MAX804TMJA [MAXIM]

3.0V/3.3V Microprocessor Supervisory Circuits; 3.0V / 3.3V微处理器监控电路
MAX804TMJA
型号: MAX804TMJA
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

3.0V/3.3V Microprocessor Supervisory Circuits
3.0V / 3.3V微处理器监控电路

微处理器 监控
文件: 总12页 (文件大小:102K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0243; Rev 1; 9/94  
3 .0 V/3 .3 V Mic ro p ro c e s s o r S u p e rvis o ry Circ u it s  
MAX972,4–806TS/R  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
RESET and RESET Outputs  
Manual Reset Input  
–————–  
These microprocessor (µP) supervisory circuits reduce  
the complexity and number of components required for  
power-supply monitoring and battery-control functions  
in µP systems. They significantly improve system relia-  
b ility a nd a c c ura c y c omp a re d to s e p a ra te ICs or  
discrete components.  
Precision Supply-Voltage Monitor  
200ms Reset Time Delay  
Watchdog Timer (1.6sec timeout)  
Battery-Backup Power Switching—  
These devices are designed for use in systems powered  
by 3.0V or 3.3V supplies. See the selector guide in the  
back of this data sheet for similar devices designed for  
5V systems. The suffixes denote different reset threshold  
voltages: 3.075V (T), 2.925V (S), and 2.625V (R) (see  
Reset Threshold section in the Detailed Description). All  
these parts are available in 8-pin DIP and SO packages.  
Functions offered in this series are as follows:  
Battery Can Exceed V in Normal Operation  
CC  
40µA V Supply Current  
CC  
1µA Battery Supply Current  
Voltage Monitor for Power-Fail or  
Low-Battery Warning  
–————–  
Guaranteed RESET Assertion to V = 1V  
CC  
8-Pin DIP and SO Packages  
______________Ord e rin g In fo rm a t io n  
PART**  
TEMP. RANGE  
0°C to +70°C  
PIN-PACKAGE  
8 Plastic DIP  
8 SO  
MAX690_CPA  
MAX690_CSA  
MAX690_C/D  
MAX690_EPA  
MAX690_ESA  
MAX690_MJA  
Part  
0°C to +70°C  
MAX690  
MAX704  
MAX802  
MAX804  
MAX805  
MAX806  
±4%  
±4%  
±2%  
±2%  
±4%  
±2%  
±75mV  
±75mV  
±2%  
0°C to +70°C  
Dice*  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
8 Plastic DIP  
8 SO  
8 CERDIP  
±2%  
±75mV  
±2%  
Ordering Information continued on last page.  
* Contact factory for dice specifications.  
** These parts offer a choice of reset threshold voltage. Select  
the letter corresponding to the desired nominal reset threshold  
voltage (T = 3.075V, S = 2.925V, R = 2.625V) and insert it into  
the blank to complete the part number.  
________________________Ap p lic a t io n s  
Battery-Powered Computers and Controllers  
Embedded Controllers  
_________Typ ic a l Op e ra t in g Circ u it s  
Intelligent Instruments  
Automotive Systems  
REGULATED +3.3V OR +3.0V  
Critical µP Power Monitoring  
Portable Equipment  
V
CC  
UNREGULATED  
DC  
µP  
0.1µF  
V
CC  
RESET  
(RESET)  
RESET  
__________________P in Co n fig u ra t io n  
R1  
NMI  
PFO  
TOP VIEW  
MAX690T/S/R  
MAX802T/S/R  
MAX804T/S/R  
MAX805T/S/R  
I/O LINE  
GND  
PFI  
WDI  
3.6V  
LITHIUM  
BATTERY  
R2  
1
2
3
4
8
7
6
5
BUS  
V
VBATT  
OUT  
MAX690T/S/R  
MAX704T/S/R  
MAX802T/S/R  
MAX804T/S/R  
MAX805T/S/R  
MAX806T/S/R  
V
OUT  
VBATT  
RESET (RESET)  
WDI <MR>  
PFO  
V
CC  
GND  
V
CC  
CMOS RAM  
GND  
GND  
PFI  
0.1µF  
0.1µF  
DIP/SO  
( ) ARE FOR MAX804T/S/R, MAX805T/S/R  
( ) ARE FOR MAX804T/S/R, MAX805T/S/R  
< > ARE FOR MAX704T/S/R, MAX806T/S/R  
See last page for MAX704T/S/R, MAX806T/S/R.  
________________________________________________________________ Maxim Integrated Products  
1
Ca ll t o ll fre e 1 -8 0 0 -9 9 8 -8 8 0 0 fo r fre e s a m p le s o r lit e ra t u re .  
3 .0 V/3 .3 V Mic ro p ro c e s s o r S u p e rvis o ry Circ u it s  
ABSOLUTE MAXIMUM RATINGS  
Terminal Voltage (with respect to GND)  
Continuous Power Dissipation (TA = +70°C)  
VCC.........................................................................-0.3V to 6.0V  
VBATT....................................................................-0.3V to 6.0V  
All Other Inputs ...................-0.3V to the higher of VCC or VBATT  
Continuous Input Current  
Plastic DIP (derate 9.09mW/°C above +70°C) ..............727mW  
SO (derate 5.88mW/°C above +70°C)...........................471mW  
CERDIP (derate 8.00mW/°C above +70°C)...................640mW  
Operating Temperature Ranges  
VCC..................................................................................100mA  
