAILS_02[7:0]  
CHG_CNFG_00[7:0]  
SPR  
THM_DTLS[2:0]  
COMM_  
MODE  
STBY_E  
DISIBS  
LPM  
WDTEN  
MODE[3:0]  
N
STAT_E  
N
0x17  
0x18  
CHG_CNFG_01[7:0]  
CHG_CNFG_02[7:0]  
PQEN  
CHG_RSTRT[1:0]  
FCHGTIME[2:0]  
SPR[1:0]  
CHGCC[5:0]  
SYS_TR  
ACK_DI  
S
B2SOVR  
C_DTC  
0x19  
CHG_CNFG_03[7:0]  
TO_TIME[2:0]  
TO_ITH[2:0]  
0x1A  
0x1B  
0x1C  
CHG_CNFG_04[7:0]  
CHG_CNFG_05[7:0]  
CHG_CNFG_06[7:0]  
SPR[1:0]  
RESERVED[1:0]  
CHG_CV_PRM[5:0]  
B2SOVRC[3:0]  
CHGPROT[1:0] WDTCLR[1:0]  
VCHGC ICHGCC FSHIP_  
ITRICKLE[1:0]  
RESERVED[1:0] SPR4  
SPR7  
JEITA_E  
N
0x1D  
0x1E  
CHG_CNFG_07[7:0]  
CHG_CNFG_08[7:0]  
REGTEMP[3:0]  
V_COOL _COOL  
MODE  
RESERV  
ED  
CHGIN_ILIM[6:0]  
0x1F  
0x20  
CHG_CNFG_09[7:0]  
CHG_CNFG_10[7:0]  
INLIM_CLK[1:0]  
SPR[1:0]  
OTG_ILIM[2:0]  
VCHGIN_REG[4:0]  
MINVSYS[2:0]  
DISKIP  
www.maximintegrated.com  
Maxim Integrated | 50  
 
