MAX796EPE [MAXIM]

Step-Down Controllers with Synchronous Rectifier for CPU Power; 降压型控制器,具有同步整流的CPU电源
MAX796EPE
型号: MAX796EPE
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Step-Down Controllers with Synchronous Rectifier for CPU Power
降压型控制器,具有同步整流的CPU电源

稳压器 开关式稳压器或控制器 电源电路 开关式控制器 光电二极管 信息通信管理
文件: 总32页 (文件大小:320K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0221; Rev 3a; 11/97  
S t e p -Do w n Co n t ro lle rs w it h  
S yn c h ro n o u s Re c t ifie r fo r CP U P o w e r  
6/MAX79  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
96% Efficiency  
The MAX796/MAX797/MAX799 high-performance, step-  
down DC-DC converters with single or dual outputs  
provide main CPU power in battery-powered systems.  
These buck controllers achieve 96% efficiency by using  
synchronous rectification and Maxims proprietary Idle  
Mode™ control scheme to extend battery life at full-load  
(up to 10A) and no-load outputs. Excellent dynamic  
response corrects output transients caused by the latest  
dynamic-clock CPUs within five 300kHz clock cycles.  
Unique bootstrap circuitry drives inexpensive N-channel  
MOSFETs, reducing system cost and eliminating the  
crowbar switching currents found in some PMOS/NMOS  
switch designs.  
4.5V to 30V Input Range  
2.5V to 6V Adjustable Output  
Preset 3.3V and 5V Outputs (at up to 10A)  
Multiple Regulated Outputs  
+5V Linear-Regulator Output  
Precision 2.505V Reference Output  
Automatic Bootstrap Circuit  
150kHz/300kHz Fixed-Frequency PWM Operation  
Programmable Soft-Start  
The MAX796/MAX799 are specially equipped with a sec-  
ondary feedback input (SECFB) for transformer-based  
dual-output applications. This secondary feedback path  
improves cross-regulation of positive (MAX796) or nega-  
tive (MAX799) auxiliary outputs.  
375µA Typ Quiescent Current (V = 12V, V  
= 5V)  
IN  
OUT  
1µA Typ Shutdown Current  
The MAX797 has a logic-controlled and synchronizable  
fixed-frequency pulse-width-modulating (PWM) operating  
mode, which reduces noise and RF interference in sensi-  
tive mobile-communications and pen-entry applications.  
The SKIP override input allows automatic switchover to  
idle-mode operation (for high-efficiency pulse skipping) at  
light loads, or forces fixed-frequency mode for lowest noise  
at all loads.  
______________Ord e rin g In fo rm a t io n  
PART  
TEMP. RANGE  
0°C to +70°C  
PIN-PACKAGE  
16 Plastic DIP  
16 Narrow SO  
Dice*  
MAX796CPE  
MAX796CSE  
MAX796C/D  
MAX796EPE  
MAX796ESE  
MAX796MJE  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
16 Plastic DIP  
16 Narrow SO  
16 CERDIP  
The MAX796/MAX797/MAX799 are all available in 16-  
pin DIP and narrow SO packages. See the table below  
to compare these three converters.  
Ordering Information continued at end of data sheet.  
*Contact factory for dice specifications.  
PART  
MAX796  
MAX797  
MAX799  
MAIN OUTPUT  
SPECIAL FEATURE  
Regulates positive secondary  
voltage (such as +12V)  
3.3V/5V or adj.  
__________________P in Co n fig u ra t io n  
3.3V/5V or adj. Logic-controlled low-noise mode  
Regulates negative secondary  
3.3V/5V or adj.  
TOP VIEW  
voltage (such as -5V)  
SS  
DH  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
________________________Ap p lic a t io n s  
Notebook and Subnotebook Computers  
PDAs and Mobile Communicators  
Cellular Phones  
LX  
(SECFB) SKIP  
REF  
BST  
DL  
GND  
MAX796  
MAX797  
MAX799  
PGND  
VL  
SYNC  
SHDN  
FB  
V+  
CSH  
CSL  
Idle Mode is a trademark of Maxim Integrated Products.  
DIP/SO  
( ) ARE FOR MAX796/MAX799.  
U.S. and foreign patents pending.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 408-737-7600 ext. 3468.  
S t e p -Do w n Co n t ro lle rs w it h  
S yn c h ro n o u s Re c t ifie r fo r CP U P o w e r  
ABSOLUTE MAXIMUM RATINGS  
V+ to GND.................................................................-0.3V, +36V  
GND to PGND........................................................................±2V  
VL to GND ...................................................................-0.3V, +7V  
BST to GND...............................................................-0.3V, +36V  
DH to LX...........................................................-0.3V, BST + 0.3V  
LX to BST.....................................................................-7V, +0.3V  
SHDN to GND............................................................-0.3V, +36V  
SYNC, SS, REF, FB, SECFB, SKIP, DL to GND..-0.3V, VL + 0.3V  
CSH, CSL to GND .......................................................-0.3V, +7V  
VL Short Circuit to GND..............................................Momentary  
REF Short Circuit to GND...........................................Continuous  
VL Output Current...............................................................50mA  
Continuous Power Dissipation (T = +70°C)  
A
SO (derate 8.70mW/°C above +70°C)........................696mW  
Plastic DIP (derate 10.53mW/°C above +70°C) .........842mW  
CERDIP (derate 10.00mW/°C above +70°C)..............800mW  
Operating Temperature Ranges  
MAX79_C_ _ ......................................................0°C to +70°C  
MAX79_E_ _....................................................-40°C to +85°C  
MAX79_MJE .................................................-55°C to +125°C  
Storage Temperature Range .............................-65°C to +160°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V+ = 15V, GND = PGND = 0V, I  
T
A
= I = 0A, T = 0°C to + 70°C for MAX79_C, T = 0°C to + 85°C for MAX79_E,  
A A  
REF  
VL  
= -55°C to +125°C for MAX79_M, unless otherwise noted.)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+3.3V AND +5V STEP-DOWN CONTROLLERS  
MAX79_C  
MAX79_E/M  
4.5  
5.0  
30  
30  
Input Supply Range  
V
V
V
0mV < (CSH-CSL) < 80mV, FB = VL, 6V < V+ < 30V,  
includes line and load regulation  
5V Output Voltage (CSL)  
3.3V Output Voltage (CSL)  
4.85  
3.20  
5.10  
3.35  
5.25  
3.46  
6/MAX79  
0mV < (CSH-CSL) < 80mV, FB = 0V, 4.5V < V+ < 30V,  
includes line and load regulation  
Nominal Adjustable Output  
Voltage Range  
External resistor divider  
REF  
2.43  
6
V
V
Feedback Voltage  
Load Regulation  
Line Regulation  
(CSH-CSL) = 0V  
2.505  
2.5  
2.57  
0mV < (CSH-CSL) < 80mV  
25mV < (CSH-CSL) < 80mV  
6V < V+ < 30V  
%
1.5  
0.04  
100  
-100  
4.0  
0.06  
120  
-160  
6.5  
%/V  
mV  
CSH-CSL, positive  
80  
-50  
2.5  
2.0  
Current-Limit Voltage  
CSH-CSL, negative  
SS Source Current  
µA  
SS Fault Sink Current  
mA  
FLYBACK/PWM CONTROLLER  
Falling edge, hysteresis = 15mV (MAX796)  
Falling edge, hysteresis = 20mV (MAX799)  
2.45  
2.505  
0
2.55  
0.05  
SECFB Regulation Setpoint  
V
-0.05  
INTERNAL REGULATOR AND REFERENCE  
VL Output Voltage  
SHDN = 2V, 0mA < I < 25mA, 5.5V < V+ < 30V  
4.7  
3.8  
4.2  
5.3  
4.1  
4.7  
V
V
V
VL  
VL Fault Lockout Voltage  
VL/CSL Switchover Voltage  
Rising edge, hysteresis = 15mV  
Rising edge, hysteresis = 25mV  
2
_______________________________________________________________________________________  
S t e p -Do w n Co n t ro lle rs w it h  
S yn c h ro n o u s Re c t ifie r fo r CP U P o w e r  
6/MAX79  
ELECTRICAL CHARACTERISTICS (continued)  
(V+ = 15V, GND = PGND = 0V, I  
T
A
= I  
= 0A, T = 0°C to + 70°C for MAX79_C, T = 0°C to + 85°C for MAX79_E,  
A A  
REF  
VL  
= -55°C to +125°C for MAX79_M, unless otherwise noted.)  
PARAMETER  
Reference Output Voltage  
CONDITIONS  
MIN  
2.46  
2.45  
1.8  
TYP  
MAX  
2.54  
2.55  
2.3  
50  
1
UNITS  
MAX79_C  
2.505  
No external load (Note 1)  
V
MAX79_E/M  
Reference Fault Lockout Voltage Falling edge  
Reference Load Regulation 0µA < I < 100µA  
CSL Shutdown Leakage Current SHDN = 0V, CSL = 6V, V+ = 0V or 30V, VL = 0V  
V
mV  
µA  
REF  
0.1  
1
MAX79_C  
3
SHDN = 0V, V+ = 30V,  
CSL = 0V or 6V  
V+ Shutdown Current  
µA  
µA  
MAX79_E/M  
MAX79_C  
1
5
1
3
FB = CSH = CSL = 6V,  
VL switched over to CSL  
V+ Off-State Leakage Current  
MAX79_E/M  
1
5
Dropout Power Consumption  
Quiescent Power Consumption  
V+ = 4V, CSL = 0V (Note 2)  
CSH = CSL = 6V  
4
8
mW  
mW  
4.8  
6.6  
OSCILLATOR AND INPUTS/OUTPUTS  
SYNC = REF  
270  
125  
200  
200  
300  
150  
330  
175  
Oscillator Frequency  
kHz  
SYNC = 0V or 5V  
SYNC High Pulse Width  
SYNC Low Pulse Width  
SYNC Rise/Fall Time  
Oscillator Sync Range  
ns  
ns  
Guaranteed by design  
200  
340  
ns  
190  
89  
kHz  
SYNC = REF  
SYNC = 0V or 5V  
SYNC  
91  
96  
Maximum Duty Cycle  
Input High Voltage  
Input Low Voltage  
%
V
V
93  
VL - 0.5  
2.0  
SHDN, SKIP  
SYNC  
0.8  
0.5  
SHDN, SKIP  
SHDN, 0V or 30V  
SECFB, 0V or 4V  
SYNC, SKIP  
2.0  
0.1  
µA  
Input Current  
1.0  
CSH, CSL, CSH = CSL = 6V, device not shut down  
FB, FB = REF  
50  
±100  
nA  
A
DL Sink/Source Current  
DH Sink/Source Current  
DL On-Resistance  
DL forced to 2V  
1
1
DH forced to 2V, BST-LX = 4.5V  
High or low  
A
7
7
DH On-Resistance  
High or low, BST-LX = 4.5V  
Note 1: Since the reference uses VL as its supply, V+ line-regulation error is insignificant.  
Note 2: At very low input voltages, quiescent supply current may increase due to excess PNP base current in the VL linear  
regulator. This occurs only if V+ falls below the preset VL regulation point (5V nominal). See the Quiescent Supply Current  
vs. Supply Voltage graph in the Typical Operating Characteristics.  
_______________________________________________________________________________________  
3
S t e p -Do w n Co n t ro lle rs w it h  
S yn c h ro n o u s Re c t ifie r fo r CP U P o w e r  
ELECTRICAL CHARACTERISTICS (continued)  
(V+ = 15V, GND = PGND = 0V, I = I  
= 0A, T = -40°C to +85°C for MAX79_E, unless otherwise noted.) (Note 3)  
A
VL REF  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+3.3V and +5V STEP-DOWN CONTROLLERS  
Input Supply Range  
5.0  
30  
V
V
0mV < (CSH - CSL) < 80mV, FB = VL, 6V < V+ < 30V,  
includes line and load regulation  
5V Output Voltage (CSL)  
3.3V Output Voltage (CSL)  
4.70  
5.10  
3.35  
5.40  
0mV < (CSH - CSL) < 80mV, FB = VL, 4.5V < V+ < 30V,  
includes line and load regulation  
3.10  
3.56  
6.0  
V
V
Nominal Adjustable Output  
Voltage Range  
External resistor divider  
REF  
2.40  
Feedback Voltage  
Line Regulation  
(CSH-CSL) = 0V  
6V < V+ < 30V  
2.60  
0.06  
130  
V
0.04  
-100  
%/V  
CSH - CSL, positive  
CSH - CSL, negative  
70  
Current-Limit Voltage  
mV  
V
-40  
-160  
FLYBACK/PWM CONTROLLER  
SECFB Regulation Setpoint  
Falling edge, hysteresis = 15mV (MAX796)  
Falling edge, hysteresis = 20mV (MAX799)  
2.40  
2.60  
0.08  
-0.08  
INTERNAL REGULATOR AND REFERENCE  
VL Output Voltage  
4.7  
3.75  
4.2  
5.3  
4.05  
4.7  
2.57  
50  
V
V
SHDN = 2V, 0mA < I < 25mA, 5.5V < V+ < 30V  
VL  
6/MAX79  
VL Fault Lockout Voltage  
VL/CSL Switchover Voltage  
Reference Output Voltage  
Reference Load Regulation  
V+ Shutdown Current  
Rising edge, hysteresis = 15mV  
Rising edge, hysteresis = 25mV  
No external load (Note 1)  
V
2.43  
2.505  
V
0µA < I  
< 100µA  
mV  
µA  
µA  
mW  
REF  
1
1
10  
SHDN = 0V, V+ = 30V, CSL = 0V or 6V  
V+ Off-State Leakage Current  
Quiescent Power Consumption  
FB = CSH = CSL = 6V, VL switched over to CSL  
10  
4.8  
8.4  
OSCILLATOR AND INPUTS/OUTPUTS  
SYNC = REF  
250  
120  
250  
250  
210  
89  
300  
150  
350  
180  
Oscillator Frequency  
kHz  
SYNC = 0V or 5V  
SYNC High Pulse Width  
SYNC Low Pulse Width  
Oscillator Sync Range  
ns  
ns  
320  
kHz  
SYNC = REF  
91  
96  
Maximum Duty Cycle  
%
SYNC = 0V or 5V  
High or low  
93  
DL On-Resistance  
DH On-Resistance  
7
7
High or low, BST - LX = 4.5V  
Note 3: All -40°C to +85°C specifications above are guaranteed by design.  
4
_______________________________________________________________________________________  
S t e p -Do w n Co n t ro lle rs w it h  
S yn c h ro n o u s Re c t ifie r fo r CP U P o w e r  
6/MAX79  
__________________________________________________Typ ic a l Op e ra t in g Circ u it s  
INPUT  
4.5V TO 30V  
V+  
SHDN  
VL  
MAX797  
DH  
+3.3V  
OUTPUT  
BST  
SS  
LX  
DL  
REF  
PGND  
SYNC  
GND  
CSH  
CSL  
SKIP  
FB  
INPUT  
6V TO 30V  
V+  
SECFB  
SHDN  
+12V  
OUTPUT  
FB  
VL  
MAX796  
DH  
+5V  
OUTPUT  
BST  
LX  
DL  
PGND  
SS  
REF  
GND  
CSH  
CSL  
SYNC  
_______________________________________________________________________________________  
5
