MAX860EUA+ [MAXIM]

Switched Capacitor Converter, 130kHz Switching Freq-Max, CMOS, PDSO8, 1.11 MM HEIGHT, LEAD FREE, UMAX-8;
MAX860EUA+
型号: MAX860EUA+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Switched Capacitor Converter, 130kHz Switching Freq-Max, CMOS, PDSO8, 1.11 MM HEIGHT, LEAD FREE, UMAX-8

光电二极管
文件: 总14页 (文件大小:573K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0239; Rev 2; 4/03  
50mA, Frequency-Selectable,  
Switched-Capacitor Voltage Converters  
_______________General Description  
____________________________Features  
8-Pin, 1.11mm High µMAX Package  
Invert or Double the Input Supply Voltage  
Three Selectable Switching Frequencies  
High Frequency Reduces Capacitor Size  
87% Efficiency at 50mA  
The MAX860/MAX861 charge-pump voltage converters  
invert input voltages ranging from +1.5V to +5.5V, or  
double input voltages ranging from +2.5V to +5.5V.  
Because of their high switching frequencies, these  
devices use only two small, low-cost capacitors. Their  
50mA output makes switching regulators unnecessary,  
eliminating inductors and their associated cost, size,  
and EMI. Greater than 90% efficiency over most of the  
load-current range, combined with a typical operating  
current of only 200µA (MAX860), provides ideal perfor-  
mance for both battery-powered and board-level volt-  
age-conversion applications.  
200µA Quiescent Current (MAX860)  
1µA Shutdown Supply Current  
600mV Voltage Drop at 50mA Load  
12 Output Resistance  
A frequency-control (FC) pin provides three switching-  
frequencies to optimize capacitor size and quiescent  
current and to prevent interference with sensitive cir-  
cuitry. Each device has a unique set of three available  
———–  
______________Ordering Information  
frequencies. A shutdown (SHDN) pin reduces current  
consumption to less than 1µA. The MAX860/MAX861  
are suitable for use in applications where the ICL7660  
and MAX660's switching frequencies are too low. The  
MAX860/MAX861 are available in 8-pin µMAX and  
SO packages.  
PART  
TEMP RANGE  
-25°C to +85°C  
-25°C to +85°C  
0°C to +70°C  
PIN-PACKAGE  
MAX860ISA  
MAX860IUA  
MAX860C/D  
MAX860ESA  
MAX860MJA  
MAX861ISA  
MAX861IUA  
MAX861C/D  
MAX861ESA  
MAX861MJA  
8 SO  
8 µMAX  
Dice*  
-40°C to +85°C  
-55°C to +125°C  
-25°C to +85°C  
-25°C to +85°C  
0°C to +70°C  
8 SO  
________________________Applications  
Portable Computers  
8 CERDIP  
8 SO  
Medical Instruments  
Interface Power Supplies  
Hand-Held Instruments  
Operational-Amplifier Power Supplies  
8 µMAX  
Dice*  
8 SO  
-40°C to +85°C  
-55°C to +125°C  
8 CERDIP  
*Dice are tested at T = +25°C, DC parameters only.  
Contact factory for availability.  
__________Typical Operating Circuit  
A
INPUT  
1
2
8
7
MAX860  
MAX861  
FC  
V
DD  
VOLTAGE  
+1.5V TO +5.5V  
C1+  
SHDN  
__________________Pin Configuration  
3
4
6
5
GND  
C1-  
LV  
INVERTED  
NEGATIVE  
OUTPUT  
C1 10 F  
OUT  
TOP VIEW  
10 F  
C2  
VOLTAGE INVERTER  
FC  
C1+  
GND  
C1-  
V
DD  
1
2
3
4
8
7
6
5
INPUT  
VOLTAGE  
SHDN  
LV  
DOUBLED  
POSITIVE  
OUTPUT  
1
2
3
4
8
7
6
5
MAX860  
MAX861  
MAX860  
MAX861  
FC  
V
DD  
+2.5V TO +5.5V  
C1+  
GND  
C1-  
SHDN  
10 F  
C2  
OUT  
LV  
C1  
10 F  
SO/ MAX  
OUT  
POSITIVE VOLTAGE DOUBLER  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
50mA, Frequency-Selectable,  
Switched-Capacitor Voltage Converters  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage (V  
to GND or GND to OUT)...................+6.0V  
Operating Temperature Ranges  
DD  
——–  
Input Voltage Range (LV, FC, SHDN) ...................(OUT - 0.3V)  
MAX86_I_A ......................................................-25°C to +85°C  
MAX86_ESA.....................................................-40°C to +85°C  
MAX86_MJA ..................................................-55°C to +125°C  
Storage Temperature Range.............................-65°C to +160°C  
Lead Temperature (soldering, 10s) .................................+300°C  
to (V + 0.3V)  
DD  
Continuous Output Current (OUT, V ) .............................60mA  
DD  
Output Short-Circuit to GND (Note 1).......................................1s  
Continuous Power Dissipation (T = +70°C)  
A
SO (derate 5.88mW/°C above +70°C).........................471mW  
µMAX (derate 4.10mW/°C above +70°C) ....................330mW  
CERDIP (derate 8.00mW/°C above +70°C).................640mW  
Note 1: OUT may be shorted to GND for 1sec without damage, but shorting OUT to V  
may damage the device and should be  
DD  
avoided. Also, for temperatures above +85°C, OUT must not be shorted to GND or V , even instantaneously, or device  
DD  
damage may result.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
——–  
(Typical Operating Circuit (Inverter), V  
= +5V, SHDN= V , FC = LV = GND, C1 = C2 = 10µF (Note 2), T = T  
to T  
, unless  
MAX  
DD  
A
MIN  
DD  
otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
Supply Voltage  
SYMBOL  
CONDITIONS  
Inverter, LV = GND  
Doubler, LV = OUT  
MIN  
1.5  
TYP  
MAX  
5.5  
UNITS  
V
DD  
R = 1k  
L
V
2.5  
5.5  
FC = V  
FC = V  
= 5V  
= 3V  
0.2  
0.07  
0.6  
0.3  
DD  
DD  
MAX860I/E  
FC = GND  
FC = OUT  
1.0  
2.5  
0.4  
1.3  
3.3  
0.4  
2.0  
5.0  
0.5  
2.6  
6.5  
1.4  
FC = V  
DD  
MAX860M  
MAX861I/E  
MAX861M  
FC = GND  
FC = OUT  
No-Load Supply Current  
(Note 3)  
I
mA  
DD  
FC = V  
0.3  
1.1  
2.5  
DD  
FC = GND  
FC = OUT  
FC = V  
DD  
FC = GND  
FC = OUT  
V
V
= 5V, V  
more negative than -3.75V  
more negative than -2.5V  
50  
10  
100  
30  
DD  
OUT  
OUT  
Output Current  
I
mA  
OUT  
= 3V, V  
DD  
I = 50mA  
12  
20  
25  
35  
L
Output Resistance  
(Note 4)  
R
OUT  
I = 10mA, V  
L
= 2V  
DD  
2
_______________________________________________________________________________________  
50mA, Frequency-Selectable,  
