MAX8568AETE-T [MAXIM]

Battery Charge Controller, BICMOS, 3 X 3 MM, 0.80 MM HEIGHT, MO-220WEED-2, TQFN-16;
MAX8568AETE-T
型号: MAX8568AETE-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Battery Charge Controller, BICMOS, 3 X 3 MM, 0.80 MM HEIGHT, MO-220WEED-2, TQFN-16

电池 信息通信管理
文件: 总17页 (文件大小:743K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3450; Rev 1; 5/05  
Complete Backup-Management ICs  
for Lithium and NiMH Batteries  
General Description  
Features  
The MAX8568A/MAX8568B backup-battery-management  
ICs are complete charging and backup switchover con-  
trol solutions for PDAs, Smart Phones, and other smart  
portable devices. They charge both NiMH and  
rechargeable lithium battery types and feature pro-  
grammable charge current and termination voltage.  
Separate optimized charge algorithms for both lithium  
and NiMH cells are included on-chip.  
Automatically Manage All Backup Switchover  
Functions  
Charge Both NiMH and Rechargeable Lithium  
Backup Batteries  
On-Chip Battery Boost Converter for 1-Cell NiMH  
Two Backup Output Voltages  
The MAX8568A/MAX8568B also manage backup  
switchover from a primary power source. An accurate on-  
chip voltage detector monitors the main supply and  
backs up two system supplies (typically I/O and memory)  
when main power falls. On-chip drivers switch external  
MOSFETs to disconnect the main supply from the system  
loads so the backup source is not drained.  
Programmable Charge Current  
Programmable Charge Voltage Limit  
Low 17µA Operating Current in Backup Mode  
Eliminate Many Discrete Components  
Tiny 3mm x 3mm Thin QFN Package  
Low-voltage backup cells can be stepped up by an on-  
chip synchronous-rectified, low-quiescent-current boost  
converter. Additionally, a low-quiescent-current LDO gen-  
erates a second backup voltage. The MAX8568A LDO is  
preset to 2.5V while the MAX8568B LDO is preset to 1.8V.  
Both devices are supplied in 16-pin 3mm x 3mm thin  
QFN packages rated for -40°C to +85°C operation.  
Ordering Information  
PIN-  
PACKAGE  
TOP  
MARK  
PART  
TEMP RANGE  
16 Thin QFN  
3mm x 3mm  
(T1633-4)  
MAX8568AETE -40°C to +85°C  
ACK  
ACL  
Applications  
16 Thin QFN  
MAX8568BETE -40°C to +85°C 3mm x 3mm  
PDAs and PDA Phones  
Smart Phones  
(T1633-4)  
DSCs and DVCs  
Palmtops and Wireless Handhelds  
Internet Appliances and Web-Books  
Typical Operating Circuit  
MAIN BATTERY  
2.8V TO 5.5V  
REF  
IN  
Pin Configuration  
BACKUP  
BATTERY  
BK  
MAX8568A  
MAX8568B  
TOP VIEW  
TERMV  
12  
11  
10  
9
I/O OUT  
LX  
STRTV  
3.3V, 50mA  
BKSU  
GND  
STRTV  
TERMV  
REF  
OD2  
OD1  
LDO  
BKSU  
13  
14  
15  
16  
8
7
6
5
IN  
I/O IN  
PGND  
GND  
MAX8568A  
MAX8568B  
BKV  
OD1  
LDO  
INOK  
CHGI  
MEM OUT  
1.8V OR 2.5V, 10mA  
MEM IN  
1
2
3
4
NI  
LI  
OD2  
NI/LI  
THIN QFN  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Complete Backup-Management ICs  
for Lithium and NiMH Batteries  
ABSOLUTE MAXIMUM RATINGS  
IN, BK, BKSU, OD1, OD2 to GND.........................-0.3V to +6.0V  
Continuous Power Dissipation (T = +70°C)  
A
BKV, LDO, NI/LI to GND.........................-0.3V to (V  
REF, CHGI, INOK, TERMV, STRTV to GND...-0.3V to (V + 0.3V)  
PGND to GND ......................................................-0.3V to + 0.3V  
LX Current ......................................................................0.9A  
+ 0.3V)  
16-Pin 3mm x 3mm Thin QFN  
BKSU  
(derate 15.6mW/°C above +70°C).............................1250mW  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
IN  
RMS  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(Circuit of Figure 7, V = V  
= 3.6V, V = 1.4V, V  
= V  
= 3.3V, V  
= GND = PGND = 0V, V  
= V = 1.2V,  
TERMV  
IN  
INOK  
BK  
NI/LI  
BKSU  
BKV  
STRTV  
R5 = 250k, T = 0°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
5.5  
5
UNITS  
IN Voltage Range  
2.8  
V
T
T
= +25°C  
= +85°C  
3
3
A
A
Charger off, V  
= 1.5V  
INOK  
IN Operating Current  
µA  
Charger on, not including charge current  
= 169k, V = 1.3V  
50  
10  
600  
90  
12  
CHGI Current Limit  
CHGI Bias Voltage  
CHGI Resistor Range  
R
8
mA  
mV  
kΩ  
CHGI  
BK  
V
V
V
V
= 1.3V  
50  
1800  
4.284  
3.58  
BK  
IN  
IN  
IN  
= 5.5V, V  
= 3.8V, V  
= 0V  
4.116  
3.42  
4.2  
3.5  
NI/LI  
BK Charge Voltage Limit  
= 0V, V  
= 1V  
V
NI/LI  
TERMV  
= V  
= 3.6V  
1.746  
1.8  
1.854  
0.5  
NI/LI  
T
= +25°C  
0.01  
0.1  
A
A
BK Reverse Leakage Current to IN  
V
V
V
V
V
= 0V  
µA  
V
IN  
T
= +85°C  
NiMH Mode BK High Threshold Voltage,  
= 1.2V  
1.37  
1.17  
1.4  
1.2  
1.43  
TERMV  
STRTV  
TERMV  
STRTV  
V
BK(NIHI)  
NiMH Mode BK Low Threshold Voltage,  
= 1.2V  
= 1.1V  
= 1.1V  
1.23  
0.05  
V
V
BK(NILO)  
T
T
T
T
= +25°C  
= +85°C  
= +25°C  
= +85°C  
0.001  
0.01  
0.001  
0.01  
1.25  
2.5  
A
A
A
A
TERMV Input Current  
STRTV Input Current  
µA  
µA  
0.05  
REF Output Voltage  
REF Load Regulation  
REF Line Regulation  
I
= 1µA  
1.23  
1.27  
10  
V
REF  
REF  
I
= 1µA to 50µA  
mV  
mV  
V
V
V
= 3V to 5.5V, I  
= 1µA  
1
7
IN  
REF  
falling  
rising  
2.38  
2.40  
2.43  
2.47  
0.005  
0.05  
2.48  
2.54  
0.1  
INOK  
INOK  
INOK Threshold Voltage  
INOK Input Current  
V
T
T
= +25°C  
= +85°C  
A
A
V
= 2V  
µA  
INOK  
NI/LI Logic-Level High  
NI/LI Logic-Level Low  
V
V
= 3.3V  
= 3.3V  
1.8  
V
V
BKSU  
BKSU  
0.4  
2
_______________________________________________________________________________________  
Complete Backup-Management ICs  
for Lithium and NiMH Batteries  
ELECTRICAL CHARACTERISTICS (continued)  
(Circuit of Figure 7, V = V  
= 3.6V, V = 1.4V, V  
= V  
= 3.3V, V  
= GND = PGND = 0V, V  
= V = 1.2V,  
TERMV  
IN  
INOK  
BK  
NI/LI  
BKSU  
BKV  
STRTV  
R5 = 250k, T = 0°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
µA  
T
T
= +25°C  
= +85°C  
0.05  
0.1  
1
A
A
NI/LI Input Current  
V
V
V
= V  
= 3.3V  
NI/LI  
BKSU  
BKSU  
OD_ On-Resistance  
= 3.6V  
= 5.5V  
11  
30  
1
T
T
= +25°C  
= +85°C  
0.01  
0.1  