VBATT ...............................................................................18mA  
GND ..................................................................................18mA  
MAX690_C_ _/MAX704_C_ _/MAX80_ _C_ _ ........0°C to +70°C  
MAX690_E_ _/MAX704_E_ _/MAX80_ _E_ _. .....-40°C to +85°C  
MAX690_M_ _/MAX704_M_ _/MAX80_ _M_ _...-55°C to +125°C  
Storage Temperature Range .............................-65°C to +160°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
Output Current  
–————– –  
RESET, PFO ....................................................................18mA  
VOUT ................................................................................100mA  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(VCC = 3.17V to 5.5V for the MAX690T/MAX704T/MAX80_T, V = 3.02V to 5.5V for the MAX690S/MAX704S/MAX80_S, V = 2.72V to  
CC  
CC  
5.5V for the MAX690R/MAX704R/MAX80_R; VBATT = 3.6V; TA = TMIN to TMAX; unless otherwise noted. Typical values are at TA = +25°C.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
1.0  
TYP  
MAX UNITS  
MAX690_C, MAX704_C, MAX80_ _C  
MAX690_E/M, MAX704_E/M, MAX80_ _E/M  
MAX690_C/E, MAX704_C/E,  
5.5  
V
Operating Voltage Range,  
V
, VBATT (Note 1)  
CC  
1.1  
5.5  
40  
50  
40  
50  
50  
MAX80_ _C/E, V < 3.6V  
CC  
MAX690_C/E, MAX704_C/E,  
MAX80_ _C/E, V < 5.5V  
CC  
–  
MR = V  
(MAX704_/  
MAX806_)  
65  
µA  
55  
CC  
V
Supply Current  
CC  
I
SUPPLY  
(excluding I  
)
OUT  
MAX690_M, MAX704_M,  
MAX80_ _M, V < 3.6V  
CC  
MAX690_M, MAX704_M,  
70  
MAX80_ _M, V < 5.5V  
CC  
–  
MR = V  
CC  
V
Supply Current in Battery-  
CC  
(MAX704_/  
MAX806_)  
V
CC  
= 2.0V, VBATT = 2.3V  
25  
50  
µA  
Backup Mode (excluding I  
)
OUT  
MAX690_C/E, MAX704_C/E, MAX80_ _C/E  
MAX690_M, MAX704_M, MAX80_ _M  
MAX690_C/E, MAX704_C/E, MAX80_ _C/E  
MAX690_M, MAX704_M, MAX80_ _M  
MAX690_C/E, MAX704_C/E, MAX80_ _C/E,  
0.4  
0.4  
1
10  
0.5  
5
VBATT Supply Current, Any Mode  
(excluding I ) (Note 2)  
µA  
µA  
OUT  
0.01  
0.01  
Battery Leakage Current  
(Note 3)  
V
CC  
-
V
CC  
-
I
= 5mA (Note 4)  
0.03  
0.015  
OUT  
V
0.3  
-
V
0.15  
-
MAX690_C/E, MAX704_C/E, MAX80_ _C/E  
= 50mA  
CC  
CC  
I
OUT  
V
0.035  
-
V
0.015  
-
MAX690_M, MAX704_M, MAX80_ _M  
= 5mA (Note 4)  
CC  
CC  
V
OUT  
Output Voltage  
V
MAX972,4–806TS/R  
I
OUT  
V
0.35  
-
V
0.15  
-
MAX690_M, MAX704_M, MAX80_ _M  
= 50mA  
CC  
CC  
I
OUT  
V
-
V
-
CC  
CC  
I
= 250µA, V > 2.5V (Note 4)  
CC  
OUT  
0.0015 0.0006  
2
_______________________________________________________________________________________  
3 .0 V/3 .3 V Mic ro p ro c e s s o r S u p e rvis o ry Circ u it s  
MAX972,4–806TS/R  
ELECTRICAL CHARACTERISTICS (continued)  
(VCC = 3.17V to 5.5V for the MAX690T/MAX704T/MAX80_T, V = 3.02V to 5.5V for the MAX690S/MAX704S/MAX80_S, V = 2.72V to  
CC  
CC  
5.5V for the MAX690R/MAX704R/MAX80_R; VBATT = 3.6V; TA = TMIN to TMAX; unless otherwise noted. Typical values are at TA = +25˚C.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
VBATT VBATT  
I
= 250µA, VBATT = 2.3V  
OUT  
- 0.1  
- 0.034  
V
OUT  
in Battery-Backup Mode  
V
VBATT  
- 0.14  
I
= 1mA, VBATT = 2.3V  
OUT  
VBATT - V  
V
> V > 1.75V (Note 5)  
65  
25  
mV  
CC, SW  
CC  
Battery Switch Threshold,  
Falling  
V
CC  
V
SW  
VBATT > V (Note 6)  
CC  
2.30  
2.40  
2.50  
V
Battery Switch Threshold,  
Rising (Note 7)  
This value is identical to the reset threshold,  
V
V
V
rising  
CC  
CC  
V
falling  
rising  
falling  
rising  
falling  
rising  
falling  
rising  
falling  
rising  
falling  
rising  
3.00  
3.00  
3.00  
3.00  
2.85  
2.85  
2.88  
2.88  
2.55  
2.55  
2.59  
2.59  
140  
3.075  
3.085  
3.075  
3.085  
2.925  
2.935  
2.925  
2.935  
2.625  
2.635  
2.625  
2.635  
200  
3.15  
3.17  
3.12  
3.14  
3.00  
3.02  
3.00  
3.02  
2.70  
2.72  
2.70  
2.72  
280  
CC  
MAX690T/704T/805T  
MAX802T/804T/806T  
MAX690S/704S/805S  
MAX802S/804S/806S  
MAX690R/704R/805R  
MAX802R/804R/806S  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
Reset Threshold (Note 8)  
V
RST  
V
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
Reset Timeout Period  
t
V
< 3.6V  
ms  
V
WP  
CC  
V
- 0.3  
V
- 0.05  
–—————–  
CC  
CC  
P FO, RES ET Output Voltage  
V
I
= 50µA  
OH  
SOURCE  
–—————–  
P FO, RES ET Output Short to  
GND Current (Note 4)  
I
V
= 3.3V, V = 0V  
180  
500  
0.3  
µV  
V
OS  
CC OH  
I
= 1.2mA;  
–—————–  
SINK  
P FO, RES ET, RESET  
V
MAX690_/704_/802_/806_, V = V min;  
