MAX8216CPD+ [MAXIM]

Power Supply Support Circuit, Fixed, 5 Channel, CMOS, PDIP14, LEAD FREE, PLASTIC, DIP-14;
MAX8216CPD+
型号: MAX8216CPD+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Power Supply Support Circuit, Fixed, 5 Channel, CMOS, PDIP14, LEAD FREE, PLASTIC, DIP-14

光电二极管
文件: 总12页 (文件大小:508K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0169; Rev 1; 11/05  
5, 12ꢀ ꢁ 15ꢀꢂ Dedicated  
Microprocessor ꢀoltage Monitors  
_______________General Description  
____________________________Features  
4 Dedicated Comparators plus 1 Auxiliary  
The MAX8215 contains five voltage comparators; four  
are for monitoring +5V, -5V, +12V, and -12V, and the  
fifth monitors any desired voltage. The MAX8216 is  
identical, except it monitors 15V supplies instead of  
12V. The resistors reꢀuired to monitor these voltages  
and provide comparator hysteresis are included on-  
chip. All comparators have open-drain outputs. These  
devices consume 250µA max supply current over tem-  
perature.  
Comparator  
5V Dedicated Comparator Has 1.25% Accuracy  
-5V, +12V, -12V, +15V, -15V Dedicated  
Comparators Have 1.5% Accuracy  
Overvoltage/Undervoltage Detection or  
Programmable Delay Using Auxiliary Comparator  
Internal 1.24V Reference with 1% Initial Accuracy  
Wide Supply Range: 2.7V to 11V  
Built-In Hysteresis  
250µA Max Supply Current Over Temp.  
Independent Open-Drain Outputs  
All Precision Components Included  
________________________Applications  
Microprocessor Voltage Monitor  
+5V, -5V, +12V, -12V Supply Monitoring (MAX8215)  
+5V, -5V, +15V, -15V Supply Monitoring (MAX8216)  
Overvoltage/Undervoltage Detection with  
Uncommitted Comparator  
______________Ordering Information  
Industrial Controllers  
Mobile Radios  
Portable Instruments  
Industrial Eꢀuipment  
Data-Acꢀuisition Systems  
PART  
TEMP RANGE  
0°C to +70°C  
PIN-PACKAGE  
14 Plastic DIP  
14 SO  
MAX8215CPD  
MAX8215CSD  
MAX8215C/D  
MAX8215EPD  
MAX8215ESD  
MAX8215EJD  
MAX8215MPD  
MAX8215MJD  
0°C to +70°C  
0°C to +70°C  
Dice*  
__________Typical Operating Circuit  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
-55°C to +125°C  
14 Plastic DIP  
14 SO  
0.1 F  
+5V  
14 CERDIP  
14 Plastic DIP  
14 CERDIP  
GND PGND  
V
+5V  
-5V  
DD  
OUT1  
OUT2  
OUT3  
OUT4  
*Dice are tested at T = +25°C.  
A
Devices in PDIP and SO packages are available in both leaded  
and lead-free packaging. Specify lead free by adding the +  
symbol at the end of the part number when ordering. Lead free  
not available for CERDIP package.  
MAX8215  
MAX8216  
Ordering Information continued on last page.  
__________________Pin Configuration  
TOP VIEW  
+12V (+15V)  
VREF  
GND  
V
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
DD  
-12V (-15V)  
OUT1  
OUT2  
MAX8215  
MAX8216  
+5V  
-5V  
OUT3  
OUT4  
+12V (+15V)  
-12V (-15V)  
DIN  
DOUT  
PGND  
DOUT  
VREF  
DIN  
8
DIP/SO  
(
) ARE FOR  
MAX8216 ONLY.  
1.24V REFERENCE  
( ) ARE FOR MAX8216 ONLY.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
5, 12ꢀ ꢁ 15ꢀꢂ Dedicated  
Microprocessor ꢀoltage Monitors  
ABSOLUTE MAXIMUM RATINGS  
V
............................................................................-0.3V, +12V  
Operating Temperature Ranges:  
DD  
VREF..............................................................-0.3V, (V  
OUT_, DOUT Outputs....................................-0.3V, (V  
+5V Input...................................................................+20V, -0.3V  
-5V, +12V, +15V, -12V, -15V Inputs..................................... 50V  