Switched-Capacitor Voltage Converters  
ELECTRICAL CHARACTERISTICS (continued)  
——–  
(Typical Operating Circuit (Inverter), V  
= +5V, SHDN = V , FC = LV = GND, C1 = C2 = 10µF (Note 2), T = T  
to T  
, unless  
MAX  
DD  
DD  
A
MIN  
otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
3
TYP  
6
MAX  
UNITS  
kHz  
FC = V  
DD  
MAX860  
FC = GND  
FC = OUT  
30  
80  
8
50  
130  
13  
Switching Frequency  
(Note 5)  
f
S
FC = V  
DD  
MAX861  
FC < 4V  
FC = GND  
FC = OUT  
60  
160  
100  
250  
-2  
FC Current (from V  
)
I
FC  
-4  
µA  
DD  
R = 2k from V  
L
to OUT  
DD  
93  
90  
93  
88  
96  
93  
MAX860,  
FC = V  
DD  
R = 1k from OUT  
L
to GND  
R = 2k from V  
L
DD  
Power Efficiency (Note 6)  
96  
%
to OUT  
MAX861,  
FC = V  
DD  
R = 1k from OUT  
L
to GND  
92  
MAX860/MAX861, FC = V  
I = 50mA to GND, C1 = C2 = 68µF  
L
,
DD  
87  
Voltage-Conversion Efficiency  
No load  
99  
99.9  
%
V
V
LV = GND  
1.2  
IH  
——–  
SHDN Threshold  
V
0.3  
1
IL  
MAX86_I/E  
MAX86_M  
——–  
SHDN < 0.3V  
Shutdown Supply Current  
Time to Exit Shutdown  
µA  
µs  
10  
No load, V  
= -4V  
500  
OUT  
Note 2: C1 and C2 are low-ESR (<0.2 ) aluminum electrolytics. Capacitor ESR adds to the circuit’s output resistance. Using  
capacitors with higher ESR may reduce output voltage and efficiency.  
Note 3: MAX860/MAX861 may draw high supply current during startup, up to the minimum operating supply voltage. To guaran-  
tee proper startup, the input supply must be capable of delivering 90mA more than the maximum load current.  
Note 4: Specified output resistance includes the effect of the 0.2 ESR of the test circuit’s capacitors.  
Note 5: The switches are driven directly at the oscillator frequency, without any division.  
Note 6: At lowest frequencies, using 10µF capacitors gives worse efficiency figures than using the recommended capacitor  
values in Table 3, due to larger 1 ⁄ (f x C1) term in R  
.
s
OUT  
_______________________________________________________________________________________  
3
50mA, Frequency-Selectable,  
Switched-Capacitor Voltage Converters  
__________________________________________Typical Operating Characteristics  
(All curves generated using the inverter circuit shown in the Typical Operating Circuits with LV = GND and T = +25°C, unless other-  
A
wise noted. Test results also valid for doubler mode with LV = OUT and T = +25°C. All capacitor values used are those recom-  
A
mended in Table 3, unless otherwise noted. The output resistance curves represent the resistance of the device itself, which is R in  
O
the equation for R  
shown in the Capacitor Selection section.)  
OUT  
OSCILLATOR FREQUENCY vs.  
SUPPLY VOLTAGE  
OUTPUT VOLTAGE DROP FROM  
SUPPLY VOLTAGE vs. LOAD CURRENT  
OUTPUT SOURCE RESISTANCE (R ) vs.  
O
SUPPLY VOLTAGE  
2
0
0.8  
0.7  
0.6  
0.5  
0.4  
20  
18  
16  
14  
12  
10  
8
ALL FREQUENCIES  
V
= +1.5V  
DD  
V
= +2.5V  
DD  
-2  
-4  
-6  
-8  
0.3  
0.2  
6
V
= +3.5V  
-10  
-12  
-14  
DD  
4
ALL FREQUENCIES,  
LV CONNECTED TO GND  
(INVERTER) OR OUT (DOUBLER)  
V
= +4.5V, +5.0V  
DD  
0.1  
0
2
V
= +5.5V  
DD  
ALL FREQUENCIES  
0
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
SUPPLY VOLTAGE (V)  
0
10  
20  
30  
40  
50  
0
1
2
3
4
5
LOAD CURRENT (mA)  
SUPPLY VOLTAGE (V)  
OUTPUT SOURCE RESISTANCE (R ) vs.  
O
MAX860 SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
MAX860  
EFFICIENCY vs. LOAD CURRENT  
TEMPERATURE  
32  
28  
100  
500  
400  
ALL FREQUENCIES  
FC = V  
DD  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
DOUBLER, LV = OUT  
24  
20  
V
= +1.5V  
DD  
V
= +1.5V  
= +5V  
DD  
300  
200  
100  
0
V
= +3V  
DD  
16  
12  
8
INVERTER, LV = GND  
(V > 3V)  
DD  
V
= +5V  
DD  
V
= +3V  
DD  
V
DD  
INVERTER  
FC = V  
4
0
DD  
-60 -40 -20  
0
20 40 60 80 100 120 140  
0.01  
0.1  
1
10  
100  
0
1
2
3
4
5
6
TEMPERATURE (°C)  
LOAD CURRENT (mA)  
SUPPLY VOLTAGE (V)  
MAX860 OUTPUT CURRENT vs. CAPACITANCE  
HIGH-FREQUENCY MODE  
MAX860 OUTPUT CURRENT vs. CAPACITANCE  
MEDIUM-FREQUENCY MODE  
MAX861 SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
70  
60  
50  
80  
70  
60  
50  
500  
400  
f
= 130kHz  
OSC  
FC = OUT  
f
= 50kHz  
OSC  
FC = V  
DD  
FC = GND  
LV = GND  
INVERTER MODE  
LV = GND  
INVERTER MODE  
DOUBLER, LV = OUT  
V
= +4.5V, V  
= -3.5V  
= -2.4V  
IN  
OUT  
V
= +4.5V, V  
= -3.5V  
= -2.4V  
IN  
OUT  
V
= +4.5V, V  
= -4V  
IN  
OUT  
300  
200  
100  
0
40  
30  
40  
V
= +3V, V  
IN  
IN  
OUT  
INVERTER, LV = GND  
V
= +3V, V  
IN  
OUT  
30  
20  
V
= +4.5V, V  
= +3V, V  
= -4V  
OUT  
20  
10  
0
V
= +3V, V  
4.7  
= -2.7V  
OUT  
V
= -2.7V  
OUT  
IN  
IN  
10  
0
0.33  
1
2.2  
10  
22  
0.33  
1
2.2  
4.7  
10  
22  
0
1
2
3
4
5
6
CAPACITANCE ( F)  
CAPACITANCE ( F)  
SUPPLY VOLTAGE (V)  
4
_______________________________________________________________________________________  
50mA, Frequency-Selectable,  
Switched-Capacitor Voltage Converters  
____________________________Typical Operating Characteristics (continued)  
(All curves generated using the inverter circuit shown in the Typical Operating Circuits with LV = GND and T = +25°C, unless other-  
A
wise noted. Test results also valid for doubler mode with LV = OUT and T = +25°C. All capacitor values used are those recom-  
A
mended in Table 3, unless otherwise noted. The output resistance curves represent the resistance of the device itself, which is R in  
O
the equation for R  
shown in the Capacitor Selection section.)  
OUT  
MAX861  
MAX861  
OUTPUT CURRENT vs. CAPACITANCE  
HIGH-FREQUENCY MODE  
OUTPUT CURRENT vs. CAPACITANCE  
MEDIUM-FREQUENCY MODE  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
f
= 100kHz  
f
= 250kHz  
OSC  
FC = GND  
OSC  
FC = OUT  
V
V
= +4.5V,  
OUT  
IN  
LV = GND  