A
OD_ Leakage Current  
µA  
OD_  
A
BACKUP STEP-UP (Note 2)  
BK Input Undervoltage Lockout  
V
V
= 0V, falling trip point  
2.45  
1.12  
NI/LI  
NI/LI  
V
= V  
= 3.3V, falling trip point  
1.05  
1.21  
5.5  
25  
BKSU  
BK Input Voltage  
V
Quiescent Current into BKSU  
Quiescent Current into BK  
I
I
= 0mA, not switching  
17  
2.4  
0.001  
0.1  
1.21  
5
µA  
µA  
LDO  
= I  
= 0mA, not switching  
4
BKSU  
LDO  
T
T
= +25°C  
= +85°C  
0.5  
A
A
Shutdown Current into BK  
BKV Feedback Voltage  
V
= V  
= V = 0V  
BKSU  
µA  
V
IN  
INOK  
1.162  
1.258  
50  
T
T
= +25°C  
= +85°C  
A
A
BKV Feedback Bias Current  
V
= 1V  
nA  
BKV  
10  
V
V
= 0V  
3.17  
2.4  
3.3  
2.5  
3.43  
2.6  
5
BKV  
BKV  
BKSU Output-Voltage Accuracy  
V
= V  
BKSU  
BKSU Output Voltage Range  
n-Channel Switch On-Resistance  
p-Channel Switch On-Resistance  
2.5  
V
I
I
= 200mA  
= 200mA  
= +25°C  
= +85°C  
0.4  
0.7  
0.05  
0.1  
500  
5
1
LX  
LX  
2
T
T
1
A
A
LX Leakage Current  
µA  
LX Current Limit (ILIM)  
400  
3.5  
5
600  
6.5  
35  
mA  
µs  
n-Channel Switch Maximum On-Time  
p-Channel Zero-Channel Crossing Current  
LOW-DROPOUT REGULATOR  
BKSU Input Voltage Range  
20  
mA  
2.7  
2.375  
1.71  
5.0  
2.625  
1.89  
V
V
MAX8568A  
MAX8568B  
2.5  
1.8  
1
LDO Output-Voltage Accuracy  
V
= 3.3V  
BKSU  
LDO Line Regulation  
LDO Load Regulation  
2.7V < V  
< 5V, I  
= 1mA  
mV  
mV  
BKSU  
LDO  
1µA < I  
< 10mA  
2.5  
LDO  
_______________________________________________________________________________________  
3
Complete Backup-Management ICs  
for Lithium and NiMH Batteries  
ELECTRICAL CHARACTERISTICS  
(Circuit of Figure 7, V = V  
= 3.6V, V = 1.4V, V  
= V  
= 3.3V, V  
= GND = PGND = 0V, V  
= V = 1.2V,  
TERMV  
IN  
INOK  
BK  
NI/LI  
BKSU  
BKV  
STRTV  
R5 = 250k, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 3)  
A
A
PARAMETER  
CONDITIONS  
MIN  
MAX  
5.5  
UNITS  
V
IN Voltage Range  
2.8  
IN Operating Current  
CHGI Current Limit  
CHGI Resistor Range  
Charger on, not including charge current  
= 169k, V = 1.3V  
90  
µA  
R
8
12  
mA  
kΩ  
CHGI  
BK  
V
V
V
V
= 1.3V  
50  
1800  
4.310  
3.605  
1.854  
BK  
IN  
IN  
IN  
= 5.5V, V  
= 3.8V, V  
= 0V  
4.116  
3.420  
1.746  
NI/LI  
BK Charge Voltage Limit  
V
= 0V, V  
= 1V  
NI/LI  
TERMV  
= V  
= 3.6V  
NI/LI  
NiMH Mode BK High Threshold Voltage,  
V
V
= 1.2V  
= 1.2V  
1.37  
1.43  
1.23  
V
V
TERMV  
STRTV  
V
BK(NIHI)  
NiMH Mode BK Low Threshold Voltage,  
1.17  
V
BK(NILO)  
REF Output Voltage  
REF Load Regulation  
REF Line Regulation  
I
= 1µA  
1.225  
1.275  
10  
V
REF  
REF  
I
= 1µA to 50µA  
mV  
mV  
V
V
V
V
V
V
= 3V to 5.5V, I  
= 1µA  
7
IN  
REF  
falling  
rising  
2.38  
2.40  
1.8  
2.48  
2.54  
INOK  
INOK  
BKSU  
BKSU  
BKSU  
INOK Threshold Voltage  
V
NI/LI Logic-Level High  
NI/LI Logic-Level Low  
= 3.3V  
= 3.3V  
= 3.6V  
V
V
0.4  
30  
OD_ On-Resistance  
BACKUP STEP-UP (Note 2)  
BK Input Undervoltage Lockout  
BK Input Voltage  
V
= V  
= 3.3V, falling trip point  
BKSU  
1.05  
1.21  
5.5  
25  
V
V
NI/LI  
Quiescent Current into BKSU  
Quiescent Current into BK  
BKV Feedback Voltage  
I
I
= 0mA, not switching  
µA  
µA  
V
LDO  
= I  
= 0mA, not switching  
4
BKSU  
LDO  
1.162  
3.17  
2.4  
1.258  
3.43  
2.6  
5.0  
1
V
V
= 0V  
BKV  
BKV  
BKSU Output-Voltage Accuracy  
V
= V  
BKSU  
BKSU Output Voltage Range  
n-Channel Switch On-Resistance  
p-Channel Switch On-Resistance  
2.5  
V
I
I
= 200mA  
= 200mA  
LX  
LX  
2
4
_______________________________________________________________________________________  
Complete Backup-Management ICs  
for Lithium and NiMH Batteries  
ELECTRICAL CHARACTERISTICS (continued)  
(Circuit of Figure 7, V = V  
= 3.6V, V = 1.4V, V  
= V  
= 3.3V, V  
= GND = PGND = 0V, V  
= V = 1.2V,  
TERMV  
IN  
INOK  
BK  
NI/LI  
BKSU  
BKV  
STRTV  
R5 = 250k, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 3)  
A
A
PARAMETER  
CONDITIONS  
MIN  
400  
3.5  
5
MAX  
600  
6.5  
UNITS  
mA  
LX Current Limit (ILIM)  
n-Channel Switch Maximum On-Time  
p-Channel Zero-Channel Crossing Current  
LOW-DROPOUT REGULATOR  
BKSU Input Voltage Range  
µs  
35  
mA  
2.7  
2.375  
1.71  
5.0  
2.625  
1.89  
V
V
MAX8568A  
MAX8568B  
LDO Output-Voltage Accuracy  
V
= 3.3V  
BKSU  
Note 1: All units are 100% production tested at T = +25°C. Limits over the operating range are guaranteed by design.  
A
Note 2: All backup step-up converter specifications are with V = V  
= 0V, unless otherwise noted.  
IN  
INOK  
Note 3: Specifications to -40°C are guaranteed by design and not production tested.  
Typical Operating Characteristics  
(Circuit of Figure 7, V = 3.6V, V = 1.4V, V  
= V  
= 3.3V, T = +25°C, unless otherwise noted.)  
IN  
BK  
NI/LI  
BKSU A  
NiMH CHARGE CURRENT  
vs. BACKUP BATTERY VOLTAGE  
LITHIUM CHARGE CURRENT  
vs. BACKUP BATTERY VOLTAGE  
Li-ION TERMINATION VOLTAGE  
vs. TEMPERATURE  
12  
10  
8
14  
4.180  
4.179  
4.178  
4.177  
4.176  
4.175  
4.174  
4.173  
4.172  
4.171  
4.170  
V
IN  
= 5V, V  
= 4.2V  
BK(LIMAX)  
12  
10  
8
V = 3.9V  
IN  
V
BK(LIMAX)  
6
FALLING  
RISING  
= 3.4V  
6
4
4
2
2
V
= 3.9V  
0.4  
IN  
0
0
0
0.8  
1.2  
1.6  
2.0  
0
0.6 1.2 1.8 2.4 3.0 3.6 4.2  
BACKUP BATTERY VOLTAGE (V)  
-40  
-15  
10  
35  
60  
85  
BACKUP BATTERY VOLTAGE (V)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
5
Complete Backup-Management ICs  
for Lithium and NiMH Batteries  
Typical Operating Characteristics (continued)  
(Circuit of Figure 7, V = 3.6V, V = 1.4V, V  
= V  
= 3.3V, T = +25°C, unless otherwise noted.)  
IN  
BK  
NI/LI  
BKSU A  
CHARGE PROFILE FOR LiVeO5  
CHARGE PROFILE FOR NiMH  
CHARGE CURRENT vs. TEMPERATURE  
MAX8568 toc06  
MAX8568 toc05  
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
8
7
6
5
4
3
2
1
0
1.42  
6
5
4
3
2
1
0
11.0  
10.8  
10.6  
10.4  
10.2  
10.0  
9.8  
V
= 3.4V  
VARTA V20HR  
BK(LIMAX)  
R5 = 432kΩ  
V
BK  
= 3.6V, V = 4.2V, R5 = 127kΩ  
IN  
1.40  
1.38  