RST  
MAX804_/805_, V = V  
0.06  
OL  
CC  
max  
Output Voltage  
CC  
RST  
VBATT = 0V, V = 1.0V, I  
= 40µA,  
CC  
SINK  
MAX690_C, MAX704_C, MAX80_ _C  
0.13  
0.17  
0.3  
–—————–  
P FO, RES ET Output Voltage  
V
OL  
V
VBATT = 0V, V = 1.2V, I = 200µA,  
CC  
SINK  
MAX690_E/M, MAX704_E/M, MAX80_ _E/M  
0.3  
1
MAX804_C,  
MAX805_C  
-1  
VBATT = 0V,  
= V min;  
RESET Output Leakage Current  
(Note 9)  
V
µA  
CC  
RST  
MAX804_E/M,  
MAX805_E/M  
V
RESET  
= 0V, V  
CC  
-10  
10  
_______________________________________________________________________________________  
3
3 .0 V/3 .3 V Mic ro p ro c e s s o r S u p e rvis o ry Circ u it s  
ELECTRICAL CHARACTERISTICS (continued)  
(VCC = 3.17V to 5.5V for the MAX690T/MAX704T/MAX80_T, V = 3.02V to 5.5V for the MAX690S/MAX704S/MAX80_S, V = 2.72V to  
CC  
CC  
5.5V for the MAX690R/MAX704R/MAX80_R; VBATT = 3.6V; TA = TMIN to TMAX; unless otherwise noted. Typical values are at TA = +25˚C.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
MAX802_C/E, MAX804_C/E,  
MAX806_C/E  
1.212  
1.237  
1.262  
V
V
V
PFI  
< 3.6V  
falling  
CC  
PFI Input Threshold  
V
PFT  
MAX690_/MAX704_/MAX805_  
1.187  
-25  
1.237  
1.287  
MAX690_C/E, MAX704_C/E, MAX80_ _C/E  
MAX690_M, MAX704_M, MAX80_ _M  
MAX690_C/E, MAX704_C/E,  
2
2
25  
nA  
PFI Input Current  
-500  
500  
10  
20  
MAX80_ _C/E  
PFI Hysteresis, PFI Rising  
PFI Input Current  
V
PFH  
V
CC  
< 3.6V  
mV  
MAX690_M, MAX704_M, MAX80_ _M  
10  
2
25  
MAX690_C/E, MAX704_C/E, MAX80_ _C/E  
MAX690_M, MAX704_M, MAX80_ _M  
-25  
25  
nA  
-500  
2
500  
V
0.7 x V  
CC  
IH  
–  
MR Input Threshold  
MAX704_/MAX806_ only  
MAX704_/MAX806_ only  
V
V
0.3 x V  
CC  
IL  
MR  
MD  
–  
MR Pulse Width  
t
100  
20  
60  
60  
ns  
ns  
–  
MR to Reset Delay  
t
MAX704_/MAX806_ only  
–  
500  
350  
0.7 x V  
–  
MR Pull-Up Current  
MAX704_/MAX806_ only, MR = 0V, V = 3V  
CC  
20  
µA  
V
IH  
CC  
WDI Input Threshold  
WDI Input Current  
MAX690_/MAX802_/MAX804_/MAX805_ only  
V
V
IL  
0.3 x V  
CC  
MAX690_C/E, MAX802_C/E,  
MAX804_C/E, MAX805_C/E  
-1  
0.01  
0.01  
1
0V< V < 5.5V  
µA  
CC  
MAX690_M, MAX802_M,  
MAX804_M, MAX805_M  
-10  
10  
MAX690/MAX802/MAX804/  
MAX805 only  
Watchdog Timeout Period  
WDI Pulse Width  
t
V
CC  
< 3.6V  
1.12  
100  
1.60  
20  
2.24  
sec  
ns  
WD  
MAX690_/MAX802_/MAX804_/MAX805_ only  
–  
Note 1: VCC supply current, logic input leakage, watchdog functionality (MAX690_/802_/805_/804_), MR functionality  
–————–  
(MAX704_/806_), PFI functionality, state of RES ET (MAX690_/704_/802_/806_), and RESET (MAX804_/805_) tested at  
–————–  
–—–  
VBATT = 3.6V, and VCC = 5.5V. The state of RES ET or RESET and P FO is tested at VCC = VCC min.  
Note 2: Tested at VBATT = 3.6V, VCC = 3.5V and 0V. The battery current will rise to 10µA over a narrow transition window around  
VCC = 1.9V.  
Note 3: Leakage current into the battery is tested under the worst-case conditions at VCC = 5.5V, VBATT = 1.8V and at VCC = 1.5V,  
VBATT= 1.0V.  
Note 4: Guaranteed by design.  
Note 5: When VSW > VCC > VBATT, VOUT remains connected to VCC until VCC drops below VBATT. The VCC-to-VBATT comparator  
has a small 25mV typical hysteresis to prevent oscillation. For VCC < 1.75V (typ), VOUT switches to VBATT regardless of the  
voltage on VBATT.  
MAX972,4–806TS/R  
Note 6: When VBATT > VCC > VSW, VOUT remains connected to VCC until VCC drops below the battery switch threshold (VSW).  
Note 7: VOUT switches from VBATT to VCC when VCC rises above the reset threshold, independent of VBATT. Switchover back to  
–————–  
VCC occurs at the exact voltage that causes RES ET to go high (on the MAX804_/805_, RESET goes low); however  
switchover occurs 200ms prior to reset.  
Note 8: The reset threshold tolerance is wider for VCC rising than for VCC falling to accommodate the 10mV typical hysteresis, which  
prevents internal oscillation.  
Note 9: The leakage current into or out of the RESET pin is tested with RESET asserted (RESET output high impedance).  
4
_______________________________________________________________________________________  
3 .0 V/3 .3 V Mic ro p ro c e s s o r S u p e rvis o ry Circ u it s  
MAX972,4–806TS/R  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(T = +25°C, unless otherwise noted.)  
A
V
CC  
-to-V ON-RESISTANCE  
vs. TEMPERATURE  
VBATT-to-V ON-RESISTANCE  
OUT  
SUPPLY CURRENT  
vs. TEMPERATURE  
OUT  