DIN Input .......................................................(V  
Continuous Power Dissipation (T = +70°C)  
+ 0.3V)  
+ 0.3V)  
MAX821_C_ _ ......................................................0°C to +70°C  
MAX821_E_ _....................................................-40°C to +85°C  
MAX821_M_ _.................................................-55°C to +125°C  
Storage Temperature Range.............................-65°C to +165°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
DD  
DD  
+ 0.3V), -0.3V  
DD  
A
Plastic DIP (derate 10.00mW/°C above +70°C) ...........800mW  
SO (derate 8.33mW/°C above +70°C)..........................667mW  
CERDIP (derate 9.09mW/°C above +70°C)..................727mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= +5V, GND = 0V, T = T  
A
to T  
, unless otherwise noted.)  
MAX  
DD  
MIN  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER SUPPLY  
MAX821_C  
2.7  
11  
11  
V
Supply Voltage Range  
V
DD  
MAX821_E/M  
2.85  
I
Supply Current  
137  
250  
µA  
DD  
REFERENCE OUTPUT  
T
T
= +25°C  
-1.00  
-1.5  
1.00  
1.5  
A
MAX821_C  
MAX821_E  
MAX821_M  
Output Voltage Tolerance  
Referred to 1.24V  
%
-1.75  
-2.5  
1.75  
2.5  
= T  
to T  
MAX  
A
MIN  
Load Current  
40  
µA  
µV/µA  
%/V  
Load Regulation  
3.3  
0.01  
15  
Line Regulation  
Output Tempco  
COMPARATOR INPUTS  
ppm/°C  
V
T
decreasing, T = +25°C  
4.521  
4.500  
4.500  
4.464  
4.579  
4.636  
4.657  
4.657  
4.693  
4.749  
IN  
A
MAX821_C  
MAX821_E  
MAX821_M  
+5V Trip Level  
V
= T  
to T  
MAX  
A
MIN  
V
increasing  
4.636  
1.25  
1.75  
0.8  
IN  
IN  
T
T
T
= +25°C  
= +125°C  
= -55°C  
A
A
A
+5V Trip Level Hysteresis  
+12V Trip Level  
%
V
V
T
decreasing (MAX8215 only), T = +25°C  
A
10.431 10.590 10.749  
MAX821_C  
10.404  
10.378  
10.325  
10.775  
10.802  
10.855  
= T  
to T  
MAX  
MAX821_E  
MAX821_M  
A
MIN  
V
decreasing (MAX8216 only), T = +25°C  
A
13.036 13.235 13.434  
IN  
MAX821_C  
13.003  
12.970  
12.904  
13.467  
13.500  
13.566  
+15V Trip Level  
V
T
A
= T  
to T  
MIN MAX  
MAX821_E  
MAX821_M  
2
_______________________________________________________________________________________  
5, 12ꢀ ꢁ 15ꢀꢂ Dedicated  
Microprocessor ꢀoltage Monitors  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +5V, GND = 0V, T = T  
A
to T  
, unless otherwise noted.)  
MAX  
DD  
MIN  
PARAMETER  
CONDITIONS  
I V I decreasing, T = +25°C  
MIN  
TYP  
MAX  
UNITS  
-10.431 -10.590 -10.749  
IN  
A
MAX821_C  
MAX821_E  
MAX821_M  
-10.404  
-10.378  
-10.325  
-10.776  
-10.802  
-10.855  
-12V Trip Level  
-15V Trip Level  
-5V Trip Level  
V
T
= T  
to T  
A
MIN MAX  
I V I decreasing (MAX8216 only), T = +25°C  
-13.036 -13.235 -13.434  
IN  
A
MAX821_C  
MAX821_E  
MAX821_M  
-13.003  
-12.970  
-12.904  
-13.467  
-13.500  
-13.566  
V
V
T
A
= T  
to T  
MIN MAX  
I V I decreasing, T = +25°C  
-4.348 -4.415 -4.482  
IN  
A
MAX821_C  
MAX821_E  
MAX821_M  
-4.337  
-4.326  
-4.304  
-4.493  
-4.500  
-4.525  
2.00  
T
= T  
to T  
A
A
MIN MAX  
+15V trip level  
+12V trip level  
-15V trip level  
-12V trip level  
-5V trip level  
1.25  
1.25  
1.50  
1.50  
1.60  
0.005  
130  
2.00  
Threshold Hysteresis  
T
= +25°C  
= +25°C  
%
2.25  
2.25  
2.25  
Hysteresis Tempco, 15, 12, -5  
Input Resistance  
%/°C  
k
+5V input to GND  
+12V/+15V input to GND  
-5V input to REF  
168  
T
A
160  
-12V/-15V input to REF  
190  
AUXILIARY COMPARATOR INPUT  
V
decreasing, T = +25°C  
-1.5  
0
1.5  
1.75  
2.00  
2.50  
2.00  
10  
IN  
A
MAX821_C  
-1.75  
-2.00  
-2.50  
