MAX793RCSE-T [MAXIM]

Power Supply Management Circuit, Fixed, 2 Channel, CMOS, PDSO16, 0.150 INCH, MS-012AC, SOIC-16;
MAX793RCSE-T
型号: MAX793RCSE-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Power Supply Management Circuit, Fixed, 2 Channel, CMOS, PDSO16, 0.150 INCH, MS-012AC, SOIC-16

光电二极管
文件: 总20页 (文件大小:183K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0366; Rev 6; 3/10  
3.0V/3.3V Adjustable Microprocessor  
Supervisory Circuits  
34/MAX795  
General Description  
____________________________Features  
MAX793/MAX794/MAX795  
The MAX793/MAX794/MAX795 microprocessor (µP)  
supervisory circuits monitor and control the activities of  
+3.0V/+3.3V µPs by providing backup-battery switchover,  
among other features such as low-line indication, µP  
reset, write protection for CMOS RAM, and a watchdog  
(see the Selector Guide below). The backup-battery volt-  
o Precision Supply-Voltage Monitor:  
Fixed Reset Trip Voltage (MAX793/MAX795)  
Adjustable Reset Trip Voltage (MAX794)  
o Guaranteed Reset Assertion to V  
= 1V  
CC  
o Backup-Battery Power Switching—Battery  
Voltage Can Exceed V  
age can exceed V , permitting the use of 3.6V lithium  
CC  
CC  
batteries in systems using 3.0V to 3.3V for V  
.
CC  
o On-Board Gating of Chip-Enable Signals—7ns  
The MAX793/MAX795 offer a choice of reset threshold  
voltage range (denoted by suffix letter): 3.00V to 3.15V  
(T), 2.85V to 3.00V (S), and 2.55V to 2.70V (R). The  
MAX794’s reset threshold is set externally with a resistor  
divider. The MAX793/MAX794 are available in 16-pin  
DIP and narrow SO packages, and the MAX795 comes  
in 8-pin DIP and SO packages.  
Max Propagation Delay  
MAX793/MAX794 Only  
o Battery Freshness Seal  
o Battery OK Output (MAX793)  
o Uncommitted Voltage Monitor for Power-Fail or  
Low-Battery Warning  
o Independent Watchdog Timer (1.6s timeout)  
o Manual Reset Input  
_____________________Selector Guide  
Ordering Information  
FEATURE  
Active-Low Reset  
Active-High Reset  
MAX793  
MAX794 MAX795  
PIN-  
PACKAGE  
PART*  
TEMP RANGE  
MAX793_CPE  
0°C to +70°C  
0°C to +70°C  
16 Plastic DIP  
16 Narrow SO  
Programmable Reset  
Threshold  
MAX793_CSE  
Ordering Information continued at end of data sheet.  
Low-Line Early Warning  
Output  
*The MAX793/MAX795 offer a choice of reset threshold voltage.  
Select the letter corresponding to the desired reset threshold  
voltage range (T = 3.00V to 3.15V, S = 2.85V to 3.00V, R =  
2.55V to 2.70V) and insert it into the blank to complete the part  
number. The MAX794’s reset threshold is adjustable.  
Backup-Battery  
Switchover  
External Switch Driver  
Power-Fail Comparator  
Battery OK Output  
Watchdog Input  
Devices are available in both leaded and lead-free packaging.  
Specify lead free by adding the + symbol at the end of the part  
number when ordering.  
__________Typical Operating Circuit  
Battery Freshness Seal  
Manual Reset Input  
Chip-Enable Gating  
Pin-Package  
(OPTIONAL)  
Si9433DY  
SILICONIX  
3.0V OR 3.3V  
16-DIP/SO 16-DIP/SO 8-DIP/SO  
0.1µF  
0.1µF  
PMOS  
________________________Applications  
Battery-Powered Computers and Controllers  
Embedded Controllers  
V
BATT ON OUT  
CC  
CMOS  
RAM  
BATT  
CE OUT  
0.1µF  
3.6V  
V
CC  
MAX793  
ADDRESS  
DECODER  
A0-A15  
CE IN  
WDO  
MR  
Intelligent Controllers  
I/O  
NMI  
WDI  
+5V SUPPLY  
FAILURE  
LOWLINE  
Critical µP Power Monitoring  
PFO  
+5V  
V
CC  
µP  
Portable Equipment  
PFI  
RESET  
RESET  
BATT OK  
GND  
Pin Configurations appear at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
3.0V/3.3V Adjustable Microprocessor  
Supervisory Circuits  
ABSOLUTE MAXIMUM RATINGS  
Terminal Voltage (with respect to GND)  
Continuous Power Dissipation (T = +70°C)  
A
V
V
......................................................................-0.3V to +6.0V  
8-Pin Plastic DIP (derate 9.09mW/°C above +70°C) .....727mW  
8-Pin SO (derate 5.88mW/°C above +70°C)..................471mW  
16-Pin Plastic DIP (derate 10.53mW/°C above +70°C) .842mW  
16-Pin Narrow SO (derate 9.52mW/°C above +70°C)...696mW  
Operating Temperature Ranges  
MAX793_C_ _/MAX794C_ _/MAX795_C_ _......... 0°C to +70°C  
MAX793_E_ _/MAX794E_ _/MAX795_E_ _........-40°C to +85°C  
Storage Temperature Range.............................-65°C to +160°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Soldering Temperature (reflow) .......................................+260°C  
CC  
...................................................................-0.3V to +6.0V  
BATT  
All Other Inputs ..................-0.3V to the higher of V  
Continuous Input Current  
or V  
CC  
BATT  
V
V
.................................................................................200mA  
................................................................................50mA  
CC  
BATT  
GND ..................................................................................20mA  
Output Current  
V
................................................................................200mA  
OUT  
All Other Outputs ..............................................................20mA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= 3.17V to 5.5V for the MAX793T/MAX795T, V  
= 3.02V to 5.5V for the MAX793S/MAX795S, V  
= 2.72V to 5.5V for the  
CC  
CC  
CC  
to T  
MAX793R/MAX794/MAX795R, V  
= 3.6V, T = T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
BATT  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
1.0  
TYP  
MAX  
5.5  
5.5  
60  
UNITS  
MAX79_C  
MAX79_E  
MAX793/MAX794,  
MR = V  
Operating Voltage Range,  
V
V
, V  
(Note 1)  
CC BATT  
1.1  
V
CC  
V
CC  
V
CC  
V
CC  
< 3.6V  
< 5.5V  
< 3.6V  
< 5.5V  
46  
62  
35  
49  
CC  
80  
V
CC  
Supply Current  
I
I
µA  
SUPPLY  
7
(excluding I  
, I  
)
OUT CE OUT  
50  
MAX795  
70  
V
CC  
Supply Current in  
MAX793/MAX794  
MAX795  
32  
24  
45  
35  
V
V
= 2.1V,  
= 2.3V  
CC  
BATT  
Battery-Backup Mode  
(excluding I  
µA  
SUPPLY  
)
OUT  
BATT Supply Current  
(excluding I ) (Note 2)  
1
1
µA  
µA  
µA  
OUT  
BATT Leakage Current,  
Freshness Seal Enabled  
V
CC  
= 0V, V  
= 0V  
OUT  
Battery Leakage Current  
(Note 3)  
0.5  
I
I
I
= 75mA  
V
V
V
V
- 0.3  
V
- 0.125  
OUT  
OUT  
OUT  
CC  
CC  
CC  
OUT Output Voltage in  
Normal Mode  
V
V
= 30mA (Note 4)  
= 250µA (Note 4)  
- 0.12  
- 0.001  
V
- 0.050  
V
OUT  
CC  
V
- 0.5mV  
CC  
CC  
I
I
= 250µA  
= 1mA  
- 0.1  
V
BATT  
- 0.034  
- 0.14  
OUT  
BATT  
OUT Output Voltage in  
Battery-Backup Mode  
V
= 2.3V  
V
OUT  
BATT  
V
BATT  
OUT  
V
-
CC  
V
SW  
> V  
> 1.75V (Note 5)  
CC  
20  
65  
mV  
V
BATT  
MAX793T/MAX795T  
MAX793S/MAX795S  
2.69  
2.55  
2.82  
2.68  
2.95  
2.80  
Battery Switch Threshold  
(V  
falling)  
CC  
V
> V  
CC  
BATT  
V
SW  
V
(Note 6)  
MAX793R/MAX795R/  
MAX794  
2.30  
2.41  
2.52  
This value is identical to the reset threshold,  
V
rising for V  
> V  
BATT RST  
Battery Switch Threshold  
(V rising) (Note 7)  
V
-
CC  
CC  
V
BATT  
CC  
V
BATT  
< V  
25  
65  
mV  
RST  
2
_______________________________________________________________________________________  
3.0V/3.3V Adjustable Microprocessor  
Supervisory Circuits  
34/MAX795  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 3.17V to 5.5V for the MAX793T/MAX795T, V  
= 3.02V to 5.5V for the MAX793S/MAX795S, V  
= 2.72V to 5.5V for the  
CC  
CC  
CC  
MAX793R/MAX794/MAX795R, V  
= 3.6V, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
BATT  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MAX793T/MAX795T  
MIN  
3.00  
2.85  