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
Register Details  
CID (0x0)  
BIT  
Field  
7
6
REVISION[2:0]  
0x6  
5
4
3
2
VERSION[4:0]  
0x0  
1
0
Reset  
Access  
Type  
Read Only  
Read Only  
BITFIELD  
REVISION  
VERSION  
BITS  
7:5  
DESCRIPTION  
DECODE  
Silicon Revision  
4:0  
OTP Recipe Version  
SWRST (0x1)  
BIT  
Field  
7
6
5
4
3
2
1
0
SW_RST[7:0]  
Reset  
0x00  
Access  
Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0xA5: Type O registers are reset. SW_RST  
SW_RST  
7:0  
Software Reset  
register is autoclear as under O-type reset control  
All others: No reset  
TOP_INT (0x2)  
BIT  
Field  
7
6
5
4
3
2
1
0
SYSOVLO_ SYSUVLO_  
SPR[4:0]  
0x0  
TSHDN_I  
I
I
Reset  
0x0  
0x0  
0x0  
Access  
Type  
Read  
Clears All  
Read  
Clears All  
Read  
Clears All  
Read Clears All  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
SPR  
7:3  
Spare Bit  
0b0: No interrupt detected  
0b1: Interrupt detected  
TSHDN_I  
2
1
0
Thermal Shutdown Interrupt  
SYSOVLO Interrupt  
0b0: No interrupt detected  
0b1: Interrupt detected  
SYSOVLO_I  
SYSUVLO_I  
0b0: No interrupt detected  
0b1: Interrupt detected  
SYSUVLO Interrupt  
www.maximintegrated.com  
Maxim Integrated | 51  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
TOP_INT_MASK (0x3)  
BIT  
Field  
7
6
5
4
3
2
1
0
SYSOVLO_ SYSUVLO_  
SPR[4:0]  
0x1F  
TSHDN_M  
0x1  
M
M
Reset  
0x1  
0x1  
Access  
Type  
Write, Read  
Write, Read Write, Read Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
SPR  
7:3  
Spare Bit  
0b0: Unmasked  
0b1: Masked  
TSHDN_M  
2
1
0
Thermal Shutdown Interrupt Mask  
SYSOVLO Interrupt Mask  
SYSOVLO_  
M
0b0: Unmasked  
0b1: Masked  
SYSUVLO_  
M
0b0: Unmasked  
0b1: Masked  
SYSUVLO Interrupt Mask  
TOP_INT_OK (0x4)  
BIT  
Field  
7
6
5
4
3
2
1
0
SYSOVLO_ SYSUVLO_  
SPR[4:0]  
0x0  
TSHDN_OK  
0x1  
OK  
OK  
Reset  
0x1  
0x1  
Access  
Type  
Read Only  
Read Only  
Read Only  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
SPR  
7:3  
Spare Bit  
0b0: Device is in thermal shutdown  
0b1: Device is not in thermal shutdown  
TSHDN_OK  
2
1
0
Thermal shutdown Status Indicator  
SYSOVLO Status Indicator  
SYSUVLO Status Indicator  
SYSOVLO_  
OK  
0b0: SYS voltage is above SYSOVLO threhold  
0b1: SYS voltage is below SYSOVLO threhold  
SYSUVLO_O  
K
0b0: SYS voltage is below SYSUVLO threhold  
0b1: SYS voltage is above SYSUVLO threhold  
CHG_INT (0x10)  
Interrupt status register for the charger block.  
BIT  
7
6
5
4
3
2
1
0
B2SOVRC_  
I
CHGINILIM  
_I  
OTG_PLIM  
_I  
Field  
AICL_I  
CHGIN_I  
CHG_I  
BAT_I  
DISQBAT_I  
Reset  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
Access  
Type  
Read  
Clears All  
Read  
Clears All  
Read  
Clears All  
Read  
Clears All  
Read  
Clears All  
Read  
Clears All  
Read  
Clears All  
Read  
Clears All  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0b0: The AICL_OK bit has not changed since the  
last time this bit was read.  
0b1: The AICL_OK bit has changed since the last  
time this bit was read.  
AICL_I  
7
AICL Interrupt  
www.maximintegrated.com  
Maxim Integrated | 52  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0b0: The CHGIN_OK bit has not changed since  
the last time this bit was read.  
0b1: The CHGIN_OK bit has changed since the  
last time this bit was read.  
CHGIN_I  
6
CHGIN Interrupt  
0b0: The B2SOVRC_OK bit has not changed since  
the last time this bit was read.  
0b1: The B2SOVRC_OK bit has changed since the  
last time this bit was read.  
B2SOVRC_I  
CHG_I  
5
4
3
2
1
B2SOVRC Interrupt  
Charger Interrupt  
Battery Interrupt  
0b0: The CHG_OK bit has not changed since the  
last time this bit was read.  
0b1: The CHG_OK bit has changed since the last  
time this bit was read.  
0b0: The BAT_OK bit has not changed since the  
last time this bit was read.  
0b1: The BAT_OK bit has changed since the last  
time this bit was read.  
BAT_I  
0b0: The CHGINILIM_OK bit has not changed  
since the last time this bit was read.  
0b1: The CHGINILIM_OK bit has changed since  
the last time this bit was read.  
CHGINILIM_I  
DISQBAT_I  
CHGINILIM Interrupt  
DISQBAT Interrupt  
0b0: The DISQBAT_OK bit has not changed since  
the last time this bit was read.  
0b1: The DISQBAT_OK bit has changed since the  
last time this bit was read.  
0b0: Mode = 0xA: The OTG_OK bit has not  
changed since the last time this bit was read.  
Mode ≠ 0xA: PLIM_OK bit has not changed since  
the last time this bit was read.  
0b1: Mode = 0xA: The OTG_OK bit has changed  
since the last time this bit was read.  
OTG_PLIM_I  
0
OTG Interrupt/PLIM Interrupt  
Mode ≠ 0xA: The PLIM_OK bit has changed since  
the last time this bit was read.  
CHG_INT_MASK (0x11)  
Mask register to mask the corresponding charger interrupts.  
BIT  
7
6
5
4
3
2
1
0
B2SOVRC_  
M
CHGINILIM DISQBAT_  
OTG_PLIM  
_M  
Field  
AICL_M  
0x1  
CHGIN_M  
0x1  
CHG_M  
0x1  
BAT_M  
0x1  
_M  
M
Reset  
0x1  
0x1  
0x1  
0x1  
Access  
Type  
Write, Read Write, Read Write, Read Write, Read Write, Read Write, Read Write, Read Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
AICL Interrupt Mask  
DECODE  
0b0: Unmasked  
0b1: Masked  
AICL_M  
7
0b0: Unmasked  
0b1: Masked  
CHGIN_M  
6
5
4
CHGIN Interrupt Mask  
B2SOVRC Interrupt Mask  
Charger Interrupt Mask  
B2SOVRC_  
M
0b0: Unmasked  
0b1: Masked  
0b0: Unmasked  
0b1: Masked  
CHG_M  
www.maximintegrated.com  
Maxim Integrated | 53  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0b0: Unmasked  
0b1: Masked  
BAT_M  
3
Battery Interrupt Mask  
CHGINILIM_  
M
0b0: Unmasked  
0b1: Masked  
2
1
0
CHGINILIM Interrupt Mask  
DISQBAT Interrupt Mask  
OTG/PLIM Interrupt Mask  
0b0: Unmasked  
0b1: Masked  
DISQBAT_M  
OTG_PLIM_  
M
0b0: Unmasked  
0b1: Masked  
CHG_INT_OK (0x12)  
BIT  
Field  
7
6
5
4
3
2
1
0
B2SOVRC_  
OK  
CHGINILIM DISQBAT_  
OTG_PLIM  
_OK  
AICL_OK  
0x1  
CHGIN_OK  
0x0  
CHG_OK  
0x1  
BAT_OK  
0x1  
_OK  
OK  
Reset  
0x1  
0x1  
0x1  
0x1  
Access  
Type  
Read Only  
Read Only  
Read Only  
Read Only  
Read Only  
Read Only  
Read Only  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0b0: AICL mode  
0b1: Not in AICL mode  
AICL_OK  
7
AICL_OK Status  
0b0: The CHGIN input is invalid. CHGIN_DTLS ≠  
CHGIN Input Status Indicator. See  
CHGIN_DTLS for more information.  
0x03.  
CHGIN_OK  
6
5
4
0b1: The CHGIN input is valid. CHGIN_DTLS =  
0x03.  
B2SOVRC_  
OK  
0b0: BATT to SYS exceeds current limit.  
0b1: BATT to SYS does not exceed current limit.  
B2SOVRC Status  
0b0: The charger has reduced charge current or  
Charger Status Indicator. See CHG_DTLS for charge termination voltage based on JEITA  
more information.  
CHG_OK  
BAT_OK  
control, suspended charging, or TREG = 1.  
0b1: The charger is OK or the charger is off.  
0b0: The battery has an issue or the charger has  
been suspended. BAT_DTLS ≠ 0x03 and ≠ 0x07.  