INVERTER MODE  
LV = GND  
INVERTER MODE  
= -3.5V  
V
V
= +4.5V,  
OUT  
IN  
= -3.5V  
V
V
= +3V,  
IN  
OUT  
40  
= -2.4V  
V
= +4.5V, V  
= -4V  
OUT  
IN  
V
V
= +4.5V,  
= -4V  
IN  
OUT  
30  
20  
V
= +3V, V  
= -2.4V  
10  
IN  
OUT  
V
= +3V, V  
= -2.7V  
IN  
OUT  
10  
0
V
= +3V, V  
= -2.7V  
OUT  
IN  
0.33  
1
2.2  
4.7  
22  
0.33  
1
2.2  
4.7  
10  
22  
CAPACITANCE ( F)  
CAPACITANCE ( F)  
______________________________________________________________Pin Description  
FUNCTION  
PIN  
NAME  
INVERTER  
Frequency Control, see Table 1  
Flying-Capacitor Positive Terminal  
Ground  
DOUBLER  
Frequency Control, see Table 1  
Flying-Capacitor Positive Terminal  
Positive Input Supply  
1
2
3
4
5
6
FC  
C1+  
GND  
C1-  
Flying-Capacitor Negative Terminal  
Negative Output  
Flying-Capacitor Negative Terminal  
Ground  
OUT  
LV  
Low-Voltage-Operation Input. Connect to GND.  
Low-Voltage-Operation Input. Connect to OUT.  
——–  
SHDN  
Active-Low Shutdown Input. Connect to V  
used. Connect to GND to disable the charge pump.  
if not  
Active-Low Shutdown Input. Connect to GND pin if not  
used. Connect to OUT to disable the charge pump.  
DD  
7
8
V
DD  
Positive Input Supply  
Doubled Positive Output  
_______________________________________________________________________________________  
5
50mA, Frequency-Selectable,  
Switched-Capacitor Voltage Converters  
is not used. When the device is shut down, all active  
_______________Detailed Description  
circuitry is turned off.  
The MAX860/MAX861 capacitive charge pumps either  
invert or double the voltage applied to their inputs. For  
highest performance, use low equivalent series resis-  
tance (ESR) capacitors. See the Capacitor Selection  
section for more details. The frequency-control (FC) pin  
allows you to choose one of three switching frequen-  
cies; these three selectable frequencies are different for  
each device. When shut down, MAX860/MAX861 cur-  
rent consumption reduces to less than 1µA.  
In the inverting configuration, loads connected from  
OUT to GND are not powered in shutdown mode.  
However, a reverse-current path exists through two  
diodes between OUT and GND; therefore, loads con-  
nected from V  
supply.  
to OUT draw current from the input  
DD  
In the doubling configuration, loads connected from the  
pin to the GND pin are not powered in shutdown  
V
DD  
mode. Loads connected from the V  
pin to the OUT  
DD  
Common Applications  
pin draw current from the input supply through a path  
similar to that of the inverting configuration (described  
above).  
Voltage Inverter  
The most common application for these devices is a  
charge-pump voltage inverter (see Typical Operating  
Circuits). This application requires only two external com-  
ponents—capacitors C1 and C2—plus a bypass capacitor  
if necessary (see Bypass Capacitor section). Refer to the  
Capacitor Selection section for suggested capacitor types  
and values.  
Frequency Control  
Charge-pump frequency for both devices can be set to  
one of three values. Each device has a unique set of  
three available frequencies, as indicated in Table 1.  
The oscillator and charge-pump frequencies are the  
same (i.e., the charge-pump frequency is not half the  
oscillator frequency, as it is on the MAX660, MAX665,  
and ICL7660).  
Even though the MAX860/MAX861’s output is not actively  
regulated, it is fairly insensitive to load-current changes. A  
circuit output source resistance of 12 (calculated using  
the formula given in the Capacitor Selection section)  
means that, with a +5V input, the output voltage is -5V  
under no load and decreases to -4.4V with a 50mA load.  
The MAX860/MAX861 output source resistance (used to  
calculate the circuit output source resistance) vs. tempera-  
ture and supply voltage are shown in the Typical  
Operating Characteristics graphs.  
Table 1. Nominal Switching Frequencies*  
FREQUENCY (kHz)  
FC CONNECTION  
MAX860  
MAX861  
FC = V  
or open  
6
13  
DD  
FC = GND  
FC = OUT  
50  
100  
Calculate the output ripple voltage using the formula  
given in the Capacitor Selection section.  
130  
250  
*See the Electrical Characteristics for detailed switching-  
frequency specifications.  
Positive Voltage Doubler  
The MAX860/MAX861 can also operate as positive volt-  
age doublers (see Typical Operating Circuits). This  
application requires only two external components,  
capacitors C1 and C2. The no-load output is twice the  
input voltage. The electrical specifications in the doubler  
mode are very similar to those of the inverter mode  
except for the Supply Voltage Range (see Electrical  
Characteristics table) and No-Load Supply Current (see  
graph in Typical Operating Characteristics). The circuit  
output source resistance and output ripple voltage are  
calculated using the formulas in the Capacitor Selection  
section.  
A higher switching frequency minimizes capacitor size  
for the same performance and increases the supply  
current (Table 2). The lowest fundamental frequency of  
the switching noise is equal to the minimum specified  
switching frequency (e.g., 3kHz for the MAX860 with FC  
open). The spectrum of noise frequencies extends  
above this value because of harmonics in the switching  
waveform. To get best noise performance, choose the  
device and FC connection to select a minimum switch-  
ing frequency that lies above your sensitive bandwidth.  
Low-Voltage-Operation Input  
LV should be connected to GND for inverting operation.  
To enhance compatibility with the MAX660, MAX665, and  
ICL7660, you may float LV if the input voltage exceeds 3V.  
In doubling mode, LV must be connected to OUT for all  
input voltages.  
Active-Low Shutdown Input  
——–  
When driven low, the SHDN input shuts down the  