2.55  
3.00  
2.85  
TYP  
MAX  
3.15  
3.00  
2.70  
3.17  
3.02  
UNITS  
3.075  
2.925  
2.625  
3.085  
2.935  
V
V
falling  
MAX793S/MAX795S  
MAX793R/MAX795R  
MAX793T/MAX795T  
MAX793S/MAX795S  
MAX793R/MAX795R  
CC  
CC  
Reset Threshold (Note 8)  
V
RST  
V
rising  
2.55  
1.212  
1.212  
2.635  
1.240  
1.250  
2.72  
1.262  
1.282  
V
V
falling  
rising  
RESET IN Threshold  
(MAX794 only)  
CC  
V
V
RST IN  
CC  
RESET IN Leakage Current  
(MAX794 only)  
-25  
2
25  
nA  
ms  
Reset Timeout Period  
t
RP  
V
CC  
< 3.6V  
140  
200  
280  
LOWLINE-to-Reset  
MAX793  
30  
5
45  
60  
25  
V
LR  
mV  
Threshold, (V  
-
LOWLINE  
V ), V  
RST  
Falling  
CC  
MAX794  
MAX793  
MAX794  
15  
10  
10  
mV  
mV  
Low-Line Comparator  
Hysteresis  
MAX793T/MAX795T  
MAX793S/MAX795S  
MAX793R/MAX795R  
MAX794  
3.23  
3.08  
2.78  
LOWLINE Threshold,  
V
V
V
LL  
V
CC  
Rising  
1.317  
1.262  
1.287  
25  
V
PFI  
V
PFI  
falling  
rising  
1.212  
1.212  
-25  
1.240  
1.250  
2
PFI Input Threshold  
PFI Input Current  
V
TH  
nA  
PFI Hysteresis, PFI Rising  
10  
20  
mV  
BATT OK Threshold  
(MAX793)  
V
BOK  
2.00  
2.25  
2.50  
V
INPUT AND OUTPUT LEVELS  
RESET Output-Voltage High  
V
I
I
= 300µA, V  
= 300µA, V  
= 65µA, V  
= V  
= V  
min  
0.8V  
0.8V  
0.8V  
0.86V  
0.86V  
V
V
OH  
SOURCE  
CC  
RST  
RST  
CC  
CC  
CC  
CC  
BATT OK, BATT ON, WDO,  
LOWLINE Output-Voltage  
High  
V
OH  
max  
SOURCE  
CC  
V
V
I
I
= V  
max  
V
V
PFO Output-Voltage High  
OH  
SOURCE  
CC  
RST  
CC  
BATT ON Output-  
Voltage High  
= 100µA, V  
= 2.3V, V  
= 3V 0.8V  
OH  
SOURCE  
CC  
BATT BATT  
RESET Output Leakage  
Current (Note 9)  
I
V
V
= V max  
RST  
-1  
-1  
µA  
µA  
LEAK  
CC  
PFO Output Short to GND  
Current  
I
= 3.3V, V = 0V  
PFO  
180  
500  
SC  
CC  
PFO, RESET, RESET, WDO,  
LOWLINE Output-Voltage  
Low  
I
= 1.2mA; RESET, LOWLINE tested  
SINK  
V
OL  
with V  
WDO tested with V  
= V  
min; RESET, BATTOK,  
0.08  
0.2V  
CC  
V
CC  
RST  
= V  
max  
RST  
CC  
_______________________________________________________________________________________  
3
3.0V/3.3V Adjustable Microprocessor  
Supervisory Circuits  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 3.17V to 5.5V for the MAX793T/MAX795T, V  
= 3.02V to 5.5V for the MAX793S/MAX795S, V  
= 2.72V to 5.5V for the  
CC  
CC  
CC  
MAX793R/MAX794/MAX795R, V  
= 3.6V, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
BATT  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
0.13  
0.17  
MAX  
0.3  
0.3  
UNITS  
MAX79_C, V  
MAX79_E, V  
= V = 1.0V, I  
= 40µA  
= 200µA  
BATT  
BATT  
CC  
SINK  
RESET Output-Voltage Low  
V
V
OL  
OL  
= V = 1.2V, I  
CC  
SINK  
BATT ON Output-  
Voltage Low  
V
I
= 3.2mA, V  
= V  
max  
0.2V  
V
V
SINK  
CC  
RST  
CC  
CC  
V
IH  
0.7V  
All Inputs Including PFO  
(Note 10)  
V
RST  
max < V  
< 5.5V  
CC  
V
IL  
0.3V  
CC  
MANUAL RESET INPUT  
MR Pulse Width  
t
t
MAX793/MAX794 only  
MAX793/MAX794 only  
100  
25  
ns  
ns  
µA  
MR  
75  
70  
250  
250  
MR-to-Reset Delay  
MD  
MR Pullup Current  
MAX793/MAX794 only, MR = 0V  
CHIP-ENABLE GATING  
CE IN Leakage Current  
I
Disable mode  
10  
46  
nA  
LEAK  
CE IN-to-CE OUT  
Resistance  
Enable mode, V  
= V  
max  
RST  
CC  
CE IN-to-CE OUT  
Propagation Delay  
V
= V  
= V  
max, Figure 9  
2
7
ns  
V
CC  
RST  
RST  
V
CC  
V
max, I  
CC  
= -1mA,  
OUT  
OUT  
V
0.8V  
CC  
OH  
= V  
34/MAX795  
CE IN  
CE OUT Drive from CE IN  
Reset to CE OUT High Delay  
V
CC  
V
= V  
max, I  
= 1.6mA,  
RST  
V
0.2V  
CC  
OL  
= 0V  
CE IN  
10  
µs  
V
CE OUT Output-Voltage  
High (reset active)  
V
OH  
I
= 500µA, V  
< 2.3V  
0.8V  
BATT  
OH  
CC  
WATCHDOG (MAX793/MAX794 only)  
WDI Input Current  
0V < V  
< 5.5V  
-1  
0.01  
1.60  
1
µA  
s
CC  
Watchdog Timeout Period  
WDI Pulse Width  
t
1.00  
100  
2.25  
WD  
ns  
Note 1: V  
supply current, logic-input leakage, watchdog functionality (MAX793/MAX794), MR functionality (MAX793/MAX794),  
CC  
PFI functionality (MAX793/MAX794), and state of RESET and RESET (MAX793/MAX794) tested at V  
= 3.6V and V  
=
BATT  
CC  
5.5V. The state of RESET is tested at V  
= V  
min.  
CC  
CC  
Note 2: Tested at V  
= 3.6V, V  
= 3.5V and 0V. The battery current rises to 10µA over a narrow transition window around V  
CC CC  
BATT  
= 1.9V.  
Note 3: Leakage current into the battery is tested under the worst-case conditions at V  
= 5.5V, V  
= 1.8V and V  
= 1.5V,  
CC  
BATT  
CC  
V
BATT  
= 1.0V.  
Note 4: Guaranteed by design.  
Note 5: When V > V > V  
, OUT remains connected to V  
until V  
drops below V  
. The V -to-V  
comparator  
SW  
CC  
BATT  
CC  
CC  
BATT  
CC  
BATT  
has a small 15mV typical hysteresis to prevent oscillation. For V  
< 1.75V (typical), OUT switches to BATT regardless of  
CC  
V
.
BATT  
Note 6: When V  
> V  
> V , OUT remains connected to V  
until V  
drops below the battery switch threshold (V ).  
CC SW  
BATT  
CC  
SW  
CC  
Note 7: OUT switches from BATT to V  
when V  
rises above the reset threshold, if V  
> V  
. In this case, switchover back  
RST  
CC  
CC  
BATT  
to V  
occurs at the exact voltage that causes reset to be asserted, however, switchover occurs 200ms prior to reset. If  
CC  
V
BATT  
< V  
, OUT switches from BATT to V  
RST  
when V  
exceeds V  
.
CC  
CC  
BATT  
Note 8: The reset threshold tolerance is wider for V  
rising than for V  
falling to accommodate the 10mV typical hysteresis,  
CC  
CC  
which prevents internal oscillation.  
Note 9: The leakage current into or out of the RESET pin is tested with RESET not asserted (RESET output high impedance).  
Note 10: PFO is normally an output, but is used as an input when activating the battery freshness seal.  
4
_______________________________________________________________________________________  
3.0V/3.3V/Adjustable Microprocessor  
Supervisory Circuits  
34/MAX795  
__________________________________________Typical Operating Characteristics  
(T = +25°C, unless otherwise noted.)  
A
V
-TO-OUT ON-RESISTANCE  
vs. TEMPERATURE  
BATT-TO-OUT ON-RESISTANCE  
vs. TEMPERATURE  
V
SUPPLY CURRENT vs. TEMPERATURE  
(NORMAL OPERATING MODE)  
CC  
CC  
3.0  
2.8  
160  
140  
120  
100  
70  
60  
50  
I
= 30mA  
MAX793/4, V = 5V  
CC  
OUT  
V
= 3.0V  
2.6  
2.4  
2.2  
2.0  
BATT  
MAX795, V = 5V  
CC  
V
= 3.0V  
V
= 3.6V  
40  
30  
20  
MAX793/4, V = 3.3V  
CC  
BATT  
CC  
V
= 3.3V  
CC  
MAX795, V = 3.3V  
1.8  
1.6  
1.4  
CC  
80  
60  
40  
V
= 5V  
CC  
I
V
= 250µA  
10  
0
OUT  
CC  
1.2  
1.0  
V
= 5V  
V
= V = V  
CC  
= 0V  
BATT  
BATT  
40  
OUT  
80  
-40 -20  
0
20  
40  
60  
80  
100  
-40 -20  
0
20  
40  
60  
80  
100  
-40 -20  
0
20  
60  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
BATTERY SUPPLY CURRENT vs.  
TEMPERATURE (BATTERY-BACKUP MODE)  
RESET COMPARATOR PROPAGATION DELAY  
RESET TIMEOUT PERIOD  
vs. TEMPERATURE  
vs. TEMPERATURE (V FALLING)  
CC  
0.10  
0.08  
0.06  
0.04  
0.02  
30  
25  
20  
15  
10  
5
250  
200  
150  
100  
50  
V
V
= 0V  
CC  
= 3.6V  
BATT  
V
RISING FROM  
CC  
OV TO V MAX  
RST  
0
0
0
-40 -20  
0
20  
40  
60  
80  
100  
-40 -20  
0
20  
40  
60  
80  
100  
-40 -20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
MAX793  
LOWLINE-TO-RESET THRESHOLD  
vs. TEMPERATURE  
MAX793/MAX794  
LOWLINE COMPARATOR PROPAGATION DELAY  
vs. TEMPERATURE  
MAX793/MAX794  
PFI THRESHOLD vs. TEMPERATURE  
1.250  
1.245  
100  
90  
10  
V
FALLING  
40mV OVERDRIVE  
CC  
8
6
4
2
80  
70  
60  
50  
V
RISING  
CC  
1.240  
1.235  