0b1: The battery is OK. BAT_DTLS = 0x03 or  
BAT_DTLS = 0x07.  
Battery Status Indicator. See BAT_DTLS for  
more information.  
3
2
1
0b0: The CHGIN input has reached the current  
limit.  
0b1: The CHGIN input has not reached the current  
limit.  
CHGINILIM_  
OK  
CHGINILIM Status  
DISQBAT Status  
0b0: DISQBAT pin is high or DISIBS bit is set to 1  
and Q  
DISQBAT_O  
K
disabled.  
BAT  
0b1: DISQBAT is low and DISIBS bit is 0 and  
not disabled.  
Q
BAT  
0b0: Mode = 0xA: There is a fault in OTG mode.  
OTG_DTLS ≠ 0x11.  
Mode = 0xA: OTG Status Indicator. See  
OTG_DTLS for more information.  
Mode ≠ 0xA: PLIM status indicator (buck-  
boost limit reached).  
Mode ≠ 0xA: Buck-boost reaches positive current  
limit.  
0b1: Mode = 0xA: The OTG operation is OK.  
OTG_DTLS = 0x11.  
OTG_PLIM_  
OK  
0
Mode ≠ 0xA: Buck-boost does not reach positive  
current limit.  
www.maximintegrated.com  
Maxim Integrated | 54  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
CHG_DETAILS_00 (0x13)  
BIT  
Field  
7
6
5
4
3
2
1
0
SPR7  
0x0  
CHGIN_DTLS[1:0]  
0x0  
OTG_DTLS[1:0]  
0x0  
SPR2_1[1:0]  
0x0  
QB_DTLS  
0x0  
Reset  
Access  
Type  
Read Only  
Read Only  
Read Only  
Read Only  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
SPR7  
7
Spare Bit  
0b00: V  
0b01: RSVD  
0b10: V  
0b11: V  
is invalid. V  
is invalid. V  
is valid. V  
CHGIN  
CHGIN_OVLO  
< V  
> V  
BUS  
CHGIN  
CHGIN  
CHGIN_UVLO  
CHGIN_OVLO  
CHGIN_DTL  
S
6:5  
4:3  
CHGIN Details  
BUS  
> V  
and  
BUS  
< V  
CHGIN_UVLO  
V
CHGIN  
0b00: OTG output (V  
) is in undervoltage  
CHGIN  
condition. V  
< V  
CHGIN  
OTG_UVLO  
0b01: OTG output (V  
) is in current limit  
CHGIN  
(OTG_ILIM) within the last 37.5ms.  
0b10: OTG output (V ) is in overvoltage  
CHGIN  
OTG_DTLS  
OTG Details  
Spare Bit  
condition. V  
> V  
CHGIN  
OTG_OVLO  
0b11: OTG is disabled (OTGEN = low and MODE  
≠ 0xA) or OTG output (V ) is valid. V  
>
CHGIN  
CHGIN  
V
and V  
< V  
and it's  
OTG_UVLO  
CHGIN  
OTG_OVLO  
not in current limit  
.
SPR2_1  
2:1  
0
Q
status  
BAT  
0b0: Q  
0b1: Q  
is off.  
is on.  
BAT  
BAT  
QB_DTLS  
Read back value of QB_DTLS reflects the  
actual Q  
state.  
BAT  
CHG_DETAILS_01 (0x14)  
BIT  
Field  
7
6
5
4
3
2
1
0
TREG  
0x0  
BAT_DTLS[2:0]  
0x7  
CHG_DTLS[3:0]  
0x8  
Reset  
Access  
Type  
Read Only  
Read Only  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0b0: The junction temperature is less than the  
threshold set by REGTEMP and the full charge  
current limit is available.  
TREG  
7
Temperature Regulation Status  
0b1: The junction temperature is greater than the  
threshold set by REGTEMP and the charge current  
limit can be folding back to reduce power  
dissipation.  
www.maximintegrated.com  
Maxim Integrated | 55  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0b000: Battery removal is detected on THM pin.  
0b001: V  
< V  
. This condition is also  
BATT  
PRECHG  
reported in the CHG_DTLS as 0x00.  
0b010: The battery is taking longer than expected  
to charge. This could be due to high system  
currents, an old battery, a damaged battery or  
something else. Charging has suspended and the  
charger is in its timer fault mode. This condition is  
also reported in the CHG_DTLS as 0x06.  
Battery Details  
0b011: The battery is OK and its voltage is greater  
Note: Only B2SOVRC is reported in Battery  
Only mode. As a consequence, BAT_OK = 1  
is also reported in BAT_DTLS = 0x07.  
than the minimum system voltage (V  
-
SYSMIN  
500mV < V  
), Q  
is on and V  
is  
BATT  
BAT  
SYS  
approximately equal to V  
.
BATT  
BAT_DTLS  
6:4  
0b100: The battery is okay but its voltage is low:  
< V < V - 500mV. This  
condition is also reported in the CHG_DTLS as  
In the event that multiple faults occur within  
the battery details category, overcurrent has  
priority followed by no battery, then  
overvoltage, then timer fault, then below  
prequal.  
V
PRECHG  
BATT  
SYSMIN  
0x00.  
0b101: The battery voltage has been greater than  
the battery overvoltage threshold (CHG_CV_PRM  
+ 240mV/cell) for the last 30ms. This flag is only  
generated when there is a valid input.  
0b110: The battery has been overcurrent for at  
least 3ms since the last time this register has been  
read.  
0b111: Battery level not available. In battery only  
mode, all battery comparators are off except for  
B2SOVRC.  
www.maximintegrated.com  
Maxim Integrated | 56  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0x00: Charger is in precharge or trickle charge  
mode  
CHG_OK = 1 and V  
< V  
- 500mV and  
BATT  
SYSMIN  
T < T  
J
SHDN  
0x01: Charger is in fast-charge constant current  
mode  
CHG_OK = 1 and V  
< V  
and T <  
BATTREG J  
BATT  
T
SHDN  
0x02: Charger is in fast-charge constant voltage  
mode  
CHG_OK = 1 and V  
= V  
and T <  
BATTREG J  
BATT  
T
SHDN  
0x03: Charger is in top-off mode  
CHG_OK = 1 and V = V  
and T <  
BATT  
BATTREG  
J
T
SHDN  
0x04: Charger is in done mode  
CHG_OK = 0 and V > V  
- V  
RSTRT  
BATT  
BATTREG  
and T < T  
J
SHDN  
0x05: Charger is off because at least one pin of  
INLIM, ITO, ISET, or VSET has valid resistance  
while others don't (invalid resistance, open or tied  
2
to PVL). Configure charger with I C, then set  
COMM_MODE to 1 enables charging.  
CHG_OK = 0  
0x06: Charger is in timer fault mode  
CHG_OK = 0 and if BAT_DTLS = 0b001 then  
CHG_DTLS  
3:0  
Charger Details  
V
< V  
- 500mV or V  
< V  
BATT  
SYSMIN  
SHDN  
BATT PRECHG  
and T < T  
J
0x07: Charger is suspended because Q  
is  
BAT  
disabled (DISQBAT = high or DISIBS = 1)  
CHG_OK = 0  
0x08: Charger is off, charger input invalid and/or  
charger is disabled  
CHG_OK = 1  
0x09: Reserved  
0x0A: Charger is off and the junction temperature  
is > T  
SHDN  
CHG_OK = 0  
0x0B: Charger is off because the watchdog timer  
expired  
CHG_OK = 0  
0x0C: Charger is suspended or charge current or  
voltage is reduced based on JEITA control. This  
condition is also reported in THM_DTLS.  
CHG_OK = 0  
0x0D: Charger is suspended because battery  
removal is detected on THM pin. This condition is  
also reported in THM_DTLS.  
CHG_OK = 0  
0x0E: Reserved  
0x0F: Reserved  
www.maximintegrated.com  
Maxim Integrated | 57  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
CHG_DETAILS_02 (0x15)  
BIT  
Field  
7
SPR  
6
5
4
3
2
1
0
APP_MOD  
E_DTLS  
NUM_CELL  
_DTLS  
THM_DTLS[2:0]  
0x2  
FSW_DTLS[1:0]  
0x0  
Reset  
0x0  
0x0  
0x0  
Access  
Type  
Read Only  
Read Only  
Read Only  
Read Only  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
SPR  
7
Spare bit  
0b000: Low temperature and charging suspended  
(COLD)  
0b001: Low temperature charging (cool)  
0b010: Normal temperature charging (normal)  
0b011: High temperature charging (warm)  
0b100: High temperature and charging suspended  
(hot)  
Thermistor Status.  