Trip Level with Respect to 1.24V  
%
MAX821_E  
MAX821_M  
Threshold Hysteresis  
Input Bias Current  
T
T
= +25°C  
1.25  
2
%
A
= +25°C  
nA  
A
V
V
V
; V = 5V, I  
= 2mA  
SINK  
0.11  
0.04  
0.10  
0.3  
0.3  
OL DD  
Voltage Output Low  
Leakage Current  
= 1.5V, I  
= 1.0V, I  
= 0.2mA  
= 0.1mA  
V
DD  
DD  
SINK  
SINK  
Off State  
1.0  
µA  
µs  
Comparator Response Time  
(All Comparators)  
30mV overdrive (Note 1)  
20  
V
THR  
)
Note 1: To overdrive the +5V/+12V/+15V comparators with a 30mV overdrive voltage, use the formula 30mV (1.24  
to determine the reꢀuired input voltage. V  
is the threshold of the particular overdriven comparator. To overdrive the  
THR  
V
THR  
-5V/-12V/-15V comparators use 30mV  
.
[1+  
]
I
I 1.24  
_______________________________________________________________________________________  
3
5, 12ꢀ ꢁ 15ꢀꢂ Dedicated  
Microprocessor ꢀoltage Monitors  
__________________________________________Typical Operating Characteristics  
(T =+25°C, unless otherwise noted.)  
A
COMPARATOR INPUT BIAS CURRENT  
vs. SUPPLY VOLTAGE  
COMPARATOR INPUT BIAS CURRENT  
OUTPUT VOLTAGE LOW  
vs. OUTPUT SINK CURRENT  
vs. TEMPERATURE  
1.6  
1.4  
1.2  
4
35  
30  
25  
20  
10  
1.5  
5
T = -55°C  
A
V
= 5V  
DD  
3.5  
3
T
A
= +25°C  
T
A
= +25°C  
1
2.5  
2
0.8  
0.6  
0.4  
0.2  
0
T
A
= +125°C  
1.5  
1
0.5  
0.5  
0
0
2
2.5  
3
3.5  
4
4.5  
5
-60 -40 -20  
0
20 40 60 80 100 120 140  
0 2.0 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2  
SUPPLY VOLTAGE (V)  
TEMPERATURE (C°)  
VOL (V)  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
REFERENCE VOLTAGE  
vs. REFERENCE SOURCE CURRENT  
REFERENCE VOLTAGE  
vs. SUPPLY VOLTAGE  
155  
150  
145  
1.25  
1.2  
1.238  
1.237  
1.236  
T
A
= +125°C  
T
A
= -55°C  
T = +25°C  
A
T = -55°C  
A
T
= +25°C  
= -55°C  
A
1.15  
1.235  
V
DD  
= 5V  
1.234  
1.233  
1.232  
1.231  
1.23  
140  
135  
130  
125  
1.1  
1.05  
1
T = +125°C  
A
T
A
-5V PIN = -5V  
-12V PIN = -5V  
+5V PIN = +5V  
+12V PIN = +12V  
NOTE: -55 C IS WORST CASE  
CONDITION FOR REFERENCE  
REGULATION AT LOW VOLTAGES.  
0.95  
2
3
4
5
6
7
8
9
10 11 12  
0
50  
100 150  
200 250 300  
1
2
3
4
6
7
8
9
10 11  
5
SUPPLY VOLTAGE (V)  
REFERENCE SOURCE CURRENT (µA)  
SUPPLY VOLTAGE (V)  
VREF OUTPUT VOLTAGE  
vs. TEMPERATURE  
1.238  
1.237  
1.236  
V
DD  
= 5V  
1.235  
1.234  
1.233  
1.232  
-55 -35 -15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
4
_______________________________________________________________________________________  
5, 12ꢀ ꢁ 15ꢀꢂ Dedicated  
Microprocessor ꢀoltage Monitors  
_____________________________Typical Operating Characteristics ꢁcontinuedꢂ  
(TA = +25°C, unless otherwise noted.)  
+5V RESPONSE WITH  
±±110V INPUT EꢀCURSION AROUNꢁ TRIP LEVEL  
-5V RESPONSE WITH  
±±110V INPUT EꢀCURSION AROUNꢁ TRIP LEVEL  
+5V PIN  
+5V PIN  
OUT1  
OUT1  
+5V COMP  
-5V COMP  
ꢁOUT OUTPUT VOLTAGE vs. SUPPLY VOLTAGE  
R± = ±5k , R2 = 41k (see Figure 4)  
ꢁIN COMPARATOR RESPONSE  
WITH 310V OVERꢁRIVE  
SUPPLY  
VOLTAGE  
COMP  
OUTPUT  
COMP  
INPUT  
DOUT  
OUTPUT  
VOLTAGE  
ꢁIN COMPARATOR RESPONSE  
WITH 510V OVERꢁRIVE  
ꢁIN COMPARATOR RESPONSE  
WITH ±110V OVERꢁRIVE  
COMP  
OUTPUT  
COMP  
OUTPUT  
COMP  
INPUT  
COMP  
INPUT  
_______________________________________________________________________________________  
5
5, 12ꢀ ꢁ 15ꢀꢂ Dedicated  
Microprocessor ꢀoltage Monitors  
_____________________Pin Description  
+5V  
PIN  
1
NAME  
VREF  
GND  
+5V  
FUNCTION  
OUT1  
OUT2  
OUT3  
OUT4  
Output of the internal 1.24V reference  
Ground. Connect to PGND.  