S t e p -Do w n Co n t ro lle rs w it h  
S yn c h ro n o u s Re c t ifie r fo r CP U P o w e r  
_____________________________________Typ ic a l Op e ra t in g Circ u it s (c o n t in u e d )  
FROM  
REF  
INPUT 6V TO 30V  
V+  
SECFB  
FB  
SHDN  
VL  
–5V  
OUTPUT  
MAX799  
DH  
BST  
+5V  
OUTPUT  
LX  
DL  
PGND  
SS  
REF  
CSH  
CSL  
GND  
SYNC  
6/MAX79  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(T = +25°C, unless otherwise noted.)  
A
EFFICIENCY vs.  
LOAD CURRENT, 5V/3A CIRCUIT  
100  
EFFICIENCY vs.  
LOAD CURRENT, 3.3V/3A CIRCUIT  
EFFICIENCY vs.  
LOAD CURRENT, 3.3V/10A CIRCUIT  
100  
100  
90  
80  
70  
60  
50  
40  
V
IN  
= 6V  
V
IN  
= 5V  
SKIP = LOW  
90  
80  
70  
60  
90  
80  
70  
60  
V = 12V  
IN  
V
= 30V  
IN  
SKIP = HIGH  
V
= 30V  
IN  
STANDARD MAX797 3.3V/10A  
CIRCUIT, FIGURE 1  
f = 300kHz  
STANDARD MAX797 5V/3A  
CIRCUIT, FIGURE 1  
f = 300kHz  
STANDARD MAX797 3.3V/3A  
CIRCUIT, FIGURE 1  
f = 300kHz  
V
IN  
= 5V  
50  
50  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
0.1  
1
10  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
6
_______________________________________________________________________________________  
S t e p -Do w n Co n t ro lle rs w it h  
S yn c h ro n o u s Re c t ifie r fo r CP U P o w e r  
6/MAX79  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(T = +25°C, unless otherwise noted.)  
A
QUIESCENT SUPPLY CURRENT  
vs. SUPPLY VOLTAGE,  
QUIESCENT SUPPLY CURRENT  
vs. SUPPLY VOLTAGE,  
QUIESCENT SUPPLY CURRENT vs.  
3.3V/3A CIRCUIT IN IDLE MODE  
SUPPLY VOLTAGE, LOW-NOISE MODE  
5V/3A CIRCUIT IN IDLE MODE  
16m  
30  
20  
10  
0
1400  
1200  
1000  
800  
15m  
14m  
SWITCHING  
STANDARD MAX797 APPLICATION  
CONFIGURED FOR 5V  
SKIP = LOW  
f = 300kHz  
f = 150kHz  
800µ  
600µ  
400µ  
SYNC = REF  
600  
NOT SWITCHING  
(FB FORCED TO 3.5V)  
400  
STANDARD MAX797 3.3V/3A  
CIRCUIT, FIGURE 1  
SKIP = LOW  
STANDARD MAX797 3.3V/3A  
CIRCUIT, FIGURE 1  
SKIP = HIGH  
200  
0
200µ  
SYNC = REF  
0
0
4
8
12 16 20 24 28 32  
0
4
8
12 16 20 24 28 32  
0
4
8
12 16 20 24 28 32  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
SHUTDOWN SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
DROPOUT VOLTAGE vs.  
LOAD CURRENT  
REF LOAD-REGULATION ERROR  
vs. LOAD CURRENT  
1.6  
1.4  
800  
700  
600  
500  
20  
15  
1.2  
1.0  
0.8  
0.6  
0.4  
f = 300kHz  
400  
300  
200  
100  
10  
5
DEVICE CURRENT ONLY  
SHDN = LOW  
f = 150kHz  
STANDARD MAX797 APPLICATION  
CONFIGURED FOR 5V  
0.2  
0
V
OUT  
> 4.8V  
0
0
0.01  
0.1  
1
10  
1
10  
100  
1000  
0
4
8
12 16 20 24 28 32  
LOAD CURRENT (A)  
REF LOAD CURRENT (µA)  
SUPPLY VOLTAGE (V)  
MAX796  
SWITCHING FREQUENCY vs.  
LOAD CURRENT  
VL LOAD-REGULATION ERROR  
vs. LOAD CURRENT  
MAXIMUM SECONDARY CURRENT  
vs. SUPPLY VOLTAGE, 5V/15V CIRCUIT  
500  
1000  
450  
400  
350  
300  
250  
200  
150  
100  
50  
I
(MAIN) = 0A  
OUT  
SYNC = REF (300kHz)  
SKIP = LOW  
400  
300  
100  
10  
1
+5V, V = 7.5V  
IN  
I
(MAIN) = 3A  
OUT  
+5V, V = 30V  
IN  
200  
100  
0
+3.3V, V = 7.5V  
IN  
CIRCUIT OF FIGURE 11  
TRANSFORMER = TTI5870  
V
> 12.75V  
SEC  
0
0.1  
100µ  
1m  
10m  
100m  
1
0
4
8 12 16 20 24 28 32  
SUPPLY VOLTAGE (V)  
0
20  
40  
60  
80  
LOAD CURRENT (A)  
VL LOAD CURRENT (mA)  
_______________________________________________________________________________________  
7
S t e p -Do w n Co n t ro lle rs w it h  
S yn c h ro n o u s Re c t ifie r fo r CP U P o w e r  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(T = +25°C, unless otherwise noted.)  
A
MAX796  
MAX799  
MAXIMUM SECONDARY CURRENT vs.  
SUPPLY VOLTAGE, 3.3V/5V CIRCUIT  
MAXIMUM SECONDARY CURRENT  
vs. SUPPLY VOLTAGE, ±5V CIRCUIT  
1050  
900  
750  
600  
450  
300  
800  
700  
I
(MAIN) = 2A  
I
(MAIN) = 0A  
OUT  
OUT  
600  
500  
400  
300  
200  
I
(MAIN) = 0A  
OUT  
I
(MAIN) = 1A  
OUT  
CIRCUIT OF FIGURE 13  
TRANSFORMER = TTI5926  
CIRCUIT OF FIGURE 12  
TRANSFORMER = TDK 1.5:1  
V
SEC  
-5.1V  
150  
0
100  
0
V
4.8V  
SEC  
0
3
6
9
12 15 18 21 24  
0
4
8
12 16 20 24 28 32  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
PULSE-WIDTH-MODULATION MODE WAVEFORMS  
IDLE-MODE WAVEFORMS  
X
+5V OUTPUT  
50mV/div  
LX VOLTAGE  
10V/div  
2V/div  
+5V OUTPUT  
VOLTAGE  
50mV/div  
500ns/div  
200µs/div  
I
= 1A, V = 16V,  
IN  
I
= 100mA, V = 10V,  
IN  
LOAD  
LOAD  
CIRCUIT OF FIGURE 1  
CIRCUIT OF FIGURE 1  
+5V LOAD-TRANSIENT RESPONSE  
3A  
LOAD CURRENT  
0A  
+5V OUTPUT  
50mV/div  
200µs/div  
V
IN  
= 15V, CIRCUIT OF FIGURE 1  
8
_______________________________________________________________________________________  
S t e p -Do w n Co n t ro lle rs w it h  
S yn c h ro n o u s Re c t ifie r fo r CP U P o w e r  
6/MAX79  
______________________________________________________________P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
1
SS  
Soft-Start timing capacitor connection. Ramp time to full current limit is approximately 1ms/nF.  
Secondary winding Feedback input. Normally connected to a resistor divider from an auxiliary output.  
Don’t leave SECFB unconnected.  
SECFB  
(MAX796/  
MAX799)  
MAX796: SECFB regulates at VSECFB = 2.505V. Tie to VL if not used.  
MAX799: SECFB regulates at VSECFB = 0V. Tie to a negative voltage through a high-value current-limit-  
2
ing resistor (I  
= 100µA) if not used.  
MAX  
Disables pulse-skipping mode when high. Connect to GND for normal use. Don’t leave SKIP unconnected.  
With SKIP grounded, the device will automatically change from pulse-skipping operation to full PWM opera-  
tion when the load current exceeds approximately 30% of maximum. (See Table 3.)  
SKIP  
(MAX797)  
3
4
REF  
Reference voltage output. Bypass to GND with 0.33µF minimum.  
Low-noise analog Ground and feedback reference point.  
GND  
Oscillator Synchronization and frequency select. Tie to GND or VL for 150kHz operation; tie to REF for  
300kHz operation. A high-to-low transition begins a new cycle. Drive SYNC with 0V to 5V logic levels (see the  
5
6
SYNC  
SHDN  
Electrical Characteristics table for V and V specifications). SYNC capture range is 190kHz to 340kHz  
IH  
IL  
guaranteed.  
Shutdown control input, active low. Logic threshold is set at approximately 1V (V of an internal N-channel  
TH  
MOSFET). Tie SHDN to V+ for automatic start-up.  
Feedback input. Regulates at FB = REF (approximately 2.505V) in adjustable mode. FB is a Dual-ModeTM  
input that also selects the fixed output voltage settings as follows:  
Connect to GND for 3.3V operation.  
Connect to VL for 5V operation.  
Connect FB to a resistor divider for adjustable mode. FB can be driven with +5V rail-to-rail logic in order to  
change the output voltage under system control.  
7
FB  
8
9
CSH  
CSL  
Current-Sense input, High side. Current-limit level is 100mV referred to CSL.  
Current-Sense input, Low side. Also serves as the feedback input in fixed-output modes.  
Battery voltage input (4.5V to 30V). Bypass V+ to PGND close to the IC with a 0.1µF capacitor. Connects to a  
linear regulator that powers VL.  
10  
11  
V+  
VL  
5V Internal linear-regulator output. VL is also the supply voltage rail for the chip. VL is switched to the output  
voltage via CSL (V  
> 4.5V) for automatic bootstrapping. Bypass to GND with 4.7µF. VL can  
CSL  
supply up to 5mA for external loads.  
12  
13  
14  
15  
PGND  
DL  
Power Ground.  
Low-side gate-drive output. Normally drives the synchronous-rectifier MOSFET. Swings 0V to VL.  
Boost capacitor connection for high-side gate drive (0.1µF).  
BST  
LX  
Switching node (inductor) connection. Can swing 2V below ground without hazard.  
High-side gate-drive output. Normally drives the main buck switch. DH is a floating driver output that swings  
from LX to BST, riding on the LX switching-node voltage.  
16  
DH  
Dual Mode is a trademark of Maxim Integrated Products.  
_______________________________________________________________________________________  
9
S t e p -Do w n Co n t ro lle rs w it h  
S yn c h ro n o u s Re c t ifie r fo r CP U P o w e r  
If the 3A or 5A circuit must be guaranteed to withstand  
______S t a n d a rd Ap p lic a t io n Circ u it  
a continuous output short circuit indefinitely, see the  
s e c tion MOSFET Switc he s und e r Se le c ting Othe r  
Components. Dont change the frequency of these cir-  
cuits without first recalculating component values (par-  
ticularly inductance value at maximum battery voltage).  
It is easy to adapt the basic MAX797 single-output 3.3V  
buc k c onve rte r (Figure 1) to me e t a wide ra nge of  
applications with inputs up to 28V (limited by choice of  
external MOSFET). Simply substitute the appropriate  
components from Table 1. These circuits represent a  
good set of tradeoffs between cost, size, and efficiency  
while staying within the worst-case specification limits  
for stress-related parameters such as capacitor ripple  
current. Each of these circuits is rated for a continuous  
_______________De t a ile d De s c rip t io n  
The MAX796 is a BiCMOS, switch-mode power-supply  
controller designed primarily for buck-topology regula-  
tors in battery-powered applications where high effi-  
ciency and low quiescent supply current are critical.  
The MAX796 also works well in other topologies such  
as boost, inverting, and CLK due to the flexibility of its  
floating high-speed gate driver. Light-load efficiency is  
enhanced by automatic idle-mode operation—a vari-  
a b le -fre q ue nc y p uls e -s kip p ing mod e tha t re d uc e s  
load current at T = +85°C, as shown. The 1A, 2A and  
A
10A applications can withstand a continuous output  
short-circuit to ground. The 3A and 5A applications can  
withstand a short circuit of many seconds duration, but  
the synchronous-rectifier MOSFET overheats, exceed-  
ing the manufacturers ratings for junction temperature  
by 50°C or more.  
INPUT  
C1  
C7  
6/MAX79  
0.1µF  
+5V AT  
5mA  
10  
11  
VL  
D2  
CMPSH-3  
C4  
4.7µF  
V+  
6
2
16  
14  
DH  
Q1  
ON/OFF  
CONTROL  
SHDN  
BST  
C3  
0.1µF  
+3.3V  
OUTPUT  
15  
13  
L1  
LX  
MAX797  
LOW-NOISE  
CONTROL  
SKIP  
SS  
R1  
C2  
DL  
Q2  
D1  
GND  
OUT  
12  
8
PGND  
1
CSH  
CSL  
9
C6  
0.01µF  
(OPTIONAL)  
4
3
GND  
REF  
FB  
SYNC  
C5  
0.33µF  
7
5
REF OUTPUT  
NOTE: KEEP CURRENT-SENSE  
LINES SHORT AND CLOSE  
TOGETHER. SEE FIG. 10  
+2.505V AT 100µA  
J1  
150kHz/300kHz  
JUMPER  
Figure 1. Standard 3.3V Application Circuit  
10 ______________________________________________________________________________________  
S t e p -Do w n Co n t ro lle rs w it h  
S yn c h ro n o u s Re c t ifie r fo r CP U P o w e r  
6/MAX79  
Table 1. Component Selection for Standard 3.3V Applications  
LOAD CURRENT  
COMPONENT  
1A  
4.75V to 18V  
PDA  
2A  
4.75V to 18V  
Sub-Notebook  
300kHz  
3A  
4A  
4.75V to 24V  
High-End Notebook  
300kHz  
10A  
4.5V to 6V  
Input Range  
Application  
Frequency  
4.75V to 28V  
Notebook  
300kHz  
Desktop 5V-to-3V  
300kHz  
150kHz  
Motorola 1/2  
MMDF3N03HD or 1/2 MMSF5N03HD or  
Si9936  
Motorola  
Motorola  
MTD20N03HDL  
DPAK  
Motorola  
Q1 High-Side  
MOSFET  
International Rectifier  
1/2 IRF7101  
MTD75N03HDL  
2
Si9410  
D PAK  
Motorola 1/2  
MMDF3N03HD or 1/2 MMSF5N03HD or  
Si9936  
Motorola  
Motorola  
MTD20N03HDL  
DPAK  
Motorola  
Q2 Low-Side  
MOSFET  
International Rectifier  
1/2 IRF7101  
MTD75N03HDL  
2
Si9410  
D PAK  
2 x 220µF, 10V  
Sanyo OS-CON  
10SA220M  
C1 Input  
Capacitor  
22µF, 35V AVX TPS 2 x 22µF, 35V AVX  
or Sprague 595D  
2 x 22µF, 35V AVX  
TPS or Sprague 595D TPS or Sprague 595D TPS or Sprague 595D  
4 x 22µF, 35V AVX  
4 x 220µF, 10V  
Sanyo OS-CON  
10SA220M  
C2 Output  
Capacitor  
150µF, 10V AVX TPS 150µF, 10V AVX TPS  
220µF, 10V AVX TPS 3 x 220µF, 10V AVX  
or Sprague 595D  
or Sprague 595D  
or Sprague 595D  
TPS or Sprague 595D  
1N5817 NIEC  
EC10QS02L or  
1N5819 NIEC  
EC10QS03 or  
1N5821 NIEC  
NSQ03A04 or  
1N5820 NIEC  
NSQ03A02, or  
1N5817 Motorola  
MBR0502L SOD-89  
D1 Rectifier  
R1 Resistor  
L1 Inductor  
Motorola MBRS130T3 Motorola MBRS130T3 Motorola MBRS340T3 Motorola MBRS340T3  
3 x 0.02IRC  
LR2010-01-R020  
(3 in parallel)  
0.062IRC  
LR2010-01-R062  
0.039IRC  
LR2010-01-R039  
0.025IRC  
LR2010-01-R025  
0.015IRC  
LR2010-01-015  
47µH, 1.2A Ferrite or  
Kool-Mu  
Sumida CD75-470  
1.5µH, 11A, 3.5mΩ  
Coiltronics  
CTX03-12357-1  