This is also reported in the CHG_DTLS as  
0x0C.  
THM_DTLS  
6:4  
0b101: Battery removal detected on THM pin  
0b110: Thermistor monitoring is disabled  
0b111: Reserved  
0b0: Device is configured to operate as a  
standalone DC-DC converter.  
0b1: Device is configured to operate as a charger.  
APP_MODE  
_DTLS  
3
Application Mode Status  
0x0: 600kHz  
0x1: 1.2MHz  
0x2: Reserved  
0x3: Reserved  
FSW_DTLS  
2:1  
Programmed Switching Frequency Details  
0b0: Device is configured to support a 2-cell  
NUM_CELL_  
DTLS  
Number of Serially Connected Battery Cells  
Details  
battery.  
0
0b1: Device is configured to support a 3-cell  
battery.  
CHG_CNFG_00 (0x16)  
Charger configuration 0  
BIT  
7
6
5
4
3
2
1
0
COMM_MO  
DE  
Field  
DISIBS  
0x0  
STBY_EN  
0x0  
WDTEN  
0x0  
MODE[3:0]  
0x5  
Reset  
0x0  
Access  
Type  
Write, Read Write, Read Write, Read Write, Read  
Write, Read  
www.maximintegrated.com  
Maxim Integrated | 58  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0b0: Autonomous Mode  
CHGIN_ILIM, CHGCC, CHG_CV_PRM, and  
TO_ITH registers are programmed by external  
resistors on INLIM, ISET, VSET and ITO pins.  
Writing 0 to COMM_MODE is ignored.  
2
0b1: I C Mode Enabled  
COMM_MOD  
E
CHGIN_ILIM, CHGCC, CHG_CV_PRM and  
TO_ITH registers are programmed by I C.  
2
7
I C Mode Enable  
2
Writing 1 to COMM_MODE is allowed.  
Writting COMM_MODE=1 clears any charger  
suspension due to invalid resistance detected on  
INLIM, ISET, VSET, and ITO pins. Charger starts  
2
with I C programmed settings in CHGIN_ILIM,  
CHGCC, CHG_CV_PRM, and TO_ITH registers.  
BATT to SYS FET Disable Control  
Read back value of DISIBS register bit  
reflects the actual DISIBS command or  
DISQBAT PIN state.  
0b0: BATT to SYS FET is controlled by the power  
path state machine.  
0b1: BATT to SYS FET is forced off.  
DISIBS  
6
5
CHGIN Standby Enable  
Read back value of the STBY_EN register bit machine.  
reflects the actual CHGIN standby setting.  
0b0: DC-DC is controlled by the power path state  
STBY_EN  
0b1: Force DC-DC off. Device goes to CHGIN low  
quiescent current standby.  
Watchdog Timer Enable.  
While enabled, the system controller must  
reset the watchdog timer within the timer  
0b0: Watchdog timer disabled  
0b1: Watchdog timer enabled  
WDTEN  
4
period (t ) for the charger to operate  
WD  
normally. Reset the watchdog timer by  
programming WDTCLR = 0x01.  
www.maximintegrated.com  
Maxim Integrated | 59  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0x0: Charger = off, OTG = off, DC-DC = off. When  
the Q  
switch is on (DISQBAT = low and  
BAT  
DISIBS = 0), the battery powers the system.  
0x1: Same as 0b0000  
0x2: Same as 0b0000  
0x3: Same as 0b0000  
0x4: Charger = off, OTG = off, DC-DC = on. When  
there is a valid input, the DC-DC converter  
regulates the system voltage to be the maximum of  
(V  
and V  
+ 4%).  
SYSMIN  
BATT  
0x5: Charger = on,OTG = off, DC-DC = on. When  
there is a valid input, the battery is charging. V  
SYS  
is the larger of V  
and ~V  
+ I  
x
SYSMIN  
BATT  
BATT  
Smart Power Selector Configuration.  
Read back value of the MODE register  
reflects the actual smart power selector  
configuration.  
R
.
BAT2SYS  
0x6: Same as 0b0101  
0x7: Same as 0b0101  
0x8: RSVD  
MODE  
3:0  
0x9: RSVD  
0xA: Charger = off, OTG = on, DC-DC = off. The  
switch is on to allow the battery to support  
Q
BAT  
the system, the charger's DC-DC operates in  
reverse mode as a buck converter. The OTG  
output, CHGIN, can source current up to  
I
. The CHGIN target voltage is  
CHGIN.OTG.LIM  
V
.
CHGIN.OTG  
0xB: RSVD  
0xC: RSVD  
0xD: RSVD  
0xE: RSVD  
0xF: RSVD  
CHG_CNFG_01 (0x17)  
Charger configuration 1  
BIT  
7
6
5
4
3
2
1
FCHGTIME[2:0]  
0x1  
0
Field  
PQEN  
0x1  
LPM  
0x0  
CHG_RSTRT[1:0]  
0x1  
STAT_EN  
Reset  
0x1  
Access  
Type  
Write, Read Write, Read  
Write, Read  
Write, Read  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0b0: Low-Battery Prequalification mode is  
disabled.  
0b1: Low-Battery Prequalification mode is enabled.  
PQEN  
7
6
Low-Battery Prequalification Mode Enable  
Low Power Mode control  
0b0: Q  
0b1: Q  
charge pump runs in Normal mode.  
charge pump is in Low Power Mode.  
BAT  
BAT  
LPM  
0b00: 100mV/cell below the value programmed by  
CHG_CV_PRM  
0b01: 150mV/cell below the value programmed by  
CHG_CV_PRM  
10: 200mV/cell below the value programmed by  
CHG_CV_PRM  
CHG_RSTR  
T
5:4  
3
Charger Restart Threshold  
11: Disabled  
0b0: Disable STAT output  
0b1: Enable STAT output  
STAT_EN  
Charge Indicator Output Enable  
www.maximintegrated.com  
Maxim Integrated | 60  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0b000: Disable  
0b001: 3  
0b010: 4  
0b011: 5  
0b100: 6  
FCHGTIME  
2:0  
Fast-Charge Timer setting (t , hrs)  
FC  
0b101: 7  
0b110: 8  
0b111: 10  
CHG_CNFG_02 (0x18)  
Charger configuration 2  
BIT  
7
6
5
4
3
2
1
0
Field  
SPR[1:0]  
0x0  
CHGCC[5:0]  
0x7  
Reset  
Access  
Type  
Write, Read  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
SPR  
7:6  
Spare Bit  
www.maximintegrated.com  
Maxim Integrated | 61  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0x00: 100  
0x01: 150  
0x02: 200  
0x03: 250  
0x04: 300  
0x05: 350  
0x06: 400  
0x07: 450  
0x08: 500  
0x09: 600  
0x0A: 700  
0x0B: 800  
0x0C: 900  
0x0D: 1000  
0x0E: 1100  
0x0F: 1200  
0x10: 1300  
0x11: 1400  
0x12: 1500  
0x13: 1600  
0x14: 1700  
0x15: 1800  
0x16: 1900  
0x17: 2000  
0x18: 2100  
0x19: 2200  
0x1A: 2300  
0x1B: 2400  
0x1C: 2500  
0x1D: 2600  
0x1E: 2700  
0x1F: 2800  
0x20: 2900  
0x21: 3000  
0x22: 3100  
0x23: 3200  
0x24: 3300  
0x25: 3400  
0x26: 3500  
0x27: 3600  
0x28: 3700  
0x29: 3800  
0x2A: 3900  
0x2B: 4000  
0x2C: 4100  
0x2D: 4200  
0x2E: 4300  
0x2F: 4400  
0x30: 4500  
0x31: 4600  
0x32: 4700  
0x33: 4800  
0x34: 4900  
0x35: 5000  
0x36: 5100  
0x37: 5200  
0x38: 5300  
0x39: 5400  
0x3A: 5500  
Fast-Charge Current Selection (mA). When  
the charger is enabled, the charge current  
limit is set by these bits.  
Read back value of the CHGCC register  
reflects the actual fast charge current  
programmed in the charger.  
CHGCC  
5:0  
The thermal foldback loop can reduce the  
battery charger’s target current by A  
TJREG.  
www.maximintegrated.com  
Maxim Integrated | 62  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0x3B: 5600  
0x3C: 5700  
0x3D: 5800  
0x3E: 5900  
0x3F: 6000  
CHG_CNFG_03 (0x19)  
Charger configuration 3  
BIT  
7
6
5
4
3
2
1
0
SYS_TRAC B2SOVRC_  
Field  
TO_TIME[2:0]  
0x3  
TO_ITH[2:0]  
0x0  
K_DIS  
DTC  
Reset  
0x1  
0x0  
Access  
Type  
Write, Read Write, Read  
Write, Read  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0x0: SYS tracking is enabled. SYS is regulated to  
MAX of (V + 4%, V ). This is also valid  
in Charge Done state.  
0x1: SYS tracking is disabled. SYS is regulated to  