40  
30  
20  
V
FALLING  
CC  
10  
0
1.230  
0
-40 -20  
0
20  
40  
60  
80  
100  
-40 -20  
0
20  
40  
60  
80  
100  
-40 -20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
5
3.0V/3.3V Adjustable Microprocessor  
Supervisory Circuits  
____________________________Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
MAX794  
RESET IN THRESHOLD AND LOWLINE-TO-RESET IN  
THRESHOLD vs. TEMPERATURE  
MAX793  
CE IN-TO-CE OUT ON-RESISTANCE  
vs. TEMPERATURE  
BATT OK THRESHOLD vs. TEMPERATURE  
2.5  
2.0  
1.5  
1.0  
0.5  
1.242  
1.241  
1.240  
1.239  
1.238  
1.237  
1.236  
30  
25  
20  
15  
10  
5
60  
50  
40  
30  
20  
10  
0
V
RESET IN  
V
- V  
RST  
LOWLINE  
V
FALLING  
80  
V
FALLING  
80  
V
= V MAX  
RST  
BATT  
60  
CC  
CC  
0
0
-40 -20  
0
20  
40  
100  
-40 -20  
0
20  
40  
60  
100  
-40 -20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
MAX793/MAX794  
BATTERY FRESHNESS SEAL  
LEAKAGE CURRENT vs. TEMPERATURE  
MAX793/MAX794  
WATCHDOG TIMEOUT PERIOD  
vs. TEMPERATURE  
RESET THRESHOLD  
vs. TEMPERATURE (NORMALIZED)  
1.002  
1.001  
20  
1.70  
1.65  
V
V
V
= 5.5V  
= 0V  
BATT  
CC  
OUT  
34/MAX795  
= 0V  
15  
1.000  
0.999  
0.998  
0.997  
0.996  
10  
5
1.60  
1.55  
V
FALLING  
80  
CC  
60  
0
1.50  
-40 -20  
0
20  
40  
100  
-40 -20  
0
20  
40  
60  
80  
100  
-40 -20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
MAX793/MAX794  
PFI TO PFO PROPAGATION DELAY  
vs. TEMPERATURE  
10  
8
6
4
2
V
FALLING  
PFI  
20mV OVERDRIVE  
0
-40 -20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
6
_______________________________________________________________________________________  
3.0V/3.3V Adjustable Microprocessor  
Supervisory Circuits  
34/MAX795  
______________________________________________________________Pin Description  
PIN  
NAME  
FUNCTION  
MAX793/  
MAX794  
MAX795  
Supply Output for CMOS RAM. When V  
rises above the reset threshold or above  
CC  
1
2
1
2
OUT  
V
V
, OUT is connected to V  
through an internal p-channel MOSFET switch. When  
, BATT connects to OUT.  
BATT  
CC  
CC  
falls below V  
and V  
SW  
BATT  
V
CC  
Main Supply Input  
BATT OK  
(MAX793)  
Battery Status Output. High in normal operating mode when V  
exceeds V  
, other-  
BATT  
BOK  
wise low. V  
is checked continuously. Disabled and logic low while V is below V  
.
BATT  
CC  
SW  
3
4
RESET IN  
(MAX794)  
Reset Input. Connect to an external resistor-divider to select the reset threshold. The  
reset threshold can be programmed anywhere in the V to 5.5V range.  
SW  
Power-Fail Comparator Input. When PFI is less than V  
or when V  
falls below V  
,
PFT  
CC  
SW  
PFI  
PFO goes low; otherwise, PFO remains high (see Power-Fail Comparator section).  
Connect to V if unused.  
CC  
Logic Output/External Bypass Switch-Driver Output. High when OUT switches to BATT.  
Low when OUT switches to V . Connect the base/gate of PNP/PMOS transistor to  
5
6
7
3
4
BATT ON  
GND  
CC  
BATT ON for I  
requirements exceeding 75mA.  
OUT  
Ground  
Power-Fail Comparator Output. When PFI is less than V  
or when V  
falls below  
PFT  
CC  
PFO  
V , PFO goes low; otherwise, PFO remains high. PFO is also used to enable the bat-  
SW  
tery freshness seal (see Battery Freshness Seal and Power-Fail Comparator sections).  
Manual Reset Input. A logic low on MR asserts reset. Reset remains asserted as long as  
MR is low and for 200ms after MR returns high. The active-low input has an internal  
70µA pullup current. It can be driven from a TTL- or CMOS-logic line or shorted to  
ground with a switch. Leave open if unused.  
8
9
MR  
WDO  
WDI  
Watchdog Output. WDO goes low if WDI remains either high or low for longer than the  
watchdog timeout period. WDO returns high on the next transition of WDI. WDO is a  
logic high for V  
< V  
< V  
, and low when V  
is below V  
.
SW  
CC  
RST  
CC  
SW  
Watchdog Input. If WDI remains either high or low for longer than the watchdog timeout  
period, the internal watchdog timer runs out and WDO goes low. WDO returns high on  
the next transition of WDI. Connect WDO to MR to generate a reset due to a watchdog  
fault.  
10  
11  
12  
5
6
Chip-Enable Input. The input to the chip-enable gating circuit. Connect to GND if unused.  
CE IN  
Chip-Enable Output. CE OUT goes low only when CE IN is low and reset is not asserted.  
If CE IN is low when reset is asserted, CE OUT remains low for 10µs or until CE IN goes  
high, whichever occurs first. CE OUT is pulled up to OUT.  
CE OUT  
13  
14  
RESET  
Active-High Reset Output. Sources and sinks current. RESET is the inverse of RESET.  
Early Power-Fail Warning Output. Low when V  
falls to V . This output can be used to  
LR  
CC  
LOWLINE  
generate an NMI to provide early warning of imminent power failure.  
Open-Drain, Active-Low Reset Output. Pulses low for 200ms when triggered, and stays  
low whenever V  
for 200ms after either V  
(WDO connected to MR), or MR goes low to high.  
is below the reset threshold or when MR is a logic low. It remains low  
CC  
15  
16  
7
RESET  
rises above the reset threshold, the watchdog triggers a reset  
CC  
Backup-Battery Input. When V falls below V  
and V  
, OUT switches from V to  
CC  
CC  
SW  
BATT  
BATT. When V  
rises above the reset threshold or above V  
, OUT reconnects to  
CC  
BATT  
8
BATT  
V
. V  
can exceed V . Connect V , OUT, and BATT together if no battery is  
CC BATT CC CC  
used.  
_______________________________________________________________________________________  
7
3.0V/3.3V Adjustable Microprocessor  
Supervisory Circuits  
out period (t ), the state of MR is ignored if PFO is exter-  
RP  
_______________Detailed Description  
nally forced low to facilitate enabling the battery fresh-  
ness seal. MR has an internal 70µA pullup current, so it  
can be left open if it is not used. This input can be driven  
with TTL- or CMOS-logic levels, or with open-drain/collec-  
tor outputs. Connect a normally open momentary switch  
from MR to GND to create a manual-reset function; exter-  
nal debounce circuitry is not required. If MR is driven  
from long cables or the device is used in a noisy environ-  
ment, connect a 0.1µF capacitor from MR to ground to  
provide additional noise immunity.  
General Timing Characteristics  
The MAX793/MAX794/MAX795 are designed for 3.3V  
and 3V systems, and provide a number of supervisory  
functions (see the Selector Guide on the front page).  
Figures 1 and 2 show the typical timing relationships of  
the various outputs during power-up and power-down  
with typical V  
rise and fall times.  
CC  
Manual Reset Input (MAX793/MAX794)  
Many microprocessor-based products require manual-  
reset capability, allowing the operator, a test technician,  
or external logic circuitry to initiate a reset. On the  
MAX793/MAX794, a logic low on MR asserts reset. Reset  
Reset Outputs  
A microprocessor’s (µP’s) reset input starts the µP in a  
known state. These MAX793/MAX794/MAX795 µP  
supervisory circuits assert a reset to prevent code exe-  
cution errors during power-up, power-down, and  
remains asserted while MR is low, and for t (200ms)  
RP  
after it returns high. During the first half of the reset time-  
V
LL  
V
RST  
V
SW  
V
CC  
5µs  
V
(MAX793/MAX794)  
LOWLINE  
34/MAX795  
t
t
RP  
RP  
V
(PULLED UP TO V  
)
RESET  
RESET  
CC  
V
(MAX793/MAX794)  
V
BATT  
V
t
/
CE OUT  
RP 2  
V
WDO  
25µs  
25µs  
(MAX793/MAX794)  
V
BOK  
(MAX793)  
PFO  
t /  
RP 2  
(MAX793/MAX794)  
25µs  
(PFO FOLLOWS PFI)  