Input for monitoring +5V supply  
Input for monitoring -5V supply  
2
-5V  
+12V (+15V)  
-12V (-15V)  
MAX8215  
MAX8216  
3
4
-5V  
+12V  
(+15V)  
MAX8215 input for monitoring +12V  
(MAX8216 input for monitoring +15V)  
5
6
7
-12V  
(-15V)  
MAX8215 input for monitoring -12V  
(MAX8216 input for monitoring -15V)  
Noninverting input of the auxiliary  
comparator. Its inverting input is tied  
to the internal reference.  
DIN  
Power-supply ground. Bypass V  
to this pin.  
DD  
8
9
PGND  
DOUT  
DOUT  
VREF  
Output of the auxiliary comparator  
DIN  
OUT4,  
OUT3,  
OUT2,  
OUT1  
10, 11,  
12, 13  
Outputs of the four dedicated com-  
parators  
1.24V REFERENCE  
V
DD  
PGND  
GND  
Power-supply positive voltage input.  
Bypass to PGND.  
(
) ARE FOR  
MAX8216 ONLY.  
14  
V
DD  
Figure 1. Block Diagram  
_______________Detailed Description  
__________Applications Information  
The MAX8215/MAX8216 contain 5 comparators (Figure  
1). The comparator with its output labeled DOUT is dis-  
tinguished from the others in that it can be set up to mon-  
itor various voltages; each of the other 4 comparators  
monitors a specific voltage. The DOUT comparator’s  
noninverting input is available external to the device; its  
inverting input is tied internally to the reference.  
Hysteresis  
When the voltage on a typical comparator’s input is  
at or near the voltage on the other input, ambient  
noise generally causes the comparator output to  
oscillate. The most common way to eliminate this  
problem is by using hysteresis. When the two com-  
parator input voltages are eꢀual, hysteresis causes  
one comparator input voltage to move ꢀuickly past  
the other, thus taking the input out of the region  
where oscillation occurs. Standard comparators  
need external resistors for hysteresis; these resistors  
are not necessary when using any of the MAX8215  
and MAX8216 comparators because hysteresis is  
built in.  
The MAX8215/MAX8216 comparators have open-drain  
outputs. Thus, these devices reꢀuire pull-up resistors  
for proper operation. See the Typical Operating Circuit.  
Open-drain outputs are useful for driving LEDs and for  
situations in which the comparator outputs must be  
connected together (i.e., wire-ORed).  
Bypass V  
with 0.1µF connected to PGND.  
DD  
6
_______________________________________________________________________________________  
5, 12ꢀ ꢁ 15ꢀꢂ Dedicated  
Microprocessor ꢀoltage Monitors  
V
TRIP2  
RA  
RB  
INPUT VOLTAGE  
V
HYST  
1 +  
(
)
(V )  
S
V
DD  
V
TRIP1  
180k  
MAX8215  
MAX8216  
GND  
OUTPUT  
VOLTAGE  
DOUT  
9
R
A
DIN  
7
+V  
S
V
DD  
R
B
GND  
TO DETERMINE THE TRIP VOLTAGES  
FROM PARTICULAR RESISTOR  
TO CALCULATE THE REQUIRED  
RESISTOR RATIOS FOR PARTICULAR  
TRIP VOLTAGES:  
1.24V REFERENCE  
VALUES:  
RA  
RA  
RB  
V
V
REF  
TRIP1  
V
V
1 +  
=
- 1  
)
)
TRIP1 = REF  
(
RB  
V
TRIP  
=
R + R (V  
REF  
)
RA  
RB  
A
B
RA  
RB  
V
TRIP2  
V
V
(V + V  
1 +  
(
)
( )  
TRIP2 = REF  
HYST  
=
- 1  
R
B
V
+ V  
REF  
HYST  
= 16mV TYP  
HYST  
Figure 3. Undervoltage/Overvoltage Detector Waveforms and  
Formulas  
Figure 2. Undervoltage/Overvoltage Comparator Using the  
Auxiliary Comparator  
Adding hysteresis to a comparator creates two trip  
points–one for the input voltage rising and one for the  
input voltage falling. When the voltage at the  
MAX8215/MAX8216 auxiliary comparator’s (noninvert-  
ing) input falls, the threshold at which the comparator  
switches eꢀuals the reference voltage connected to the  
comparator’s inverting input. However, when the volt-  