vs. TEMPERATURE  
5
180  
140  
50  
V
CC  
= 0V  
VBATT = 3.0V  
VBATT = 2V  
VBATT = 3V  
V
CC  
= 5V  
4
3
2
1
0
45  
40  
35  
30  
25  
V
= 2.5V  
CC  
V
CC  
= 3.3V  
V
= 3.3V  
= 2.5V  
CC  
100  
60  
VBATT = 3V  
PFI = GND  
MR/WDI FLOATING  
VBATT = 3.3V  
V
= 5V  
CC  
VBATT = 5V  
V
CC  
20  
–60 –40 –20  
0
20 40 60 80 100 120 140  
–60 –40 –20  
0
20 40 60 80 100 120 140  
–60 –40 –20  
0
20 40 60 80 100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
RESET TIMEOUT PERIOD  
vs. TEMPERATURE  
RESET-COMPARATOR PROPAGATION  
DELAY vs. TEMPERATURE  
BATTERY SUPPLY CURRENT  
vs. TEMPERATURE  
216  
30  
10,000  
VBATT = 3.0V  
100mV OVERDRIVE  
V
= 0V  
CC  
PFI = GND  
VBATT = 5V  
212  
208  
204  
200  
196  
26  
22  
18  
14  
10  
1000  
100  
10  
V
= 5V  
CC  
VBATT = 3.0V  
VBATT = 3V  
1
VBATT = 2V  
V
CC  
= 3.3V  
0.1  
–60 –40 –20  
0
20 40 60 80 100 120 140  
–60 –40 –20  
0
20 40 60 80 100 120 140  
–60 –40 –20  
0
20 40 60 80 100 120 140  
TEMPERATURE (°C)  
1.004  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
PFI THRESHOLD  
vs. TEMPERATURE  
NORMALIZED RESET THRESHOLD  
vs. TEMPERATURE  
1.240  
V
CC  
= 3.3V  
1.238  
1.236  
1.234  
1.232  
1.230  
1.002  
1.000  
0.998  
0.996  
0.994  
V
CC  
= 5V  
V
= 2.5V  
CC  
VBATT = 3.0V  
VBATT = 3.0V  
–60 –40 –20  
0
20 40 60 80 100 120 140  
–60 –40 –20  
0
20 40 60 80 100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
5
3 .0 V/3 .3 V Mic ro p ro c e s s o r S u p e rvis o ry Circ u it s  
______________________________________________________________P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
Supply Output for CMOS RAM. When V is above the reset threshold, V  
MAX690 MAX704 MAX804  
MAX802 MAX806 MAX805  
is  
OUT  
CC  
1
1
1
V
OUT  
connected to V through a P-channel MOSFET switch. When V falls below V and  
CC CC SW  
VBATT, VBATT connects to V . Connect to V if no battery is used.  
OUT CC  
2
3
2
3
2
3
V
Main Supply Input  
Ground  
CC  
GND  
–—–  
Power-Fail Input. When PFI is less than V  
or when V falls below V , P FO goes  
CC SW  
PFT  
4
5
4
5
4
5
PFI  
–—–  
low; otherwise, P FO remains high. Connect to ground if unused.  
–—–  
Power-Fail Output. When PFI is less than V , or V falls below V , P FO goes low;  
–—–  
P FO  
PFT  
CC  
SW  
–—–  
otherwise, P FO remains high. Leave open if unused.  
Watchdog Input. If WDI remains high or low for 1.6sec, the internal watchdog timer runs out  
and reset is triggered. The internal watchdog timer clears while reset is asserted or when  
WDI sees a rising or falling edge. The watchdog function cannot be disabled.  
6
6
6
WDI  
–  
Manual Reset Input. A logic low on MR asserts reset. Reset remains asserted as long as  
–  
–  
MR is low and for 200ms after MR returns high. This active-low input has an internal  
70µA pull-up current. It can be driven from a TTL or CMOS logic line, or shorted to  
ground with a switch. Leave open if unused.  
–  
MR  
Active-Low Reset Output. Pulses low for 200ms when triggered, and stays low whenever  
–  
V
CC  
is below the reset threshold or when MR is a logic low. It remains low for 200ms after  
–————–  
RESET  
7
7
–  
either V rises above the reset threshold, the watchdog triggers a reset, or MR goes  
CC  
from low to high.  
–————–  
8
8
7
8
RESET Active-High, Open-Drain Reset Output is the inverse of RES ET.  
Backup-Battery Input. When V falls below V and VBATT, V  
switches from V to  
CC  
CC  
SW  
OUT  
VBATT VBATT. When V rises above the reset threshold, V  
reconnects to V . VBATT may  
OUT CC  
CC  
exceed V . Connect to V if no battery is used.  
CC  
CC  
Re s e t Th re s h o ld  
_______________De t a ile d De s c rip t io n  
The MAX690T/MAX704T/MAX805T a re inte nd e d for  
3.3V systems with a ±5% power-supply tolerance and a  
10% system tolerance. Except for watchdog faults,  
re s e t will not a s s e rt a s long a s the p owe r s up p ly  
remains above 3.15V (3.3V - 5%). Reset is guaranteed  
to assert before the power supply falls below 3.0V.  
Re s e t Ou t p u t  
A microprocessors (µPs) reset input starts the µP in a  
known state. These µP supervisory circuits assert reset to  
prevent code execution errors during power-up, power-  
down, brownout conditions, or a watchdog timeout.  
–————–  
RES ET is guaranteed to be a logic low for 0V < V  
<
The MAX690S/MAX704S/MAX805S are designed for  
3.3V ± 10% p owe r s up p lie s . Exc e p t for wa tc hd og  