BATT ON  
25µs  
SHOWN FOR V = 0V to 3.3V, V  
= 3.6V, CE IN = GND.  
CC  
BATT  
TYPICAL PROPAGATION DELAYS REFLECT A 40mV OVERDRIVE.  
MAX794: V  
= V (V  
/ V  
)
RESET IN  
CC RST IN RST  
Figure 1. Timing Diagram, V  
Rising  
CC  
8
_______________________________________________________________________________________  
3.0V/3.3V Adjustable Microprocessor  
Supervisory Circuits  
34/MAX795  
brownout conditions. RESET is guaranteed to be a  
If a brownout condition occurs (V  
dips below the  
CC  
logic low for 0V < V  
< V  
, provided V  
is  
=
reset threshold), RESET goes low. Each time RESET is  
CC  
RST  
BATT  
BATT  
greater than 1V. Without a backup battery (V  
asserted, it stays low for the reset timeout period. Any  
V
= V  
), RESET is guaranteed valid for V  
1V.  
time V  
goes below the reset threshold, the internal  
CC  
CC  
Once V  
OUT  
CC  
exceeds the reset threshold, an internal  
timer restarts.  
CC  
timer keeps RESET low for the reset timeout period  
The watchdog output (WDO) can also be used to initi-  
ate a reset. See the Watchdog Output section.  
(t ); after this interval, RESET becomes high imped-  
RP  
ance (Figure 2). RESET is an open-drain output, and  
The RESET output is the inverse of the RESET output,  
and it can both source and sink current.  
requires a pullup resistor to V  
(Figure 3). Use a  
CC  
4.7kto 1Mpullup resistor that provides sufficient  
current to assure the proper logic levels to the µP.  
V
LL  
V
RST  
V
CC  
V
SW  
V
LOWLINE  
4µs  
(MAX793/MAX794)  
V
RESET  
20µs  
20µs  
(RESET PULLED UP TO V  
)
CC  
V
RESET  
(MAX793/MAX794)  
25µs  
V
CE OUT  
V
BATT  
10µs  
V
WDO  
(MAX793/MAX794)  
25µs  
25µs  
V
BOK  
(MAX793)  
V
PFO  
(MAX793/MAX794)  
25µs  
25µs  
V
BATT  
V
BATT ON  
SHOWN FOR V = 3.3V to 0V, V  
= 3.6V, CE IN = GND, PFI = V .  
CC  
CC  
BATT  
TYPICAL DELAY TIMES REFLECT A 40mV OVERDRIVE  
MAX794: V  
= V (V  
/ V  
)
RESET IN  
CC RST IN RST  
Figure 2. Timing Diagram, V  
Falling  
CC  
_______________________________________________________________________________________  
9
3.0V/3.3V Adjustable Microprocessor  
Supervisory Circuits  
(OPTIONAL)  
Si9433DY  
SILICONIX  
V
RST  
V
RST  
3.3V  
D
S
0.1µF  
0.1µF  
V
CC  
PMOS  
R1  
R2  
V
BATT ON OUT  
CC  
CMOS  
RAM  
RESET IN  
CE OUT  
t
RP  
V
CC  
RESET  
PFO  
MAX794  
ADDRESS  
DECODER  
CE IN  
A0-A15  
I/O  
BATT  
0.1µF  
3.6V  
WDI  
PFO STATE LATCHED,  
FRESHNESS SEAL ENABLED.  
WDO  
MR  
(EXTERNALLY HELD AT 0V)  
LOWLINE  
NMI  
V
CC  
RESET PULLED UP TO V  
CC  
+5V SUPPLY  
FAILURE  
4.7kΩ  
PFO  
+5V  
Figure 4. Battery Freshness Seal Enable Timing  
RESET  
RESET  
Using the standard application circuit (Figure 3), the  
reset threshold can be programmed anywhere in the  
PFI  
R1  
R2  
GND  
+ 1  
V
= V  
RST IN  
RST  
(
)
range of V  
(the battery switch threshold) to 5.5V.  
SW  
Reset is asserted when V  
falls below V  
.
CC  
SW  
Battery Freshness Seal  
Figure 3. MAX794 Standard Application Circuit  
34/MAX795  
The MAX793/MAX794’s battery freshness seal discon-  
nects the backup battery from internal circuitry until it is  
needed. This allows an OEM to ensure that the backup  
battery connected to BATT is fresh when the final prod-  
uct is put to use. To enable the freshness seal, connect  
Reset Threshold  
The MAX793T/MAX795T are intended for 3.3V systems  
with a 5ꢀ power-supply tolerance and a 10ꢀ systems  
tolerance. Except when MR is asserted, reset does not  
assert as long as the power supply remains above  
3.15V (3.3V - 5ꢀ). Reset is guaranteed to assert before  
the power supply falls below 3.0V (3.3V - 10ꢀ).  
a battery to BATT, ground PFO, bring V  
above the  
CC  
reset threshold, and hold it there until reset is deassert-  
ed following the reset timeout period, then bring V  
CC  
back down again (Figure 4). Once the battery fresh-  
ness seal is enabled (disconnecting the backup battery  
from the internal circuitry and anything connected to  
The MAX793S/MAX795S are designed for 3.3V 10ꢀ  
power supplies. Except when MR is asserted, they are  
guaranteed not to assert reset as long as the supply  
remains above 3.0V (3.0V is just above 3.3V - 10ꢀ).  
Reset is guaranteed to assert before the power supply  
falls below 2.85V (3.3V - 14ꢀ).  
OUT), it remains enabled until V  
RST  
fere with battery freshness seal operation.  
is brought above  
CC  
V
. Note that connecting PFO to MR does not inter-  
BATT OK Output (MAX793)  
BATT OK indicates the status of the backup battery.  
When reset is not asserted, the MAX793 checks the  
The MAX793R/MAX795R are optimized to monitor 3.0V  
10ꢀ power supplies. Reset does not occur until V  
CC  
falls below 2.7V (3.0V - 10ꢀ), but is guaranteed to  
battery voltage continuously. If V  
is below V  
BOK  
BATT  
occur before the supply falls below 2.55V (3.0V - 15ꢀ).  
(2.0V min), BATT OK goes low; otherwise, it remains  
Program the MAX794’s reset threshold with an external  
voltage divider to RESET IN. The reset-threshold toler-  
ance is a combination of the RESET IN tolerance and  
the tolerance of the resistors used to make the external  
voltage divider. Calculate the reset threshold as follows:  
pulled up to V . BATT OK also goes low when V  
CC  
CC  
goes below V  
.
SW  
Watchdog Input (MAX793/MAX794)  
In the MAX793/MAX794, the watchdog circuit monitors  
the µP’s activity. If the µP does not toggle the watchdog  
input (WDI) within 1.6s, WDO goes low. The internal  
1.6s timer is cleared and WDO returns high either when  
V
RST  
= V  
(R1 / R2 + 1)  
RST IN  
10 ______________________________________________________________________________________  
3.0V/3.3V Adjustable Microprocessor  
Supervisory Circuits  
34/MAX795  
V
CC  
V
RST  
4.7kΩ  
MAX793/MAX794  
V
CC  
WDO  
TO µP  
RESET  
t
RP  
MR  
RESET  
WDO  
V
CC  
10µs  
t
WD  
WDO  
RESET  
WDI  
WDI  
t
RP  
t
t
RP  
WP  
WDO CONNECTED TO µP INTERRUPT  
RESET PULLED UP TO V  
CC  
Figure 6. Generating a Reset on Each Watchdog Fault  
Figure 5. Watchdog Timing Relationship  
a reset occurs or when a transition (low-to-high or high-  
to-low) takes place at WDI. As long as reset is assert-  
ed, the timer remains cleared and does not count. As  
soon as reset is released or WDI changes state, the  
timer starts counting (Figure 5). WDI can detect pulses  
as short as 100ns. Unlike the 5V MAX690 family, the  
watchdog function cannot be disabled.  
Chip-Enable Signal Gating  
Internal gating of chip-enable (CE) signals prevents erro-  
neous data from corrupting CMOS RAM in the event of an  
undervoltage condition. The MAX793/MAX794/MAX795  
use a series transmission gate from CE IN to CE OUT  
During normal operation (reset not asserted), the CE  
transmission gate is enabled and passes all CE transi-  
tions. When reset is asserted, this path becomes dis-  
abled, preventing erroneous data from corrupting the  
CMOS RAM. The short CE propagation delay from CE IN  
to CE OUT enables these µP supervisors to be used with  
most µPs. If CE IN is low when reset asserts, CE OUT  
remains low for typically 10µs to permit completion of the  
current write cycle.  
Watchdog Output (MAX793/MAX794)  
In the MAX793/MAX794, WDO remains high (WDO is  
pulled up to V ) if there is a transition or pulse at WDI  
CC  
during the watchdog timeout period. WDO goes low if  
no transition occurs at WDI during the watchdog timeout  
period. The watchdog function is disabled and WDO is  
a logic high when reset is asserted if V  
is above V  
is below V .  