age at the noninverting input rises, the threshold  
eꢀuals the reference voltage plus the amount of hys-  
teresis voltage built into the part. The trip point is  
somewhat more accurate when the hysteresis voltage  
is not part of the threshold voltage (i.e., when the input  
voltage is falling) because the tolerance of the hystere-  
sis specification adds to the tolerance of the trip point.  
0.1 F  
8
PGND  
14  
2
3
GND  
+5V  
V
DD  
13  
MAX8215  
MAX8216  
+V  
S
OUT1  
DOUT  
UNDERVOLTAGE  
R1  
R2  
7
9
DIN  
Overvoltage and Undervoltage  
Detection Circuits  
OVERVOLTAGE  
Figure 2 shows connection of the auxiliary comparator  
as either an undervoltage or overvoltage comparator.  
Hysteresis makes this circuit more accurate when the  
input voltage is dropping as opposed to rising. Figure  
3 illustrates the comparator’s operation. The input volt-  
age’s direction determines at which of two trip points  
the comparator switches. Thus, the diagram includes  
arrows that indicate whether the input voltage is rising  
or falling. The formulas are provided for determining  
trip-point voltages for specified resistors and for ease  
in calculating appropriate resistor ratios for particular  
trip points.  
+5V COMPARATOR IS ACTUATED WHEN V FALLS TO THE  
S
COMPARATOR'S SPECIFIED TRIP LEVEL. THE AUXILIARY  
COMPARATOR OUTPUT IS TRIPPED WHEN V  
>
R1 + R2 VREF  
S
(
)
R2  
Figure 4. Monitoring Supply Powering the MAX8215/MAX8216  
with Undervoltage and Overvoltage Comparators  
The MAX8215/MAX8216 comparator outputs correctly  
display a low level down to 0.8V supply voltage. This is  
useful in undervoltage applications where the monitored  
power supply is also the supply connected to the V  
pin. See the section Monitoring the Supply Voltage.  
DD  
_______________________________________________________________________________________  
7
5, 12ꢀ ꢁ 15ꢀꢂ Dedicated  
Microprocessor ꢀoltage Monitors  
+5V  
V
TRIP2  
0.1 F  
INPUT VOLTAGE  
(V )  
S
V
TRIP1  
8
680k  
PGND  
14  
13  
2
3
680k  
GND  
+5V  
V
GND  
DD  
OUTPUT  
VOLTAGE  
(OUT1)  
V
DD  
MAX8215  
MAX8216  
+V  
S
OUT1  
DOUT  
t
DLY  
GND  
V
DD  
OUTPUT  
VOLTAGE  
(DOUT)  
7
9
DIN  
RESET  
GND  
V
REF  
V
TRIP1  
V
TRIP2  
IS FOR V DECREASING;  
S
t
-RC In 1 -  
)
DLY =  
(
V
CC  
IS FOR V INCREASING.  
S
1 F  
NOTE: V IS THE VOLTAGE AT THE INVERTING PIN OF THE TWO COMPARATORS.  
TH  
IN THIS CASE, IT IS EQUAL TO THE INTERNAL REFERENCE VOLTAGE.  
Figure 5. Microprocessor Reset Circuit with 200ms Time Delay  
Figure 6. Microprocessor Reset with Time Delay Waveforms  
Figure 7 shows Figure 5’s µP reset circuit, but with the  
monitored supply also powering the MAX8215. Figure  
6’s waveforms and eꢀuations also apply to this circuit.  
Monitoring the Supply ꢀoltage  
The supply voltage to these devices can also be moni-  
tored by the 5V dedicated comparator and the auxiliary  
comparator. Figure 4 shows a circuit that monitors the  
The MAX8215/MAX8216 comparator outputs correctly  
display a low level down to a 0.8V typical supply voltage.  
voltage connected at V  
for both overvoltage and  
DD  
undervoltage conditions. The +5V comparator checks  
for undervoltage conditions while the auxiliary compara-  
tor monitors overvoltage conditions. In general, no extra  
supply bypassing circuitry (other than the normally rec-  
ommended 0.1µF capacitor) is reꢀuired when perform-  
ing this function. However, using resistor values higher  
than 100k at the auxiliary comparator’s input reꢀuires  
attention to eliminate potential oscillations. Also, partic-  