——–  
device. In inverter mode, connect SHDN to V  
if it is  
DD  
——–  
not used. In doubler mode, connect SHDN to GND if it  
6
_______________________________________________________________________________________  
50mA, Frequency-Selectable,  
Switched-Capacitor Voltage Converters  
A typical design procedure is as follows:  
Table 2. Switching-Frequency Trade-Offs  
1) Choose C1 and C2 to be the same, for convenience.  
2) Select f :  
LOWER  
FREQUENCY  
HIGHER  
FREQUENCY  
S
ATTRIBUTE  
a) If you want to avoid a specific noise frequency,  
Output Ripple  
C1, C2 Values  
Supply Current  
Larger  
Larger  
Smaller  
Smaller  
Smaller  
Larger  
choose f appropriately.  
S
b) If you want to minimize capacitor cost and size,  
choose a high f .  
S
c) If you want to minimize current consumption,  
__________Applications Information  
choose a low f .  
S
3) Choose a capacitor based on Table 3, although  
higher or lower values can be used to optimize per-  
formance. Table 4 lists manufacturers who provide  
low-ESR capacitors.  
Capacitor Selection  
The MAX860/MAX861 are tested using 10µF capacitors  
for both C1 and C2, although smaller or larger values  
can be used (Table 3). Smaller C1 values increase the  
output resistance; larger values reduce the output  
resistance. Above a certain point, increasing the  
capacitance of C1 has a negligible effect (because the  
output resistance becomes dominated by the internal  
switch resistance and the capacitor ESR). Low-ESR  
capacitors provide the lowest output resistance and  
ripple voltage. The output resistance of the entire circuit  
(inverter or doubler) is approximately:  
Table 3. Suggested Capacitor Values*  
NOMINAL FREQUENCY (kHz)  
C1, C2 (µF)  
6
68  
47  
13  
50  
10  
R
OUT  
= R + 4 x ESR + ESR + 1 / (f x C1)  
O C1 C2 S  
100  
130  
250  
4.7  
4.7  
2.2  
where R (the effective resistance of the MAX860/  
O
MAX861’s internal switches) is approximately 8 and f  
S
is the switching frequency. R  
is typically 12 when  
OUT  
using capacitors with 0.2 ESR and f , C1, and C2 val-  
S
ues suggested in Table 3. When C1 and C2 are so  
large (or the switching frequency is so high) that the  
internal switch resistance dominates the output resis-  
tance, estimate the output resistance as follows:  
*In addition to Table 3, four graphs in the Typical  
Operating Characteristics section show typical output  
current for C1 and C2 capacitances ranging from  
0.33µF to 22µF. Output current is plotted for inputs of  
4.5V (5V - 10%) and 3.0V (3.3V - 10%), and also for  
R
OUT  
= R + 4 x ESR + ESR  
O C1 C2  
10% and 20% output droop from the ideal -V value.  
IN  
Table 4. Low-ESR Capacitor Manufacturers  
MANUFACTURER–Series  
AVX TPS Series  
PHONE  
(803) 946-0629  
FAX  
(803) 626-3123  
COMMENTS  
Low-ESR tantalum, SMT  
Low-cost tantalum, SMT  
Low-cost tantalum, SMT  
Low-ESR tantalum, SMT  
Aluminum electrolytic, through hole  
Aluminum electrolytic, SMT  
Aluminum electrolytic, through hole  
Ceramic SMT  
AVX TAG Series  
(803) 946-0629  
(714) 969-2491  
(603) 224-1961  
(619) 661-6835  
(619) 661-6835  
(847) 843-7500  
(803) 626-3123  
(714) 960-6492  
(613) 224-1430  
(619) 661-1055  
(619) 661-1055  
(847) 843-2798  
(847) 696-9278  
(847) 390-4405  
Matsuo 267 Series  
Sprague 595 Series  
Sanyo MV-GX Series  
Sanyo CV-GX Series  
Nichicon PL Series  
United Chemicon (Marcon) (847) 696-2000  
TDK (847) 390-4461  
Ceramic SMT  
_______________________________________________________________________________________  
7
50mA, Frequency-Selectable,  
Switched-Capacitor Voltage Converters  
Flying Capacitor, C1  
Increasing the size of the flying capacitor reduces the  
output resistance.  
unloaded output voltage is nominally -2 x V , but this is  
IN  
reduced slightly by the output resistance of the first  
device multiplied by the quiescent current of the sec-  
ond. The output resistance of the complete circuit is  
approximately five times the output resistance of a sin-  
gle MAX860/MAX861.  
Output Capacitor, C2  
Increasing the size of the output capacitor reduces the  
output ripple voltage. Decreasing its ESR reduces both  
output resistance and ripple. Smaller capacitance val-  
ues can be used if one of the higher switching frequen-  
cies is selected, if less than the maximum rated output  
current (50mA) is required, or if higher ripple can be  
tolerated. The following equation for peak-to-peak rip-  
ple applies to both the inverter and doubler circuits.  
Three or more devices can be cascaded in this way,  
but output resistance rises dramatically, and a better  
solution is offered by inductive switching regulators  
(such as the MAX755, MAX759, MAX764, or MAX774).  
Connect LV as with a standard inverter circuit (see Pin  
Description).  
The maximum load current and startup current of nth  
cascaded circuit must not exceed the maximum output  
current capability of (n-1)th circuit to ensure proper  
startup.  
I
OUT  
V
= ———————— + 2 x I  
x ESR  
OUT C2  
RIPPLE  
2 x f x C2  
S
Paralleling Devices  
Paralleling multiple MAX860s or MAX861s reduces the  
output resistance. As illustrated in Figure 2, each  
device requires its own pump capacitor (C1), but the  
reservoir capacitor (C2) serves all devices. C2’s value  
should be increased by a factor of n, where n is the  
number of devices. Figure 2 shows the equation for cal-  
culating output resistance. An alternative solution is to  
use the MAX660 or MAX665, which are capable of sup-  
plying up to 100mA of load current. Connect LV as with  
a standard inverter circuit (see Pin Description).  
Bypass Capacitor  
Bypass the incoming supply to reduce its AC impedance  
and the impact of the MAX860/MAX861’s switching  
noise. The recommended bypassing depends on the cir-  