faults, they are guaranteed not to assert reset as long  
as the supply remains above 3.0V (3.3V - 10%). Reset  
is guaranteed to assert before the power supply falls  
CC  
V
, provided that VBATT is greater than 1V. Without  
RST  
–————–  
a backup battery, RES ET is guaranteed valid for V  
CC  
> 1V. Onc e V  
internal timer keeps RES ET low for the reset timeout  
period; after this interval, RES ET goes high (Figure 2).  
e xc e e d s the re s e t thre s hold , a n  
CC  
–————–  
–————–  
below 2.85V (V - 14%).  
CC  
If a brownout condition occurs (V  
reset threshold), RES ET goes low. Each time RES ET  
is asserted, it stays low for the reset timeout period.  
dips below the  
The MAX690R/MAX704R/MAX805R are optimized for  
monitoring 3.0V ±10% power supplies. Reset will not  
CC  
–————–  
–————–  
occur until V  
falls below 2.7V (3.0V - 10%), but is  
CC  
MAX972,4–806TS/R  
Any time V  
g oe s b e low the re s e t thre s hold , the  
g ua ra nte e d to oc c ur b e fore the s up p ly fa lls b e low  
2.59V (3.0V - 14%).  
CC  
internal timer restarts.  
The watchdog timer can also initiate a reset. See the  
Watchdog Input section.  
The MAX802R/S/T, MAX804R/S/T, and MAX806R/S/T  
a re re s p e c tive ly s imila r to the MAX690R/S/T,  
MAX805R/S/T, and MAX704R/S/T, but with tightened  
reset and power-fail threshold tolerances.  
The MAX804_/MAX805_ active-high RESET output is  
open drain, and the inverse of the MAX690_/MAX704_/  
–————–  
MAX802_/MAX806_ RES ET output.  
6
_______________________________________________________________________________________  
3 .0 V/3 .3 V Mic ro p ro c e s s o r S u p e rvis o ry Circ u it s  
MAX972,4–806TS/R  
VBATT  
3.0V OR 3.3V  
BATTERY  
SWITCHOVER  
CIRCUITRY  
V
RST  
V
OUT  
V
CC  
V
CC  
V
SW  
BATTERY  
SWITCHOVER  
COMPARATOR  
0V  
3.0V OR 3.3V  
V
OUT  
VBATT = 3.6V  
MAX690T/S/R  
1.237V  
RESET  
MAX704T/S/R  
MAX802T/S/R  
MAX804T/S/R  
MAX805T/S/R  
MAX806T/S/R  
t
WP  
V
SW  
COMPARATOR  
3.0V OR 3.3V  
RESET  
1.237V  
*
RESET  
GENERATOR  
WATCHDOG  
TIMER  
*
WDI  
RESET  
(RESET)  
(RESET)  
**  
MR  
PFI  
PFO  
POWER-FAIL  
COMPARATOR  
V
PFT  
PFO  
VBATT = PFI = 3.6V  
= 0mA  
I
OUT  
* MAX690T/S/R, MAX802T/S/R, MAX804T/S/R, MAX805T/S/R ONLY  
** MAX704T/S/R, MAX806T/S/R ONLY  
( ) MAX804T/S/R, MAX805T/S/R ONLY, RESET EXTERNALLY PULLED UP TO V  
CC  
( ) MAX804T/S/R, MAX805T/S/R ONLY  
Figure 1. Block Diagram  
Figure 2. Timing Diagram  
Wa t c h d o g In p u t  
(MAX6 9 0 _/8 0 2 _/8 0 4 _/8 0 5 _)  
The watchdog circuit monitors the µPs activity. If the µP  
does not toggle the watchdog input (WDI) within 1.6sec,  
a reset pulse is triggered. The internal 1.6sec timer is  
cleared by either a reset pulse or by a transition (low-to-  
P o w e r-Fa il Co m p a ra t o r  
The PFI input is compared to an internal reference. If  
–—–  
PFI is less than V , P FO goes low. The power-fail  
PFT  
comparator is intended for use as an undervoltage  
detector to signal a failing power supply. However, the  
c omp a ra tor d oe s not ne e d to b e d e d ic a te d to this  
function because it is completely separate from the rest  
of the circuitry.  
high or high-to-low) at WDI. If WDI is tied high or low, a  
–————–  
RES ET pulse is triggered every 1.8sec (t plus t ).  
WD  
RS  
–—–  
The power-fail comparator turns off and P FO goes low  
As long as reset is asserted, the timer remains cleared  
and does not count. As soon as reset is deasserted,  
the timer starts counting. Unlike the 5V MAX690 family,  
the watchdog function cannot be disabled.  
when V falls below V on power-down. The power-  
CC  
SW  
fa il c omp a ra tor turns on a s V  
c ros s e s V  
on  
CC  
SW  
power-up. If the comparator is not used, connect PFI to  
–—–  
–—–  
ground and leave P F O unconnected. P F O may be  
–  
connected to MR on the MAX704_/MAX806_ so that a  
low voltage on PFI will generate a reset (Figure 5b).  
_______________________________________________________________________________________  
7
3 .0 V/3 .3 V Mic ro p ro c e s s o r S u p e rvis o ry Circ u it s  
Ba c k u p -Ba t t e ry S w it c h o ve r  
In the event of a brownout or power failure, it may be  
The s e µP s up e rvis ory c irc uits a re not s hort-c irc uit  
necessary to preserve the contents of RAM. With a  
__________Ap p lic a t io n s In fo rm a t io n  
protected. Shorting V  
to ground—excluding power-  
OUT  