BATT  
SYSMIN  
SYS_TRACK  
_DIS  
7
6
SYS Tracking Disable Control  
V
.
CHG_CV_PRM  
Battery to SYS Overcurrent Debounce Time  
Control.  
While under OVRC condition, after t  
B2SOVRC_D  
TC  
0x0: t  
0x1: t  
= 6ms  
= 100ms  
OCP  
OCP  
OCP  
switcher (and therfore charge) is disabled.  
0b000: 30s  
0b001: 10  
0b010: 20  
0b011: 30  
0b100: 40  
0b101: 50  
0b110: 60  
0b111: 70  
TO_TIME  
5:3  
Top-Off Timer Setting (min)  
Top-Off Current Threshold (mA). The charger  
transitions from its fast-charge constant  
voltage mode to its top-off mode when the  
charger current decays to the value  
programmed by this register. This transition  
generates a CHG_I interrupt and causes the  
CHG_DTLS register to report top-off mode.  
This transition also starts the top-off time as  
programmed by TO_TIME.  
0b000: 100  
0b001: 200  
0b010: 300  
0b011: 400  
0b100: 500  
0b101: 600  
0b110: 600  
0b111: 600  
TO_ITH  
2:0  
Read back value of the TO_ITH register  
reflects the actual top-off current programmed  
in the charger.  
CHG_CNFG_04 (0x1A)  
Charger configuration 4  
www.maximintegrated.com  
Maxim Integrated | 63  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
BIT  
Field  
7
6
5
4
3
2
1
0
SPR[1:0]  
0x0  
CHG_CV_PRM[5:0]  
0x00  
Reset  
Access  
Type  
Write, Read  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
SPR  
7:6  
Spare Bit  
www.maximintegrated.com  
Maxim Integrated | 64  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
2 Cell Battery  
0x00: 8.000  
0x01: 8.020  
0x02: 8.040  
0x03: 8.060  
0x04: 8.080  
0x05: 8.100  
0x06: 8.120  
0x07: 8.140  
0x08: 8.160  
0x09: 8.180  
0x0A: 8.200  
0x0B: 8.220  
0x0C: 8.240  
0x0D: 8.260  
0x0E: 8.280  
0x0F: 8.300  
0x10: 8.320  
0x11: 8.340  
0x12: 8.360  
0x13: 8.380  
0x14: 8.400  
0x15: 8.420  
0x16: 8.440  
0x17: 8.460  
0x18: 8.480  
0x19: 8.500  
0x1A: 8.520  
0x1B: 8.540  
0x1C: 8.560  
0x1D: 8.580  
0x1E: 8.600  
0x1F: 8.620  
0x20: 8.640  
0x21: 8.660  
0x22: 8.680  
0x23: 8.700  
0x24: 8.720  
0x25: 8.740  
0x26: 8.760  
0x27: 8.780  
0x28: 8.800  
0x29: 8.820  
0x2A: 8.840  
0x2B: 8.860  
0x2C: 8.880  
0x2D: 8.900  
0x2E: 8.920  
0x2F: 8.940  
0x30: 8.960  
0x31: 8.980  
0x32: 9.000  
0x33: 9.020  
0x34: 9.040  
0x35: 9.060  
0x36: 9.080  
0x37: 9.100  
0x38: 9.120  
0x39: 9.140  
Charge Termination Voltage Setting (V).  
Read back value of the CHG_CV_PRM  
register reflects the actual charge termination  
voltage programmed in the charger when  
JEITA_EN = 0.  
CHG_CV_P  
RM  
5:0  
When JEITA_EN = 1, charge termination  
voltage is controlled by V  
and  
CHGCV_COOL  
V
register settings.  
CHGCV_WARM  
www.maximintegrated.com  
Maxim Integrated | 65  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0x3A: 9.160  
0x3B: 9.180  
0x3C: 9.200  
0x3D: 9.220  
0x3E: 9.240  
0x3F: 9.260  
3 Cell Battery  
0x00: 12.000  
0x01: 12.030  
0x02: 12.060  
0x03: 12.090  
0x04: 12.120  
0x05: 12.150  
0x06: 12.180  
0x07: 12.210  
0x08: 12.240  
0x09: 12.270  
0x0A: 12.300  
0x0B: 12.330  
0x0C: 12.360  
0x0D: 12.390  
0x0E: 12.420  
0x0F: 12.450  
0x10: 12.480  
0x11: 12.510  
0x12: 12.540  
0x13: 12.570  
0x14: 12.600  
0x15: 12.630  
0x16: 12.660  
0x17: 12.690  
0x18: 12.720  
0x19: 12.750  
0x1A: 12.780  
0x1B: 12.810  
0x1C: 12.840  
0x1D: 12.870  
0x1E: 12.900  
0x1F: 12.930  
0x20: 12.960  
0x21: 12.990  
0x22: 13.020  
0x23: 13.050  
CHG_CNFG_05 (0x1B)  
Charger configuration 5  
BIT  
7
6
5
4
3
2
1
0
Field  
RESERVED[1:0]  
0x1  
ITRICKLE[1:0]  
B2SOVRC[3:0]  
0x4  
Reset  
0x0  
Access  
Type  
Write, Read  
Write, Read  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
RESERVED  
7:6  
Reserved  
www.maximintegrated.com  
Maxim Integrated | 66  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0b00: 100  
0b01: 200  
0b10: 300  
0b11: 400  
ITRICKLE  
5:4  
Trickle Charge Current Selection (mA)  
0x00: Disable  
0x01: 3.000  
0x02: 3.500  
0x03: 4.000  
0x04: 4.500  
0x05: 5.000  
0x06: 5.500  
0x07: 6.000  
0x08: 6.500  
0x09: 7.000  
0x0A: 7.500  
0x0B: 8.000  
0x0C: 8.500  
0x0D: 9.000  
0x0E: 9.500  
0x0F: 10.000  
B2SOVRC  
3:0  
BATT to SYS Overcurrent Threshold (A)  
CHG_CNFG_06 (0x1C)  
Charger configuration 6  
BIT  
7
6
5
4
3
2
1
0
Field  
SPR7  
0x0  
RESERVED[1:0]  
0x0  
SPR4  
0x0  
CHGPROT[1:0]  
0x0  
WDTCLR[1:0]  
Reset  
0x0  
Access  
Type  
Write, Read  
Write, Read  
Write, Read  
Write, Read  
Write, Read  
BITFIELD  
SPR7  
BITS  
7
DESCRIPTION  
DECODE  
Spare bit  
RESERVED  
SPR4  
6:5  
4
Reserved  
Spare bit  
Charger Settings Protection Bit.  
0b00: Write capability locked  
0b01: Write capability locked  
0b10: Write capability locked  
0b11: Write capability unlocked  
Writing 11 to these bits unlocks the write  
capability for the registers that are Protected  
with CHGPROT. Writing any value besides  
11 locks the protected registers.  
CHGPROT  
WDTCLR  
3:2  
1:0  
0b00: the watchdog timer is not cleared  
0b01: the watchdog timer is cleared  
0b10: the watchdog timer is not cleared  
0b11: the watchdog timer is not cleared  
Watchdog Timer Clear Bit.  
Writing 01 to these bits clears the watchdog  
timer when the watchdog timer is enabled.  
CHG_CNFG_07 (0x1D)  
Charger configuration 7  
www.maximintegrated.com  
Maxim Integrated | 67  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
BIT  
Field  
7
6
5
4
3
2
1
0
VCHGCV_ ICHGCC_C FSHIP_MO  
COOL  
JEITA_EN  
0x0  
REGTEMP[3:0]  
0x6  
OOL  
DE  
Reset  
0x0  
0x1  
0x0  
Access  
Type  
Write, Read  
Write, Read  
Write, Read Write, Read Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0b0: JEITA disabled.  
Fast-charge current and charge termination  
voltage do not change based on thermistor  
temperature.  
JEITA_EN  
7
JEITA Enable  
0b1: JEITA enabled.  
Fast-charge current and charge termination  
voltage change based on thermistor temperature.  
0x0: 85  
0x1: 90  
Junction Temperature Thermal Regulation  
(ºC).  
The charger's target current limit starts to  
foldback and the TREG bit is set if the  
junction temperature is greater than the  
REGTEMP setpoint.  
0x2: 95  
0x3: 100  
0x4: 105  
0x5: 110  
0x6: 115  
0x7: 120  
0x8: 125  
0x9: 130  
REGTEMP  
6:3  
0b0: Battery termination voltage is set by  
CHG_CV_PRM.  
0b1: Battery termination voltage is set by  
(CHG_CV_PRM - 180mV/cell).  
JEITA-Controlled Battery Termination Voltage  
When Thermistor Temperature is Between  
VCHGCV_C  
OOL  
2
T
and T  
COLD  
COOL  
JEITA-Controlled Battery Fast-Charge  
Current When Thermistor Temperature is  
0b0: Battery fast-charge current is set by CHGCC  
0b1: Battery fast-charge current is reduced to 50%  
of CHGCC  
ICHGCC_CO  
OL  
1
0
Between T  
and T  
COLD  
COOL  
FSHIP_MOD  
E
0b0: Disable factory ship mode  
0b1: Enable factory ship mode  
Factory Ship Mode Enable  
CHG_CNFG_08 (0x1E)  
Charger configuration 8  
BIT  
7
6
5
4
3
2
1
0
Field  
RESERVED  
0x1  
