MAX861CSA-T [MAXIM]

Switched Capacitor Converter, 250kHz Switching Freq-Max, CMOS, PDSO8, 0.150 INCH, PLASTIC, SOIC-8;
MAX861CSA-T
型号: MAX861CSA-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Switched Capacitor Converter, 250kHz Switching Freq-Max, CMOS, PDSO8, 0.150 INCH, PLASTIC, SOIC-8

转换器 开关
文件: 总12页 (文件大小:144K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0239; Rev 1; 11/96  
5 0 m A, Fre q u e n c y-S e le c t a b le ,  
S w it c h e d -Ca p a c it o r Vo lt a g e Co n ve rt e rs  
0/MAX861  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
8-Pin, 1.11mm High µMAX Package  
Invert or Double the Input Supply Voltage  
Three Selectable Switching Frequencies  
High Frequency Reduces Capacitor Size  
87% Efficiency at 50mA  
The MAX860/MAX861 charge-pump voltage converters  
invert input voltages ranging from +1.5V to +5.5V, or  
double input voltages ranging from +2.5V to +5.5V.  
Because of their high switching frequencies, these  
devices use only two small, low-cost capacitors. Their  
50mA output makes switching regulators unnecessary,  
eliminating inductors and their associated cost, size,  
and EMI. Greater than 90% efficiency over most of the  
load-current range, combined with a typical operating  
current of only 200µA (MAX860), provides ideal perfor-  
mance for both battery-powered and board-level volt-  
age-conversion applications.  
200µA Quiescent Current (MAX860)  
1µA Shutdown Supply Current  
600mV Voltage Drop at 50mA Load  
12Output Resistance  
A frequency-control (FC) pin provides three switching-  
frequencies to optimize capacitor size and quiescent  
current and to prevent interference with sensitive cir-  
cuitry. Each device has a unique set of three available  
———–  
frequencies. A shutdown (SHDN) pin reduces current  
consumption to less than 1µA. The MAX860/MAX861  
are suitable for use in applications where the ICL7660  
and MAX660's switching frequencies are too low. The  
MAX860/MAX861 a re a va ila b le in 8-p in µMAX a nd  
SO packages.  
______________Ord e rin g In fo rm a t io n  
PART  
TEMP. RANGE  
-25°C to +85°C  
-25°C to +85°C  
0°C to +70°C  
PIN-PACKAGE  
8 SO  
MAX860ISA  
MAX860IUA  
MAX860C/D  
MAX860ESA  
MAX860MJA  
MAX861ISA  
MAX861IUA  
MAX861C/D  
MAX861ESA  
MAX861MJA  
8 µMAX  
Dice*  
-40°C to +85°C  
-55°C to +125°C  
-25°C to +85°C  
-25°C to +85°C  
0°C to +70°C  
8 SO  
________________________Ap p lic a t io n s  
Portable Computers  
8 CERDIP  
8 SO  
Medical Instruments  
8 µMAX  
Dice*  
8 SO  
Interface Power Supplies  
Hand-Held Instruments  
-40°C to +85°C  
-55°C to +125°C  
Operational-Amplifier Power Supplies  
8 CERDIP  
* Dice are tested at T = +25°C, DC parameters only.  
A
Contact factory for availability.  