backup battery installed at VBATT, the devices auto-  
ma tic a lly s witc h RAM to b a c kup p owe r whe n V  
up tra ns ie nts s uc h a s c ha rg ing  
a d e c oup ling  
CC  
capacitor—destroys the device. Decouple both V  
CC  
falls.  
and VBATT pins to ground by placing 0.1µF capacitors  
as close to the device as possible.  
This family of µP supervisors (designed for 3.3V and 3V  
systems) doesnt always connect VBATT to V  
when  
OUT  
Us in g a S u p e rCa p  
a s a Ba c k u p P o w e r S o u rc e  
VBATT is greater than V  
. VBATT connects to V  
CC  
OUT  
(through a 140switch) when V is below V  
and  
CC  
SW  
Sup e rCa p s ™ a re c a p a c itors with e xtre me ly hig h  
capacitance values (e.g., order of 0.47F) for their size.  
Fig ure 3 s hows two wa ys to us e a Sup e rCa p a s a  
b a c kup p owe r s ourc e . The Sup e rCa p ma y b e  
connected through a diode to the 3V input (Figure 3a)  
or, if a 5V supply is also available, the SuperCap may  
be charged up to the 5V supply (Figure 3b) allowing a  
VBATT is greater than V , or when V  
1.75V (typ) regardless of the VBATT voltage. This is  
done to allow the backup battery (e.g., a 3.6V lithium  
falls below  
CC  
CC  
cell) to have a higher voltage than V  
.
CC  
Switchover at V (2.40V) ensures that battery-backup  
SW  
mode is entered before V  
gets too close to the 2.0V  
OUT  
minimum required to reliably retain data in CMOS RAM.  
Switchover at higher V voltages would decrease  
longer backup period. Since VBATT can exceed V  
CC  
CC  
while V  
is above the reset threshold, there are no  
CC  
backup-battery life. When V recovers, switchover is  
CC  
special precautions when using these µP supervisors  
with a SuperCap.  
d e fe rre d until V  
ris e s a b ove the re s e t thre s hold  
CC  
(V ) to ensure a stable supply. V  
is connected to  
RST  
OUT  
V
through a 3PMOS power switch.  
CC  
Op e ra t io n w it h o u t a Ba c k u p  
P o w e r S o u rc e  
The s e µP s up e rvis ors we re d e s ig ne d for b a tte ry-  
backed applications. If a backup battery is not used,  
Ma n u a l Re s e t  
–  
A logic low on MR asserts reset. Reset remains asserted  
while MR is low, and for t (200ms) after MR returns  
high. This input has an internal 70µA pull-up current, so  
it can be left open if it is not used. MR can be driven with  
–  
WP  
c onne c t b oth VBATT a nd V  
to V , or us e a  
OUT  
CC  
–  
different µP supervisor such as the MAX706T/S/R or  
MAX708T/S/R.  
TTL or CMOS logic levels, or with open-drain/collector  
outputs. Connect a normally open momentary switch  
from MR to GND to create a manual-reset function;  
external debounce circuitry is not required.  
Re p la c in g t h e Ba c k u p Ba t t e ry  
–  
The backup power source can be removed while V  
CC  
re ma ins va lid , if VBATT is d e c oup le d with a 0.1µF  
c a p a c itor to g round , without d a ng e r of trig g e ring  
–————–  
RESET/R E S E T. As long a s V  
s ta ys a b ove V  
,
CC  
SW  
battery-backup mode cannot be entered.  
Table 1. Input and Output Status in  
Battery-Backup Mode  
Ad d in g Hys t e re s is  
t o t h e P o w e r-Fa il Co m p a ra t o r  
PIN NAME  
STATUS  
The p owe r-fa il c omp a ra tor ha s  
a typ ic a l inp ut  
Connected to VBATT through an internal  
140switch  
hysteresis of 10mV. This is sufficient for most applica-  
tions where a power-supply line is being monitored  
through an external voltage divider (see the section  
Monitoring an Additional Power Supply).  
V
OUT  
V
CC  
Disconnected from V  
OUT  
The power-fail comparator is disabled when  
< V  
PFI  
V
CC  
If additional noise margin is desired, connect a resistor  
–—–  
SW  
–—–  
P FO  
between P FO and PFI as shown in Figure 4a. Select  
Logic low when V < V  
or PFI < V  
PFT  
CC  
SW  
the ratio of R1 and R2 such that PFI sees 1.237V (V  
)
MAX972,4–806TS/R  
PFT  
WDI  
The watchdog timer is disabled  
Disabled  
whe n V fa lls to its trip point (V  
). R3 a dd s the  
IN  
TRIP  
–  
MR  
hysteresis and will typically be more than 10 times the  
value of R1 or R2. The hysteresis window extends both  
–————–  
RES ET  
Low logic  
above (V ) and below (V ) the original trip point (V ).  
H
L
TRIP  
RESET  
VBATT  
High impedance  
Connected to V  
OUT  
™ SuperCap is a trademark of Baknor Industries.  
8
_______________________________________________________________________________________  
3 .0 V/3 .3 V Mic ro p ro c e s s o r S u p e rvis o ry Circ u it s  