1.36  
1.34  
1.32  
1.30  
BK VOLTAGE  
BK VOLTAGE  
V
V
V
= 1.2V  
= 1.4V  
BK(NILO)  
BK(NIHI)  
= 1.8V  
BK(NIMAX)  
R5 = 953kΩ  
CHARGE CURRENT  
9.6  
V
BK  
= 3.6V, V = 4V, R5 = 127kΩ  
IN  
9.4  
CHARGE CURRENT  
V
= 1.4V, V = 4V, R5 = 169kΩ  
IN  
BK  
9.2  
PANASONIC VL2330  
9.0  
0
2
4
6
8
10  
0
2
4
6
8
10  
-40  
-15  
10  
35  
60  
85  
CHARGE TIME (HOURS)  
CHARGE TIME (HOURS)  
TEMPERATURE (°C)  
3.3V STEP-UP EFFICIENCY  
vs. LOAD CURRENT  
2.5V STEP-UP EFFICIENCY  
vs. LOAD CURRENT  
BKSU OUTPUT VOLTAGE  
vs. LOAD CURRENT  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
3.20  
T
A
= -40°C  
T
= +25°C  
A
T
= +85°C  
A
V
= 2.9V  
BK  
V
BK  
= 2.9V  
V
= 1.4V  
BK  
V
= 1.4V  
BK  
L1 = MURATA LQH32CN100K  
0.01 0.1  
L1 = MURATA LQH32CN100K  
0.01 0.1  
1
10  
100  
1
10  
100  
0
10  
20  
30  
40  
50  
60  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
BK SUPPLY CURRENT  
vs. INPUT VOLTAGE  
LIGHT-LOAD SWITCHING WAVEFORMS  
HEAVY-LOAD SWITCHING WAVEFORMS  
MAX8568 toc11  
MAX8568 toc12  
70  
60  
50  
40  
30  
20  
10  
0
V
BKSU  
20mV/div  
AC-COUPLED  
BOOST AND LDO ACTIVE  
20mV/div  
AC-COUPLED  
V
BKSU  
2V/div  
0
2V/div  
0
V
LX  
V
LX  
200mA/div  
0
200mA/div  
0
I
LX  
I
LX  
V
BKSU  
= 3.3V  
C3 = 22µF  
LOAD = 1mA  
C3 = 22µF  
LOAD = 50mA  
50µs/div  
1
2
3
4
5
5µs/div  
INPUT VOLTAGE (V)  
6
_______________________________________________________________________________________  
Complete Backup-Management ICs  
for Lithium and NiMH Batteries  
Typical Operating Characteristics (continued)  
(Circuit of Figure 7, V = 3.6V, V = 1.4V, V  
= V  
= 3.3V, T = +25°C, unless otherwise noted.)  
IN  
BK  
NI/LI  
BKSU A  
BKSU LOAD TRANSIENT  
V
BKSU  
vs. LDO LOAD CURRENT  
MAIN-TO-BK TRANSITION WAVEFORMS  
MAX8568 toc14  
MAX8658 toc13  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
3V  
2V  
V
INOK  
I
BKSU  
10mA/div  
0
I
= 20mA  
BKSU  
2V/div  
0
V
LX  
MAX8568 PROVIDES 3.3V  
MAX1586 PROVIDES 3.3V  
I
= 40mA  
BKSU  
20mV/div  
AC-COUPLED  
V
BKSU  
50mV/div  
AC-COUPLED  
V
BKSU  
C3 = 22µF  
C3 = 22µF  
LOAD = 10mA  
SWITCHOVER POINT  
200µs/div  
200µs/div  
0.1  
1
10  
100  
LDO LOAD CURRENT (mA)  
LDO OUTPUT VOLTAGE  
vs. BK INPUT VOLTAGE  
BKSU RESPONSE TO  
LDO LOAD TRANSIENT  
LDO LOAD TRANSIENT  
MAX8568 toc17  
MAX8568 toc18  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
I
10mA/div  
0
LDO  
10mA/div  
0
I
LDO  
20mV/div  
AC-COUPLED  
V
BKSU  
20mV/div  
AC-COUPLED  
V
LDO  
I
BKSU = 0mA  
C3 = 22µF  
0
1
2
3
4
5
200µs/div  
400µs/div  
BK INPUT VOLTAGE (V)  
V
INOK  
RISING  
V
INOK  
FALLING  
MAX8568 TOC20  
MAX8568 toc19  
1V/div  
2V  
V
INOK  
V
INOK  
2V/div  
0V  
5V/div  
0
V
LX  
5V/div  
0
V
LX  
V
1V/div  
0
1V/div  
0
OD2  
V
OD2  
2V/div  
0
2V/div  
0
V
OD1  
V
OD1  
4ms/div  
200µs/idv  
_______________________________________________________________________________________  
7
Complete Backup-Management ICs  
for Lithium and NiMH Batteries  
Pin Description  
PIN  
NAME  
FUNCTION  
Main Battery Input. Connect to a 2.8V to 5.5V battery or other power source. Bypass with a 4.7µF  
ceramic capacitor to GND.  
1
IN  
Backup Battery Input. Connect to an NiMH or rechargeable lithium backup battery. Connect a ceramic  
bypass capacitor from BK to GND. See the Step-Up Capacitor Selection section for more details.  
2
BK  
Power Ground. Connect PGND to the ground side of the BK input capacitor and BKSU output  
capacitor. Use this connection as the star point for all grounds. See the PC Board Layout and Routing  
section for specific instructions regarding PGND.  
3
4
5
PGND  
LX  
Inductor Connection for Low-I Step-Up DC-DC Converter  
Q
Step-Up Converter Output. Bypass with a 10µF to 22µF ceramic capacitor to PGND. The BKSU output  
voltage is set to either 3.3V or 2.5V without resistors, or to an adjustable voltage with an external  
resistor-divider. See the Setting the Step-Up Converter Voltage section.  
BKSU  
2.5V (MAX8568A) or 1.8V (MAX8568B), 10mA LDO Output for Memory Supply. LDO is powered from  
BKSU. Bypass with a 4.7µF ceramic capacitor to GND.  
6
LDO  
7
8
OD1  
OD2  
11Open-Drain Output. OD1 drives the gate of an external pMOS switch.  
11Open-Drain Output. OD2 drives the gate of an external pMOS switch.  
Selects NiMH or Rechargeable Lithium Backup Battery. Connect NI/LI to BKSU if an NiMH backup  
battery is used. Connect NI/LI to GND if a rechargeable lithium backup battery is used.  
9
NI/LI  
Sets the BKSU Output Voltage. Connect to GND for 3.3V output at BKSU. Connect to BKSU for 2.5V  
output. Connect to the midpoint of a resistor-divider connected from BKSU to GND for adjustable  
output. See the Setting the Step-Up Converter Voltage section.  
10  
BKV  
Main Battery Monitor. When V  
step-up converter and LDO turn on, and OD1 and OD2 go high impedance.  
falls below 2.43V, charging stops and backup mode starts. The  
INOK  
11  
12  
INOK  
CHGI  
Sets Backup Battery Charge Current. Connect a resistor from CHGI to GND to set the charge current.  
See the Setting the Charge Current section for details.  
13  
14  
GND  
Ground. Connect to the exposed paddle. Star all grounds at the BKSU output capacitor ground.  
STRTV  
Sets Fast-Charge Start Voltage for NiMH. See the Using an NiMH Backup Battery section.  
Sets Fast-Charge Stop Voltage for NiMH, as Well as the Battery Regulation Voltage for Both  
Rechargeable Lithium and Maximum Voltage for NiMH. See the Using a Lithium Backup Battery  
section and the Using an NiMH Backup Battery section.  
15  
TERMV  
16  
EP  
REF  
Reference Output. Bypass with a 0.22µF ceramic capacitor to GND.  
Exposed Paddle. Connect to the analog ground plane. EP also functions as a heatsink. Solder to the  
circuit-board analog ground plane.  
8
_______________________________________________________________________________________  
Complete Backup-Management ICs  
for Lithium and NiMH Batteries  
that the I/O supply be activated at least one time before  