__________Typ ic a l Op e ra t in g Circ u it  
INPUT  
VOLTAGE  
+1.5V TO +5.5V  
1
2
8
7
MAX860  
MAX861  
FC  
V
DD  
C1+  
SHDN  
__________________P in Co n fig u ra t io n  
3
4
6
5
GND  
C1-  
LV  
INVERTED  
NEGATIVE  
OUTPUT  
C1 10µF  
OUT  
TOP VIEW  
10µF  
C2  
VOLTAGE INVERTER  
FC  
C1+  
GND  
C1-  
V
DD  
1
2
3
4
8
7
6
5
INPUT  
SHDN  
LV  
VOLTAGE  
+2.5V TO +5.5V  
DOUBLED  
POSITIVE  
OUTPUT  
1
2
3
4
8
7
6
5
MAX860  
MAX861  
MAX860  
MAX861  
FC  
V
DD  
C1+  
GND  
C1-  
SHDN  
10µF  
C2  
OUT  
LV  
C1  
10µF  
SO/µMAX  
OUT  
POSITIVE VOLTAGE DOUBLER  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800  
5 0 m A, Fre q u e n c y-S e le c t a b le ,  
S w it c h e d -Ca p a c it o r Vo lt a g e Co n ve rt e rs  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage (V to GND or GND to OUT)...................+6.0V  
Operating Temperature Ranges  
DD  
——–  
Input Voltage Range (LV, FC, S HDN ) ...................(OUT - 0.3V)  
MAX86_I_A ......................................................-25°C to +85°C  
MAX86_ESA.....................................................-40°C to +85°C  
MAX86_MJA ..................................................-55°C to +125°C  
Storage Temperature Range .............................-65°C to +160°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
to (V + 0.3V)  
DD  
Continuous Output Current (OUT, V ) .............................60mA  
DD  
Output Short-Circuit to GND (Note 1)...................................1sec  
Continuous Power Dissipation (T = +70°C)  
A
SO (derate 5.88mW/°C above +70°C).........................471mW  
µMAX (derate 4.10mW/°C above +70°C) ....................330mW  
CERDIP (derate 8.00mW/°C above +70°C).................640mW  
Note 1: OUT may be shorted to GND for 1sec without damage, but shorting OUT to V may damage the device and should be  
DD  
avoided. Also, for temperatures above +85°C, OUT must not be shorted to GND or V , even instantaneously, or device  
DD  
damage may result.  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
0/MAX861  
ELECTRICAL CHARACTERISTICS  
——–  
(Typical Operating Circuit (Inverter), V = +5V, SHDN= V , FC = LV = GND, C1 = C2 = 10µF (Note 2), T = T  
to T , unless  
MAX  
DD  
A
MIN  
DD  
otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
Supply Voltage  
SYMBOL  
CONDITIONS  
Inverter, LV = GND  
Doubler, LV = OUT  
FC = V = 5V  
MIN  
1.5  
TYP  
MAX  
5.5  
UNITS  
V
DD  
R
= 1k  
L
V
2.5  
5.5  
0.2  
0.07  
0.6  
0.3  
DD  
FC = V = 3V  
DD  
MAX860I/E  
FC = GND  
FC = OUT  
1.0  
2.5  
0.4  
1.3  
3.3  
0.4  
2.0  
5.0  
0.5  
2.6  
6.5  
1.4  
FC = V  
DD  
MAX860M  
MAX861I/E  
MAX861M  
FC = GND  
FC = OUT  
No-Load Supply Current  
I
DD  
mA  
FC = V  
0.3  
1.1  
2.5  
DD  
FC = GND  
FC = OUT  
FC = V  
DD  
FC = GND  
FC = OUT  
V
= 5V, V  
more negative than -3.75V  
more negative than -2.5V  
50  
10  
100  
30  
DD  
OUT  
Output Current  
I
mA  
OUT  
V
DD  
= 3V, V  
OUT  
I = 50mA  
12  
20  
25  
35  
L
Output Resistance  
(Note 3)  
R
OUT  
I = 10mA, V = 2V  
L
DD  
2
_______________________________________________________________________________________  
5 0 m A, Fre q u e n c y-S e le c t a b le ,  
S w it c h e d -Ca p a c it o r Vo lt a g e Co n ve rt e rs  
0/MAX861  
ELECTRICAL CHARACTERISTICS (continued)  
——–  
(Typical Operating Circuit (Inverter), V = +5V, SHDN = V , FC = LV = GND, C1 = C2 = 10µF (Note 2), T = T  
to T , unless  
MAX  
DD  
DD  
A
MIN  
otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
FC = V  
MIN  
3
TYP  
6
MAX  
UNITS  
kHz  
DD  
MAX860  
FC = GND  
FC = OUT  
30  
80  
8
50  
130  
13  
Switching Frequency  
(Note 4)  
f
S
FC = V  
DD  
MAX861  
FC < 4V  
FC = GND  
FC = OUT  
60  
160  
100  
250  
-2  
FC Current (from V  
)
I
FC  
-4  
µA  
DD  
R
= 2kfrom V  
DD  
L
93  
90  
93  
88  
96  
93  
to OUT  
MAX860,  
FC = V  
DD  
R
= 1kfrom OUT  
L
to GND  
R
= 2kfrom V  
L
DD  
Power Efficiency (Note 5)  
96  
%
to OUT  
MAX861,  
FC = V  
DD  
R
= 1kfrom OUT  
L
92  
to GND  
MAX860/MAX861, FC = V  
I = 50mA to GND, C1 = C2 = 68µF  
L
,
DD  
87  
Voltage-Conversion Efficiency  
No load  
99  
99.9  
%
V
V
LV = GND  
1.2  
IH  
——–  
SHDN Threshold  
V
IL  
0.3  
1
MAX86_I/E  
MAX86_M  
——–  
S HDN < 0.3V  
Shutdown Supply Current  
Time to Exit Shutdown  
µA  
µs  
10  
No load, V  
= -4V  
500  
OUT  
Note 2: C1 and C2 are low-ESR (<0.2) aluminum electrolytics. Capacitor ESR adds to the circuit’s output resistance. Using  
capacitors with higher ESR may reduce output voltage and efficiency.  