CHGIN_ILIM[6:0]  
0x0B  
Reset  
Access  
Type  
Write, Read  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
RESERVED  
7
Reserved  
www.maximintegrated.com  
Maxim Integrated | 68  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0x00: 100  
0x01: 100  
0x02: 100  
0x03: 100  
0x04: 150  
0x05: 200  
0x06: 250  
0x07: 300  
0x08: 350  
0x09: 400  
0x0A: 450  
0x0B: 500  
0x0C: 550  
0x0D: 600  
0x0E: 650  
0x0F: 700  
0x10: 750  
0x11: 800  
0x12: 850  
0x13: 900  
0x14: 950  
0x15: 1000  
0x16: 1050  
0x17: 1100  
0x18: 1150  
0x19: 1200  
0x1A: 1250  
0x1B: 1300  
0x1C: 1350  
0x1D: 1400  
0x1E: 1450  
0x1F: 1500  
0x20: 1550  
0x21: 1600  
0x22: 1650  
0x23: 1700  
0x24: 1750  
0x25: 1800  
0x26: 1850  
0x27: 1900  
0x28: 1950  
0x29: 2000  
0x2A: 2050  
0x2B: 2100  
0x2C: 2150  
0x2D: 2200  
0x2E: 2250  
0x2F: 2300  
0x30: 2350  
0x31: 2400  
0x32: 2450  
0x33: 2500  
0x34: 2550  
0x35: 2600  
0x36: 2650  
0x37: 2700  
0x38: 2750  
0x39: 2800  
0x3A: 2850  
CHGIN Input Current Limit (mA).  
Read back value of the CHGIN_ILIM register  
reflect the actual input current limit  
programmed in the charger.  
CHGIN_ILIM  
6:0  
www.maximintegrated.com  
Maxim Integrated | 69  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0x3B: 2900  
0x3C: 2950  
0x3D: 3000  
0x3E: 3050  
0x3F: 3100  
0x40: 3150  
0x41: 3200  
0x42: 3250  
0x43: 3300  
0x44: 3350  
0x45: 3400  
0x46: 3450  
0x47: 3500  
0x48: 3550  
0x49: 3600  
0x4A: 3650  
0x4B: 3700  
0x4C: 3750  
0x4D: 3800  
0x4E: 3850  
0x4F: 3900  
0x50: 3950  
0x51: 4000  
0x52: 4050  
0x53: 4100  
0x54: 4150  
0x55: 4200  
0x56: 4250  
0x57: 4300  
0x58: 4350  
0x59: 4400  
0x5A: 4450  
0x5B: 4500  
0x5C: 4550  
0x5D: 4600  
0x5E: 4650  
0x5F: 4700  
0x60: 4750  
0x61: 4800  
0x62: 4850  
0x63: 4900  
0x64: 4950  
0x65: 5000  
0x66: 5050  
0x67: 5100  
0x68: 5150  
0x69: 5200  
0x6A: 5250  
0x6B: 5300  
0x6C: 5350  
0x6D: 5400  
0x6E: 5450  
0x6F: 5500  
0x70: 5550  
0x71: 5600  
0x72: 5650  
0x73: 5700  
0x74: 5750  
0x75: 5800  
www.maximintegrated.com  
Maxim Integrated | 70  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0x76: 5850  
0x77: 5900  
0x78: 5950  
0x79: 6000  
0x7A: 6050  
0x7B: 6100  
0x7C: 6150  
0x7D: 6200  
0x7E: 6250  
0x7F: 6300  
CHG_CNFG_09 (0x1F)  
Charger configuration 9  
BIT  
7
6
5
4
OTG_ILIM[2:0]  
0x3  
3
2
1
0
Field  
INLIM_CLK[1:0]  
0x2  
MINVSYS[2:0]  
0x3  
Reset  
Access  
Type  
Write, Read  
Write, Read  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0b00: 8  
Input Current Limit Soft-Start Period (μs)  
Between Consecutive Increments of 25mA  
0b01: 256  
0b10: 1024  
0b11: 4096  
INLIM_CLK  
7:6  
5:3  
0b000: 500  
0b001: 900  
0b010: 1200  
0b011: 1500  
0b100: 2000  
0b101: 2250  
0b110: 2500  
0b111: 3000  
OTG_ILIM  
OTG Mode Current Limit Setting (mA)  
2 Cell Battery  
0b000: 5.535  
0b001: 5.740  
0b010: 5.945  
0b011: 6.150  
0b100: 6.355  
0b101: 6.560  
0b110: 6.765  
0b111: 6.970  
3 Cell Battery  
0b000: 8.303  
0b001: 8.610  
0b010: 8.918  
0b011: 9.225  
0b100: 9.533  
0b101: 9.840  
0b110: 10.148  
0b111: 10.455  
MINVSYS  
2:0  
Minimum System Regulation Voltage (V)  
CHG_CNFG_10 (0x20)  
Charger configuration 10  
www.maximintegrated.com  
Maxim Integrated | 71  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
BIT  
Field  
7
6
5
4
3
2
1
0
SPR[1:0]  
0x0  
VCHGIN_REG[4:0]  
0x04  
DISKIP  
0x0  
Reset  
Access  
Type  
Write, Read  
Write, Read  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
SPR  
7:6  
Spare Bit  
0x00: 4.025  
0x01: 4.200  
0x02: 4.375  
0x03: 4.550  
0x04: 4.725  
0x05: 4.900  
0x06: 5.425  
0x07: 5.950  
0x08: 6.475  
0x09: 7.000  
0x0A: 7.525  
0x0B: 8.050  
0x0C: 8.575  
0x0D: 9.100  
0x0E: 9.625  
0x0F: 10.150  
0x10: 10.675  
0x11: 10.950  
0x12: 11.550  
0x13: 12.150  
0x14: 12.750  
0x15: 13.350  
0x16: 13.950  
0x17: 14.550  
0x18: 15.150  
0x19: 15.750  
0x1A: 16.350  
0x1B: 16.950  
0x1C: 17.550  
0x1D: 18.150  
0x1E: 18.750  
0x1F: 19.050  
VCHGIN_RE  
G
5:1  
CHGIN Voltage Regulation Threshold (V)  
0b0: Autoskip mode  
0b1: Disable skip mode  
DISKIP  
0
Charger Skip Mode Disable  
www.maximintegrated.com  
Maxim Integrated | 72  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
Applications Information  
Inductor Selection  
Buck-boost allows a range of inductance for different combinations of switching frequency and maximum nominal CHGIN  
voltage. See Table 11 for recommendations. The lower the inductor DCR is, the higher the buck-boost efficiency is. The  
user needs to weigh the trade-offs between inductor size and DCR value and choose a suitable inductor for the buck-  
boost. See Table 12 for inductor recommendations.  
Table 11. Recommended Inductance for Combinations of Switching Frequency and  
Maximum Nominal CHGIN Voltage  
SWITCHING FREQUENCY  
(kHz)  
MAXIMUM NOMINAL CHGIN VOLTAGE  
(V)  
RECOMMENDED NOMINAL INDUCTANCE  
(µH)  
15 or lower  
2.2, 3.3  
600  
Higher than 15  
15 or lower  
3.3  
1.0, 1.5, 2.2, 3.3  
1.5, 2.2, 3.3  
1200  
Higher than 15  
Table 12. Suggested Inductors  
CURRENT  
RATING (A)  
ΔT = +40°C  
RISE  
ROOT  
PART  
NUMBER  
NOMINAL  
INDUCTANCE  
(µH)  
TYPICAL DC  
RESISTANCE  
(mΩ)  
CURRENT  
RATING (A)  
-30% (ΔL/L)  
DIMENSIONS  
L x W x H  
(mm)  
MFGR.  
SERIES  
TDK  
VLS3012HBX-1R0M 1.0  
39.0  
6.11  
7.1  
5.13  
7.5  
3.0 x 3.0 x 1.2  
4.0 x 4.0 x 2.1  
4.0 x 4.0 x 2.1  
4.0 x 4.0 x 3.1  
5.5 x 5.3 x 1.8  
5.5 x 5.3 x 2.9  
Coilcraft XAL4020-152ME  
Coilcraft XAL4020-222ME  
Coilcraft XAL4030-332ME  
1.5  
2.2  
3.3  
1.0  
1.5  
21.5  
35.2  
26.0  
12.0  
10.1  
MAX77960B  
MAX77961B  
5.6  
5.5  
5.5  
6.6  
Pulse  
Pulse  
PA5002.102NLT  
PA5003.152NLT  
12.8  
12.5  
10.5  
10.5  
6.95 x 6.6 x  
2.8  
Cyntec  
Pulse  
CMLE063T-2R2MS 2.2  
PA5007.332NLT 3.3  
11.0  
16.3  
14.0  
15.0  
10.0  
10.0  
7.8 x 7.6 x 2.9  
CHGIN Capacitor Selection  
The CHGIN capacitor, C  
, reduces the current peaks drawn from the input power source and reduces switching  
CHGIN  
noise in the device. In OTG mode, it also reduces the output voltage ripple and ensures regulation loop stability.  
The impedance of C at the switching frequency should be kept very low. Ceramic capacitors with X5R or X7R  
CHGIN  
dielectrics are highly recommended due to their small size, low ESR, and small temperature coefficients. For most  
applications, a 10μF capacitor is sufficient. See Table 13 for CHGIN capacitor recommendations.  
Table 13. Suggested CHGIN Capacitors  
NOMINAL  
CAPACITANCE  
(µF)  
DIMENSIONS  
L x W x H  
(mm)  
RATED  
VOLTAGE (V)  
TEMPERATURE  
CHARACTERISTICS  
CASE  
SIZE (in)  
MFGR.  
SERIES  
Murata GRM32ER7YA106KA12  
Murata GRT31CR6YA106KE01  
10  
10  
35  
35  
X7R  
X5R  
1210  
1206  
3.2 x 2.5 x 2.5  
3.2 x 1.6 x 1.6  
2.0 x 1.25 x  
1.25  
Murata GRM21BR6YA106ME43  
10  
35  
X5R  
0805  
www.maximintegrated.com  
Maxim Integrated | 73  
 