cuit configuration and where the load is connected.  
When the inverter is loaded from OUT to GND or the  
doubler is loaded from V  
to GND, current from the  
DD  
supply switches between 2 x I  
and zero. Therefore,  
OUT  
use a large bypass capacitor (e.g., equal to the value  
of C1) if the supply has a high AC impedance.  
When the inverter and doubler are loaded from V  
to  
DD  
OUT, the circuit draws 2 x I  
constantly, except for  
Combined Doubler/Inverter  
In the circuit of Figure 3, capacitors C1 and C2 form the  
inverter, while C3 and C4 form the doubler. C1 and C3  
are the pump capacitors; C2 and C4 are the reservoir  
capacitors. Because both the inverter and doubler use  
part of the charge-pump circuit, loading either output  
causes both outputs to decline towards GND. Make  
OUT  
short switching spikes. A 0.1µF bypass capacitor is  
sufficient.  
Cascading Devices  
Two devices can be cascaded to produce an even  
larger negative voltage, as shown in Figure 1. The  
R
OF SINGLE DEVICE  
OUT  
R
=
OUT  
NUMBER OF DEVICES  
IN  
+V  
+V  
IN  
8
7
8
8
7
8
2
3
2
3
7
2
3
2
3
7
MAX860  
MAX861  
1”  
MAX860  
MAX861  
n”  
C1  
C1  
MAX860  
MAX861  
“1”  
MAX860  
MAX861  
“n”  
C1  
C1  
V
OUT  
5
4
5
4
V
OUT  
5
4
5
4
C2  
C2  
C2  
V
= -V  
IN  
OUT  
V
= -nV  
IN  
OUT  
Figure 2. Paralleling MAX860s or MAX861s to Reduce Output  
Resistance  
Figure 1. Cascading MAX860s or MAX861s to Increase  
Output Voltage  
8
_______________________________________________________________________________________  
50mA, Frequency-Selectable,  
Switched-Capacitor Voltage Converters  
Table 5. Product Selection Guide  
+V  
IN  
OUTPUT  
OUTPUT  
SWITCHING  
8
PART  
NUMBER  
CURRENT RESISTANCE FREQUENCY  
2
3
7
(mA)  
100  
100  
50  
( )  
6.5  
6.5  
12  
(kHz)  
5/40  
D1, D2 = 1N4148  
MAX860  
MAX861  
C1  
D1  
D2  
MAX660  
MAX665  
MAX860  
MAX861  
ICL7660  
4
5
V
= -V  
IN  
OUT  
C2  
C4  
5/40  
6/50/130  
13/100/250  
5
V
= (2V ) -  
IN  
OUT  
(V ) - (V  
)
FD2  
FD1  
50  
12  
C3  
10  
55  
Figure 3. Combined Doubler and Inverter  
sure the sum of the currents drawn from the two out-  
puts does not exceed 60mA. Connect LV as with a  
standard inverter circuit (see Pin Description).  
___________________Chip Topography  
Compatibility with  
MAX660/MAX665/ICL7660  
V
FC  
DD  
The MAX860/MAX861 can be used in sockets  
designed for the MAX660, MAX665, and ICL7660 with  
a minimum of one wiring change. This section gives  
advice on installing a MAX860/MAX861 into a socket  
designed for one of the earlier devices.  
0.084"  
(2.13mm)  
C1+  
GND  
The MAX660, MAX665, and ICL7660 have an OSC pin  
——–  
SHDN  
LV  
instead of SHDN. MAX660, MAX665, and ICL7660 nor-  
C1-  
mal operation is with OSC floating (although OSC can  
——–  
be overdriven). If OSC is floating, pin 7 (SHDN) should  
be jumpered to V  
permanently. Do not leave SHDN on the MAX860/  
MAX861 floating.  
to enable the MAX860/MAX861  
DD  
OUT  
——–  
The MAX860/MAX861 operate with FC either floating or  
0.058"  
(1.47mm)  
connected to V , OUT, or GND; each connection  
DD  
defines the oscillator frequency. Thus, any of the nor-  
mal MAX660, MAX665, or ICL7660 connections to pin 1  
will work with the MAX860/MAX861, without modifica-  
tions. Changes to the FC connection are only required  
if you want to adjust the operating frequency.  
TRANSISTOR COUNT: 101  
SUBSTRATE CONNECTED TO V  
DD  
_______________________________________________________________________________________  
9
50mA, Frequency-Selectable,  
Switched-Capacitor Voltage Converters  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
INCHES  
MILLIMETERS  
DIM  
A
MIN  
MAX  
0.069  
0.010  
0.019  
0.010  
MIN  
1.35  
0.10  
0.35  
0.19  
MAX  
1.75  
0.25  
0.49  
0.25  
0.053  
0.004  
0.014  
0.007  
N
A1  
B
C
e
0.050 BSC  
1.27 BSC  
E
0.150  
0.228  
0.016  
0.157  
0.244  
0.050  
3.80  
5.80  
0.40  
4.00  
6.20  
1.27  
E
H
H
L
VARIATIONS:  
INCHES  
1
MILLIMETERS  
MAX  
0.197  
0.344  
0.394  
MIN  
4.80  
8.55  
9.80  
MAX  
5.00  
N
8
MS012  
AA  
TOP VIEW  
DIM  
D
MIN  
0.189  
0.337  
0.386  
D
8.75 14  
10.00 16  
AB  
D
AC  
D
C
A
B
0-8∞  
e
A1  
L
FRONT VIEW  
SIDE VIEW  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, .150" SOIC  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0041  
B
1
10 ______________________________________________________________________________________  
50mA, Frequency-Selectable,  
Switched-Capacitor Voltage Converters  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
4X S  
8
8
MILLIMETERS  
INCHES  
DIM MIN  
MAX  
MAX  
MIN  
-
-
0.043  
0.006  
0.037  
0.014  
0.007  
0.120  
1.10  
0.15  
0.95  
0.36  
0.18  
3.05  
A
0.002  
0.030  
0.010  
0.005  
0.116  
0.05  
0.75  
0.25  
0.13  
2.95  
A1  
A2  
b
E
H
ÿ 0.50 0.1  
c
D
e
0.0256 BSC  
0.65 BSC  
0.6 0.1  
E
H
0.116  
0.188  
0.016  
0∞  
0.120  
2.95  
4.78  
0.41  
0∞  
3.05  
5.03  
0.66  
6∞  
0.198  
0.026  
6∞  
L
1
1
0.6 0.1  
S
0.0207 BSC  
0.5250 BSC  
D
BOTTOM VIEW  
TOP VIEW  
A1  
A2  
A
c
e
L
b
SIDE VIEW  
FRONT VIEW  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, 8L uMAX/uSOP  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0036  
J
1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
11 __________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600  
© 2003 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  
ENG LIS H ? ? ? ? ? ? ? ? ? ?  
WH AT' S N EW  
PRO DU CT S  
S OL UT IO NS  
D ESIGN  
A PPNOTES  
SU PPORT  
B U Y  
CO MPA N Y  
M EMB ERS  
M a x i m > P r o d u c t s > P o w e r a n d B a t t e r y M a n a g e m e n t  
M A X 8 6 0 , M A X 8 6 1  
5 0 m A , F r e q u e n c y - S e l e c t a b l e , S w i t c h e d - C a p a c i t o r V o l t a g e C o n v e r t e r s  
I
n
d
u
c