33µH, 2.2A Ferrite  
Dale LPE6562-330MB Sumida CDRH125  
10µH, 3A Ferrite  
4.7µH, 5.5A Ferrite  
Coilcraft DO3316-472  
Table 2. Component Suppliers  
FACTORY FAX  
[Country Code]  
FACTORY FAX  
[Country Code]  
MANUFACTURER  
USA PHONE  
MANUFACTURER  
USA PHONE  
AVX  
(803) 946-0690 [1] 803-626-3123  
(516) 435-1110 [1] 516-435-1824  
(847) 639-6400 [1] 847-639-1469  
(561) 241-7876 [1] 561-241-9339  
(605) 668-4131 [1] 605-665-1627  
(310) 322-3331 [1] 310-322-3332  
(512) 992-7900 [1] 512-992-3377  
(864) 963-6300 [1] 864-963-6521  
(714) 969-2491 [1] 714-960-6492  
(602) 303-5454 [1] 602-994-6430  
(814) 237-1431  
(800) 831-9172  
Murata-Erie  
[1] 814-238-0490  
Central Semiconductor  
Coilcraft  
NIEC  
(805) 867-2555* [81] 3-3494-7414  
(619) 661-6835 [81] 7-2070-1174  
Coiltronics  
Dale  
Sanyo  
(408) 988-8000  
[1] 408-970-3950  
(800) 554-5565  
Siliconix  
International Rectifier  
IRC  
Sprague  
Sumida  
TDK  
(603) 224-1961 [1] 603-224-1430  
(847) 956-0666 [81] 3-3607-5144  
(847) 390-4461 {1} 847-390-4405  
Kemet  
Matsuo  
Motorola  
Transpower Technologies (702) 831-0140 [1] 702-831-3521  
* Distributor  
losses due to MOSFET gate charge. The step-down  
p owe r-s witc hing c irc uit c ons is ts of two N-c ha nne l  
MOSFETs, a rectifier, and an LC output filter. The out-  
put voltage is the average of the AC voltage at the  
switching node, which is adjusted and regulated by  
changing the duty cycle of the MOSFET switches. The  
gate-drive signal to the N-channel high-side MOSFET  
must exceed the battery voltage and is provided by a  
flying capacitor boost circuit that uses a 100nF capaci-  
tor connected to BST.  
The MAX796 contains nine major circuit blocks, which  
are shown in Figure 2.  
______________________________________________________________________________________ 11  
S t e p -Do w n Co n t ro lle rs w it h  
S yn c h ro n o u s Re c t ifie r fo r CP U P o w e r  
BATTERY VOLTAGE  
TO  
V+  
CSL  
+5V LINEAR  
REGULATOR  
OUT  
VL  
+5V AT 5mA  
4.5V  
AUXILIARY  
OUTPUT  
SHDN  
BST  
SECFB  
DH  
LX  
PWM  
LOGIC  
MAIN  
OUTPUT  
DL  
+2.505V  
REF  
PGND  
PWM  
COMPARATOR  
CSH  
CSL  
+2.505V  
AT 100µA  
6/MAX79  
REF  
LPF  
GND  
3.3V FB  
5V FB  
60kHz  
ON/OFF  
SHDN  
SS  
ADJ FB  
FB  
4V  
MAX796  
1V  
SYNC  
Figure 2. MAX796 Block Diagram  
12 ______________________________________________________________________________________  
S t e p -Do w n Co n t ro lle rs w it h  
S yn c h ro n o u s Re c t ifie r fo r CP U P o w e r  
6/MAX79  
PWM Controller Blocks:  
Table 3. Operating-Mode Truth Table  
Multi-Input PWM Comparator  
Current-Sense Circuit  
PWM Logic Block  
Dual-Mode Internal Feedback Mux  
Gate-Driver Outputs  
Secondary Feedback Comparator  
LOAD  
CURRENT  
MODE  
NAME  
SHDN SKIP  
DESCRIPTION  
All circuit blocks  
Low  
X
X
Shutdown turned off; supply  
current = 1µA typ  
Pulse-skipping;  
supply current =  
Bias Generator Blocks:  
Low,  
<10%  
High  
Low  
Idle  
700µA typ at V  
=
IN  
+5V Linear Regulator  
Automatic Bootstrap Switchover Circuit  
+2.505V Reference  
10V; discontinuous  
inductor current  
Pulse-skipping;  
continuous inductor  
current  
Medium,  
<30%  
These internal IC blocks arent powered directly from  
the battery. Instead, a +5V linear regulator steps down  
the battery voltage to supply both the IC internal rail (VL  
pin) a s we ll a s the ga te d rive rs. The sync hronous-  
switch gate driver is directly powered from +5V VL,  
while the high-side-switch gate driver is indirectly pow-  
ered from VL via an external diode-capacitor boost cir-  
cuit. An automatic bootstrap circuit turns off the +5V  
linear regulator and powers the IC from its output volt-  
age if the output is above 4.5V.  
High  
High  
Low  
Low  
Idle  
Constant-frequency  
PWM; continuous  
inductor current  
High,  
>30%  
PWM  
Constant-frequency  
PWM regardless of  
load; continuous  
inductor current  
even at no load  
Low Noise*  
(PWM)  
High  
High  
X
P WM Co n t ro lle r Blo c k  
The he a rt of the c urre nt-mod e PWM c ontrolle r is a  
multi-input open-loop comparator that sums three sig-  
nals: output voltage error signal with respect to the ref-  
e re nc e volta g e , c urre nt-s e ns e s ig na l, a nd s lop e  
compensation ramp (Figure 3). The PWM controller is a  
direct summing type, lacking a traditional error amplifi-  
er and the phase shift associated with it. This direct-  
s umming c onfig ura tion a p p roa c he s the id e a l of  
cycle-by-cycle control over the output voltage.  
* MAX796/MAX799 have no SKIP pin and therefore cant go  
into low-noise mode.  
X = Dont Care  
beginning of each cycle, unless the feedback signal  
falls below the reference voltage level.  
When in PWM mode, the controller operates as a fixed-  
frequency current-mode controller where the duty ratio  
is set by the input/output voltage ratio. The current-  
mode feedback system regulates the peak inductor  
current as a function of the output voltage error signal.  
Since the average inductor current is nearly the same  
as the peak current, the circuit acts as a switch-mode  
transconductance amplifier and pushes the second  
output LC filter pole, normally found in a duty-factor-  
controlled (voltage-mode) PWM, to a higher frequency.  
To preserve inner-loop stability and eliminate regenera-  
tive inductor current staircasing,” a slope-compensa-  
tion ramp is summed into the main PWM comparator to  
reduce the apparent duty factor to less than 50%.  
Under heavy loads, the controller operates in full PWM  
mode. Each pulse from the oscillator sets the main  
PWM latch that turns on the high-side switch for a peri-  
od d e te rmine d b y the d uty fa c tor (a p p roxima te ly  
V
/V ). As the high-switch turns off, the synchro-  
OUT IN  
nous rectifier latch is set. 60ns later the low-side switch  
turns on, and stays on until the beginning of the next  
clock cycle (in continuous mode) or until the inductor  
current crosses zero (in discontinuous mode). Under  
fault conditions where the inductor current exceeds the  
100mV c urre nt-limit thre s hold , the hig h-s id e la tc h  
resets and the high-side switch turns off.  
The relative gains of the voltage- and current-sense  
inputs are weighted by the values of current sources  
that bias three differential input stages in the main PWM  
comparator (Figure 4). The relative gain of the voltage  
comparator to the current comparator is internally fixed  
at K = 2:1. The resulting loop gain (which is relatively  
low) determines the 2.5% typical load regulation error.  
The low loop -g a in va lue he lp s re d uc e outp ut filte r  
c a p a c itor s ize a nd c os t b y s hifting the unity-g a in  
crossover to a lower frequency.  
At light loads (SKIP = low), the inductor current fails to  
exceed the 30mV threshold set by the minimum-current  
comparator. When this occurs, the controller goes into  
idle mode, skipping most of the oscillator pulses in  
order to reduce the switching frequency and cut back  
gate-charge losses. The oscillator is effectively gated  
off at light loads because the minimum-current com-  
parator immediately resets the high-side latch at the  
______________________________________________________________________________________ 13  
S t e p -Do w n Co n t ro lle rs w it h  
S yn c h ro n o u s Re c t ifie r fo r CP U P o w e r  
CSH  
CSL  
1X  
REF  
FROM  
FEEDBACK  
DIVIDER  
MAIN PWM  
COMPARATOR  
BST  
DH  
LX  
R
Q
S
LEVEL  
SHIFT  
SLOPE COMP  
OSC  
30mV  
SKIP  
(MAX797  
ONLY)  
VL  
6/MAX79  
4µA  
CURRENT  
LIMIT  
SHOOT-  
THROUGH  
CONTROL  
24R  
1R  
SS  
2.5V  
N
SHDN  
SYNCHRONOUS  
RECTIFIER CONTROL  
VL  
DL  
R
Q
LEVEL  
SHIFT  
–100mV  
S
PGND  
REF (MAX796)  
GND (MAX799)  
1µs  
NOTE 1: COMPARATOR INPUT POLARITIES  
ARE REVERSED FOR THE MAX799.  
SINGLE-SHOT  
SECFB  
NOTE 1  
MAX796, MAX799 ONLY  
Figure 3. PWM Controller Detailed Block Diagram  
14 ______________________________________________________________________________________  
S t e p -Do w n Co n t ro lle rs w it h  
S yn c h ro n o u s Re c t ifie r fo r CP U P o w e r  
6/MAX79  
VL  
R1  
R2  
TO PWM  
LOGIC  
UNCOMPENSATED  
HIGH-SPEED  
FB  
LEVEL TRANSLATOR  
AND BUFFER  
OUTPUT DRIVER  
I1  
I2  
I3  
REF  
CSH  
CSL  
SLOPE COMPENSATION  
Figure 4. Main PWM Comparator Block Diagram  
The output filter capacitor C2 sets a dominant pole in  
the feedback loop. This pole must roll off the loop gain  
to unity b e fore the ze ro introd uc e d b y the outp ut  
capacitors parasitic resistance (ESR) is encountered  
(see Design Procedure section). A 60kHz pole-zero  
cancellation filter provides additional rolloff above the  
unity-gain crossover. This internal 60kHz lowpass com-  
pensation filter cancels the zero due to the filter capaci-  
tors ESR. The 60kHz filter is included in the loop in  
both fixed- and adjustable-output modes.  
In t e rn a l VL a n d REF S u p p lie s  
An internal regulator produces the 5V supply (VL) that  
powers the PWM controller, logic, reference, and other  
blocks within the MAX796. This +5V low-dropout linear  
regulator can supply up to 5mA for external loads, with  
a reserve of 20mA for gate-drive power. Bypass VL to  
GND with 4.7µF. Important: VL must not be allowed to  
e xc e e d 6V. Me a s ure VL with the ma in outp ut fully  
loaded. If VL is being pumped up above 5.5V, the  
probable cause is either excessive boost-diode capaci-  
tance or excessive ripple at V+. Use only small-signal  
diodes for D2 (1N4148 preferred) and bypass V+ to  
PGND with 0.1µF directly at the package pins.  
S yn c h ro n o u s -Re c t ifie r Drive r (DL P in )  
Synchronous rectification reduces conduction losses in  
the rectifier by shunting the normal Schottky diode with  
a low-resistance MOSFET switch. The synchronous rec-  
tifier also ensures proper start-up of the boost-gate driv-  
e r c irc uit. If you mus t omit the s ync hronous p owe r  
MOSFET for cost or other reasons, replace it with a  
small-signal MOSFET such as a 2N7002.  
The 2.505V reference (REF) is accurate to ±1.6% over  
temperature, making REF useful as a precision system  
reference. Bypass REF to GND with 0.33µF minimum.  
REF can supply up to 1mA for external loads. However,  
if tight-accuracy specs for either VOUT or REF are  
essential, avoid loading REF with more than 100µA.  
Loading REF reduces the main output voltage slightly,  
a c c ord ing to the re fe re nc e -volta g e loa d re g ula tion  
error. In MAX799 applications, ensure that the SECFB  
divider doesnt load REF heavily.  
If the c irc uit is op e ra ting in c ontinuous-c onduc tion  
mode, the DL drive waveform is simply the complement  
of the DH high-side drive waveform (with controlled  
d e a d time to p re ve nt c ros s -c ond uc tion or “s hoot-  
through). In discontinuous (light-load) mode, the syn-  
chronous switch is turned off as the inductor current  
falls through zero. The synchronous rectifier works  
under all operating conditions, including idle mode.  
The synchronous-switch timing is further controlled by  
the secondary feedback (SECFB) signal in order to  
imp rove multip le -outp ut c ros s -re g ula tion (s e e  
Secondary Feedback-Regulation Loop section).  
When the main output voltage is above 4.5V, an internal P-  
channel MOSFET switch connects CSL to VL while simul-  
taneously shutting down the VL linear regulator. This  
action bootstraps the IC, powering the internal circuitry  
from the output voltage, rather than through a linear regu-  
lator from the battery. Bootstrapping reduces power dissi-  
pation caused by gate-charge and quiescent losses by  
providing that power from a 90%-efficient switch-mode  
source, rather than from a 50%-efficient linear regulator.  
______________________________________________________________________________________ 15  
S t e p -Do w n Co n t ro lle rs w it h  
S yn c h ro n o u s Re c t ifie r fo r CP U P o w e r  
It’s often possible to achieve a bootstrap-like effect, even  
for circuits that are set to V  
< 4.5V, by powering VL  
OUT  
BATTERY  
INPUT  
+5V  
VL SUPPLY  
from an external-system +5V supply. To achieve this  
pseudo-bootstrap, add a Schottky diode between the  
external +5V source and VL, with the cathode to the VL  
side. This circuit provides a 1% to 2% efficiency boost  