SW  
.
CC  
SW  
WDO is a logic low when V  
Chip-Enable Input  
The CE transmission gate is disabled and CE IN is high  
impedance (disabled mode) while reset is asserted.  
CC  
If a system reset is desired on every watchdog fault,  
simply diode-OR connect WDO to MR (Figure 6).  
When a watchdog fault occurs in this mode, WDO goes  
low, pulling MR low, which causes a reset pulse to be  
issued. Ten microseconds after reset is asserted, the  
watchdog timer clears and WDO returns high. This  
delay results in a 10µs pulse at WDO, allowing external  
circuitry to capture a watchdog fault indication. A con-  
tinuous high or low on WDI causes 200ms reset pulses  
to be issued every 1.6s.  
During a power-down sequence when V  
passes the  
CC  
reset threshold, the CE transmission gate disables and  
CE IN immediately becomes high impedance if the volt-  
age at CE IN is high. If CE IN is low when reset asserts,  
the CE transmission gate disables at the moment CE IN  
goes high, or 10µs after reset asserts, whichever  
occurs first (Figure 8). This permits the current write  
cycle to complete during power-down.  
______________________________________________________________________________________ 11  
3.0V/3.3V Adjustable Microprocessor  
Supervisory Circuits  
The propagation delay through the CE transmission  
gate depends on V , the source impedance of the  
CC  
drive connected to CE IN, and the loading on CE OUT.  
The CE propagation delay is production tested from the  
50ꢀ point on CE IN to the 50ꢀ point on CE OUT using  
a 50driver and 50pF of load capacitance (Figure 9).  
For minimum propagation delay, minimize the capaci-  
tive load at CE OUT and use a low-output-impedance  
driver.  
MAX793  
MAX794  
MAX795  
OUT  
P
CHIP-ENABLE  
OUTPUT  
CONTROL  
Chip-Enable Output  
When the CE transmission gate is enabled, the imped-  
ance of CE OUT is equivalent to a 46resistor in series  
with the source driving CE IN. In the disabled mode,  
the transmission gate is off and an active pullup con-  
nects CE OUT to OUT (Figure 8). This pullup turns off  
when the transmission gate is enabled.  
RESET  
GENERATOR  
P
CE IN  
CE OUT  
N
Early Power-Fail Warning  
(MAX793/MAX794)  
Critical systems often require an early warning indicat-  
ing that power is failing. This warning provides time for  
the µP to store vital data and take care of any additional  
“housekeeping” functions, before the power supply  
gets too far out of tolerance for the µP to operate reli-  
ably. The MAX793/MAX794 offer two methods of  
achieving this early warning. If access to the unregulat-  
ed supply is feasible, the power-fail comparator input  
(PFI) can be connected to the unregulated supply  
through a voltage divider, with the power-fail compara-  
tor output (PFO) providing the NMI to the µP (Figure  
Figure 7. Chip-Enable Transmission Gate  
The CE transmission gate remains disabled and CE IN  
remains high impedance (regardless of CE IN activity)  
for the first half of the reset timeout period (t / 2), any  
RP  
time a reset is generated. While disabled, CE IN is high  
impedance. When the CE transmission gate is enabled,  
the impedance of CE IN appears as a 46resistor in  
series with the load at CE OUT.  
34/MAX795  
V
RST  
V
RST  
V
RST  
V
RST  
V
CC  
V
SW  
V
SW  
CE OUT  
V
BATT  
V
BATT  
10µs  
V
CC  
t
RP  
/2  
t
RP  
RESET  
(PULLED TO V  
)
CC  
CE IN  
V
BATT  
= 3.6V  
RESET PULLED UP TO V  
CC  
Figure 8. Chip-Enable Timing  
12 ______________________________________________________________________________________  
3.0V/3.3V Adjustable Microprocessor  
Supervisory Circuits  
34/MAX795  
In most battery-operated portable systems, reserve  
V
CC  
energy in the battery provides ample time to complete  
the shutdown routine once the low-line warning is  
encountered and before reset asserts. If the system  
V
CC  
BATT  
3.6V  
must also contend with a more rapid V  
fall time, such  
CC  
as when the main battery is disconnected or a high-  
side switch is opened during normal operation, use  
MAX793  
MAX794  
MAX795  
25EQUIVALENT  
SOURCE IMPEDANCE  
capacitance on the V  
line to provide time to execute  
CC  
the shutdown routine (Figure 11).  
50CABLE  
First, calculate the worst-case time required for the sys-  
tem to perform its shutdown routine. Then, with the worst-  
case shutdown time, the worst-case load current, and the  
CE OUT  
CE IN  
50Ω  
50pF  
C *  
50Ω  
L
minimum low-line to reset threshold (V min), calculate  
LR  
GND  
the amount of capacitance required to allow the shut-  
down routine to complete before reset is asserted:  
C
> I  
x t  
/ V  
SHDN LR  
HOLD  
LOAD  
*C INCLUDES LOAD CAPACITANCE AND SCOPE PROBE CAPACITANCE.  
L
where I  
is the current being drained from the  
LOAD  
capacitor, V is the low-line to reset threshold differ-  
LR  
Figure 9. CE Propagation Delay Test Circuit  
ence (V - V  
), and t  
is the time required for  
SHDN  
LL  
RST  
the system to complete an orderly shutdown routine.  
10). If there is no easy access to the unregulated sup-  
ply, the LOWLINE output can be used to generate an  
NMI to the µP (see LOWLINE Output section).  
Power-Fail Comparator (MAX793/MAX794)  
The MAX793/MAX794’s PFI input is compared to an  
internal reference. If PFI is less than the power-fail  
LOWLINE Output (MAX793/MAX794)  
threshold (V  
), PFO goes low. The power-fail com-  
PFT  
The low-line comparator monitors V  
with a threshold  
CC  
parator is intended for use as an undervoltage detector  
to signal a failing power supply (Figure 12). However,  
the comparator does not need to be dedicated to this  
function because it is completely separate from the rest  
of the circuitry.  
voltage typically 45mV above the reset threshold (10mV  
of hysteresis) for the MAX793, and 15mV above RESET  
IN (4mV of hysteresis) for the MAX794. For normal  
operation (V  
above the reset threshold), LOWLINE is  
CC  
pulled to V . Use LOWLINE to provide an NMI to the  
CC  
µP when power begins to fall.  
UNREGULATED  
SUPPLY  
3.0V OR 3.3V  
REGULATOR  
3.0V OR 3.3V  
REGULATOR  
TO µP NMI  
LOWLINE  
V
CC  
V
CC  
C
HOLD  
MAX793  
MAX794  
R1  
R2  
MAX793  
MAX794  
TO µP NMI  
PFO  
PFI  
C
> I  
x t  
HOLD LOAD SHDN  
V
LR  
GND  
GND  
Figure 10. Using the Power-Fail Comparator to Generate  
Power-Fail Warning  
Figure 11. Using LOWLINE to Provide Power-Fail Warning  
to the µP  
______________________________________________________________________________________ 13  
3.0V/3.3V Adjustable Microprocessor  
Supervisory Circuits  
V
IN  
3.0V OR 3.3V  
3.0V OR 3.3V  
V
V
CC  
CC  
R1  
R2  
R1  
R2  
MAX793  
MAX794  
MAX793  
MAX794  
PFI  
PFO  
PFI  
PFO  
MR  
GND  
GND  
V
IN  
V
V
CC  
CC  
PFO  
PFO  
V
V
IN  
IN  
V
V
V
V
H
L
TRIP  
0V  
TRIP  
1
1
V
CC  
R1  
R1 + R2  
R2  
+
V
= R2 (V + V  
PFT  
)
TRIP  
PFH  
1
V
V
= V  
PFT  
(
)
CC  
TRIP  
(
)
R1 R2  
WHERE V  
V
= 1.237V  
= 10mV  
PFT  
PFH  
1
V
R1 + R2  
R2  
+
V = R2 (V  
)
PFT  
L
= (V + V  
PFT  
)
PFH  
(
)
H
(
)
R1 R2  
R1  
NOTE: V  
TRIP,  
V ARE NEGATIVE  
L
(a)  
(b)  
Figure 12. Using the Power-Fail Comparator to Monitor an Additional Power Supply: (a) V Is Negative, (b) V Is Positive  
IN  
IN  
34/MAX795  
V
is greater than V , or when V  
falls below  
CC  
The power-fail comparator turns off and PFO goes low  
when V falls below V on power-down. During the  
BATT  
CC  
1.75V (typ) regardless of the BATT voltage.  
CC  
SW  
first half of the reset timeout period (t ), PFO is forced  
RP  