t
o
r
l
e
s
s
I
n
v
e
r
t
e
r
/
P
o
s
i
t
i
v
e
D
o
u
b
l
e
r
S
w
i
t
c
h
e
s
U
p
t
o
2
5
0
k
H
z
Q u i c k V i e w  
T
e
c
h
n
i
c
a
l
D
o
c
u
m
e
n
t
s
O r d e r i n g I n f o  
M o r e I n f o r m a t i o n  
A l l  
O r d e r i n g I n f o r m a t i o n  
N o t e s :  
1 . O t h e r o p t i o n s a n d l i n k s f o r p u r c h a s i n g p a r t s a r e l i s t e d a t : h t t p : / / w w w . m a x i m - i c . c o m / s a l e s .  
2 . D i d n ' t F i n d W h a t Y o u N e e d ? A s k o u r a p p l i c a t i o n s e n g i n e e r s . E x p e r t a s s i s t a n c e i n f i n d i n g p a r t s , u s u a l l y w i t h i n o n e  
b u s i n e s s d a y .  
3 . P a r t n u m b e r s u f f i x e s : T o r T & R = t a p e a n d r e e l ; + = R o H S / l e a d - f r e e ; # = R o H S / l e a d - e x e m p t . M o r e : S e e F u l l D a t a  
S h e e t o r P a r t N a m i n g C o n v e n t i o n s .  
4 . * S o m e p a c k a g e s h a v e v a r i a t i o n s , l i s t e d o n t h e d r a w i n g . " P k g C o d e / V a r i a t i o n " t e l l s w h i c h v a r i a t i o n t h e p r o d u c t  
u s e s .  
D e v i c e s : 1 - 3 8 o f 3 8  
M A X 8 6 0  
F r e e  
B uy  
T e m p  
R o H S/ L e a d - F r e e ?  
M a t e r i a l s A n a l y s i s  
P a c k a g e : TY PE PI NS F O OTPRI NT  
S
a
m
p
l
e
D
R
A
W
I
N
G
C
O
D
E
/
V
A
R
*
M A X 8 6 0 M J A  
C e r a m i c D I P ; 8 p i n ; 8 1 m m  
D w g : 2 1 - 0 0 4 5 A ( P D F )  
- 5 5 C t o + 1 2 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
U s e p k g c o d e / v a r i a t i o n : J 8 - 2 *  
M A X 8 6 0 C P A  
M A X 8 6 0 C S A +  
M A X 8 6 0 C S A  
M A X 8 6 0 E S A + T  
M A X 8 6 0 E S A +  
M A X 8 6 0 E S A - T  
M A X 8 6 0 E S A  
P D I P ; 8 p i n ; 8 2 m m  
D w g : 2 1 - 0 0 4 3 D ( P D F )  
U s e p k g c o d e / v a r i a t i o n : P 8 - 1 *  
0
C
t
o
+
7
0
C
R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
S O I C ; 8 p i n ; 3 1 m m  
D w g : 2 1 - 0 0 4 1 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : S 8 + 4 *  
0 C t o + 7 0 C  
R o H S / L e a d - F r e e : L e a d F r e e  
M a t e r i a l s A n a l y s i s  
S O I C ; 8 p i n ; 3 1 m m  
D w g : 2 1 - 0 0 4 1 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : S 8 - 4 *  
0
C
t
o
+
7
0
C
R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
S O I C ; 8 p i n ; 3 1 m m  
D w g : 2 1 - 0 0 4 1 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : S 8 + 4 *  
- 4 0 C t o + 8 5 C  
- 4 0 C t o + 8 5 C  
- 4 0 C t o + 8 5 C  
- 4 0 C t o + 8 5 C  
- 2 0 C t o + 8 5 C  
- 2 0 C t o + 8 5 C  
- 2 0 C t o + 8 5 C  
- 2 0 C t o + 8 5 C  
R o H S / L e a d - F r e e : L e a d F r e e  
M a t e r i a l s A n a l y s i s  
S O I C ; 8 p i n ; 3 1 m m  
D w g : 2 1 - 0 0 4 1 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : S 8 + 4 *  
R o H S / L e a d - F r e e : L e a d F r e e  
M a t e r i a l s A n a l y s i s  
S O I C ; 8 p i n ; 3 1 m m  
D w g : 2 1 - 0 0 4 1 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : S 8 - 4 *  
R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
S O I C ; 8 p i n ; 3 1 m m  
D w g : 2 1 - 0 0 4 1 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : S 8 - 4 *  
R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
M A X 8 6 0 I S A  
S O I C ; 8 p i n ; 3 1 m m  
D w g : 2 1 - 0 0 4 1 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : S 8 - 4 *  
R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
M A X 8 6 0 I S A + T  
M A X 8 6 0 I S A +  
M A X 8 6 0 I S A - T  
S O I C ; 8 p i n ; 3 1 m m  
D w g : 2 1 - 0 0 4 1 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : S 8 + 4 *  
R o H S / L e a d - F r e e : L e a d F r e e  
M a t e r i a l s A n a l y s i s  
S O I C ; 8 p i n ; 3 1 m m  
D w g : 2 1 - 0 0 4 1 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : S 8 + 4 *  
R o H S / L e a d - F r e e : L e a d F r e e  
M a t e r i a l s A n a l y s i s  
S O I C ; 8 p i n ; 3 1 m m  
D w g : 2 1 - 0 0 4 1 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : S 8 - 4 *  
R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
M A X 8 6 0 C U A +  
M A X 8 6 0 E U A + T  
M A X 8 6 0 E U A +  
M A X 8 6 0 C U A  
M A X 8 6 0 I U A  
u M A X ; 8 p i n ; 1 6 m m  
D w g : 2 1 - 0 0 3 6 J ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 8 + 1 *  
0 C t o + 7 0 C  
- 4 0 C t o + 8 5 C  
- 4 0 C t o + 8 5 C  
0 C t o + 7 0 C  
- 2 0 C t o + 8 5 C  
- 2 0 C t o + 8 5 C  
- 2 0 C t o + 8 5 C  
- 2 0 C t o + 8 5 C  
T e m p  
R o H S / L e a d - F r e e : S e e d a t a s h e e t  
M a t e r i a l s A n a l y s i s  
u M A X ; 8 p i n ; 1 6 m m  
D w g : 2 1 - 0 0 3 6 J ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 8 + 1 *  
R o H S / L e a d - F r e e : L e a d F r e e  
M a t e r i a l s A n a l y s i s  
u M A X ; 8 p i n ; 1 6 m m  
D w g : 2 1 - 0 0 3 6 J ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 8 + 1 *  
R o H S / L e a d - F r e e : L e a d F r e e  
M a t e r i a l s A n a l y s i s  
u M A X ; 8 p i n ; 1 6 m m  
D w g : 2 1 - 0 0 3 6 J ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 8 - 1 *  
R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
u M A X ; 8 p i n ; 1 6 m m  
D w g : 2 1 - 0 0 3 6 J ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 8 - 1 *  
R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
M A X 8 6 0 I U A - T  
M A X 8 6 0 I U A + T  
M A X 8 6 0 I U A +  
u M A X ; 8 p i n ; 1 6 m m  
D w g : 2 1 - 0 0 3 6 J ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 8 - 1 *  
R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
u M A X ; 8 p i n ; 1 6 m m  
D w g : 2 1 - 0 0 3 6 J ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 8 + 1 *  
R o H S / L e a d - F r e e : L e a d F r e e  
M a t e r i a l s A n a l y s i s  
u M A X ; 8 p i n ; 1 6 m m  