and also extends the minimum battery input to less than  
4V. The external source must be in the range of 4.8V to  
6V. Another way to achieve a pseudo-bootstrap is to add  
an extra flyback winding to the main inductor to generate  
the +5V bootstrap source, as shown in the +3.3V/+5V  
Dual-Output Application (Figure 12).  
VL  
MAX796  
MAX797  
MAX799  
VL  
BST  
DH  
LX  
LEVEL  
TRANSLATOR  
Bo o s t Hig h -S id e  
Ga t e -Drive r S u p p ly (BS T P in )  
PWM  
VL  
Gate-drive voltage for the high-side N-channel switch is  
generated by a flying-capacitor boost circuit as shown  
in Figure 5. The capacitor is alternately charged from  
the VL supply and placed in parallel with the high-side  
MOSFETs gate-source terminals.  
DL  
On start-up, the synchronous rectifier (low-side MOS-  
FET) forces LX to 0V and charges the BST capacitor to  
5V. On the second half-cycle, the PWM turns on the  
hig h-s id e MOSFET b y c los ing a n inte rna l s witc h  
between BST and DH. This provides the necessary  
enhancement voltage to turn on the high-side switch,  
an action that boosts” the 5V gate-drive signal above  
the battery voltage.  
Figure 5. Boost Supply for Gate Drivers  
6/MAX79  
Os c illa t o r Fre q u e n c y a n d  
S yn c h ro n iza t io n (S YNC P in )  
The SYNC inp ut c ontrols the os c illa tor fre q ue nc y.  
Connecting SYNC to GND or to VL selects 150kHz  
operation; connecting SYNC to REF selects 300kHz.  
SYNC can also be used to synchronize with an external  
5V CMOS or TTL clock generator. SYNC has a guaran-  
teed 190kHz to 340kHz capture range.  
Ringing seen at the high-side MOSFET gate (DH) in  
discontinuous-conduction mode (light loads) is a natur-  
al operating condition, and is caused by the residual  
energy in the tank circuit formed by the inductor and  
stray capacitance at the switching node LX. The gate-  
driver negative rail is referred to LX, so any ringing  
there is directly coupled to the gate-drive output.  
300kHz operation optimizes the application circuit for  
component size and cost. 150kHz operation provides  
inc re a s e d e ffic ie nc y a nd imp rove d loa d -tra ns ie nt  
response at low input-output voltage differences (see  
Low-Voltage Operation section).  
Cu rre n t -Lim it in g a n d  
Cu rre n t -S e n s e In p u t s (CS H a n d CS L)  
The current-limit circuit resets the main PWM latch and  
turns off the high-side MOSFET switch whenever the  
voltage difference between CSH and CSL exceeds  
100mV. This limiting is effective for both current flow  
directions, putting the threshold limit at ±100mV. The  
tolerance on the positive current limit is ±20%, so the  
external low-value sense resistor must be sized for  
80mV/R1 to guarantee enough load capability, while  
components must be designed to withstand continuous  
current stresses of 120mV/R1.  
Lo w -No is e Mo d e (S KIP P in )  
The low-noise mode (SKIP = high) is useful for minimiz-  
ing RF and audio interference in noise-sensitive appli-  
cations such as Soundblaster™ hi-fi audio-equipped  
systems, cellular phones, RF communicating comput-  
ers, and electromagnetic pen-entry systems. See the  
summary of operating modes in Table 3. SKIP can be  
driven from an external logic signal.  
The MAX797 can reduce interference due to switching  
nois e b y e ns uring a c ons ta nt s witc hing fre q ue nc y  
regardless of load and line conditions, thus concentrat-  
ing the emissions at a known frequency outside the  
system audio or IF bands. Choose an oscillator fre-  
For breadboarding purposes or very high-current appli-  
cations, it may be useful to wire the current-sense inputs  
with a twisted pair rather than PC traces. This twisted  
pair neednt be anything special, perhaps two pieces of  
wire-wrap wire twisted together.  
Soundblaster is a trademark of Creative Labs.  
16 ______________________________________________________________________________________  
S t e p -Do w n Co n t ro lle rs w it h  
S yn c h ro n o u s Re c t ifie r fo r CP U P o w e r  
6/MAX79  
quency where harmonics of the switching frequency  
Remote sensing of the output voltage, while not possi-  
ble in fixed-output mode due to the combined nature of  
the voltage- and current-sense input (CSL), is easy to  
achieve in adjustable mode by using the top of the  
external resistor divider as the remote sense point.  
Fixed-output accuracy is guaranteed to be ±4% over  
all conditions. In special circumstances, it may be nec-  
essary to improve upon this output accuracy. The High-  
Accuracy Adjustable-Output Application (Figure 18)  
provides ±2.5% accuracy by adding an integrator-type  
error amplifier.  
dont overlap a sensitive frequency band. If necessary,  
synchronize the oscillator to a tight-tolerance external  
clock generator.  
The low-noise mode (SKIP = high) forces two changes  
upon the PWM controller. First, it ensures fixed-frequen-  
cy operation by disabling the minimum-current com-  
parator and ensuring that the PWM latch is set at the  
beginning of each cycle, even if the output is in regula-  
tion. Second, it ensures continuous inductor current  
flow, a nd the re b y s up p re s s e s d is c ontinuous -mod e  
inductor ringing by changing the reverse current-limit  
detection threshold from zero to -100mV, allowing the  
inductor current to reverse at very light loads.  
The breakdown voltage rating of the current-sense  
inputs (7V absolute maximum) determines the 6V maxi-  
mum output adjustment range. To extend this output  
range, add two matched resistor dividers and speed-  
up capacitors to form a level translator, as shown in  
Figure 8. Be sure to set these resistor ratios accurately  
(using 0.1% resistors), to avoid adding excessive error  
to the 100mV current-limit threshold.  
In most applications, SKIP should be tied to GND in  
order to minimize quiescent supply current. Supply cur-  
rent with SKIP high is typically 10mA to 20mA, depend-  
ing on e xte rna l MOSFET g a te c a p a c ita nc e a nd  
switching losses.  
Forced continuous conduction via SKIP can improve  
cross regulation of transformer-coupled multiple-output  
supplies. This second function of the SKIP pin pro-  
duces a result that is similar to the method of adding  
secondary regulation via the SECFB feedback pin, but  
with muc h hig he r q uie s c e nt s up p ly c urre nt. Still,  
improving cross regulation by enabling SKIP instead of  
building in SECFB feedback can be useful in noise-  
s e ns itive a p p lic a tions , s inc e SECFB a nd SKIP a re  
mutually exclusive pins/functions in the MAX796 family.  
S e c o n d a ry Fe e d b a c k -Re g u la t io n Lo o p  
(S ECFB P in )  
A flyback winding control loop regulates a secondary  
wind ing outp ut (MAX796/MAX799 only), imp roving  
cross-regulation when the primary is lightly loaded or  
when there is a low input-output differential voltage. If  
SECFB crosses its regulation threshold (VREF for the  
Ad ju s t a b le -Ou t p u t Fe e d b a c k  
(Du a l-Mo d e FB P in )  
V+  
REMOTE  
SENSE  
Adjusting the main output voltage with external resis-  
tors is easy for any of the devices in the MAX796 family,  
via the circuit of Figure 6. The nominal output voltage  
(given by the formula in Figure 6) should be set approx-  
imately 2% high in order to make up for the MAX796s  
-2.5% typ ic a l loa d -re gula tion e rror. For e xa mple , if  
designing for a 3.0V output, use a resistor ratio that  
results in a nominal output voltage of 3.06V. This slight  
offs e tting g ive s the b e s t p os s ib le a c c ura c y.  
Recommended normal values for R5 range from 5kto  
100k. To achieve a 2.505V nominal output, simply  
connect FB to CSL directly. To achieve output voltages  
lowe r tha n 2.5V, use a n e xte rna l re fe re nc e -volta g e  
DH  
MAIN  
OUTPUT  
LINES  
MAX796  
MAX797  
MAX799  
DL  
R4  
CSH  
CSL  
FB  
GND  
R5  
source higher than V , as shown in Figure 7. For best  
accuracy, this second reference voltage should be  
REF  
R4  
V
OUT  
= V (1 + –––)  
REF  
R5  
much higher than V  
. Alternatively, an external op  
REF  
WHERE V (NOMINAL) = 2.505V  
REF  
amp could be used to gain-up REF in order to create  
the second reference source. This scheme requires a  
minimum load on the output in order to sink the R3/R4  
divider current.  
Figure 6. Adjusting the Main Output Voltage  
______________________________________________________________________________________ 17  
S t e p -Do w n Co n t ro lle rs w it h  
S yn c h ro n o u s Re c t ifie r fo r CP U P o w e r  
V+  
VREF2 >>VREF  
V+  
(4.096V)  
OUTPUT  
(8V AS  
SHOWN)  
DH  
MAX874  
R5  
R
SENSE  
MAX796  
MAX797  
MAX799  
R1  
2.43k  
R3  
2.43k  
DH  
R4  
MAIN  
OUTPUT  
DL  
0.01µF  
MAX796  
MAX797  
MAX799  
0.01µF  
CSH  
CSL  
FB  
DL  
CSH  
R2  
1.1k  
R4  
1.1k  
GND  
CSL  
FB  
R3  
V
= V (1 + –––)  
OUT  
REF  
R4  
GND  
DIVIDER IMPEDANCE 5kΩ  
R4  
- V )  
V
OUT  
= V - (V  
REF2 REF (–––)  
REF  
(EACH LEG)  
R5  
Figure 8. Adjusting the Output Voltage to Greater than 6V  
Figure 7. Output Voltage Less than 2.5V  
MAX796), a 1µs one-shot is triggered that extends the  
low-side switchs on-time beyond the point where the  
inductor current crosses zero (in discontinuous mode).  
This causes the inductor (primary) current to reverse,  
which in turn pulls current out of the output filter capacitor  
and causes the flyback transformer to operate in the for-  
ward mode. The low impedance presented by the trans-  
former secondary in the forward mode dumps current into  
the secondary output, charging up the secondary capac-  
itor and bringing SECFB back into regulation. The SECFB  
feedback loop does not improve secondary output accu-  
racy in normal flyback mode, where the main (primary)  
output is heavily loaded. In this mode, secondary output  
accuracy is determined, as usual, by the secondary recti-  
fier drop, turns ratio, and accuracy of the main output  
voltage. So, a linear post-regulator may still be needed in  
order to meet tight output accuracy specifications.  
noise. In negative-output (MAX799) applications, the  
resistor divider acts as a load on the internal reference,  
which in turn can cause errors at the main output. Avoid  
overloading REF (see the Reference Load-Regulation  
Error vs. Load Current graph in the Typical Operating  
Characteristics). 100kis a good value for R3 in MAX799  
circuits.  
6/MAX79  
S o ft -S t a rt Circ u it (S S )  
Soft-start allows a gradual increase of the internal cur-  
rent-limit level at start-up for the purpose of reducing  
input surge currents, and perhaps for power-supply  
sequencing. In shutdown mode, the soft-start circuit  
holds the SS capacitor discharged to ground. When  
SHDN goes high, a 4µA current source charges the SS  
capacitor up to 3.2V. The resulting linear ramp wave-  
form causes the internal current-limit level to increase  
proportionally from 20mV to 100mV. The main output  
capacitor thus charges up relatively slowly, depending  
on the SS capacitor value. The exact time of the output  
rise depends on output capacitance and load current  
and is typically 1ms per nanofarad of soft-start capaci-  
tance. With no SS capacitor connected, maximum cur-  
rent limit is reached within 10µs.  
The secondary output voltage-regulation point is deter-  
mined by an external resistor divider at SECFB. For nega-  
tive output voltages, the SECFB comparator is referenced  
to GND (MAX799); for positive output voltages, SECFB  
regulates at the 2.505V reference (MAX796). As a result,  
output resistor divider connections and design equations  
for the two d e vic e typ e s d iffe r s lig htly (Fig ure 9).  
Ordinarily, the secondary regulation point is set 5% to  
10% below the voltage normally produced by the flyback  
effect. For example, if the output voltage as determined  
by the turns ratio is +15V, the feedback resistor ratio  
should be set to produce about +13.5V; otherwise, the  
SECFB one-shot might be triggered unintentionally, caus-  
ing an unnecessary increase in supply current and output  
S h u t d o w n  
Shutdown mode (SHDN = 0V) reduces the V+ supply  
current to typically 1µA. In this mode, the reference and  
VL are inactive. SHDN is a logic-level input, but it can  
be safely driven to the full V+ range. Connect SHDN to  