Note 3: Specified output resistance includes the effect of the 0.2ESR of the test circuit’s capacitors.  
Note 4: The switches are driven directly at the oscillator frequency, without any division.  
Note 5: At lowest frequencies, using 10µF capacitors gives worse efficiency figures than using the recommended capacitor  
values in Table 3, due to larger 1 ⁄ (f x C1) term in R  
.
s
OUT  
_______________________________________________________________________________________  
3
5 0 m A, Fre q u e n c y-S e le c t a b le ,  
S w it c h e d -Ca p a c it o r Vo lt a g e Co n ve rt e rs  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(All curves generated using the inverter circuit shown in the Typical Operating Circuits with LV = GND and T = +25°C, unless other-  
A
wise noted. Test results also valid for doubler mode with LV = OUT and T = +25°C. All capacitor values used are those recom-  
A
mended in Table 3, unless otherwise noted. The output resistance curves represent the resistance of the device itself, which is R in  
O
the equation for R  
shown in the Capacitor Selection section.)  
OUT  
OSCILLATOR FREQUENCY vs.  
SUPPLY VOLTAGE  
OUTPUT VOLTAGE DROP FROM  
SUPPLY VOLTAGE vs. LOAD CURRENT  
OUTPUT SOURCE RESISTANCE (R ) vs.  
O
SUPPLY VOLTAGE  
2
0
0.8  
0.7  
0.6  
0.5  
0.4  
20  
18  
16  
14  
12  
10  
8
ALL FREQUENCIES  
V
DD  
= +1.5V  
V
DD  
= +2.5V  
-2  
-4  
-6  
-8  
0.3  
0.2  
6
V
= +3.5V  
-10  
-12  
-14  
DD  
0/MAX861  
4
ALL FREQUENCIES,  
LV CONNECTED TO GND  
(INVERTER) OR OUT (DOUBLER)  
V
= +4.5V, +5.0V  
DD  
0.1  
0
2
V
DD  
= +5.5V  
ALL FREQUENCIES  
0
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
SUPPLY VOLTAGE (V)  
0
10  
20  
30  
40  
50  
0
1
2
3
4
5
LOAD CURRENT (mA)  
SUPPLY VOLTAGE (V)  
OUTPUT SOURCE RESISTANCE (R ) vs.  