D w g : 2 1 - 0 0 3 6 J ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 8 + 1 *  
R o H S / L e a d - F r e e : L e a d F r e e  
M a t e r i a l s A n a l y s i s  
M A X 8 6 1  
F r e e  
B uy  
R o H S/ L e a d - F r e e ?  
M a t e r i a l s A n a l y s i s  
P a c k a g e : TY PE PI NS F O OTPRI NT  
Sa m p l e  
D RA WI NG C OD E/ VA R *  
M A X 8 6 1 M J A  
C e r a m i c D I P ; 8 p i n ; 8 1 m m  
D w g : 2 1 - 0 0 4 5 A ( P D F )  
- 5 5 C t o + 1 2 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
U s e p k g c o d e / v a r i a t i o n : J 8 - 2 *  
M A X 8 6 1 C S A +  
M A X 8 6 1 E S A +  
M A X 8 6 1 E S A + T  
M A X 8 6 1 E S A  
S O I C ; 8 p i n ; 3 1 m m  
D w g : 2 1 - 0 0 4 1 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : S 8 + 4 *  
- 2 0 C t o + 8 5 C  
- 4 0 C t o + 8 5 C  
- 4 0 C t o + 8 5 C  
- 4 0 C t o + 8 5 C  
- 4 0 C t o + 8 5 C  
- 2 0 C t o + 8 5 C  
- 2 0 C t o + 8 5 C  
- 2 0 C t o + 8 5 C  
- 2 0 C t o + 8 5 C  
- 2 0 C t o + 8 5 C  
0 C t o + 7 0 C  
R o H S / L e a d - F r e e : L e a d F r e e  
M a t e r i a l s A n a l y s i s  
S O I C ; 8 p i n ; 3 1 m m  
D w g : 2 1 - 0 0 4 1 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : S 8 + 4 *  
R o H S / L e a d - F r e e : L e a d F r e e  
M a t e r i a l s A n a l y s i s  
S O I C ; 8 p i n ; 3 1 m m  
D w g : 2 1 - 0 0 4 1 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : S 8 + 4 *  
R o H S / L e a d - F r e e : L e a d F r e e  
M a t e r i a l s A n a l y s i s  
S O I C ; 8 p i n ; 3 1 m m  
D w g : 2 1 - 0 0 4 1 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : S 8 - 4 *  
R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
M A X 8 6 1 E S A - T  
M A X 8 6 1 C S A  
M A X 8 6 1 I S A +  
M A X 8 6 1 I S A + T  
M A X 8 6 1 I S A - T  
M A X 8 6 1 I S A  
S O I C ; 8 p i n ; 3 1 m m  
D w g : 2 1 - 0 0 4 1 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : S 8 - 4 *  
R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
S O I C ; 8 p i n ; 3 1 m m  
D w g : 2 1 - 0 0 4 1 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : S 8 - 4 *  
R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
S O I C ; 8 p i n ; 3 1 m m  
D w g : 2 1 - 0 0 4 1 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : S 8 + 4 *  
R o H S / L e a d - F r e e : L e a d F r e e  
M a t e r i a l s A n a l y s i s  
S O I C ; 8 p i n ; 3 1 m m  
D w g : 2 1 - 0 0 4 1 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : S 8 + 4 *  
R o H S / L e a d - F r e e : L e a d F r e e  
M a t e r i a l s A n a l y s i s  
S O I C ; 8 p i n ; 3 1 m m  
D w g : 2 1 - 0 0 4 1 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : S 8 - 4 *  
R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
S O I C ; 8 p i n ; 3 1 m m  
D w g : 2 1 - 0 0 4 1 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : S 8 - 4 *  
R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
M A X 8 6 1 C U A +  
M A X 8 6 1 C U A + T  
M A X 8 6 1 C U A  
u M A X ; 8 p i n ; 1 6 m m  
D w g : 2 1 - 0 0 3 6 J ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 8 + 1 *  
R o H S / L e a d - F r e e : L e a d F r e e  
M a t e r i a l s A n a l y s i s  
u M A X ; 8 p i n ; 1 6 m m  
D w g : 2 1 - 0 0 3 6 J ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 8 + 1 *  
0 C t o + 7 0 C  
R o H S / L e a d - F r e e : L e a d F r e e  
M a t e r i a l s A n a l y s i s  
u M A X ; 8 p i n ; 1 6 m m  
D w g : 2 1 - 0 0 3 6 J ( P D F )  
0 C t o + 7 0 C  
R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
U s e p k g c o d e / v a r i a t i o n : U 8 - 1 *  
M A X 8 6 1 I U A +  
M A X 8 6 1 I U A  
u M A X ; 8 p i n ; 1 6 m m  
D w g : 2 1 - 0 0 3 6 J ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 8 + 1 *  
- 2 0 C t o + 8 5 C  
- 2 0 C t o + 8 5 C  
- 2 0 C t o + 8 5 C  
- 2 0 C t o + 8 5 C  
R o H S / L e a d - F r e e : L e a d F r e e  
M a t e r i a l s A n a l y s i s  
u M A X ; 8 p i n ; 1 6 m m  
D w g : 2 1 - 0 0 3 6 J ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 8 - 1 *  
R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
M A X 8 6 1 I U A - T  
M A X 8 6 1 I U A + T  
u M A X ; 8 p i n ; 1 6 m m  
D w g : 2 1 - 0 0 3 6 J ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 8 - 1 *  
R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
u M A X ; 8 p i n ; 1 6 m m  
D w g : 2 1 - 0 0 3 6 J ( P D F )  
R o H S / L e a d - F r e e : L e a d F r e e  
M a t e r i a l s A n a l y s i s  
U s e p k g c o d e / v a r i a t i o n : U 8 + 1 *  
D i d n ' t F i n d W h a t Y o u N e e d ?  
N e x t D a y P r o d u c t S e l e c t i o n A s s i s t a n c e f r o m A p p l i c a t i o n s E n g i n e e r s  
P a r a m e t r i c S e a r c h  
A p p l i c a t i o n s H e l p  
Q u i c k V i e w  
T e c h n i c a l D o c u m e n t s  
O r d e r i n g I n f o  
M o r e I n f o r m a t i o n  
D e s c r i p t i o n  
D a t a S h e e t  
A p p l i c a t i o n N o t e s  
D e s i g n G u i d e s  
E n g i n e e r i n g J o u r n a l s  
R e l i a b i l i t y R e p o r t s  
S o f t w a r e / M o d e l s  
E v a l u a t i o n K i t s  
P r i c e a n d A v a i l a b i l i t y  
S a m p l e s  
B u y O n l i n e  
P a c k a g e I n f o r m a t i o n  
L e a d - F r e e I n f o r m a t i o n  
R e l a t e d P r o d u c t s  
N o t e s a n d C o m m e n t s  
E v a l u a t i o n K i t s  
K e y F e a t u r e s  
A p p l i c a t i o n s / U s e s  
K e y S p e c i f i c a t i o n s  
D i a g r a m  
D o c u m e n t R e f . : 1 9 - 0 2 3 9 ; R e v 2 ; 2 0 0 3 - 0 5 - 1 5  
T h i s p a g e l a s t m o d i f i e d : 2 0 0 7 - 0 6 - 0 7  
C O N T A C T U S : S E N D U S A N E M A I L  
C o p y r i g h t 2 0 0 7 b y M a x i m I n t e g r a t e d P r o d u c t s , D a l l a s S e m i c o n d u c t o r L e g a l N o t i c e s P r i v a c y P o l i c y  