ularly low pull-up resistor values on DOUT contribute to  
the likelihood of the auxiliary comparator’s oscillation.  
See the section Eliminating Output Oscillation.  
Unused Inputs  
When the uncommitted comparator within the  
MAX8215/MAX8216 is not used, tie the unused input to  
either the positive supply or ground. This prevents noise  
generation due to the comparator output switching from  
one logic state to another (due to noise at the input).  
Output Pull-Up Resistors  
Pull-up resistors are reꢀuired at the outputs of each  
comparator. Resistor values should not be less than  
2.7k if the outputs are pulled up to V . In general,  
DD  
Microprocessor Reset  
____________Circuit with Time Delay  
save power by using higher values, e.g., 100k . Use  
of higher-value resistors also minimizes the possibility  
of oscillations due to a spurious feedback (see the sec-  
tion Eliminating Output Oscillation).  
It is often necessary to reset a microprocessor (µP) when  
its supply voltage drops below a certain level. Figure 5’s  
circuit generates a low output when the monitored volt-  
age drops below the 5V monitor’s threshold. Additionally,  
this output remains low for 200ms after the supply voltage  
goes above the threshold. µP reset circuits typically  
include this feature because it gives the µP time to be  
fully reset after power has been restored, and allows any  
capacitors in associated circuitry time to charge. Figure  
6 shows this circuit’s waveforms and formulas.  
Input ꢀoltage Limitation  
If the voltages at the various inputs are kept within the  
absolute maximum ratings, the device is not damaged.  
However, high input voltages within this range can  
cause the reference voltage to move. To prevent the  
reference voltage from changing, limit the +5V input to  
+17V; the -5V and -15V inputs to +1V; and the +15V  
input to +60V. Negative input voltages within the  
8
_______________________________________________________________________________________  
5, 12ꢀ ꢁ 15ꢀꢂ Dedicated  
Microprocessor ꢀoltage Monitors  
V+  
+5V  
1k  
1k  
0.1 F  
14  
0.1 F  
V
DD  
13  
OUT1  
8
680k  
PGND  
14  
2
3
7
680k  
GND  
V
DD  
MAX8215  
MAX8216  
13  
9
MAX8215  
MAX8216  
+5V  
DIN  
+V  
OUT1  
DOUT  
S
RESET  
Figure 8. Alternate Bypass Scheme  
1 F  
Figure 7. Microprocessor Reset Circuit Monitoring Its Own  
Supply Voltage  
MAX8215  
MAX8216  
9
7
DIN  
DOUT  
V
IN  
absolute maximum ratings have no effect on the refer-  
ence. Within the absolute maximum ratings, the DIN  
input has no effect on the reference.  
Power-Supply Bypassing and Grounding  
In high-noise environments where the voltage connected  
to V  
may change abruptly, the reference voltage may  
DD  
“bounce,” causing false comparator outputs. Eliminate  
this problem using Figure 8’s RC bypass network.  
Figure 9. Alternative Means for Reducing Impedance Level  
Seen at DIN  
Although bypassing the reference may appear to help,  
Figure 8’s solution is recommended; bypassing the ref-  
erence reduces its voltage change, but doing so caus-  
es a time delay prior to the reference voltage returning  
to its correct level.  
most cases, using input resistor values on the order of  
100k creates no problem. Since using lower resistor  
values increases the supply current, another approach  
is to bypass the input resistors as shown in Figure 9,  
although this slows the circuit’s response. When much  
larger valued input resistors are used, high valued resis-  
tors on the output should be used.  