Detailed Description  
the backup battery can be stepped up. This allows the  
end product to draw no backup battery current while “on  
the shelf” waiting for its first activation. The step-up DC-  
DC converter is enabled, and reaches regulation, 50µs  
(typ) after INOK falls below 2.43V (typ).  
The MAX8568A/MAX8568B are compact ICs for manag-  
ing backup battery charging and utilization in PDAs and  
other smart handheld devices. The MAX8568A/  
MAX8568B are comprised of three major blocks: 1) A  
multichemistry charger for small lithium-ion, lithium-man-  
The step-up converter includes a built-in synchronous  
rectifier that reduces cost by eliminating the need for  
an external diode and improves overall efficiency. The  
converter also features a clamp circuit that reduces  
EMI due to inductor ringing. The output voltage is set to  
3.3V or 2.5V by connecting BKV to either GND or  
BKSU, respectively. For adjustable output, connect  
BKV to a resistor-divider from BKSU to GND.  
ganese, LiVeO , and NiMH batteries; 2) a small very-  
5
low-current step-up DC-DC converter that generates a  
boosted backup supply when the backup battery output  
is less than required; and 3) an LDO that supplies a  
second backup voltage to an additional system block  
(typically low-voltage RAM).  
Multichemistry Charger  
The backup battery charger charges most types of  
rechargeable lithium and NiMH cells. Charging current  
can be set up to 25mA by a resistor connected from  
CHGI to GND. The charger operates a current-limited  
voltage source for rechargeable lithium batteries, and  
switches between fast and trickle charging for NiMH  
batteries.  
LDO  
For designs that require two different backup voltages,  
the MAX8568 includes a small LDO that is powered from  
BKSU. This LDO can supply up to 10mA and uses only  
5µA of operating current. The LDO output is preset to  
2.5V in the MAX8568A and 1.8V in the MAX8568B. The  
LDO is activated after V  
falls below 2.43V (typ).  
INOK  
NiMH Charging Scheme  
The NiMH charger operates at two different charge cur-  
rents based upon the voltages at TERMV and STRTV.  
Switchover Behavior  
See Figure 1 for switchover timing. If the backup bat-  
tery is connected to the system before main power, the  
MAX8568 remains off and draws very little current, typi-  
cally less than 0.5µA. This allows the end product to  
draw no backup battery current while “on the shelf”  
waiting for its first activation. When main power is con-  
nected, the MAX8568 powers on, assuming the main  
battery is greater than 2.8V. The MAX8568 begins to  
charge the backup battery if needed (see the  
Multichemistry Charger section). The OD1 and OD2  
outputs pull to GND and turn on the external p-channel  
MOSFETs. This allows the voltage on I/O IN and MEM  
IN (Figure 7) to pass through to the I/O OUT and MEM  
OUT outputs. These I/O and MEM voltages are typically  
provided by a MAX1586/MAX1587 power-supply IC.  
V
sets the BK voltage below which fast charging  
STRTV  
(set by CHGI) occurs. V  
sets the upper BK trip  
TERMV  
point where fast charging stops and trickle charging  
begins, and also sets a maximum voltage limit for the  
NiMH battery. If V  
is 1.2V, then fast charge stops  
TERMV  
at 1.2 / 0.86 = 1.4V, and the maximum voltage limit is  
1.2 / 0.67 = 1.791V.  
An NiMH battery fast charges until it hits 1.4V set by  
V
. The charger then switches to trickle charge at  
TERMV  
a current that is 10% of fast charge (set by CHGI). If the  
voltage drops (due to loading or self-discharge) to 1.2V  
(with V  
= 1.2V), fast charge resumes. If the volt-  
STRTV  
age then increases back to 1.4V (with V  
= 1.2V),  
TERMV  
trickle charge resumes. If the cell voltage reaches 1.8V,  
the charge current falls to zero.  
INOK monitors the main battery voltage and activates  
the backup boost converter and LDO when the voltage  
on V  
falls below 2.43V. The backup converter  
INOK  
Lithium Charging Scheme  
starts 50µs after V  
falls. OD1 and OD2 go high  
INOK  
When charging rechargeable lithium-type batteries,  
impedance and turn off the external p-channel  
MOSFETs. These MOSFETs disconnect the I/O IN and  
MEM IN inputs from the load. This ensures that the I/O  
and MEM main supplies do not draw current from the  
backup source (MAX8568). The charger also turns off  
when INOK is less than 2.43V.  
V
sets the charging voltage while V  
is unused.  
TERMV  
STRTV  
Charge current is set by a resistor from CHGI to GND.  
There is no trickle charge for lithium mode. This charging  
scheme is essentially a current-limited voltage source.  
Step-Up DC-DC Converter  
If an NiMH battery or lower-voltage rechargeable lithium  
battery is used for backup, it may be necessary to boost  
the battery voltage to 2.5V, 3.3V, or some other voltage to  
power RAM, RTC, or other devices. The step-up DC-DC  
converter is powered by the backup battery but requires  
If the MAX8568 is being evaluated as a stand-alone  
device, note that the backup-battery boost converter will  
not operate unless I/O IN has been activated at least one  
time. The typical power removal sequence for testing is 1)  
main battery goes low, then 2) MEM IN and I/O IN go low.  
_______________________________________________________________________________________  
9
Complete Backup-Management ICs  
for Lithium and NiMH Batteries  
1.12V  
BK  
CHARGER  
50µs  
IN  
2.43V  
INOK  
I/O IN  
I/O OUT  
STEP-UP DC-DC CONVERTER  
OD1  
MEM IN  
MEM OUT  
LDO  
OD2  
Figure 1. Timing Diagram  
where V is the nominal voltage of the charged back-  
BK  
Applications Information  
up battery. This is the fast-charge current for both  
NiMH and lithium batteries. For NiMH batteries, the  
trickle charge is 10% of the fast-charge current.  
Setting the Charge Current  
Charge current is set by a resistor connected from  
CHGI to GND (R5 in Figure 7). The acceptable resistor  
Using a Rechargeable Lithium  