 
 
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
SYS Capacitor Selection  
The SYS capacitor, C  
, is required to keep the output voltage ripple small and to ensure regulation loop stability. The  
SYS  
C
must have low impedance at the switching frequency. Ceramic capacitors with X5R or X7R dielectric are highly  
SYS  
recommended due to their small size, low ESR, and small temperature coefficients. For stable operation, buck-boost  
requires 40μF of minimum effective output capacitance. Considering the DC bias characteristic of ceramic capacitors,  
2 x 47μF (1210) or 3 x 47μF (1206) or 7 x 22μF (0805) capacitors are recommended for 2-cell applications, and 3 x  
47μF (1210) or 4 x 47μF (1206) capacitors are recommended for 3-cell applications. See Table 14 for SYS capacitor  
recommendations.  
Table 14. Suggested SYS Capacitors  
NOMINAL  
CAPACITANCE  
(µF)  
DIMENSIONS  
L x W x H  
(mm)  
RATED  
VOLTAGE (V)  
TEMPERATURE  
CHARACTERISTICS  
CASE  
SIZE (in)  
MFGR.  
SERIES  
Taiyo  
Yuden  
EMK325ABJ476MM8P  
47  
47  
22  
16  
16  
16  
X5R  
X5R  
X5R  
1210  
1206  
0805  
3.2 x 2.5 x 2.5  
3.2 x 1.6 x 1.6  
Murata GRM31CR61C476ME44  
Murata GRM21BR61C226ME44  
2.0 x 1.25 x  
1.25  
Battery Insertion Protection  
When the battery hot inserts into the MAX77960B/MAX77961B, it creates high inrush current flowing through the body  
diode of Q FET. The inrush current peaks at tens of amperes and lasts for less than a few hundreds of microseconds.  
BAT  
Such current can possibly damage the Q  
on the board:  
FET. For IC protection, the following battery insertion protection is required  
BAT  
● For system designs with a 2S battery, include an external 3A Schottky diode from BATT to SYS. The Schottky diode  
has low forward voltage drop when conducting high current in the forward direction. It diverts the inrush current from  
BATT to SYS at battery insertion. The inrush current flowing through the Q  
the IC is protected. See Figure 14.  
FET is greatly reduced and therefore  
BAT  
● For system designs with a 3S battery, the inrush current is higher than a 2S battery due to higher battery voltage. In  
addition to the 3A Schottky diode from BATT to SYS, it is required to include an inrush protection circuit. The inrush  
protection circuit consists of an FET and RC network. See Figure 15 for a complete solution. At battery hot insertion,  
V
of the FET is slowly charged by the RC network. The FET gradually turns on and limits the inrush current. For  
GS  
FET selection, check the current and voltage rating of the FET to guarantee that it satisfies the system specification.  
www.maximintegrated.com  
Maxim Integrated | 74  
 