O
MAX860 SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
MAX860  
EFFICIENCY vs. LOAD CURRENT  
TEMPERATURE  
32  
28  
100  
500  
400  
ALL FREQUENCIES  
FC = V  
DD  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
DOUBLER, LV = OUT  
24  
20  
V
DD  
= +1.5V  
V
= +1.5V  
= +5V  
DD  
300  
200  
100  
0
V
DD  
= +3V  
16  
12  
8
INVERTER, LV = GND  
(V > 3V)  
V
DD  
= +5V  
V
DD  
= +3V  
DD  
V
DD  
INVERTER  
FC = V  
4
0
DD  
-60 -40 -20  
0
20 40 60 80 100 120 140  
0.01  
0.1  
1
10  
100  
0
1
2
3
4
5
6
TEMPERATURE (°C)  
LOAD CURRENT (mA)  
SUPPLY VOLTAGE (V)  
MAX860 OUTPUT CURRENT vs. CAPACITANCE  
HIGH-FREQUENCY MODE  
MAX860 OUTPUT CURRENT vs. CAPACITANCE  
MEDIUM-FREQUENCY MODE  
MAX861 SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
70  
60  
50  
80  
70  
60  
50  
500  
400  
f
= 130kHz  
OSC  
f
= 50kHz  
OSC  
FC = V  
DD  
FC = OUT  
LV = GND  
INVERTER MODE  
FC = GND  
LV = GND  
INVERTER MODE  
DOUBLER, LV = OUT  
V
= +4.5V, V  
= -4V  
= -3.5V  
= -2.4V  
IN  
OUT  
V
= +4.5V, V  
= -3.5V  
= -2.4V  
IN  
OUT  
V
IN  
= +4.5V, V  
OUT  
300  
200  
100  
0
40  
30  
40  
V
= +3V, V  
OUT  
IN  
INVERTER, LV = GND  
V
= +3V, V  
OUT  
IN  
30  
20  
V
= +4.5V, V  
= -4V  
IN  
OUT  
20  
10  
0
V
IN  
= +3V, V  
= -2.7V  
V
= +3V, V  
= -2.7V  
OUT  
IN  
OUT  
10  
0
0.33  
1
2.2  
4.7  
10  
22  
0.33  
1
2.2  
4.7  
10  
22  
0
1
2
3
4
5
6
CAPACITANCE (µF)  
CAPACITANCE (µF)  
SUPPLY VOLTAGE (V)  
4
_______________________________________________________________________________________  
5 0 m A, Fre q u e n c y-S e le c t a b le ,  
S w it c h e d -Ca p a c it o r Vo lt a g e Co n ve rt e rs  
0/MAX861  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(All curves generated using the inverter circuit shown in the Typical Operating Circuits with LV = GND and T = +25°C, unless other-  
A
wise noted. Test results also valid for doubler mode with LV = OUT and T = +25°C. All capacitor values used are those recom-  
A
mended in Table 3, unless otherwise noted. The output resistance curves represent the resistance of the device itself, which is R in  
O
the equation for R  
shown in the Capacitor Selection section.)  
OUT  
MAX861  
MAX861  
OUTPUT CURRENT vs. CAPACITANCE  
HIGH-FREQUENCY MODE  
OUTPUT CURRENT vs. CAPACITANCE  
MEDIUM-FREQUENCY MODE  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
f
= 100kHz  
f
= 250kHz  
OSC  
OSC  
FC = GND  
FC = OUT  
V
IN  
= +4.5V,  
LV = GND  
LV = GND  
INVERTER MODE  
V
OUT  
= -3.5V  
V
V
OUT  
= +4.5V,  
= -3.5V  
IN  
INVERTER MODE  
V
IN  
= +3V,  
40  
V
OUT  
= -2.4V  
V
IN  
= +4.5V, V  
= -4V  
OUT  
V
IN  
= +4.5V,  
30  
20  
V
OUT  
= -4V  
V
IN  
= +3V, V  
= -2.4V  
OUT  
V
IN  
= +3V, V  
= -2.7V  
OUT  
10  
0
V
IN  
= +3V, V  
= -2.7V  
OUT  
0.33  
1
2.2  
4.7  
10  
22  
0.33  
1
2.2  
4.7  
10  
22  
CAPACITANCE (µF)  
CAPACITANCE (µF)  
______________________________________________________________P in De s c rip t io n  
FUNCTION  
PIN  
NAME  
INVERTER  
Frequency Control, see Table 1  
Flying-Capacitor Positive Terminal  
Ground  
DOUBLER  
Frequency Control, see Table 1  
Flying-Capacitor Positive Terminal  
Positive Input Supply  
1
2
3
4
5
6
FC  
C1+  
GND  
C1-  
Flying-Capacitor Negative Terminal  
Negative Output  
Flying-Capacitor Negative Terminal  
Ground  
OUT  
LV  
Low-Voltage-Operation Input. Connect to GND.  
Low-Voltage-Operation Input. Connect to OUT.  
——–  
SHDN  
Active-Low Shutdown Input. Connect to V if not  
DD  
used. Connect to GND to disable the charge pump.  
Active-Low Shutdown Input. Connect to GND pin if not  
used. Connect to OUT to disable the charge pump.  
7
8
V
DD  
Positive Input Supply  
Doubled Positive Output  
_______________________________________________________________________________________  
5
5 0 m A, Fre q u e n c y-S e le c t a b le ,  
S w it c h e d -Ca p a c it o r Vo lt a g e Co n ve rt e rs  
is not used. When the device is shut down, all active  
circuitry is turned off.  