相关型号:

MAX860EUA+T

Switched Capacitor Converter, 130kHz Switching Freq-Max, CMOS, PDSO8, 1.11 MM HEIGHT, LEAD FREE, UMAX-8
MAXIM

MAX860ISA

50mA, Frequency-Selectable, Switched-Capacitor Voltage Converters
MAXIM

MAX860ISA+G55

Switched Capacitor Converter, 130kHz Switching Freq-Max, CMOS, PDSO8, 0.150 INCH, LEAD FREE, PLASTIC, SOIC-8
MAXIM

MAX860ISA+T

Switched Capacitor Converter, 0.06A, 130kHz Switching Freq-Max, CMOS, PDSO8, 0.150 INCH, LEAD FREE, PLASTIC, SOIC-8
MAXIM

MAX860ISA-T

Switched Capacitor Converter, 0.06A, 130kHz Switching Freq-Max, CMOS, PDSO8, 0.150 INCH, PLASTIC, SOIC-8
MAXIM

MAX860IUA

50mA, Frequency-Selectable, Switched-Capacitor Voltage Converters
MAXIM

MAX860IUA+

暂无描述
MAXIM

MAX860IUA+T

Switched Capacitor Converter, 0.06A, 130kHz Switching Freq-Max, CMOS, PDSO8, 1.11 MM HEIGHT, LEAD FREE, UMAX-8
MAXIM

MAX860IUA-T

Switched Capacitor Converter, 0.06A, 130kHz Switching Freq-Max, CMOS, PDSO8, 1.11 MM HEIGHT, UMAX-8
MAXIM

MAX860MJA

50mA, Frequency-Selectable, Switched-Capacitor Voltage Converters
MAXIM

MAX860MSA/PR3

50mA, Frequency-Selectable, Switched-Capacitor Voltage Converters
MAXIM

MAX861

50mA, Frequency-Selectable, Switched-Capacitor Voltage Converters
MAXIM