Eliminating Output Oscillation when  
Using the Auxiliary Comparator  
Although hysteresis is built into the auxiliary comparator,  
output oscillation problems are still possible. Oscillation  
can occur when a comparator’s output couples back to  
its inverting input through stray board capacitance.  
Make sure the board trace leading from the comparator  
output does not pass near its inverting input (or vice  
versa). Also, reducing the resistance connected to DIN  
reduces its susceptibility to picking up output signals. In  
When DOUT is reꢀuired to sink larger currents (i.e.,  
when smaller pull-up resistor values are used), oscilla-  
tion problems are more likely to occur. To minimize  
power consumption and to optimize stability, use the  
largest value pull-up resistor feasible for the output  
drive reꢀuired. When lower pull-up resistor values are  
used, lower values for the resistors connected to the  
inputs can help alleviate oscillation problems.  
_______________________________________________________________________________________  
9
5, 12ꢀ ꢁ 15ꢀꢂ Dedicated  
Microprocessor ꢀoltage Monitors  
_Ordering Information ꢁcontinuedꢂ  
___________________Chip Topography  
PART  
TEMP. RANGE  
0°C to +70°C  
PIN-PACKAGE  
14 Plastic DIP  
14 SO  
VREF  
V
DD  
GND  
OUT1  
MAX8216CPD  
MAX8216CSD  
MAX8216C/D  
MAX8216EPD  
MAX8216ESD  
MAX8216EJD  
MAX8216MPD  
MAX8216MJD  
0°C to +70°C  
0°C to +70°C  
Dice*  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
-55°C to +125°C  
14 Plastic DIP  
14 SO  
+5  
-5  
14 CERDIP  
14 Plastic DIP  
14 CERDIP  
OUT2  
OUT3  
0.076"  
(1.930mm)  
+12V  
(+15V)  
OUT4  
* Dice are tested at T = +25°C.  
A
-12V  
(-15V)  
PGND DOUT  
DIN  
0.066"  
(1.676mm)  
(
) ARE FOR MAX8216 ONLY.  
TRANSISTOR COUNT: 275;  
SUBSTRATE CONNECTED TO V  
.
DD  
10 ______________________________________________________________________________________  
5, 12ꢀ ꢁ 15ꢀꢂ Dedicated  
Microprocessor ꢀoltage Monitors  
________________________________________________________Package Information  
INCHES  
MILLIMETERS  
DIM  
D1  
MIN  
MAX  
0.200  
MIN  
MAX  
5.08  
A
A1 0.015  
A2 0.125  
A3 0.055  
0.38  
3.18  
1.40  
0.41  
1.27  
0.20  
18.67  
1.27  
7.62  
6.10  
0.150  
0.080  
0.022  
0.065  
0.012  
0.765  
0.080  
0.325  
0.280  
3.81  
2.03  
0.56  
1.65  
0.30  
19.43  
2.03  
8.26  
7.11  
B
0.016  
B1 0.050  
C
D
0.008  
0.735  
E
D1 0.050  
0.300  
E1 0.240  
E
E1  
D
e
0.100 BSC  
0.300 BSC  
2.54 BSC  
7.62 BSC  
A3  
e
e
A
B
A2  
A1  
A
L
0.115  
0˚  
0.400  
0.150  
15˚  
2.92  
0˚  
10.16  
3.81  
L
15˚  
21-330A  
14-PIN PLASTIC  
DUAL-IN-LINE  
PACKAGE  
C
e
B1  
e
e
A
B
B
______________________________________________________________________________________ 11  
5, 12ꢀ ꢁ 15ꢀꢂ Dedicated  
Microprocessor ꢀoltage Monitors  
___________________________________________Package Information ꢁcontinuedꢂ  
INCHES  
MILLIMETERS  
DIM  
MIN  
0.053  
A1 0.004  
MAX  
0.069  
0.010  
0.019  
0.010  
0.344  
0.157  
MIN  
1.35  
0.10  
0.35  
0.19  
8.55  
3.80  
MAX  
1.75  
0.25  
0.49  
0.25  
8.75  
4.00  
A
B
C
D
E
e
0.014  
0.007  
0.337  
0.150  
E
H
0.050 BSC  
1.27 BSC  
H
h
L
0.228  
0.010  
0.016  
0˚  
0.244  
0.020  
0.050  
8˚  
5.80  
0.25  
0.40  
0˚  
6.20  
0.50  
1.27  
8˚  
21-331A  
h x 45˚  
D
A
0.127mm  
0.004in.  
14-PIN PLASTIC  
SMALL-OUTLINE  
PACKAGE  
e
A1  
C
B
L
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 __________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 ꢁ408ꢂ 737-7600  
© 2005 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX8216CSD