V+ for automatic start-up. Do not allow slow transitions  
(slower than 0.02V/µs) on SHDN.  
18 ______________________________________________________________________________________  
S t e p -Do w n Co n t ro lle rs w it h  
S yn c h ro n o u s Re c t ifie r fo r CP U P o w e r  
6/MAX79  
In d u c t o r Va lu e  
_________________De s ig n P ro c e d u re  
The e xa c t ind uc tor va lue is nt c ritic a l a nd c a n b e  
adjusted freely in order to make tradeoffs among size,  
cost, and efficiency. Although lower inductor values will  
minimize size and cost, they will also reduce efficiency  
due to higher peak currents. To permit use of the physi-  
cally smallest inductor, lower the inductance until the  
circuit is operating at the border between continuous  
and discontinuous modes. Reducing the inductor value  
even further, below this crossover point, results in dis-  
continuous-conduction operation even at full load. This  
helps reduce output filter capacitance requirements but  
c a us e s the c ore e ne rg y s tora g e re q uire me nts to  
increase again. On the other hand, higher inductor val-  
ues will increase efficiency, but at some point resistive  
losses due to extra turns of wire will exceed the benefit  
gained from lower AC current levels. Also, high induc-  
tor values can affect load-transient response; see the  
The five pre-designed standard application circuits  
(Figure 1 and Table 1) contain ready-to-use solutions  
for common applications. Use the following design pro-  
cedure to optimize the basic schematic for different  
voltage or current requirements. Before beginning a  
design, firmly establish the following:  
V
, the maximum input (battery) voltage. This  
IN(MAX)  
value should include the worst-case conditions, such  
as no-load operation when a battery charger or AC  
a d a p te r is c onne c te d b ut no b a tte ry is ins ta lle d .  
V
must not exceed 30V. This 30V upper limit is  
IN(MAX)  
determined by the breakdown voltage of the BST float-  
ing gate driver to GND (36V absolute maximum).  
V
, the minimum input (battery) voltage. This  
IN(MIN)  
should be taken at full-load under the lowest battery  
conditions. If V is less than 4.5V, a special circuit  
IN(MIN)  
V
SAG  
equation in the Low-Voltage Operation section.  
must be used to externally hold up VL above 4.8V. If  
the minimum input-output difference is less than 1.5V,  
the filter capacitance required to maintain good AC  
load regulation increases.  
The following equations are given for continuous-con-  
duction operation since the MAX796 is mainly intended  
for high-efficiency battery-powered applications. See  
Appendix A in Maxims Battery Management and DC-  
DC Converter Circuit Collection for crossover point and  
discontinuous-mode equations. Discontinuous conduc-  
tion doesnt affect normal idle-mode operation.  
0.33µF  
REF  
R3  
R3  
SECFB  
SECFB  
1-SHOT  
1-SHOT  
TRIG  
TRIG  
R2  
R2  
POSITIVE  
NEGATIVE  
SECONDARY  
OUTPUT  
V+  
V+  
2.505V REF  
DH  
SECONDARY  
OUTPUT  
DH  
DL  
MAIN  
OUTPUT  
MAIN  
OUTPUT  
MAX796  
MAX799  
DL  
R2  
+V = V (1 + –––)  
R2  
-V = -V (–––)  
WHERE V (NOMINAL) = 2.505V  
R3 = 100k(RECOMMENDED)  
TRIP  
REF  
REF  
TRIP  
REF  
R3  
R3  
Figure 9. Secondary-Output Feedback Dividers, MAX796 vs. MAX799  
______________________________________________________________________________________ 19  
S t e p -Do w n Co n t ro lle rs w it h  
S yn c h ro n o u s Re c t ifie r fo r CP U P o w e r  
Thre e ke y ind uc tor p a ra me te rs mus t b e s p e c ifie d :  
inductance value (L), peak current (I ), and DC  
may be used in place of I  
if the inductor value has  
PEAK  
been set for LIR = 0.3 or less (high inductor values)  
and 300kHz operation is selected. Low-inductance  
resistors, such as surface-mount metal-film resistors,  
are preferred.  
PEAK  
resistance (R ). The following equation includes a  
DC  
constant LIR, which is the ratio of inductor peak-to-  
peak AC current to DC load current. A higher value of  
LIR allows smaller inductance, but results in higher  
losses and ripple. A good compromise between size  
and losses is found at a 30% ripple current to load cur-  
rent ratio (LIR = 0.3), which corresponds to a peak  
inductor current 1.15 times higher than the DC load  
current.  
80mV  
R
= ————  
SENSE  
I
PEAK  
In p u t Ca p a c it o r Va lu e  
Place a small ceramic capacitor (0.1µF) between V+  
and GND, close to the device. Also, connect a low-ESR  
bulk capacitor directly to the drain of the high-side  
MOSFET. Select the bulk input filter capacitor accord-  
ing to input ripple-current requirements and voltage rat-  
ing, rather than capacitor value. Electrolytic capacitors  
that have low enough ESR to meet the ripple-current  
re q uire me nt inva ria b ly ha ve more tha n a d e q ua te  
capacitance values. Aluminum-electrolytic capacitors  
such as Sanyo OS-CON or Nichicon PL are preferred  
ove r ta nta lum typ e s , whic h c ould c a us e p owe r-up  
surge-current failure, especially when connecting to  
robust AC adapters or low-impedance batteries. RMS  
input ripple current is determined by the input voltage  
and load current, with the worst possible case occur-  
V
(V  
- V  
)
OUT IN(MAX)  
OUT  
L = ———————————  
x f x I x LIR  
V
OUT  
IN(MAX)  
where: f = switching frequency, normally 150kHz or  
300kHz  
I
= maximum DC load current  
OUT  
LIR = ratio of AC to DC inductor current,  
typically 0.3  
The peak inductor current at full load is 1.15 x I  
if  
OUT  
the above equation is used; otherwise, the peak current  
can be calculated by:  
V
(V  
- V  
)
OUT IN(MAX)  
OUT  
6/MAX79  
I
= I  
+ ———————————  
PEAK  
LOAD  
ring at V = 2 x V  
:
IN  
OUT  
2 x f x L x V  
IN(MAX)  
————————  
V (V - V  
The inductors DC resistance is a key parameter for effi-  
ciency performance and must be ruthlessly minimized,  
)
OUT  
OUT IN  
I
= I  
x ——————————  
RMS  
LOAD  
V
IN  
preferably to less than 25mat I  
= 3A. If a stan-  
OUT  
dard off-the-shelf inductor is not available, choose a  
I
= I  
/ 2 when V is 2 x V  
RMS  
LOAD IN OUT  
2
2
core with an LI rating greater than L x I  
and wind  
PEAK  
Ou t p u t Filt e r Ca p a c it o r Va lu e  
it with the largest diameter wire that fits the winding  
area. For 300kHz applications, ferrite core material is  
strongly preferred; for 150kHz applications, Kool-mu  
(a luminum a lloy) a nd e ve n p owd e re d iron c a n b e  
acceptable. If light-load efficiency is unimportant (in  
desktop 5V-to-3V applications, for example) then low-  
p e rme a b ility iron-p owd e r c ore s , s uc h a s the  
Micrometals type found in Pulse Engineerings 2.1µH  
PE-53680, may be acceptable even at 300kHz. For  
high-current applications, shielded core geometries  
(such as toroidal or pot core) help keep noise, EMI, and  
switching-waveform jitter low.  
The output filter capacitor values are generally deter-  
mined by the ESR (effective series resistance) and volt-  
age rating requirements rather than actual capacitance  
requirements for loop stability. In other words, the low-  
ESR electrolytic capacitor that meets the ESR require-  
me nt us ua lly ha s more outp ut c a p a c ita nc e tha n is  
required for AC stability. Use only specialized low-ESR  
capacitors intended for switching-regulator applications,  
such as AVX TPS, Sprague 595D, Sanyo OS-CON, or  
Nichicon PL series. To ensure stability, the capacitor  
must meet both minimum capacitance and maximum  
ESR values as given in the following equations:  
Cu rre n t -S e n s e Re s is t o r Va lu e  
The current-sense resistor value is calculated accord-  
ing to the worst-case-low current-limit threshold voltage  
(from the Electrical Characteristics table) and the peak  
inductor current. The continuous-mode peak inductor-  
current calculations that follow are also useful for sizing  
the switches and specifying the inductor-current satu-  
V
(1 + V  
/ V  
)
REF  
OUT  
IN(MIN)  
C > ––––––––––––––––———–––  
F
V
OUT  
x R  
x f  
SENSE  
x V  
R
SENSE  
OUT  
R
< ————————  
ESR  
V
REF  
ration ratings. In order to simplify the calculation, I  
(can be multiplied by 1.5, see note below)  
LOAD  
20 ______________________________________________________________________________________  
S t e p -Do w n Co n t ro lle rs w it h  
S yn c h ro n o u s Re c t ifie r fo r CP U P o w e r  
6/MAX79  
These equations are “worst-case” with 45 degrees of  
Tra n s fo rm e r De s ig n  
(MAX7 9 6 /MAX7 9 9 On ly)  
phase margin to ensure jitter-free fixed-frequency opera-  
tion and provide a nicely damped output response for  
zero to full-load step changes. Some cost-conscious  
designers may wish to bend these rules by using less  
expensive (lower quality) capacitors, particularly if the  
load lacks large step changes. This practice is tolerable,  
provided that some bench testing over temperature is  
done to verify acceptable noise and transient response.  
Buck-plus-flyback applications, sometimes called cou-  
pled-inductor” topologies, need a transformer in order to  
generate multiple output voltages. The basic electrical  
design is a simple task of calculating turns ratios and  
adding the power delivered to the secondary in order to  
calculate the current-sense resistor and primary induc-  
tance. However, extremes of low input-output differen-  
tials, widely different output loading levels, and high turns  
ratios can complicate the design due to parasitic trans-  
former parameters such as inter-winding capacitance,  
secondary resistance, and leakage inductance. For  
examples of what is possible with real-world transformers,  
see the graphs of Maximum Secondary Current vs. Input  
Voltage in the Typical Operating Characteristics.  
There is no well-defined boundary between stable and  
unstable operation. As phase margin is reduced, the  
first symptom is a bit of timing jitter, which shows up as  
blurred edges in the switching waveforms where the  
scope wont quite sync up. Technically speaking, this  
(usually) harmless jitter is unstable operation, since the  
s witc hing fre q ue nc y is now non-c ons ta nt. As the  
capacitor quality is reduced, the jitter becomes more  
p ronounc e d a nd the loa d -tra ns ie nt outp ut volta g e  
wa ve form s ta rts looking ra g g e d a t the e d g e s .  
Eventually, the load-transient waveform has enough  
ringing on it that the peak noise levels exceed the  
allowable output voltage tolerance. Note that even with  
zero phase margin and gross instability present, the  
Power from the main and secondary outputs is lumped  
together to obtain an equivalent current referred to the  
main output voltage (see Inductor L1 for definitions of  
parameters). Set the value of the current-sense resistor  
at 80mV / I  
.
TOTAL  
P
= the sum of the output power from all outputs  
TOTAL  
I
=
P
/ V  
= the equivalent output cur-  
TOTAL  
TOTAL  
OUT  
output voltage noise never gets much worse than I  
PEAK  
rent referred to V  
OUT  
x R  
(under constant loads, at least).  
ESR  
V
(V  
- V  
)
Designers of RF communicators or other noise-sensi-  
tive analog equipment should be conservative and  
stick to the guidelines. Designers of notebook comput-  
ers and similar commercial-temperature-range digital  
OUT IN(MAX)  
OUT  
L(primary) = —————————————  
x f x I x LIR  
V
IN(MAX)  
TOTAL  
V
SEC  
+ V  
FWD  
systems can multiply the R  
value by a factor of 1.5  
ESR  
Turns Ratio N = ——————————————  
+ V + V  
V
OUT(MIN)  
RECT  
SENSE  
without hurting stability or transient response.  
The output voltage ripple is usually dominated by the  
ESR of the filter capacitor and can be approximated as  
where: V  
is the minimum required rectified sec-  
SEC  
ondary-output voltage  
is the forward drop across the secondary  
I
x R  
. There is also a capacitive term, so the  
ESR  
RIPPLE  
V
FWD  
full e q ua tion for rip p le in the c ontinuous mod e is  
= I x (R + 1 / (2 x pi x f x C )). In  
rectifier  
V
NOISE(p-p)  
RIPPLE  
ESR  
F
V
is the minimum value of the main  
OUT(MIN)  
idle mode, the inductor current becomes discontinuous  
with hig h p e a ks a nd wid e ly s p a c e d p uls e s , s o the  
noise can actually be higher at light load compared to  
full load. In idle mode, the output ripple can be calcu-  