Backup Battery  
The MAX8568 can charge a lithium-type backup bat-  
tery from the main battery connected at IN. Connect  
NI/LI to GND for lithium backup battery charging.  
STRTV is unused and should be connected to GND in  
lithium charge mode.  
range is from 50kto 1800k. R  
is calculated by  
CHGI  
the following.  
1.1641  
41.2 × V V  
+679.4  
(
)
IN  
BK  
R
kΩ =   
(
)
CHGI  
I
mA  
(
)
CHG  
10 ______________________________________________________________________________________  
Complete Backup-Management ICs  
for Lithium and NiMH Batteries  
The lithium charger acts like a current-limited voltage  
source. The battery regulation voltage for lithium mode,  
, is:  
ues to rise when trickle charged, all charging ceases at  
V
. V  
, V  
, and V are  
BK(NIMAX)  
BK(NIMAX)  
BK(NILO)  
BK(NIHI)  
V
set as follows:  
BK voltage where fast charge begins:  
= V  
BK(LIMAX)  
V
= 3.5 x V  
TERMV  
BK(LIMAX)  
If V  
= 1.2V, then the final charge voltage is 4.2V.  
V
BK(NILO)  
TERMV  
STRTV  
Connect TERMV to a resistor-divider from REF to GND.  
BK voltage where trickle charge begins:  
= 1.163 x V  
Adjust V  
with resistors R11 and R12 (Figure 2).  
TERMV  
V
BK(NIHI)  
TERMV  
Select R12 to be in the 100kto 1Mrange. Calculate  
R11 as follows:  
BK voltage where all charging stops:  
= 1.493 x V  
V
BK(NIMAX)  
TERMV  
3.5 × V  
REF  
Resistor-dividers (see Figure 3) set V  
and V  
TERMV  
STRTV  
R11 = R12  
1  
V
by dividing down REF. To minimize operating current,  
resistors between 100kand 1Mshould be used for  
R14 and R16 in Figure 3. The formulas for the upper  
BK(LIMAX)  
where V  
=1.25V.  
REF  
divider-resistors in terms of V  
BK(NIMAX)  
, V  
, and  
BK(NIHI)  
BK(NILO)  
Using an NiMH Backup Battery  
The MAX8568 can charge NiMH backup batteries from  
the main battery connected at IN. Connect NI/LI to  
V
are:  
V
REF  
BKSU for NiMH backup battery charging. V  
sets  
TERMV  
R13 = R14  
1  
V
the maximum cell voltage and also the trip point for the  
BK(NILO)  
fast-charge-to-trickle-charge transition. V  
trickle-to-fast-charge transition threshold.  
sets the  
STRTV  
1.163 × V  
REF  
R15 = R16  
1  
In NiMH charge mode (NI/LI connected to BKSU), the  
charger ramps the battery between two thresholds  
V
BK(NIHI)  
measured at the battery connection BK, V  
and  
BK(NILO)  
Once V  
age is:  
is selected, the maximum battery volt-  
BK(NIHI)  
V
. When the battery falls to V  
, trickle  
BK(NIHI)  
BK(NILO)  
charging stops and fast charging starts. When the bat-  
V
= 1.283 x V  
BK(NIMAX)  
BK(NIHI)  
tery rises to V  
, fast charging stops and trickle  
BK(NIHI)  
charging begins. If, for any reason, the battery contin-  
16  
REF  
16  
REF  
R13  
R15  
R11  
15  
14  
TERMV  
STRTV  
15  
TERMV  
R16  
R12  
14  
STRTV  
R14  
Figure 2. Resistor-Divider for Setting the Maximum Battery  
Voltage, V , for Rechargeable Lithium-Type Backup  
BK(LIMAX)  
Batteries  
Figure 3. 2-Resistor-Dividers for Setting V  
and V  
BK(NIHI)  
BK(NILO)  
______________________________________________________________________________________ 11  
Complete Backup-Management ICs  
for Lithium and NiMH Batteries  
Note that both V  
and V  
can be set with a  
BK(NILO)  
BK(NIHI)  
2-resistor voltage-divider as shown in the typical applica-  
tion circuit (see Figure 7) if the factory-set ratio between  
the two thresholds is acceptable. In that case:  
16  
15  
14  
REF  
TERMV  
STRTV  
R17  
R18  
V
REF  
R6 = R8  
1  
V
BK(NILO)  
V
= 1.163 x V  
BK(NILO)  
BK(NIHI)  
V
= 1.283 x V  
BK(NIHI)  
BK(NIMAX)  
One 3-resistor-divider can be used to set both  
and V independently. Figure 4 shows  
R19  
V
BK(NILO)  
BK(NIHI)  
the connections of R17, R18, and R19. Select R19 in  
the 100kto 1Mrange. The equations for the two  
upper divider-resistors are:  
Figure 4. 3-Resistor Divider Used to Set V  
and V  
BK(NIHI)  
BK(NILO)  
V
REF  
R18 = R19  
1  
V
BK(NILO)  
Step-Up Capacitor Selection  
Choose output capacitors to supply output peak cur-  
rents with acceptable voltage ripple. Low equivalent-  
series-resistance (ESR) capacitors are recommended.  
Ceramic capacitors have the lowest ESR, but low-ESR  
tantalum or polymer capacitors offer a good balance  
between cost and performance.  
1.163 × V  
REF  
R17 = (R18 + R19) ×  
1  
V
BK(NIHI)  
Setting the Switchover Voltage  
sets the IN voltage at which backup mode starts.  
V
INOK  
Output voltage ripple has two components: variations in  
the charge stored in the output capacitor with each LX  
pulse and the voltage drop across the capacitor’s ESR  
caused by the current into and out of the capacitor. The  
equations for calculating output ripple are:  
INOK connects to a resistor-divider between IN and  
GND. The MAX8568 requires V greater than 2.8V for  
IN  
proper operation when not backing up, so the backup  
threshold, V  
2.8V. Once V  
, must be set for no less than  
drops below 2.43V (typ), V may be  
IN(BACKUP)  
INOK  
IN  
V
= V  
+ V  
x R  
less than 2.8V. The resistor-divider for INOK is shown in  
Figure 7 (R9 and R10). Select resistor R10 to be in the  
100kto 1Mrange. Calculate R9 as follows:  
RIPPLE  
RIPPLE(C)  
RIPPLE(ESR)  
ESR(CBKSU)  
V
= I  
RIPPLE(ESR)  
PEAK  
L
1
2
2
V
=
I
V
RIPPLE(C)  
PEAK  
IN(BACKUP)  
V
V  
C
R9 = R10  
1  
(
)
BKSU  
BK BKSU   
V
INOK  
where I  
is the peak inductor current (see the  
PEAK  
where V  
= 2.43V, and V  
must be set  
IN(BACKUP)  
INOK  
Inductor Selection section). For ceramic capacitors, the  
greater than 2.8V.  
output voltage ripple is typically dominated by  
V
.
RIPPLE(C)  
Step-Up Converter  
The step up DC-DC converter is most likely used with  
NiMH backup batteries, but can also be used with  
rechargeable lithium backup batteries. If the backup  
battery voltage is greater than the set output voltage at  
BKSU, the output voltage follows the backup battery  
voltage. The voltage difference between the backup  