【5V, 【12V (【15V) Dedicated Microprocessor Voltage Monitors
MAXIM

MAX8216CSD+

Power Supply Support Circuit, Fixed, 5 Channel, CMOS, PDSO14, LEAD FREE, PLASTIC, SOP-14
MAXIM

MAX8216CSD+T

暂无描述
MAXIM

MAX8216CSD-T

暂无描述
MAXIM

MAX8216EJD

【5V, 【12V (【15V) Dedicated Microprocessor Voltage Monitors
MAXIM

MAX8216EPD

【5V, 【12V (【15V) Dedicated Microprocessor Voltage Monitors
MAXIM

MAX8216ESD

【5V, 【12V (【15V) Dedicated Microprocessor Voltage Monitors
MAXIM

MAX8216ESD-T

Power Supply Support Circuit, Fixed, 5 Channel, CMOS, PDSO14, PLASTIC, SOP-14
MAXIM

MAX8216MJD

【5V, 【12V (【15V) Dedicated Microprocessor Voltage Monitors
MAXIM

MAX8216MPD

【5V, 【12V (【15V) Dedicated Microprocessor Voltage Monitors
MAXIM

MAX8216MPD+

Power Supply Support Circuit, Fixed, 5 Channel, PDIP14, LEAD FREE, PLASTIC, DIP-14
MAXIM

MAX821LUS+T

Power Supply Support Circuit, Fixed, 1 Channel, +4.63VV, CMOS, PDSO4, LEAD FREE, TO-253, SOT-143, 4 PIN
MAXIM