lated as:  
output voltage (from the Electrical  
Characteristics)  
V
RECT  
is the on-state voltage drop across the  
synchronous-rectifier MOSFET  
is the voltage drop across the sense  
V
SENSE  
resistor  
0.02 x R  
ESR  
V
= —————— +  
NOISE(p-p)  
In positive-output (MAX796) applications, the trans-  
former secondary return is often referred to the main  
output voltage rather than to ground in order to reduce  
the needed turns ratio. In this case, the main output  
voltage must first be subtracted from the secondary  
R
SENSE  
0.0003 x L x [1 / V  
+ 1 / (V - V  
)]  
OUT  
IN  
OUT  
———————————————————  
2
(R  
) x C  
F
SENSE  
voltage to obtain V  
.
SEC  
______________________________________________________________________________________ 21  
S t e p -Do w n Co n t ro lle rs w it h  
S yn c h ro n o u s Re c t ifie r fo r CP U P o w e r  
During short circuit, Q2s duty factor can increase to  
greater than 0.9 according to:  
Q2 DUTY (short circuit) = 1 - [V / (V  
______S e le c t in g Ot h e r Co m p o n e n t s  
MOS FET S w it c h e s  
The two high-current N-channel MOSFETs must be  
logic-level types with guaranteed on-resistance specifi-  
- V )]  
Q2  
IN(MAX)  
Q1  
where the on-state voltage drop V = (120mV / R  
)
Q
SENSE  
x R  
DS(ON).  
cations at V = 4.5V. Lower gate threshold specs are  
GS  
better (i.e., 2V max rather than 3V max). Drain-source  
breakdown voltage ratings must at least equal the max-  
imum input voltage, preferably with a 20% derating fac-  
tor. The b e s t MOSFETs will ha ve the lowe s t  
on-re s is ta nc e p e r na noc oulomb of g a te c ha rg e .  
Re c t ifie r Dio d e D1  
Rectifier D1 is a clamp that catches the negative induc-  
tor swing during the 110ns dead time between turning  
off the high-side MOSFET and turning on the low-side.  
D1 must be a Schottky type in order to prevent the  
lossy parasitic MOSFET body diode from conducting. It  
is acceptable to omit D1 and let the body diode clamp  
the negative inductor swing, but efficiency will drop one  
or two percent as a result. Use an MBR0530 (500mA  
rated) type for loads up to 1.5A, a 1N5819 type for  
loads up to 3A, or a 1N5822 type for loads up to 10A.  
D1s rated reverse breakdown voltage must be at least  
equal to the maximum input voltage, preferably with a  
20% derating factor.  
Multiplying R  
x Q provides a meaningful figure  
DS(ON)  
G
by which to compare various MOSFETs. Newer MOS-  
FET process technologies with dense cell structures  
generally give the best performance. The internal gate  
drivers can tolerate >100nC total gate charge, but  
70nC is a more practical upper limit to maintain best  
switching times.  
In high-current applications, MOSFET package power  
dissipation often becomes a dominant design factor.  
2
I R power losses are the greatest heat contributor for  
2
Bo o s t -S u p p ly Dio d e D2  
A signal diode such as a 1N4148 works well for D2 in  
most applications. If the input voltage can go below 6V,  
use a small (20mA) Schottky diode for slightly improved  
efficiency and dropout characteristics. Dont use large  
power diodes such as 1N5817 or 1N4001, since high  
junction capacitance can cause VL to be pumped up to  
excessive voltages.  
both high- and low-side MOSFETs. I R losses are dis-  
tributed between Q1 and Q2 according to duty factor  
(see the equations below). Switching losses affect the  
upper MOSFET only, since the Schottky rectifier clamps  
the switching node before the synchronous rectifier  
turns on. Gate-charge losses are dissipated by the dri-  
ver- er and dont heat the MOSFET. Ensure that both  
MOSFETs are within their maximum junction tempera-  
ture at high ambient temperature by calculating the  
temperature rise according to package thermal-resis -  
tance specifications. The worst-case dissipation for the  
high-side MOSFET occurs at the minimum battery volt-  
a g e , a nd the wors t-c a s e for the low-s id e MOSFET  
occurs at the maximum battery voltage.  
6/MAX79  
Re c t ifie r Dio d e D3  
(Tra n s fo rm e r S e c o n d a ry Dio d e )  
The secondary diode in coupled-inductor applications  
must withstand high flyback voltages greater than 60V,  
whic h us ua lly rule s out mos t Sc hottky re c tifie rs .  
Common silicon rectifiers such as the 1N4001 are also  
prohibited, as they are far too slow. This often makes  
fast silicon rectifiers such as the MURS120 the only  
choice. The flyback voltage across the rectifier is relat-  
2
PD (upper FET) = I  
x R  
x DUTY  
LOAD  
DS(ON)  
V
x C  
RSS  
IN  
+ V x I  
x f x  
(
––––––––––– +20ns  
)
IN  
LOAD  
I
GATE  
ed to the V -V  
former turns ratio:  
difference according to the trans-  
IN OUT  
2
PD (lower FET) = I  
x R  
x (1 - DUTY)  
LOAD  
DS(ON)  
V
= V  
+ (V - V  
) x N  
OUT  
FLYBACK  
SEC  
IN  
DUTY = (V  
+ V ) / (V - V  
)
OUT  
Q2  
IN  
Q1  
where: N is the transformer turns ratio SEC/PRI  
where: On-state voltage drop V = I  
x R  
DS(ON)  
Q_  
LOAD  
V
V
OUT  
is the maximum secondary DC output voltage  
is the primary (main) output voltage  
SEC  
C
= MOSFET reverse transfer capacitance  
= DH driver peak output current capability  
(1A typically)  
RSS  
I
GATE  
Subtract the main output voltage (V ) from V  
OUT FLYBACK  
in this equation if the secondary winding is returned to  
and not to ground. The diode reverse breakdown  
rating must also accommodate any ringing due to leak-  
age inductance. D3s current rating should be at least  
twice the DC load current on the secondary output.  
20ns = DH driver inherent rise/fall time  
V
OUT  
Under output short circuit, the synchronous-rectifier  
MOSFET suffers extra stress and may need to be over-  
sized if a continuous DC short circuit must be tolerated.  
22 ______________________________________________________________________________________  
S t e p -Do w n Co n t ro lle rs w it h  
S yn c h ro n o u s Re c t ifie r fo r CP U P o w e r  
6/MAX79  
____________Lo w -Vo lt a g e Op e ra t io n  
__________Ap p lic a t io n s In fo rm a t io n  
Low input voltages and low input-output differential volt-  
ages each require some extra care in the design. Low  
absolute input voltages can cause the VL linear regulator  
to enter dropout, and eventually shut itself off. Low input  
He a vy-Lo a d Effic ie n c y Co n s id e ra t io n s  
The major efficiency loss mechanisms under loads are,  
in the usual order of importance:  
2
2
P(I R), I R losses  
voltages relative to the output (low V -V  
differential)  
IN OUT  
can cause bad load regulation in multi-output flyback  
applications. See the design equations in the Transformer  
P(gate), gate-charge losses  
P(diode), diode-conduction losses  
P(tran), transition losses  
P(cap), capacitor ESR losses  
Design section. Finally, low V -V  
differentials can also  
IN OUT  
cause the output voltage to sag when the load current  
changes abruptly. The amplitude of the sag is a function  
of inductor value and maximum duty factor (an Electrical  
Characteristics parameter, 93% guaranteed over temper-  
ature at f = 150kHz) as follows:  
P(IC), losses due to the operating supply current  
of the IC  
Ind uc tor-c ore los s e s a re fa irly low a t he a vy loa d s  
because the inductors AC current component is small.  
Therefore, they arent accounted for in this analysis.  
Ferrite cores are preferred, especially at 300kHz, but  
powdered cores such as Kool-mu can work well.  
2
(I  
) x L  
STEP  
V
SAG  
= ———————————————  
2 x C x (V  
x D  
- V  
)
F
IN(MIN)  
MAX  
OUT  
The cure for low-voltage sag is to increase the value of  
the output capacitor. For example, at V = 5.5V, V  
IN  
OUT  
Efficiency = P  
/ P x 100%  
IN  
OUT  
OUT  
= 5V, L = 10µH, f = 150kHz, a total capacitance of  
660µF will prevent excessive sag. Note that only the  
capacitance requirement is increased and the ESR  
re q uire me nts d ont c ha ng e . The re fore , the a d d e d  
c a p a c ita nc e c a n b e s up p lie d b y a low-c os t b ulk  
capacitor in parallel with the normal low-ESR capacitor.  
= P  
/ (P  
+ P  
) x 100%  
OUT  
TOTAL  
2
P
= P(I R) + P(gate) + P(diode) + P(tran) +  
TOTAL  
2
P(cap) + P(IC)  
2
P(I R) = (I  
) x (R  
+ R  
+ R  
)
LOAD  
DC  
DS(ON)  
SENSE  
where R  
is the DC resistance of the coil, R  
is  
DC  
DS(ON)  
the MOSFET on-resistance, and R  
is the current-  
SENSE  
Table 4. Low-Voltage Troubleshooting  
SOLUTION  
SYMPTOM  
CONDITION  
ROOT CAUSE  
Increase bulk output capacitance per  
formula above. Reduce inductor value.  
Sag or droop in V  
under step load change  
Low V -V  
<1.5V  
differential, Limited inductor-current slew  
rate per cycle.  
OUT  
IN OUT  
Dropout voltage is too  
Reduce f to 150kHz. Reduce MOSFET  
on-resistance and coil DCR.  
Low V -V  
<1V  
differential, Maximum duty-cycle limits  
exceeded.  
IN OUT  
high (V  
follows V as  
IN  
OUT  
V
IN  
decreases)  
Reduce L value. Tolerate the remaining  
jitter (extra output capacitance helps  
somewhat).  
Inherent limitation of fixed-fre-  
differential,  
Unstablejitters between Low V -V  
IN OUT  
quency current-mode SMPS  
two distinct duty factors  
<1V  
slope compensation.  
Not enough duty cycle left to  
differential,  
Reduce f to 150kHz. Reduce secondary  
impedancesuse Schottky if possible.  
Stack secondary winding on main output.  
Low V -V  
IN OUT  
Secondary output wont  
support a load  
initiate forward-mode operation.  
V
< 1.3 x V  
(main)  
OUT  
IN  
Small AC current in primary cant  
store energy for flyback operation.  
(MAX796/MAX799 only)  
Use a small 20mA Schottky diode for  
boost diode D2. Supply VL from an  
external source.  
VL linear regulator is going into  
dropout and isnt providing  
good gate-drive levels.  
High supply current,  
poor efficiency  
Low input voltage, <5V  
Wont start under load or  
quits before battery is  
completely dead  
Supply VL from an external source other  
VL output is so low that it hits the  
VL UVLO threshold at 4.2V max.  
Low input voltage, <4.5V  
than V  
, such as the system 5V supply.  
BATT  
______________________________________________________________________________________ 23  
S t e p -Do w n Co n t ro lle rs w it h  
S yn c h ro n o u s Re c t ifie r fo r CP U P o w e r  
sense resistor value. The R  
term assumes identi-  
ground plane is essential for optimum performance. In  
most applications, the circuit will be located on a multi-  
layer board and full use of the four or more copper lay-  
ers is recommended. Use the top layer for high-current  
connections, the bottom layer for quiet connections  
(REF, SS, GND), and the inner layers for an uninterrupt-  
ed ground plane. Use the following step-by-step guide.  
DS(ON)  
c a l MOSFETs for the hig h- a nd low-s id e s witc he s  
because they time-share the inductor current. If the  
MOSFETs arent identical, their losses can be estimat-  
ed by averaging the losses according to duty factor.  
P(gate) = gate-driver loss = qG x f x VL  
where VL is the MAX796 internal logic supply voltage  
(5V), and qG is the sum of the gate-charge values for  
low- and high-side switches. For matched MOSFETs,  
qG is twice the data sheet value of an individual MOS-  
1) Place the high-power components (C1, C2, Q1, Q2,  
D1, L1, and R1) first, with their grounds adjacent.  
Priority 1: Minimize current-sense resistor trace  
lengths (see Figure 10).  
FET. If V  
is set to less than 4.5V, replace VL in this  
OUT  
equation with V  
improved by connecting VL to an efficient 5V source,  
such as the system +5V supply.  
. In this case, efficiency can be  
BATT  
Priority 2: Minimize ground trace lengths in the  
high-current paths (discussed below).  
Priority 3: Minimize other trace lengths in the high-  
current paths. Use >5mm wide traces.  
C1 to Q1: 10mm ma x le ng th.  
D1 c a thod e to Q2: 5mm ma x le ng th  
LX node (Q1 source, Q2 drain, D1 cath-  
ode, inductor): 15mm max length  
P(diode) = diode conduction losses  
= I  
x V  
x t x f  
LOAD  
FWD D  
where t is the diode conduction time (110ns typ) and  
D
V
FWD  
is the forward voltage of the Schottky.  
PD(tran) = transition loss =  
Id e a lly, s urfa c e -mount p owe r c omp one nts a re  
butted up to one another with their ground terminals  
almost touching. These high-current grounds (C1-,  