battery and BKSU never exceeds a diode forward-volt-  
age drop. If I/O OUT (Figure 7) is less than BK during  
charge mode, no current flows from BK to I/O OUT.  
Input capacitors connected to IN and BK should be  
X5R or X7R ceramic capacitors. C should be 4.7µF or  
IN  
greater. C should be 10µF or greater when using the  
BK  
step-up converter. If the step-up converter is not used,  
then C can be reduced to 1µF.  
BK  
Capacitance and ESR variation with temperature should  
be considered for best performance in applications with  
wide operating temperature ranges.  
12 ______________________________________________________________________________________  
Complete Backup-Management ICs  
for Lithium and NiMH Batteries  
Inductor Selection  
The control scheme of the MAX8568 permits flexibility in  
choosing an inductor. A 10µH inductor performs well in  
most applications. Smaller inductance values typically  
offer smaller physical size for a given series resistance,  
allowing the smallest overall circuit dimensions. Circuits  
using larger inductance may provide higher efficiency  
and exhibit less ripple, but also may reduce the maxi-  
mum output current. This occurs when the inductance is  
LDO Capacitor Selection  
Capacitors are required at the LDO output of the  
MAX8568 for stable operation over the full load and tem-  
perature range. A 4.7µF or greater X5R or X7R ceramic  
capacitor is recommended. To reduce noise and  
improve load-transient response, larger output capaci-  
tors up to 10µF can be used. Surface-mount ceramic  
capacitors have very low ESR and are commonly avail-  
able in values up to 10µF. Note that some ceramic  
dielectrics, such as Z5U and Y5V, exhibit large capaci-  
tance and ESR variation with temperature and require  
larger than the recommended values to maintain stability  
and good load-transient response over temperature.  
sufficiently large to prevent the LX current limit (I  
)
LIM  
from being reached before the maximum on-time  
(t ) expires.  
ON(MAX)  
For maximum output current, choose the inductor value  
so that the controller reaches the current limit before  
the maximum on-time is reached:  
External MOSFET Drivers—OD1, OD2  
OD1 and OD2 are open-drain outputs and are  
designed to be connected to the gates of external p-  
channel MOSFETs (see Figure 7). These MOSFETs  
connect the main system power supplies (I/O IN and  
MEM IN) to the system loads (I/O OUT and MEM OUT)  
during normal operation. During backup, they discon-  
nect the power supplies from the system loads to pre-  
vent the power supplies from drawing backup current  
away from the system. For this reason, the MOSFETs  
are connected “backwards” from what might be  
expected. The source of the MOSFETs are connected  
to the system load side (I/O OUT and MEM OUT). The  
MOSFETs’ purpose is to block current flow from the  
backup supply (BKSU) to the main supplies (I/O IN and  
MEM IN). They do not block current flow from I/O IN to  
I/O OUT and from MEM IN to MEM OUT. Even when off,  
the MOSFET body diodes allow current to pass in that  
direction.  
V
× t  
BK  
ON(MAX)  
L <  
I
LIM  
where t  
is typically 5µs, and the current limit (I  
)
ON(MAX)  
LIM  
is typically 500mA (see the Electrical Characteristics  
table).  
For larger inductor values, determine the peak inductor  
current (I  
) by:  
PEAK  
V
× t  
BK  
ON(MAX)  
L
I
=
PEAK  
Setting the Output Voltage  
The output voltage is set to 2.5V or 3.3V, or is  
adjustable. Connect BKV to GND for 3.3V, and BKV to  
BKSU for 2.5V. The adjustable output voltage is set  
from 2.5V to 5V using external resistors R1 and R2  
(Figure 7). Since FB leakage is 50nA (max), select  
feedback resistor R2 in the 100kto 1Mrange.  
Calculate R1 as follows:  
OD1 is intended to drive the MOSFET switch for I/O IN  
and I/O OUT, while OD2 is intended to drive the MOSFET  
switch for MEM IN and MEM OUT. See the Typical  
Operating Characteristics and Figure 1 for typical opera-  
tion of OD1 and OD2.  
V
V
BKSU  
R1 = R2  
1  
External MOSFET Selection  
The external MOSFET should be chosen based upon  
BKV  
R
and gate capacitance. When V  
> 2.43V  
INOK  
DS(ON)  
where V  
= 1.21V.  
BKV  
(main battery > 2.8V), the current required for normal  
operation of I/O and MEM goes through these external  
LDO  
The LDO output voltage is preset to 2.5V for the  
MAX8568A and 1.8V for the MAX8568B. The LDO can  
supply up to 10mA. The LDO output voltage is not  
adjustable.  
MOSFETs. Choose an R  
MOSFET voltage drop. When V  
that minimizes the  
DS(ON)  
< 2.43V, the  
INOK  
MOSFET turns off, and MEM and I/O are powered by  
the MAX8568. The gate capacitance of the external  
MOSFET must discharge through the external gate-to-  
source resistor. This discharge time determines how  
quickly the main supply is disconnected and isolated.  
______________________________________________________________________________________ 13  
Complete Backup-Management ICs  
for Lithium and NiMH Batteries  
Pullup resistors, R3 and R4 in Figure 7, should be select-  
ed to ensure that when OD1 and OD2 go high imped-  
ance, the gate of the external MOSFET discharges within  
IN  
CHGI  
50µs to 100µs. This time allows the backup converters to  
start and provide power to I/O and MEM. Discharges  
1MΩ  
R
CHGI  
longer than 50µs to 100µs could cause the main supply  
to back drain current from the MAX8568 and allow the  
I/O OUT and MEM OUT voltage to droop. The MOSFET  
MAX1586  
MAX8568  
n-CHANNEL  
MOSFET OR  
OPEN-DRAIN  
INVERTER  
LBO  
DBO  
gate-source resistor, R , is calculated from the follow-  
GS  
ing formulas:  
τ = R x C  
GS  
ISS  
1MΩ  
50µs  
τ =  
INOK  
V
GS(TH)  
ln 1  
V
BKSU  
where the MOSFET gate-source threshold, V  
,
Figure 5. Using a MAX1586 Power-Supply IC to Trigger  
Backup Switchover and to Disable Backup Battery Charging  
Prior to Switchover  
GS(TH)  
and MOSFET input capacitance, C , are provided on  
ISS  
the MOSFET data sheet.  