MAX972,4–806TS/R  
3.0V OR 3.3V  
+5V  
3.0V OR  
3.3V  
V
CC  
MAX690T/S/R  
MAX704T/S/R  
MAX802T/S/R  
MAX804T/S/R  
V
OUT  
TO STATIC  
RAM  
V
MAX690T/S/R  
MAX704T/S/R  
MAX802T/S/R  
MAX804T/S/R  
MAX805T/S/R RESET  
MAX806T/S/R  
V
TO STATIC  
RAM  
CC  
OUT  
1N4148  
1N4148  
0.47F  
MAX805T/S/R RESET  
MAX806T/S/R  
VBATT  
TO µP  
VBATT  
TO µP  
(RESET)  
(RESET)  
0.47F  
GND  
GND  
(
) ARE FOR MAX804T/S/R, MAX805T/S/R ONLY  
a
b
(
) ARE FOR MAX804T/S/R, MAX805T/S/R ONLY  
Figure 3. Using a SuperCap as a Backup Power Source  
–————–  
Connecting an ordinary signal diode in series with R3,  
example, the RES ET output is driven high and the µP  
wants to pull it low, indeterminate logic levels may  
as shown in Figure 4b, causes the lower trip point (V )  
L
to coincide with the trip point without hysteresis (V  
so the entire hysteresis window occurs above V  
),  
re s ult. To c orre c t this , c onne c t a 4.7kre s is tor  
TRIP  
–————–  
.
between the RES ET output and the µP reset I/O, as in  
–————–  
TRIP  
This method provides additional noise margin without  
compromising the accuracy of the power-fail threshold  
when the monitored voltage is falling. It is useful for  
a c c ura te ly d e te c ting whe n a volta g e fa lls p a s t a  
threshold.  
Figure 6. Buffer the R E S E T output to other system  
components.  
Ne g a t ive -Go in g V  
Tra n s ie n t s  
CC  
While issuing resets to the µP during power-up, power-  
down, and brownout conditions, these supervisors are  
The current through R1 and R2 should be at least 1µA to  
ensure that the 25nA (max over extended temperature  
range) PFI input current does not shift the trip point. R3  
relatively immune to short-duration negative-going V  
CC  
transients (glitches). It is usually undesirable to reset  
the µP when V experiences only small glitches.  
CC  
should be larger than 10kso it does not load down the  
–—–  
Figure 7 shows maximum transient duration vs. reset-  
comparator overdrive, for which reset pulses are not  
generated. The graph was produced using negative-  
P FO pin. Capacitor C1 adds additional noise rejection.  
Mo n it o rin g a n Ad d it io n a l P o w e r S u p p ly  
These µP supervisors can monitor either positive or  
going V pulses, starting at 3.3V and ending below  
CC  
negative supplies using a resistor voltage divider to  
the reset threshold by the magnitude indicated (reset  
comparator overdrive). The graph shows the maximum  
–—–  
PFI. P FO can be used to generate an interrupt to the  
–  
–—–  
µP (Figure 5). Connecting P FO to MR on the MAX704  
a nd MAX806 c a us e s re s e t to a s s e rt whe n the  
monitored supply goes out of tolerance. Reset remains  
p uls e wid th a ne g a tive -g oing V  
tra ns ie nt ma y  
CC  
typ ic a lly ha ve without c a us ing a re s e t p uls e to b e  
issued. As the amplitude of the transient increases  
(i.e ., g oe s fa rthe r b e low the re s e t thre s hold ), the  
maximum allowable pulse width decreases. Typically,  
–  
–—–  
asserted as long as P FO holds MR low, and for 200ms  
–—–  
after P FO goes high.  
a V  
tra ns ie nt tha t g oe s 100mV b e low the re s e t  
CC  
In t e rfa c in g t o µP s  
w it h Bid ire c t io n a l Re s e t P in s  
µPs with bidirectional reset pins, such as the Motorola  
threshold and lasts for 40µs or less will not cause a  
reset pulse to be issued.  
A 100nF bypass capacitor mounted close to the V  
pin provides additional transient immunity.  
CC  
68HC11 s e rie s , c a n c onte nd with the MAX690_/  
–————–  
MAX704_/MAX802_/MAX806_ RES ET output. If, for  
_______________________________________________________________________________________  
9
3 .0 V/3 .3 V Mic ro p ro c e s s o r S u p e rvis o ry Circ u it s  
V
IN  
V
IN  
R
1
V
CC  
V
CC  
R
1
PFI  
MAX690T/S/R  
MAX704T/S/R  
MAX802T/S/R  
MAX804T/S/R  
MAX805T/S/R  
MAX806T/S/R  
PFI MAX690T/S/R  
MAX704T/S/R  
MAX802T/S/R  
MAX804T/S/R  
MAX805T/S/R  
R
2
R
3
R
2
R
3
C1*  
C1*  
MAX806T/S/R  
PFO  
PFO  
GND  
GND  
*OPTIONAL  
*OPTIONAL  
V
TO µP  
TO µP  
PFO  
0V  
PFO  
0V  
V
IN  
IN  
V
TRIP  
V
H
V
L
V
H
0V  
0V  
V
TRIP  
R + R  
1
2
(
)
R + R  
V
= V  
1
2
TRIP  
PFT  
R
2
V
= V  
PFT  
(
)
TRIP  
WHERE V = 1.237V  
PFT  
R
2
1
1
1
(V V )  
CC -  
R
D
V
= 10mV  
+
+
PFH  
V = R (V + V )  
PFT PFH  
1
1
1
(
)
H
1