_______________De t a ile d De s c rip t io n  
The MAX860/MAX861 capacitive charge pumps either  
invert or double the voltage applied to their inputs. For  
highest performance, use low equivalent series resis-  
tance (ESR) capacitors. See the Capacitor Selection  
section for more details. The frequency-control (FC) pin  
allows you to choose one of three switching frequen-  
cies; these three selectable frequencies are different for  
each device. When shut down, MAX860/MAX861 cur-  
rent consumption reduces to less than 1µA.  
In the inverting configuration, loads connected from  
OUT to GND a re not p owe re d in s hutd own mod e .  
However, a reverse-current path exists through two  
diodes between OUT and GND; therefore, loads con-  
nected from V  
to OUT draw current from the input  
DD  
supply.  
In the doubling configuration, loads connected from the  
pin to the GND pin are not powered in shutdown  
V
DD  
mode. Loads connected from the V  
pin to the OUT  
DD  
Co m m o n Ap p lic a t io n s  
pin draw current from the input supply through a path  
similar to that of the inverting configuration (described  
above).  
Voltage Inverter  
The most common application for these devices is a  
charge-pump voltage inverter (see Typical Operating  
Circuits). This application requires only two external com-  
ponents—capacitors C1 and C2—plus a bypass capacitor  
if necessary (see Bypass Capacitor section). Refer to the  
Capacitor Selection section for suggested capacitor types  
and values.  
Fre q u e n c y Co n t ro l  
Charge-pump frequency for both devices can be set to  
one of three values. Each device has a unique set of  
three available frequencies, as indicated in Table 1.  
The oscillator and charge-pump frequencies are the  
same (i.e., the charge-pump frequency is not half the  
oscillator frequency, as it is on the MAX660, MAX665,  
and ICL7660).  
0/MAX861  
Even though the MAX860/MAX861s output is not actively  
regulated, it is fairly insensitive to load-current changes. A  
circuit output source resistance of 12(calculated using  
the formula given in the Capacitor Selection section)  
means that, with a +5V input, the output voltage is -5V  
under no load and decreases to -4.4V with a 50mA load.  
The MAX860/MAX861 output source resistance (used to  
calculate the circuit output source resistance) vs. tempera-  
ture a nd s up p ly volta g e a re s hown in the Typ ic a l  
Operating Characteristics graphs.  
Table 1. Nominal Switching Frequencies*  
FREQUENCY (kHz)  
FC CONNECTION  
MAX860  
MAX861  
FC = V or open  
DD  
6
13  
FC = GND  
FC = OUT  
50  
100  
Calculate the output ripple voltage using the formula  
given in the Capacitor Selection section.  
130  
250  
*See the Electrical Characteristics for detailed switching-  
frequency specifications.  
Positive Voltage Doubler  
The MAX860/MAX861 can also operate as positive volt-  
age doublers (see Typical Operating Circuits). This  
application requires only two external components,  
capacitors C1 and C2. The no-load output is twice the  
input voltage. The electrical specifications in the doubler  
mode are very similar to those of the inverter mode  
except for the Supply Voltage Range (see Electrical  
Characteristics table) and No-Load Supply Current (see  
graph in Typical Operating Characteristics). The circuit  
output source resistance and output ripple voltage are  
calculated using the formulas in the Capacitor Selection  
section.  
A higher switching frequency minimizes capacitor size  
for the same performance and increases the supply  
current (Table 2). The lowest fundamental frequency of  
the switching noise is equal to the minimum specified  
switching frequency (e.g., 3kHz for the MAX860 with FC  
op e n). The s p e c trum of nois e fre q ue nc ie s e xte nd s  
above this value because of harmonics in the switching  
waveform. To get best noise performance, choose the  
device and FC connection to select a minimum switch-  
ing frequency that lies above your sensitive bandwidth.  
Low-Voltage-Operation Input  
LV should be connected to GND for inverting operation.  
To enhance compatibility with the MAX660, MAX665, and  
ICL7660, you may float LV if the input voltage exceeds 3V.  
In doubling mode, LV must be connected to OUT for all  
input voltages.  