Switchover at V ensures that battery-backup mode is  
entered before V  
SW  
OUT  
high, irrespective of V . At the beginning of the sec-  
PFI  
gets too close to the 2.0V mini-  
ond half of t , the power-fail comparator is enabled  
RP  
mum required to reliably retain data in most CMOS  
RAM, (switchover at higher V voltages would  
and PFO follows PFI. If the comparator is unused, con-  
nect PFI to VCC and leave PFO unconnected. PFO can  
be connected to MR so that a low voltage on PFI gener-  
ates a reset (Figure 12b). In this configuration, when  
CC  
decrease backup-battery life). When V  
recovers,  
CC  
switchover is deferred either until V  
crosses V  
if  
CC  
CC  
BATT  
V
is below V  
, or when V  
RST  
rises above the  
. This  
BATT  
the monitored voltage causes PFI to fall below V  
,
PFT  
reset threshold (V  
) if V  
is above V  
RST  
BATT  
RST  
CC  
PFO pulls MR low, causing a reset to be asserted.  
Reset remains asserted as long as PFO holds MR low,  
and for 200ms after PFO pulls MR high when the moni-  
tored supply is above the programmed threshold.  
power-up switchover technique prevents V  
from  
charging the backup battery through OUT when using  
an external transistor driven by BATT ON. OUT con-  
nects to V  
when V  
through a 4(max) PMOS power switch  
CC  
crosses the reset threshold (Figure 13).  
CC  
Backup-Battery Switchover  
In the event of a brownout or power failure, it may be  
necessary to preserve the contents of RAM. With a  
backup battery installed at BATT, the devices automati-  
BATT ON (MAX793/MAX794)  
BATT ON is high when OUT is connected to BATT.  
Although BATT ON can be used as a logic output to  
indicate the battery switchover status, it is most often  
used as a gate or base drive for an external pass tran-  
sistor for high-current applications (see Driving an  
External Switch with BATT ON in the Applications  
cally switch RAM to backup power when V  
falls. In  
CC  
order to allow the backup battery (e.g., a 3.6V lithium  
cell) to have a higher voltage than V , this family of µP  
CC  
supervisors (designed for 3.3V and 3V systems) does  
not always connect BATT to OUT when V  
is  
BATT  
Information section). When V  
exceeds V  
on  
RST  
CC  
greater than V . BATT connects to OUT (through a  
CC  
power-up, BATT ON sinks 3.2mA at 0.4V. In battery-  
140switch) either when V  
falls below V  
and  
SW  
CC  
backup mode, this terminal sources 100µA from BATT.  
14 ______________________________________________________________________________________  
3.0V/3.3V Adjustable Microprocessor  
Supervisory Circuits  
34/MAX795  
to V , the collector to OUT, and the base to BATT ON  
CC  
(Figure 14a). No current-limiting resistor is required, but  
a resistor connecting the base of the PNP to BATT ON  
can be used to limit the current drawn from V , pro-  
CC  
longing battery life in portable equipment.  
3.3V  
V
RST  
V
CC  
V
SW  
If you are using a PMOS transistor, however, it must be  
connected backwards from the traditional method.  
Connect the gate to BATT ON, the drain to V , and  
CC  
3.6V  
3.6V  
the source to OUT (Figure 14b). This method orients  
3.3V  
the body diode from V  
to OUT and prevents the  
CC  
backup battery from discharging through the FET when  
V
OUT  
its gate is high. Two PMOS transistors in the Siliconix  
V
BATT  
= 3.6V  
LITTLE FOOT® series are specified with V  
down to  
GS  
-2.7V. The Si9433DY has a maximum 100mdrain-  
source on-resistance with 2.7V of gate drive and a 2A  
drain-source current. The Si9434DY specifies a 60mΩ  
drain-source on-resistance with 2.7V of gate drive and  
a 5.1A drain-source current.  
Figure 13. Battery Switchover Timing  
Table 1. Input and Output Status in  
Battery-Backup Mode  
Using a Super Cap as a Backup  
Power Source  
PIN NAME  
STATUS  
Connected to BATT through an internal  
Super caps are capacitors with extremely high capaci-  
tance values (e.g., order of 0.47F) for their size. Figure  
15 shows two ways to use a super cap as a backup  
power source. The super cap can be connected  
through a diode to the 3V input (Figure 15a); or, if a 5V  
supply is also available, the super cap can be charged  
up to the 5V supply (Figure 15b), allowing a longer  
OUT  
140switch  
V
CC  
Disconnected from OUT  
Pulled up to BATT  
Logic low  
BATT ON  
BATT OK  
PFI  
Disabled  
Logic low  
PFO  
backup period. Since V  
can exceed V  
while  
CC  
BATT  
Disabled, but still pulled up to V  
CC  
V
CC  
is above the reset threshold, there are no special  
MR  
precautions when using these µP supervisors with a  
super cap.  
Logic low  
Disabled  
Logic low  
WDO  
WDI  
RESET  
RESET  
BATT  
Operation without a  
Backup Power Source  
These µP supervisors were designed for battery-  
backed applications. If a backup battery is not used,  
Pulled up to V  
CC  
Connected to OUT  
Logic low  
LOWLINE  
CE IN  
CE OUT  
connect BATT, OUT, and V  
ent µP supervisor.  
together, or use a differ-  
CC  
High impedance  
Pulled to BATT  
Replacing the Backup Battery  
The backup power source can be removed while V  
remains valid, without danger of triggering a reset  
pulse, provided that BATT is decoupled with a 0.1µF  
__________Applications Information  
CC  
These µP supervisory circuits are not short-circuit pro-  
tected. Shorting V  
to ground, excluding power-up  
OUT  
capacitor to ground. As long as V  
stays above the  
CC  
transients such as charging a decoupling capacitor,  
destroys the device. Decouple both V and BATT  
reset threshold, battery-backup mode cannot be  
CC  
entered.  
pins to ground by placing 0.1µF ceramic capacitors as  
close to the device as possible.  
Driving an External Switch with BATT ON  
BATT ON can be directly connected to the base of a  
PNP transistor or the gate of a PMOS transistor. The  
PNP connection is straightforward: connect the emitter  
LITTLE FOOT is a registered trademark of Siliconix Inc.  
______________________________________________________________________________________ 15  
3.0V/3.3V Adjustable Microprocessor  
Supervisory Circuits  
PMOS FET  
BODY DIODE  
TO CMOS RAM  
3.0V OR 3.3V  
S
D
G
V
BATT ON OUT  
V
BATT ON OUT  
CC  
CC  
MAX793  
MAX794  
MAX795  
MAX793  
MAX794  
MAX795  
GND  
GND  
(a)  
(b)  
Figure 14. Driving an External Transistor with BATT ON  
3.0V OR 3.3V  
+5V  
3.0V OR  
3.3V  
V
MAX793  
MAX794  
OUT  
TO STATIC  
RAM  
V
MAX793  
MAX794  
OUT  
TO STATIC  
RAM  
CC  
CC  
34/MAX795  
V
V
CC  
CC  
1N4148  
1N4148  
0.47F  
BATT  
RESET  
TO µP  
BATT  
RESET  
TO µP  
0.47F  
GND  
GND  
(a)  
Figure 15. Using a Super Cap as a Backup Source  
(b)  
both above (V ) and below (V ) the original trip point  
H
L
(V  
).  
TRIP  
Adding Hysteresis to the Power-Fail  
Comparator (MAX793/MAX794)  
The power-fail comparator has a typical input hystere-  
sis of 10mV. This is sufficient for most applications  
where a power-supply line is being monitored through  
an external voltage divider (see the section Monitoring  
an Additional Power Supply).  
Connecting an ordinary signal diode in series with R3,  
as shown in Figure 16b, causes the lower trip point (V )  
L
),  
to coincide with the trip point without hysteresis (V  
TRIP  
so the entire hysteresis window occurs above V  
.
TRIP  
This method provides additional noise margin without  
compromising the accuracy of the power-fail threshold  
when the monitored voltage is falling. It is useful for  
accurately detecting when a voltage falls past a thresh-  