V = (V + V ) (R )  
H
PFT  
PFH  
1
+
+
R
1
R
2
R
3
(
)
3
R
1
R
2
R
3
WHERE V = 1.237V  
PFT  
1
1
1
V
CC  
+
+
V = R  
V
(
)
L
1
PFT  
V
= 10mV  
PFH  
R
1
R
R
R
3
2
3
V
V
= DIODE FORWARD VOLTAGE DROP  
D
a
b
= V  
TRIP  
L
Figure 4. a) Adding Additional Hysteresis to the Power-Fail Comparator b) Shifting the Additional Hysteresis above VPFT  
V
IN  
3.0V OR 3.3V  
3.0V OR 3.3V  
V
CC  
V
CC  
R
1
R
1
MAX690T/S/R  
MAX704T/S/R  
MAX802T/S/R  
MAX804T/S/R  
MAX805T/S/R  
MAX806T/S/R  
MAX690T/S/R  
MAX704T/S/R  
MAX802T/S/R  
MAX804T/S/R  
MAX805T/S/R  
MAX806T/S/R  
GND  
PFI  
PFO  
PFI  
PFO  
MR  
R
2
R
2
*
GND  
V-  
V
CC  
V
CC  
PFO  
PFO  
V
IN  
V-  
V
L
V
TRIP  
V
TRIP  
V
H
0V  
1
1
V
CC  
R + R  
1
2
+
V
= R (V + V  
)
* MAX704T/S/R,  
MAX806T/S/R ONLY  
TRIP  
2
PFT PFH  
V
= V  
PFT  
(
)
TRIP  
MAX972,4–806TS/R  
(
)
1
R
1
R
2
R
1
R
2
WHERE V = 1.237V  
PFT  
1
1
V
CC  
V
PFH  
= 10mV  
R + R  
2
+
V = R (V  
)
L
2
PFT  
V = (V + V  
H
)
(
)
PFT PFH  
(
)
R
R
2
R
1
1
NOTE: V  
TRIP  
IS NEGATIVE  
R
2
a
b
Figure 5. Using the Power-Fail Comparator to Monitor an Additional Power Supply  
10 ______________________________________________________________________________________  
3 .0 V/3 .3 V Mic ro p ro c e s s o r S u p e rvis o ry Circ u it s  
MAX972,4–806TS/R  
_Typ ic a l Op e ra t in g Circ u it s (c o n t .)  
BUFFERED RESET TO OTHER SYSTEM COMPONENTS  
3.0V OR 3.3V  
V
OUT  
V
CC  
RAM  
V
CC  
V
CC  
VBATT  
µP  
0.1µF 3.6V  
0.1µF  
0.1µF  
MAX704T/S/R  
MAX806T/S/R  
MAX690T/S/R  
MAX704T/S/R  
MAX802T/S/R  
MAX806T/S/R  
4.7k  
RESET  
RESET  
MR  
RESET  
GND PFI  
µP  
GND  
GND  
Figure 6. Interfacing to µPs with Bidirectional Reset I/O  
100  
80  
V
CC  
= 3.3V  
T
A
= +25°C  
60  
40  
20  
0
10  
100  
1000  
RESET COMPARATOR OVERDRIVE (V - V ) (mV)  
RST  
CC  
Figure 7. Maximum Transient Duration without Causing a  
Reset Pulse vs. Reset Comparator Overdrive  
______________________________________________________________________________________ 11  
3 .0 V/3 .3 V Mic ro p ro c e s s o r S u p e rvis o ry Circ u it s  
_Ord e rin g In fo rm a t io n (c o n t in u e d )  
___________________Ch ip To p o g ra p h y  
V
OUT  
VBATT  
PART**  
TEMP. RANGE  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
PIN-PACKAGE  
8 Plastic DIP  
8 SO  
MAX704_CPA  
MAX704_CSA  
MAX704_C/D  
MAX704_EPA  
MAX704_ESA  
MAX704_MJA  
MAX802_CPA  
MAX802_CSA  
MAX802_C/D  
MAX802_EPA  
MAX802_ESA  
MAX802_MJA  
MAX804_CPA  
MAX804_CSA  
MAX804_C/D  
MAX804_EPA  
MAX804_ESA  
MAX804_MJA  
MAX805_CPA  
MAX805_CSA  
MAX805_C/D  
MAX805_EPA  
MAX805_ESA  
MAX805_MJA  
MAX806_CPA  
MAX806_CSA  
MAX806_C/D  
MAX806_EPA  
MAX806_ESA  
MAX806_MJA  
Dice*  
V
CC  
8 Plastic DIP  
8 SO  
0. 110"  
8 CERDIP  
8 Plastic DIP  
8 SO  
GND  
(2. 794mm)  
RESET  
(RESET)  
Dice*  
WDI  
[MR]  
8 Plastic DIP  
8 SO  
8 CERDIP  
8 Plastic DIP  
8 SO  
Dice*  
PFI PFO  
0. 080"  
8 Plastic DIP  
8 SO  
8 CERDIP  
8 Plastic DIP  
8 SO  
(2. 032mm)  
( ) ARE FOR MAX804T/S/R, MAX805T/S/R.  
[ ] ARE FOR MAX704T/S/R, MAX806T/S/R.  
Dice*  
8 Plastic DIP  
8 SO  
TRANSISTOR COUNT: 802;  
8 CERDIP  
8 Plastic DIP  
8 SO  
SUBSTRATE IS CONNECTED TO THE HIGHER OF  
OR VBATT, AND MUST BE FLOATED IN ANY  
V
CC  
HYBRID DESIGN.  
Dice*  
8 Plastic DIP  
8 SO  
8 CERDIP  
* Contact factory for dice specifications.  
** These parts offer a choice of reset threshold voltage. Select  
the letter corresponding to the desired nominal reset threshold  
voltage (T = 3.075V, S = 2.925V, R = 2.625V) and insert it into  
the blank to complete the part number.  
MAX972,4–806TS/R  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 __________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 (4 0 8 ) 7 3 7 -7 6 0 0  
© 1994 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX804_C/D

3.0V/3.3V Microprocessor Supervisory Circuits
MAXIM

MAX804_CPA

3.0V/3.3V Microprocessor Supervisory Circuits
MAXIM

MAX804_CSA

3.0V/3.3V Microprocessor Supervisory Circuits
MAXIM

MAX804_EPA

3.0V/3.3V Microprocessor Supervisory Circuits
MAXIM

MAX804_ESA

3.0V/3.3V Microprocessor Supervisory Circuits
MAXIM

MAX804_MJA

3.0V/3.3V Microprocessor Supervisory Circuits
MAXIM

MAX805L

Microprocessor Supervisory Circuits
MAXIM

MAX805LC/D

Microprocessor Supervisory Circuits
MAXIM

MAX805LC/D+

暂无描述
MAXIM

MAX805LCPA

Microprocessor Supervisory Circuits
MAXIM

MAX805LCSA

Microprocessor Supervisory Circuits
MAXIM