C2-, source of Q2, anode of D1, and PGND) are  
then connected to each other with a wide filled zone  
of top-layer copper, so that they dont go through  
vias. The resulting top-layer sub-ground-plane” is  
connected to the normal inner-layer ground plane at  
the output ground terminals. This ensures that the  
analog GND of the IC is sensing at the output termi-  
na ls of the s up p ly, without inte rfe re nc e from IR  
drops and ground noise. Other high-current paths  
should also be minimized, but focusing ruthlessly  
on short ground and current-sense connections  
eliminates about 90% of all PC layout  
headaches. See the evaluation kit PC board layouts  
for examples.  
VBATT x CRSS  
x f x (——————— + 20ns)  
V
x I  
BATT LOAD  
I
GATE  
where C  
is the reverse transfer capacitance of the  
RSS  
6/MAX79  
high-side MOSFET (a data sheet parameter), I  
is  
GATE  
the DH gate-driver peak output current (1A typ), and  
20ns is the rise/fall time of the DH driver (20ns typ).  
2
P(cap) = input capacitor ESR loss = (I  
) x R  
ESR  
RMS  
where I  
is the input ripple current as calculated in the  
Input Capacitor Value section of the Design Procedure.  
RMS  
Lig h t -Lo a d Effic ie n c y Co n s id e ra t io n s  
Under light loads, the PWM operates in discontinuous  
mode, where the inductor current discharges to zero at  
some point during the switching cycle. This causes the  
AC component of the inductor current to be high com-  
pared to the load current, which increases core losses  
2) Place the IC and signal components. Keep the main  
switching node (LX node) away from sensitive ana-  
log components (current-sense traces and REF and  
SS capacitors). Placing the IC and analog compo-  
nents on the opposite side of the board from the  
power-switching node is desirable. Important: the  
IC must be no farther than 10mm from the current-  
sense resistor. Keep the gate-drive traces (DH, DL,  
and BST) shorter than 20mm and route them away  
from CSH, CSL, REF, and SS.  
2
and I R losses in the output filter capacitors. Obtain best  
light-load efficiency by using MOSFETs with moderate  
gate-charge levels and by using ferrite, MPP, or other  
low-loss core material. Avoid powdered iron cores; even  
Kool-mu (aluminum alloy) is not as good as ferrite.  
__P C Bo a rd La yo u t Co n s id e ra t io n s  
Good PC board layout is required to achieve specified  
noise, efficiency, and stability performance. The PC  
b oa rd la yout a rtis t mus t b e p rovid e d with e xp lic it  
instructions, preferably a pencil sketch of the place-  
ment of power switching components and high-current  
routing. See the evaluation kit PC board layouts in the  
MAX796 and MAX797 EV kit manuals for examples. A  
3) Employ a single-point star ground where the input  
ground trace, power ground (sub-ground-plane),  
and normal ground plane all meet at the output  
ground terminal of the supply.  
24 ______________________________________________________________________________________  
S t e p -Do w n Co n t ro lle rs w it h  
S yn c h ro n o u s Re c t ifie r fo r CP U P o w e r  
6/MAX79  
FAT, HIGH-CURRENT TRACES  
MAIN CURRENT PATH  
SENSE RESISTOR  
MAX796  
MAX797  
MAX799  
Figure 10. Kelvin Connections for the Current-Sense Resistor  
_________________________________________________________Ap p lic a t io n Circ u it s  
V (6.5V TO 18V)  
IN  
+15V  
AT  
22µF, 35V  
250mA  
C2  
4.7µF  
D1  
210k, 1%  
2
7
11  
VL  
CMPSH  
-3A  
49.9k, 1%  
C2  
4.7µF  
C3  
15µF  
2.5V  
SECFB  
FB  
10  
V+  
DH  
Si9410  
16  
14  
0.01µF  
18V  
1/4 W  
D2  
EC11FS1  
6
ON/OFF  
SHDN  
BST  
+5V  
AT 3A  
0.1µF  
15  
T1  
LX  
MAX796  
20mΩ  
15µH  
2.2:1  
220µF  
6.3V  
Si9410  
13  
12  
1
4
DL  
1N5819  
SS  
PGND  
0.01µF  
(OPTIONAL)  
8
9
GND  
CSH  
CSL  
22*  
4700pF*  
SYNC  
REF  
T1 = TRANSPOWER TTI5870  
* = OPTIONAL, MAY NOT BE NEEDED  
5
3
0.33µF  
Figure 11. +5V/+15V Dual-Output Application (MAX796)  
______________________________________________________________________________________ 25  
S t e p -Do w n Co n t ro lle rs w it h  
S yn c h ro n o u s Re c t ifie r fo r CP U P o w e r  
____________________________________________Ap p lic a t io n Circ u it s (c o n t in u e d )  
33µF, 35V  
V
IN  
(8V TO 18V AS SHOWN)  
102k, 1%  
100k, 1%  
10  
2
11  
+5V  
AT  
1N4148  
4.7µF  
MBR0502L  
V+  
SECFB  
VL  
14  
500mA  
BST  
DH  
T1  
1:1.5  
6
16  
15  
ON/OFF  
SHDN  
Q1  
Q2  
47µF  
+3.3V  
AT 2A  
0.1µF  
10µH  
LX  
25mΩ  
1N5819  
13  
12  
MAX796  
Q3  
DL  
330µF  
PGND  
1N5817  
102k  
1%  
1
8
9
SS  
CSH  
CSL  
33.2k  
1%  
7
0.01µF  
(OPTIONAL)  
FB  
SYNC  
5
GND  
4
REF  
3
Q1-Q2 = Si9410 or EQUIVALENT  
T1 = TDK 1:1.5 TRANSFORMER  
49.9k  
1%  
Q3 = Si9955 or EQUIVALENT (50V) PC40EEM 12.7/13.7 - A160 CORE  
BEM 12.7/13.7 BOBBIN  
0.33µF  
PRIMARY = 8 TURNS 24 AWG  
SECONDARY = 12 TURNS 24 AWG  
DESIGN FOR TIGHT MAGNETIC COUPLING  
6/MAX79  
Figure 12. +3.3V/+5V Dual-Output Application (MAX796)  
V
IN  
(9V TO 18V)  
22µF, 35V  
107k, 1%  
1000pF  
221k, 1%  
1µF  
-5.5V OUT  
(-5.5V AT 200mA)  
3
11  
2
1N4148  
22µF  
10V  
EQ11FS1  
REF  
VL  
SECFB  
10  
V+  
DH  
4.7µF  
5
16  
14  
SYNC  
1/2  
Si9936  
BST  
0.1µF  
+5V OUT  
15  
T1  
15µH  
1:1.3  
(+5V AT 1A)  
LX  
50mΩ  
220µF  
10V  
1N5819  
13  
12  
8
1/2 Si9936  
MAX799  
DL  
6
ON/OFF  
PGND  
CSH  
SHDN  
9
7
CSL  
FB  
GND  
SS  
T1 = TRANSPOWER TTI5926  
4
1
0.01µF  
(OPTIONAL)  
Figure 13. ±5V Dual-Output Application (MAX799)  
26 ______________________________________________________________________________________  
S t e p -Do w n Co n t ro lle rs w it h  
S yn c h ro n o u s Re c t ifie r fo r CP U P o w e r  
6/MAX79  
____________________________________________Ap p lic a t io n Circ u it s (c o n t in u e d )  
MAX797  
INPUT  
4.5V  
TO 30V  
STANDARD 3.3V  
CIRCUIT  
+3.3V  
MAIN OUTPUT  
V+  
MAIN  
3.3V  
OUTPUT  
(CSL)  
REF  
(2.505V)  
VL (5V)  
82pF  
1k  
Q1  
Si9433DY  
OR MMSF4P01  
MAX473  
1.5k  
+2.9V OUTPUT  
AT 2A  
20pF  
100k, 1%  
16k, 1%  
10µF  
10µF  
SANYO OS-CON  
Figure 14. 2.9V Low-Dropout Linear Regulator with Fast Transient Response  
0.033Ω  
V
IN  
2.5V TO 5.25V  
L1  
5µH  
CSH  
CSL  
C1  
100µF  
+5V AT 1A  
DL  
REF  
D1  
Q1  
DH  
LX  
0.33µF  
GND  
SKIP  
MAX797  
SYNC  
PGND  
C2  
C3  
100µF 100µF  
V+  
SHDN  
FB  
BST  
VL  
0.1µF  
100k  
4.7µF  
100k  
L1 = SUMIDA CDRH125, 5µH  
D1 = MOTOROLA MBR130  
C1 - C3 = AVX TPS 100µF, 10V  
33k  
1N4148  
2N7002  
Q1 = SILICONIX Si9936 (BOTH SECTIONS)  
OR MOTOROLA MMDF3N03L  
0.01µF  
1N4148  
+3.3V  
(EXTERNAL)  
OPTIONAL SYNC AND LOW-VOLTAGE  
START-UP CIRCUIT  
190kHz - 340kHz  
Figure 15. Low-Noise Boost Converter for Cellular Phones  
______________________________________________________________________________________ 27  
S t e p -Do w n Co n t ro lle rs w it h  
S yn c h ro n o u s Re c t ifie r fo r CP U P o w e r  
____________________________________________Ap p lic a t io n Circ u it s (c o n t in u e d )  
0.01  
VIN  
4.75V TO 6V  
L1  
5µH  
CSH  
SYNC  
CSL  
C1  
220µF  
+12V AT 2A  
D1  
Q1  
REF  
DH  
LX  
MAX797  
0.33µF  
4.7µF  
GND  
SKIP  
PGND  
C2  
C3  
150µF 150µF  
V+  
SHDN  
FB  
191k  
BST  
VL  
SS  
49.9k  
L1 = 2x SUMIDA CDRH125-100 IN PARALLEL  
D1 = MOTOROLA MBR640  
0.01µF  
Q1 = MOTOROLA MTD20N03HDL  
C1 = SANYO OS-CON 220µF, 10V  
C2, C3 = SANYO OS-CON 150µF, 16V  
6/MAX79  
Figure 16. 5V-to-12V PWM Boost Converter  
INPUT  
OUTPUT  
+5V AT 500mA  
33mΩ  
CMPSH-3A  
3V TO 6.5V  
T1  
CSH  
CSL  
100µF  
BST  
VL  
220µF 220µF  
Q1  
DH  
LX  
4.7µF  
MAX797  
DL  
Q2  
PGND  
HI EFF  
LOW IQ  
SKIP  
V+  
SHDN  
200k  
FB  
GND  
SYNC  
REF  
200k  
Q1, Q2 = Si9410DY  
T1 = COILTRONIX CTX 10-4  
10µH PRIMARY, 1:1  
0.33µF  
START-UP SUPPLY VOLTAGE = 3.5V TYP  
Figure 17. 90% Efficient, Low-Voltage PWM Flyback Converter (4 Cells to 5V)  
28 ______________________________________________________________________________________  
S t e p -Do w n Co n t ro lle rs w it h  
S yn c h ro n o u s Re c t ifie r fo r CP U P o w e r  
6/MAX79  
____________________________________________Ap p lic a t io n Circ u it s (c o n t in u e d )  
INPUT  
V+  
VL  
SHDN  
4.7µF  
BST  
DH  
Q1  
Q2  
OUTPUT  
3.3V ±1.8%  
L1  
LX  
SKIP  
SS  
R
SENSE  
MAX797  
REMOTE  
SENSE  
POINT  
DL  
PGND  
CSH  
CSL  
FB  
0.01µF  
R1  
51k  
5%  
63.4k  
0.1%  
GND  
SYNC  
REF  
51k  
5%  
R1  
V
OUT  
= V (1 + –––)  
REF  
TO  
VL  
R2  
ADJUST RANGE = 2.5V TO 4V AS SHOWN.  
R2  
200k  
0.1%  
200k  
5%  
0.33µF  
1000pF  
10k  
OMIT R2 FOR V = 2.5V.  
OUT  
USE EXTERNAL REFERENCE  
(MAX872) FOR BETTER ACCURACY.  
MAX495  
Figure 18. High-Accuracy Adjustable-Output Application  
INPUT  
4.5V TO 25V  
1N4148  
V+  
FB  
VL  
BST  
DH  
LX  
0.1µF  
4.7µF  
Si9410  
22µF  
22µF  
SHDN  
1N5819  
-5V AT 1.5A  
L1  
MAX797  
Si9410  
CSH  
CSL  
150µF  
150µF  
0.025Ω  
DL  
GND  
PGND  
SKIP  
SYNC  
REF  
0.33µF  
L1 = DALE LPE6562-A093  
Figure 19. Negative-Output (Inverting Topology) Power Supply  
______________________________________________________________________________________ 29  
S t e p -Do w n Co n t ro lle rs w it h  
S yn c h ro n o u s Re c t ifie r fo r CP U P o w e r  
____________________________________________Ap p lic a t io n Circ u it s (c o n t in u e d )  
INPUT  
0.1µF  
C1  
2x 22µF  
1N4148  
4.7µF  
V+  
VL  
BST  
DH  
Q1  
SHDN  
T1  
0.1µF  
10µH  
LX  
MAX797  
+5V OUTPUT  
AT 3A  
Q2  
DL  
C2  
220µF  
100k  
1%  
D1  
1N5819  
PGND  
SS  
FB  
0.01µF  
CSH  
100k  
1%  
1.91, 1%  
1N4148  
SKIP  
CSL  
SYNC  
REF  
T1 = 1:70 5mm SURFACE-MOUNT TRANSFORMER  
DALE LPE-3325-A087  
GND  
0.33µF  
Q1, Q2 = MMSF5N03 OR Si9410DY  
6/MAX79  
Figure 20. Buck Converter with Low-Loss SMT Current-Sense Transformer  
N1 = N2 = MTD20N03HDL  
L1 = COILCRAFT DO3316-332  
C1  
220µF  
OS-CON  
INPUT  
4.75V  
TO 5.5V  
0.1µF  
D1  
4.7µF  
V+  
VL  
BST  
DH  
L1  
3.3µH  
R1  
12mΩ  
N1  
N2  
C3  
0.1µF  
1.5V OUTPUT  
AT 5A  
LX  
C2  
2 x 220µF  
OS-CON  
D2  
ON/OFF  
C6  
DL  
SHDN  
SS  
1N5820  
PGND  
MAX797  
CSH  
CSL  
0.01µF  
R6  
49.9k  
FB  
C7  
330pF  
R5  
150k  
R7  
124k  
SYNC  
REF  
R3  
66.5k  
1%  
TO  
VL  
SKIP  
GND  
C5  
0.33µF  
R4  
100k  
1%  
MAX495  
REMOTE SENSE LINE  
Figure 21. 1.5V GTL Bus Termination Supply  
30 ______________________________________________________________________________________  
S t e p -Do w n Co n t ro lle rs w it h  
S yn c h ro n o u s Re c t ifie r fo r CP U P o w e r  
6/MAX79  
____________________________________________Ap p lic a t io n Circ u it s (c o n t in u e d )  
10  
V+  
6
11  
14  
2
VL  
BST  
SKIP  
V
SHDN  
IN  
10.5V to  
28V  
2X  
D1  
22µF  
35V  
0.01µF  
4.7µF  
16  
Q1  
DH  
15  
8
LX  
MAX797  
D3  
CSH  
T1  
L1  
10µH  
1.7Ω  
3
REF  
CSL  
DL  
1
5
9
SS  
3X  
100µF  
16V  
0.01µF  
I
Q2  
13  
OUT  
D2  
2.5A  
12  
SYNC  
PGND  
FB  
GND  
0.025Ω  
0.33µF  
7
4
1.0k  
3
2
7
0.1µF  
6
MAX495  
4
D1, D3 CENTRAL SEMI. CMPSH-3  
D2 NIEC EC10QS02L, SCHOTTKY RECT.  
L1 DALE IHSM-4825 10µH 15%  
T1 DALE LPE-3325-A087, CURRENT TRANSFORMER, 1:70  
Q1, Q2 MOTOROLA MMSF5N03HD  
39k  
0.33µF  
Figure 22. Battery-Charger Current Source  
______________________________________________________________________________________ 31  
S t e p -Do w n Co n t ro lle rs w it h  
S yn c h ro n o u s Re c t ifie r fo r CP U P o w e r  
_Ord e rin g In fo rm a t io n (c o n t in u e d )  
___________________Ch ip To p o g ra p h y  
PART  
MAX797CPE  
MAX797CSE  
MAX797C/D  
MAX797EPE  
MAX797ESE  
MAX797MJE  
MAX799CPE  
MAX799CSE  
MAX799C/D  
MAX799EPE  
MAX799ESE  
MAX799MJE  
TEMP. RANGE  
0°C to +70°C  
PIN-PACKAGE  
16 Plastic DIP  
16 Narrow SO  
Dice*  
SS  
DH  
0°C to +70°C  
LX  
SKIP  
(SECFB)  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
0°C to +70°C  
16 Plastic DIP  
16 Narrow SO  
16 CERDIP  
BST  
16 Plastic DIP  
16 Narrow SO  
Dice*  
0°C to +70°C  
REF  
DL  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
16 Plastic DIP  
16 Narrow SO  
16 CERDIP  
PGND  
GND  
0. 16O"  
(4. 064mm)  
*Contact factory for dice specifications  
SYNC  
SHDN  
VL  
6/MAX79  
V+  
CSL  
FB CSH  
0. 085"  
(2. 159mm)  
(
) ARE FOR MAX796/MAX799 ONLY.  
TRANSISTOR COUNT: 913  
SUBSTRATE CONNECTED TO GND  
32 ______________________________________________________________________________________  