old. The current through R1 and R2 should be at least  
1µA to ensure that the 25nA (max over temperature)  
PFI input current does not shift the trip point. R3 should  
be larger than 82kso it does not load down the PFO  
pin. Capacitor C1 is optional, and adds noise rejection.  
If additional noise margin is desired, connect a resistor  
between PFO and PFI as shown in Figure 16a. Select  
the ratio of R1 and R2 such that PFI sees V  
when  
PFT  
V
IN  
falls to its trip point (V  
). R3 adds the additional  
TRIP  
hysteresis and should typically be more than 10 times  
the value of R1 or R2. The hysteresis window extends  
16 ______________________________________________________________________________________  
3.0V/3.3V Adjustable Microprocessor  
Supervisory Circuits  
34/MAX795  
V
V
IN  
IN  
R1  
R2  
V
V
CC  
R1  
R2  
CC  
PFI  
MAX793  
MAX794  
MAX793  
MAX794  
PFI  
R3  
R3  
C1*  
C1*  
PFO  
PFO  
GND  
GND  
*OPTIONAL  
*OPTIONAL  
TO µP  
TO µP  
PFO  
PFO  
0V  
V
0V  
V
IN  
IN  
V
V
H
V
V
TRIP  
L
H
0V  
0V  
V
TRIP  
R1 + R2  
V
= V  
(
)
)
R1 + R2  
R2  
TRIP  
PFT  
R2  
V
= V  
PFT  
(
)
TRIP  
WHERE V  
V
= 1.237V  
= 10mV  
PFT  
PFH  
V
1
1
1
D
+
+
V
= R1 (V + V  
PFT  
1
1
1
(
)
H
PFH  
V
= (V + V ) (R1)  
H
PFT  
PFH  
R3  
R1 R2 R3  
+
+
(
)
R1 R2 R3  
WHERE V  
V
= 1.237V  
= 10mV  
PFT  
PFH  
1
1
1
V
CC  
+
+
V = R1 V  
(
)
L
PFT  
R1 R2 R3  
R3  
V
= DIODE FORWARD VOLTAGE DROP  
D
(a)  
(b)  
V
= V  
L
TRIP  
Figure 16. Adding Hysteresis to the Power-Fail Comparator: (a) Symmetrical Hysteresis, (b) Hysteresis Only on Rising V  
IN  
Monitoring an Additional Power Supply  
These µP supervisors can monitor either positive or  
V
negative supplies using a resistor voltage divider to  
CC  
PFI. PFO can be used to generate an interrupt to the µP  
or to cause reset to assert (Figure 12).  
V
V
CC  
CC  
Interfacing to µPs with  
Bidirectional Reset Pins  
RESET  
N
Since the RESET output is open drain, the MAX793/  
MAX794/MAX795 interface easily with µPs that have  
bidirectional reset pins, such as the Motorola 68HC11.  
Connecting the RESET output of the µP supervisor  
directly to the RESET input of the microcontroller with a  
single pullup resistor allows either device to assert  
reset (Figure 17).  
RESET  
RESET  
GENERATOR  
µP  
MAX793  
MAX794  
MAX795  
Negative-Going V  
CC  
Transients  
These supervisors are relatively immune to short-dura-  
tion negative-going V transients (glitches) while issu-  
CC  
ing resets to the µP during power-up, power-down, and  
GND  
GND  
brownout conditions. Therefore, resetting the µP when  
V
CC  
experiences only small glitches is usually not rec-  
ommended.  
Figure 17. Interfacing to µPs with Bidirectional Reset I/O  
______________________________________________________________________________________ 17  
3.0V/3.3V Adjustable Microprocessor  
Supervisory Circuits  
Figure 18 shows maximum transient duration vs. reset-  
comparator overdrive, for which reset pulses are not  
generated. The graph was produced using negative-  
Watchdog Software Considerations  
There is a way to help the watchdog timer monitor soft-  
ware execution more closely, which involves setting  
and resetting the watchdog input at different points in  
the program rather than pulsing the watchdog input  
high-low-high or low-high-low. This technique avoids a  
stuck loop, in which the watchdog timer would continue  
to be reset within the loop, keeping the watchdog from  
timing out. Figure 19 shows an example of a flow dia-  
gram where the I/O driving the watchdog input is set  
high at the beginning of the program, set low at the  
beginning of every subroutine or loop, then set high  
again when the program returns to the beginning. If the  
program should hang in any subroutine, the problem  
would quickly be corrected, since the I/O is continually  
set low and the watchdog timer is allowed to time out,  
causing a reset or interrupt to be issued.  
going V  
pulses, starting at 3.3V and ending below  
CC  
the reset threshold by the magnitude indicated (reset  
comparator overdrive). The graph shows the maximum  
pulse width a negative-going V  
transient can typically  
CC  
have without causing a reset pulse to be issued. As  
the amplitude of the transient increases (i.e., goes far-  
ther below the reset threshold), the maximum allowable  
pulse width decreases. Typically, a V  
transient that  
CC  
goes 40mV below the reset threshold and lasts for 10µs  
or less does not cause a reset pulse to be issued.  
A 0.1µF bypass capacitor mounted close to the V  
pin provides additional transient immunity.  
CC  
100  
90  
80  
70  
60  
50  
40  
30  
START  
34/MAX795  
SET WDI  
HIGH  
PROGRAM  
CODE  
20  
10  
0
Subroutine or  
Program Loop  
10 20 30 40 50 60 70 80 90 100  
RESET COMPARATOR OVERDRIVE, V - V (mV)  
RST  
CC  
SET WDI LOW  
Figure 18. Maximum Transient Duration without Causing a  
Reset Pulse vs. Reset Comparator Overdrive  
RETURN  
Figure 19. Watchdog Flow Diagram  
18 ______________________________________________________________________________________  
3.0V/3.3V Adjustable Microprocessor  
Supervisory Circuits  
34/MAX795  
_Ordering Information (continued)  
_________________Pin Configurations  
PIN-  
PACKAGE  
PART*  
TEMP RANGE  
TOP VIEW  
MAX793_EPE  
MAX793_ESE  
MAX794CPE  
MAX794CSE  
MAX794EPE  
MAX794ESE  
MAX795_CPA  
MAX795_CSA  
MAX795_EPA  
MAX795_ESA  
-40°C to +85°C  
-40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
16 Plastic DIP  
16 Narrow SO  
16 Plastic DIP  
16 Narrow SO  
16 Plastic DIP  
16 Narrow SO  
8 Plastic DIP  
8 SO  
OUT  
BATT  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
RESET  
LOWLINE  
RESET  
CE OUT  
CE IN  
CC  
(RESET IN) BATT OK  
PFI  
BATT ON  
GND  
MAX793  
MAX794  
PFO  
WDI  
8 Plastic DIP  
8 SO  
MR  
WDO  
DIP/Narrow SO  
*The MAX793/MAX795 offer a choice of reset threshold voltage.  
Select the letter corresponding to the desired reset threshold  
voltage range (T = 3.00V to 3.15V, S = 2.85V to 3.00V, R =  
2.55V to 2.70V) and insert it into the blank to complete the part  
number. The MAX794’s reset threshold is adjustable.  
BATT  
RESET  
CE OUT  
CE IN  
OUT  
1
8
7
6
5
Devices are available in both leaded and lead-free packaging.  
Specify lead free by adding the + symbol at the end of the part  
number when ordering.  
V
2
3
4
CC  
MAX795  
BATT ON  
GND  
DIP/SO  
( ) ARE FOR MAX794  
Chip Information  
TRANSISTOR COUNT: 1271  
Package Information  
For the latest package outline information and land patterns, go  
to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in  
the package code indicates RoHS status only. Package draw-  
ings may show a different suffix character, but the drawing per-  
tains to the package regardless of RoHS status.  
PACKAGE TYPE PACKAGE CODE DOCUMENT NO.  
8 SO  
S8-2  
R8-1  
21-0041  
21-0043  
21-0043  
21-0041  
8 Plastic Dip  
16 Plastic Dip  
16 Narrow SO  
P16-1  
S16-1  
______________________________________________________________________________________ 19  
3.0V/3.3V Adjustable Microprocessor  
Supervisory Circuits  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
CHANGED  
DESCRIPTION  
0
5
6
2/95  
2/07  
3/10  
Initial release  
4
Revised Electrical Characteristics.  
Revised Absolute Maximum Ratings and Chip-Enable Input section.  
1, 2  
34/MAX795  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
20 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2010 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX793REPE