Ac t ive -Lo w S h u t d o w n In p u t  
——–  
Whe n d rive n low, the SHDN inp ut s huts d own the  
——–  
device. In inverter mode, connect SHDN to V  
not used. In doubler mode, connect SHDN to GND if it  
if it is  
DD  
——–  
6
_______________________________________________________________________________________  
5 0 m A, Fre q u e n c y-S e le c t a b le ,  
S w it c h e d -Ca p a c it o r Vo lt a g e Co n ve rt e rs  
0/MAX861  
A typical design procedure is as follows:  
Table 2. Switching-Frequency Trade-Offs  
1) Choose C1 and C2 to be the same, for convenience.  
2) Select f :  
LOWER  
FREQUENCY  
HIGHER  
FREQUENCY  
S
ATTRIBUTE  
a) If you want to avoid a specific noise frequency,  
Output Ripple  
C1, C2 Values  
Supply Current  
Larger  
Larger  
Smaller  
Smaller  
Smaller  
Larger  
choose f appropriately.  
S
b) If you want to minimize capacitor cost and size,  
choose a high f .  
S
c) If you want to minimize current consumption,  
__________Ap p lic a t io n s In fo rm a t io n  
choose a low f .  
S
3) Choose a capacitor based on Table 3, although  
higher or lower values can be used to optimize per-  
formance. Table 4 lists manufacturers who provide  
low-ESR capacitors.  
Ca p a c it o r S e le c t io n  
The MAX860/MAX861 are tested using 10µF capacitors  
for both C1 and C2, although smaller or larger values  
can be used (Table 3). Smaller C1 values increase the  
outp ut re s is ta nc e ; la rg e r va lue s re d uc e the outp ut  
re s is ta nc e . Ab ove a c e rta in p oint, inc re a s ing the  
capacitance of C1 has a negligible effect (because the  
output resistance becomes dominated by the internal  
switch resistance and the capacitor ESR). Low-ESR  
capacitors provide the lowest output resistance and  
ripple voltage. The output resistance of the entire circuit  
(inverter or doubler) is approximately:  
Table 3. Suggested Capacitor Values*  
NOMINAL FREQUENCY (kHz)  
C1, C2 (µF)  
6
68  
47  
13  
50  
10  
R
= R + 4 x ESR + ESR + 1 / (f x C1)  
O C1 C2 S  
OUT  
100  
130  
250  
4.7  
4.7  
2.2  
where R (the effective resistance of the MAX860/  
O
MAX861s internal switches) is approximately 8and f  
S
is the switching frequency. R  
is typically 12when  
OUT  
using capacitors with 0.2ESR and f , C1, and C2 val-  
S
ues suggested in Table 3. When C1 and C2 are so  
large (or the switching frequency is so high) that the  
internal switch resistance dominates the output resis-  
tance, estimate the output resistance as follows:  
*In a d d ition to Ta b le 3, four g ra p hs in the Typ ic a l  
Operating Characteristics section show typical output  
c urre nt for C1 a nd C2 c a p a c ita nc e s ra ng ing from  
0.33µF to 22µF. Output current is plotted for inputs of  
4.5V (5V - 10%) and 3.0V (3.3V - 10%), and also for  
R
= R + 4 x ESR + ESR  
O C1 C2  
OUT  
10% and 20% output droop from the ideal -V value.  
IN  
Table 4. Low-ESR Capacitor Manufacturers  
MANUFACTURER–Series  
AVX TPS Series  
PHONE  
(803) 946-0629  
FAX  
(803) 626-3123  
COMMENTS  
Low-ESR tantalum, SMT  
Low-cost tantalum, SMT  
Low-cost tantalum, SMT  
Low-ESR tantalum, SMT  
Aluminum electrolytic, through hole  
Aluminum electrolytic, SMT  
Aluminum electrolytic, through hole  
Ceramic SMT  
AVX TAG Series  
(803) 946-0629  
(714) 969-2491  
(603) 224-1961  
(619) 661-6835  
(619) 661-6835  
(847) 843-7500  
(803) 626-3123  
(714) 960-6492  
(613) 224-1430  
(619) 661-1055  
(619) 661-1055  
(847) 843-2798  
(847) 696-9278  
(847) 390-4405  
Matsuo 267 Series  
Sprague 595 Series  
Sanyo MV-GX Series  
Sanyo CV-GX Series  
Nichicon PL Series  
United Chemicon (Marcon) (847) 696-2000  
TDK (847) 390-4461  
Ceramic SMT  
_______________________________________________________________________________________  
7
5 0 m A, Fre q u e n c y-S e le c t a b le ,  
S w it c h e d -Ca p a c it o r Vo lt a g e Co n ve rt e rs  
Flying Capacitor, C1  
Increasing the size of the flying capacitor reduces the  
output resistance.  
unloaded output voltage is nominally -2 x V , but this is  
IN  
reduced slightly by the output resistance of the first  
device multiplied by the quiescent current of the sec-  
ond. The output resistance of the complete circuit is  
approximately five times the output resistance of a sin-  
gle MAX860/MAX861.  