 
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
MAX77960B  
MAX77961B  
PGND  
SYS  
QBAT  
BATT  
PACK+  
HOT INSERTION  
3A SCHOTTKY  
DIODE  
2S BATTERY  
PACK-  
Figure 14. Battery Insertion Protection with 2S Battery  
www.maximintegrated.com  
Maxim Integrated | 75  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
MAX77960B  
MAX77961B  
PGND  
SYS  
QBAT  
BATT  
PACK+  
INRUSH  
HOT INSERTION  
PROTECTION  
3A SCHOTTKY  
DIODE  
470K  
1K  
CIRCUIT  
3S BATTERY  
0.047µF  
910K  
PACK-  
Figure 15. Battery Insertion Protection with 3S Battery  
PCB Layout Guidelines  
Careful circuit board layout is critical to achieve low switching power losses and clean, stable operation. Figure 16 shows  
a PCB layout example.  
When designing the PCB, follow these guidelines:  
1. Place the CHGIN capacitor (C  
) and SYS capacitors (C  
) immediately next to the CHGIN pin and SYS pin  
SYS  
CHGIN  
of the IC, respectively. Since the IC operates at a high switching frequency, this placement is critical for minimizing  
parasitic inductance within the input and output current loops which can cause high voltage spikes and can damage  
the internal switching MOSFETs.  
2. Place the inductor next to the LX pins and make the traces between the LX pins and the inductor short and wide to  
minimize PCB trace impedance. Excessive PCB impedance reduces converter efficiency. When routing LX traces  
on a separate layer, make sure to include enough vias to minimize trace impedance. Routing LX traces on multiple  
layers is recommended to further reduce trace impedance. Furthermore, do not make LX traces take up an excessive  
amount of area. The voltage on this node switches very quickly and additional area creates more radiated emissions.  
3. Route LX nodes to their corresponding bootstrap capacitors (C  
to reduce trace length to the IC.  
) as short as possible. Prioritize C  
placement  
BST  
BST  
4. Route CSINP and CSINN traces as symmetrical as possible. Having the same trace parasitics improves accuracy of  
the differential CHGIN current sensing.  
5. Place the PVL capacitor (C  
internal circuitry.  
) immediately next to the PVL pin. Proximity to the IC provides a stable supply for the  
PVL  
6. Place the BATT capacitor (C  
the IC, respectively.  
) and SYSA capacitor (C  
) immediately next to the BATT pin and SYSA pin of  
SYSA  
BATT  
www.maximintegrated.com  
Maxim Integrated | 76  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
7. Keep the power traces and load connections short and wide. This is essential for high converter efficiency.  
8. Do not neglect ceramic capacitor DC voltage derating. Choose capacitor values and case sizes carefully. See the  
SYS Capacitor Selection section and refer to Tutorial 5527 for more information.  
CSINP  
CSINN  
CDIFF  
0402  
VBUS  
RSENSE  
1206  
BST1  
CBST1  
0402  
RAVL  
0402  
CHGIN  
AVL  
PVL  
LX1  
GND  
SYSA  
PGND  
LX2  
CBST2  
0402  
CBATT  
0805  
BST2  
SYS  
BATT  
Figure 16. PCB Layout Example  
www.maximintegrated.com  
Maxim Integrated | 77  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
Typical Application Circuits  
2
Wide-Input I C Programmable Charger  
MAX77960B  
MAX77961B  
10m  
1206  
0.22µF  
3.5V TO 25.4V  
CHGIN  
6.3V  
0402  
BST1  
LX1  
V
BUS  
10µF  
35V  
1210  
2.2µH  
8A I  
SAT  
CSINN  
CSINP  
LX2  
0.22µF  
6.3V  
0402  
V
V
PVL  
AVL  
BST2  
PVL  
AVL  
4.7Ω  
0402  
4.7µF  
6.3V  
0402  
SYS  
V
SYS  
47µF  
16V  
1210  
47µF  
16V  
1210  
SYSA  
4.7µF  
6.3V  
0402  
3A IF  
PGND  
BATT  
SCL  
SDA  
INTB  
SCL  
SDA  
INTB  
V
BATT  
10µF  
16V  
0805  
INOKB  
INOKB  
STAT  
V
V
AVL  
PVL  
200kΩ  
0402  
THM  
THM  
PK+  
10kΩ  
BATSP  
200kΩ  
GND  
0402  
STAT  
INRUSH  
PK-  
PROTECTION  
CIRCUIT  
(FOR 3S BATTERY)  
BATSN  
ISET  
ITO  
OTGEN  
DISQBAT  
STBY  
OTGEN  
DISQBAT  
STBY  
V
PVL  
2/3-CELL LI-ION  
BATTERY  
INLIM  
VSET  
CNFG  
www.maximintegrated.com  
Maxim Integrated | 78  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
Typical Application Circuits (continued)  
2
Wide-Input I C Programmable Charger with Charger Disabled  
MAX77960B  
MAX77961B  
10m  
1206  
0.22µF  
6.3V  
3.5V TO 25.4V  
CHGIN  
BST1  
V
BUS  
10µF  
35V  
0402  
LX1  
1210  
2.2µH  
8A I  
SAT  
CSINN  
CSINP  
LX2  
0.22µF  
6.3V  
0402  
V
V
PVL  
AVL  
BST2  
PVL  
AVL  
4.7Ω  
0402  
4.7µF  
6.3V  
0402  
SYS  
V
SYS  
47µF  
16V  
1210  
47µF  
16V  
1210  
SYSA  
4.7µF  
6.3V  
0402  
3A IF  
PGND  
BATT  
SCL  
SDA  
INTB  
SCL  
SDA  
INTB  
V
BATT  
10µF  
16V  
0805  
INOKB  
INOKB  
STAT  
V
V
AVL  
PVL  
200kΩ  
0402  
THM  
THM  
PK+  
10kΩ  
BATSP  
200kΩ  
GND  
0402  
STAT  
INRUSH  
PROTECTION  
CIRCUIT  
PK-  
BATSN  
V
PVL  
OTGEN  
DISQBAT  
STBY  
OTGEN  
DISQBAT  
STBY  
(FOR 3S BATTERY)  
2/3-CELL LI-ION  
BATTERY  
ISET  
ITO  
INLIM  
VSET  
CNFG  
www.maximintegrated.com  
Maxim Integrated | 79  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
Typical Application Circuits (continued)  
Wide-Input Autonomous Charger  
MAX77960B  
MAX77961B  
10m  
1206  
3.5V TO 25.4V  
0.22µF  
6.3V  
0402  
CHGIN  
BST1  
LX1  
V
BUS  
10µF  
35V  
1210  
2.2µH  
8A I  
SAT  
CSINN  
CSINP  
LX2  
0.22µF  
6.3V  
0402  
V
PVL  
AVL  
BST2  
PVL  
AVL  
4.7Ω  
0402  
4.7µF  
6.3V  
0402  
V
SYS  
V
SYS  
47µF  
16V  
1210  
47µF  
16V  
1210  
SYSA  
4.7µF  
6.3V  
0402  
3A IF  
PGND  
BATT  
SCL  
SDA  
INTB  
V
BATT  
10µF  
16V  
0805  
INOKB  
INOKB  
STAT  
V
V
AVL  
PVL  
200kΩ  
0402  
THM  
THM  
PK+  
10kΩ  
BATSP  
200kΩ  
0402  
GND  
STAT  
INRUSH  
PROTECTION  
CIRCUIT  
(FOR 3S BATTERY)  
PK-  
BATSN  
ISET  
ITO  
OTGEN  
DISQBAT  
STBY  
OTGEN  
DISQBAT  
STBY  
2/3-CELL LI-ION  
BATTERY  
INLIM  
VSET  
CNFG  
www.maximintegrated.com  
Maxim Integrated | 80  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
Ordering Information  
MAXIMUM  
CHARGING  
CURRENT  
TEMP  
RANGE  
SWITCHING  
FREQUENCY  
NUMBER OF SERIES  
BATTERY CELLS  
PART NUMBER  
PIN-PACKAGE  
-40°C to  
+85°C  
4mm x 4mm,  
30-Lead FC2QFN  
MAX77960BEFV06+  
MAX77960BEFV06+T  
MAX77960BEFV12+  
MAX77960BEFV12+T  
MAX77961BEFV06+  
MAX77961BEFV06+T  
MAX77961BEFV12+  
MAX77961BEFV12+T  
600kHz  
600kHz  
1.2MHz  
1.2MHz  
600kHz  
600kHz  
1.2MHz  
1.2MHz  
2, 3  
2, 3  
2
3A  
3A  
3A  
3A  
6A  
6A  
5A  
5A  
-40°C to  
+85°C  
4mm x 4mm,  
30-Lead FC2QFN  
-40°C to  
+85°C  
4mm x 4mm,  
30-Lead FC2QFN  
-40°C to  
+85°C  
4mm x 4mm,  
30-Lead FC2QFN  
2
-40°C to  
+85°C  
4mm x 4mm,  
30-Lead FC2QFN  
2, 3  
2, 3  
2
-40°C to  
+85°C  
4mm x 4mm,  
30-Lead FC2QFN  
-40°C to  
+85°C  
4mm x 4mm,  
30-Lead FC2QFN  
-40°C to  
+85°C  
4mm x 4mm,  
30-Lead FC2QFN  
2
+Denotes a lead(Pb)-free/RoHS-compliant package.  
T = Tape and reel.  
www.maximintegrated.com  
Maxim Integrated | 81  
MAX77960B/MAX77961B  
25V , 3A  
to 6A  
, USB-C Buck-Boost  
OUT  
IN  
OUT  
Charger with Integrated FETs for 2S/3S Li-Ion  
Batteries  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
0
6/21  
Initial release  
For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent  
licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max  
limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
© 2021 Maxim Integrated Products, Inc.  

相关型号:

MAX77960BEFV12+T

25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries
MAXIM

MAX77960BEVKIT

Demonstrates 3.5V to 25.4V Input Operating Range
MAXIM

MAX77960BEVKIT06

Demonstrates 3.5V to 25.4V Input Operating Range
MAXIM

MAX77960EVKIT

Demonstrates JEITA Compliance with On-Board Dummy Thermistors
MAXIM

MAX77960EVKIT-06

Demonstrates 3.5V to 25.4V Input Operating Range
MAXIM

MAX77961

Demonstrates 3.5V to 25.4V Input Operating Range
MAXIM

MAX77961B

Demonstrates 3.5V to 25.4V Input Operating Range
MAXIM

MAX77961BEFV06+

25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries
MAXIM

MAX77961BEFV06+T

25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries
MAXIM

MAX77961BEFV12+

25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries
MAXIM

MAX77961BEFV12+T

25VIN, 3AOUT to 6AOUT, USB-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries
MAXIM

MAX77962

High Voltage VBUS Range
MAXIM