Connection with MAX1586  
When the MAX8568 is used with the MAX1586 system  
power supply, it may be preferable to employ the  
MAX1586’s voltage monitors to determine when backup  
should start. The connection for this is shown in Figure 5  
where the dead-battery output (DBO) of the MAX1586  
drives the INOK input of the MAX8568. This, in effect,  
overrides the voltage-sensing circuit on the MAX8568  
and uses the DBO monitor on the MAX1586. Refer to the  
MAX1586 data sheet for information on how to set the  
DBO threshold. The CHG connection in Figure 5 is  
described in the next section.  
open-drain logic inverter) and disconnects the current  
path through R  
. Backup charging can be stopped  
ICHG  
for any reason using this method.  
PC Board Layout and Routing  
Careful PC board layout is important for minimizing  
ground bounce and noise. Ensure that C1 (IN input  
capacitor), C2 (BK input capacitor), C3 (BKSU bypass  
capacitor), and C4 (LDO output capacitor) are as close  
as possible to the IC. Avoid using vias to connect C2 or  
C3 to their respective pins or GND. C2 and C3 grounds  
should be next to each other, and this connection can  
then be used as the star ground point. All other grounds  
should connect to the star ground. PGND should star at  
C2 and C3, and should not connect directly to the  
exposed pad (EP) of the MAX8568. Connect EP to the  
bottom layer ground plane, and then connect the  
ground plane to the star ground. Vias on the inductor  
path are acceptable if necessary. IN, BK, BKSU, and  
LDO traces should be as wide as possible to minimize  
inductance. Refer to the MAX8568 evaluation kit for a  
PC board layout example.  
Terminating Charging at a Voltage Other  
than the Switchover Voltage  
In normal operation, the MAX8568 charger is always  
active as long as the INOK voltage is valid (above  
2.43V). In some systems, however, it may be desirable to  
terminate backup battery charging when the main bat-  
tery is somewhat depleted but not so low as to trigger  
backup. An external voltage monitor, or a voltage moni-  
tor in a power-supply IC, such as the MAX1586, can dis-  
able charging by disconnecting the CHGI resistor. If  
CHGI is open, no charging current flows. This can be  
accomplished with the circuit in Figure 5. The low-battery  
output (LBO) of the MAX1586 pulls low when the battery  
falls below a user-set level (refer to the MAX1586 data  
sheet). This turns off the external n-channel MOSFET (or  
Chip Information  
TRANSISTOR COUNT: 7902  
PROCESS: BiCMOS  
14 ______________________________________________________________________________________  
Complete Backup-Management ICs  
for Lithium and NiMH Batteries  
MAX8568  
REF  
NI/LI  
REF  
GND  
TERMV  
IN  
BK  
CHARGE  
CURRENT  
SOURCE  
STRTV  
0.286  
0.67  
BK  
1
0.86  
UVLO  
1.13  
LI  
NI  
INOK  
STEP-UP CONVERTER  
2.43V  
LX  
BKSU  
PGND  
UVLO  
2.25  
PFM  
BKV  
OD1  
BKSU  
LDO  
LDO  
OD2  
Figure 6. Functional Diagram  
______________________________________________________________________________________ 15  
Complete Backup-Management ICs  
for Lithium and NiMH Batteries  
MAIN BATTERY  
2.8V TO 5.5V  
1
2
IN  
C1  
4.7µF  
16  
15  
BACKUP BATTERY  
REF  
BK  
C5  
0.22µF  
C2  
10µF  
R6  
50kΩ  
L1  
10µH  
MAX8568A  
TERMV  
4
5
LX  
I/O OUT  
3.3V, 50mA  
R7  
0Ω  
BKSU  
14  
13  
R1  
OPEN  
STRTV  
GND  
C3  
10µF  
R8  
1.2MΩ  
MAIN  
BATTERY  
3
PGND  
BKV  
I/O IN  
Q1  
R2  
0Ω  
10  
R9  
357kΩ  
R3  
100kΩ  
11  
INOK  
7
6
OD1  
LDO  
MEM OUT  
2.5V, 10mA  
R10  
1MΩ  
NI  
9
LI  
NI/LI  
CHGI  
C4  
4.7µF  
MEM IN  
Q2  
12  
R4  
100kΩ  
R5  
169kΩ  
8
OD2  
Figure 7. Typical Application Circuit  
16 ______________________________________________________________________________________  
Complete Backup-Management ICs  
for Lithium and NiMH Batteries  
Package Information)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
D2  
b
0.10 M  
C
A
B
D
D2/2  
D/2  
E/2  
E2/2  
(NE - 1)  
X e  
C
E2  
E
L
L
k
e
C
L
(ND - 1)  
X e  
C
L
C
L
0.10  
C
0.08 C  
A
A2  
A1  
L
L
e
e
PACKAGE OUTLINE  
12, 16L, THIN QFN, 3x3x0.8mm  
1
21-0136  
E
2
PKG  
12L 3x3  
16L 3x3  
NOM.  
0.75  
REF. MIN. NOM.  
MAX.  
0.80  
MIN.  
0.70  
MAX.  
EXPOSED PAD VARIATIONS  
DOWN  
BONDS  
ALLOWED  
0.70  
0.75  
0.80  
A
b
D2  
E2  
PKG.  
PIN ID  
JEDEC  
CODES  
MIN. NOM. MAX. MIN. NOM. MAX.  
0.20  
2.90  
2.90  
0.25  
3.00  
0.30  
3.10  
3.10  
0.20  
2.90  
2.90  
0.25  
3.00  
3.00  
0.30  
3.10  
3.10  
T1233-1  
T1233-3  
T1633-1  
T1633-2  
T1633F-3  
T1633-4  
0.95  
0.95  
0.95  
0.95  
0.65  
0.95  
1.10  
1.10  
1.10  
1.10  
0.80  
1.10  
1.25  
1.25  
1.25  
1.25  
0.95  
1.25  
0.95  
0.95  
0.95  
0.95  
0.65  
0.95  
1.10  
1.10  
1.10  
1.10  
0.80  
1.10  
1.25  
1.25  
1.25  
1.25  
0.95  
1.25  
0.35 x 45WEED-1  
0.35 x 45WEED-1  
0.35 x 45WEED-2  
0.35 x 45WEED-2  
0.225 x 45WEED-2  
0.35 x 45WEED-2  
NO  
YES  
NO  
D
E
e
L
3.00  
0.50 BSC.  
0.55  
0.50 BSC.  
0.40  
0.45  
0.65  
0.30  
0.50  
YES  
N/A  
NO  
N
12  
3
16  
4
ND  
NE  
3
4
A1  
A2  
k
0
0.02  
0.05  
-
0
0.02  
0.05  
-
0.20 REF  
-
0.20 REF  
-
0.25  
0.25  
NOTES:  
1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.  
3. N IS THE TOTAL NUMBER OF TERMINALS.  
4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO  
JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED  
WITHIN THE ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR  
MARKED FEATURE.  
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.20 mm AND 0.25 mm  
FROM TERMINAL TIP.  
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.  
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.  
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.  
9. DRAWING CONFORMS TO JEDEC MO220 REVISION C.  
PACKAGE OUTLINE  
12, 16L, THIN QFN, 3x3x0.8mm  
2
21-0136  
E
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 17  
© 2005 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX8568A_05