Output Capacitor, C2  
Increasing the size of the output capacitor reduces the  
output ripple voltage. Decreasing its ESR reduces both  
output resistance and ripple. Smaller capacitance val-  
ues can be used if one of the higher switching frequen-  
cies is selected, if less than the maximum rated output  
current (50mA) is required, or if higher ripple can be  
tolerated. The following equation for peak-to-peak rip-  
ple applies to both the inverter and doubler circuits.  
Three or more devices can be cascaded in this way,  
but output resistance rises dramatically, and a better  
solution is offered by inductive switching regulators  
(such as the MAX755, MAX759, MAX764, or MAX774).  
Connect LV as with a standard inverter circuit (see Pin  
Description).  
P a ra lle lin g De vic e s  
Paralleling multiple MAX860s or MAX861s reduces the  
outp ut re s is ta nc e . As illus tra te d in Fig ure 2, e a c h  
device requires its own pump capacitor (C1), but the  
reservoir capacitor (C2) serves all devices. C2s value  
should be increased by a factor of n, where n is the  
number of devices. Figure 2 shows the equation for cal-  
culating output resistance. An alternative solution is to  
use the MAX660 or MAX665, which are capable of sup-  
plying up to 100mA of load current. Connect LV as with  
a standard inverter circuit (see Pin Description).  
I
OUT  
V
= ———————— + 2 x I  
x ESR  
RIPPLE  
OUT C2  
2 x f x C2  
S
0/MAX861  
Bypass Capacitor  
Bypass the incoming supply to reduce its AC impedance  
and the impact of the MAX860/MAX861s switching  
noise. The recommended bypassing depends on the cir-  
cuit configuration and where the load is connected.  
When the inverter is loaded from OUT to GND or the  
doubler is loaded from V  
to GND, current from the  
DD  
supply switches between 2 x I  
use a large bypass capacitor (e.g., equal to the value  
of C1) if the supply has a high AC impedance.  
and zero. Therefore,  
Co m b in e d Do u b le r/In ve rt e r  
In the circuit of Figure 3, capacitors C1 and C2 form the  
inverter, while C3 and C4 form the doubler. C1 and C3  
are the pump capacitors; C2 and C4 are the reservoir  
capacitors. Because both the inverter and doubler use  
part of the charge-pump circuit, loading either output  
causes both outputs to decline towards GND. Make  
sure the sum of the currents drawn from the two out-  
puts does not exceed 60mA. Connect LV as with a  
standard inverter circuit (see Pin Description).  
OUT  
When the inverter and doubler are loaded from V to  
DD  
OUT, the circuit draws 2 x I  
constantly, except for  
OUT  
short switching spikes. A 0.1µF bypass capacitor is  
sufficient.  