Power Supply Supervisor
MAXIM

MAX793REPE+

2-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDIP16, 0.300 INCH, LEA FREE, PLASTIC, DIP-16
ROCHESTER

MAX793RESE

Power Supply Supervisor
MAXIM

MAX793RESE+

Power Supply Management Circuit, Fixed, 2 Channel, PDSO16, 0.150 INCH, LEAD FREE, SOIC-16
MAXIM

MAX793RESE+T

Power Supply Management Circuit, Fixed, 2 Channel, PDSO16, 0.150 INCH, ROHS COMPLIANT, MS-012AC, SOIC-16
MAXIM

MAX793RESE-T

Power Supply Management Circuit, Fixed, 2 Channel, CMOS, PDSO16, 0.150 INCH, MS-012AC, SOIC-16
MAXIM

MAX793S

3.0V/3.3V Adjustable Microprocessor Supervisory Circuits
MAXIM

MAX793SCPE

Power Supply Supervisor
MAXIM

MAX793SCSE

Power Supply Supervisor
MAXIM

MAX793SCSE+

Power Supply Management Circuit, Fixed, 2 Channel, PDSO16, 0.150 INCH, LEAD FREE, SOIC-16
MAXIM

MAX793SCSE+C01009

Power Supply Management Circuit
MAXIM

MAX793SCSE+C48

Power Supply Management Circuit
MAXIM