Complete Backup-Management ICs for Lithium and NiMH Batteries
MAXIM

MAX8568B

Complete Backup-Management ICs for Lithium and NiMH Batteries
MAXIM

MAX8568BETE

Complete Backup-Management ICs for Lithium and NiMH Batteries
MAXIM

MAX8568BETE

0.9A BATTERY CHARGE CONTROLLER, QCC16, 3 X 3 MM, 0.80 MM HEIGHT, MO-220WEED-2, TQFN-16
ROCHESTER

MAX8568BETE-T

Battery Charge Controller, BICMOS, 3 X 3 MM, 0.80 MM HEIGHT, MO-220WEED-2, TQFN-16
MAXIM

MAX8569

200mA Step-Up Converters in 6-Pin SOT23 and TDFN
MAXIM

MAX8569A

200mA Step-Up Converters in 6-Pin SOT23 and TDFN
MAXIM

MAX8569AETT

200mA Step-Up Converters in 6-Pin SOT23 and TDFN
MAXIM

MAX8569AETT+

200mA Step-Up Converters in 6-Pin SOT23 and TDFN
MAXIM

MAX8569AEUT

200mA Step-Up Converters in 6-Pin SOT23 and TDFN
MAXIM

MAX8569AEUT+

暂无描述
MAXIM

MAX8569AEUT-T

200mA Step-Up Converters in 6-Pin SOT23 and TDFN
MAXIM