相关型号:

MAX796ESE

Step-Down Controllers with Synchronous Rectifier for CPU Power
MAXIM

MAX796ESE+

Switching Controller, Current-mode, 350kHz Switching Freq-Max, BICMOS, PDSO16, SOIC-16
MAXIM

MAX796ESE+T

Switching Controller, Voltage-mode, 300kHz Switching Freq-Max, BICMOS, PDSO16, SO-16
MAXIM

MAX796ESE-T

Switching Controller, Current-mode, 350kHz Switching Freq-Max, BICMOS, PDSO16, SOIC-16
MAXIM

MAX796EVKIT

Evaluation Kit for the MAX2387/MAX2388/MAX2389[MAX2387EVKIT]
MAXIM

MAX796MJE

Step-Down Controllers with Synchronous Rectifier for CPU Power
MAXIM

MAX796_05

Step-Down Controllers with Synchronous Rectifier for CPU Power
MAXIM

MAX797

High-Voltage, Step-Down Controller with Synchronous Rectifier for CPU Power
MAXIM

MAX797C/D

Step-Down Controllers with Synchronous Rectifier for CPU Power
MAXIM

MAX797C/D+

Step-Down Controllers with Synchronous Rectifier for CPU Power
MAXIM

MAX797CPE

Step-Down Controllers with Synchronous Rectifier for CPU Power
MAXIM

MAX797CPE+

Step-Down Controllers with Synchronous Rectifier for CPU Power
MAXIM