Ca s c a d in g De vic e s  
Two devices can be cascaded to produce an even  
larger negative voltage, as shown in Figure 1. The  
R
OF SINGLE DEVICE  
OUT  
R
OUT  
=
NUMBER OF DEVICES  
IN  
+V  
+V  
IN  
8
7
8
7
8
7
8
2
3
2
3
2
3
2
3
7
MAX860  
MAX861  
“1”  
MAX860  
MAX861  
“n”  
C1  
C1  
MAX860  
MAX861  
“1”  
MAX860  
MAX861  
“n”  
C1  
C1  
V
OUT  
5
4
5
4
V
OUT  
5
4
5
4
C2  
C2  
C2  
V
OUT  
= -V  
IN  
V
OUT  
= -nV  
IN  
Figure 2. Paralleling MAX860s or MAX861s to Reduce Output  
Resistance  
Figure 1. Cascading MAX860s or MAX861s to Increase  
Output Voltage  
8
_______________________________________________________________________________________  
5 0 m A, Fre q u e n c y-S e le c t a b le ,  
S w it c h e d -Ca p a c it o r Vo lt a g e Co n ve rt e rs  
0/MAX861  
Table 5. Product Selection Guide  
+V  
IN  
OUTPUT  
OUTPUT  
SWITCHING  
8
7
PART  
NUMBER  
CURRENT RESISTANCE FREQUENCY  
2
3
(mA)  
100  
100  
50  
()  
6.5  
6.5  
12  
(kHz)  
5/40  
D1, D2 = 1N4148  
MAX860  
MAX861  
C1  
D1  
D2  
MAX660  
MAX665  
MAX860  
MAX861  
ICL7660  
4
5
V
OUT  
= -V  
IN  
C2  
C4  
5/40  
6/50/130  
13/100/250  
5
V
= (2V ) -  
IN  
OUT  
(V ) - (V  
)
FD1  
FD2  
50  
12  
C3  
10  
55  
Figure 3. Combined Doubler and Inverter  
Co m p a t ib ilit y w it h  
MAX6 6 0 /MAX6 6 5 /ICL7 6 6 0  
___________________Ch ip To p o g ra p h y  
The MAX860/MAX861 c a n b e us e d in s oc ke ts  
designed for the MAX660, MAX665, and ICL7660 with  
a minimum of one wiring change. This section gives  
advice on installing a MAX860/MAX861 into a socket  
designed for one of the earlier devices.  
V
DD  
FC  
0. 084"  
(2. 13mm)  
C1+  
The MAX660, MAX665, and ICL7660 have an OSC pin  
——–  
instead of SHDN. MAX660, MAX665, and ICL7660 nor-  
mal operation is with OSC floating (although OSC can  
be overdriven). If OSC is floating, pin 7 (SHDN ) should  
GND  
——–  
SHDN  
be jumpered to V  
p e rma ne ntly. Do not le a ve SHDN on the MAX860/  
MAX861 floating.  
to enable the MAX860/MAX861  
DD  
——–  
C1-  
LV  
The MAX860/MAX861 operate with FC either floating or  
OUT  
connected to V , OUT, or GND; each connection  
DD  
defines the oscillator frequency. Thus, any of the nor-  
mal MAX660, MAX665, or ICL7660 connections to pin 1  
will work with the MAX860/MAX861, without modifica-  
tions. Changes to the FC connection are only required  
if you want to adjust the operating frequency.  
0. 058"  
(1. 47mm)  
TRANSISTOR COUNT: 101  
SUBSTRATE CONNECTED TO V  
DD  
_______________________________________________________________________________________  
9
5 0 m A, Fre q u e n c y-S e le c t a b le ,  
S w it c h e d -Ca p a c it o r Vo lt a g e Co n ve rt e rs  
________________________________________________________P a c k a g e In fo rm a t io n  
0/MAX861  
10 ______________________________________________________________________________________  
5 0 m A, Fre q u e n c y-S e le c t a b le ,  
S w it c h e d -Ca p a c it o r Vo lt a g e Co n ve rt e rs  
0/MAX861  
___________________________________________P a c k a g e In fo rm a t io n (c o n t in u e d )  
______________________________________________________________________________________ 11  
5 0 m A, Fre q u e n c y-S e le c t a b le ,  
S w it c h e d -Ca p a c it o r Vo lt a g e Co n ve rt e rs  
NOTES  
0/MAX861  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 __________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 (4 0 8 ) 7 3 7 -7 6 0 0  
© 1996 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX861CUA

DC-to-DC Voltage Converter
MAXIM

MAX861CUA+

Switched Capacitor Converter, 250kHz Switching Freq-Max, CMOS, PDSO8, 1.11 MM HEIGHT, LEAD FREE, UMAX-8
MAXIM

MAX861ESA

50mA, Frequency-Selectable, Switched-Capacitor Voltage Converters
MAXIM

MAX861ESA+

Switched Capacitor Converter, 0.06A, 250kHz Switching Freq-Max, CMOS, PDSO8, 0.150 INCH, LEAD FREE, PLASTIC, SOIC-8
MAXIM

MAX861ESA+T

暂无描述
MAXIM

MAX861ESA-T

Switched Capacitor Converter, 0.06A, 250kHz Switching Freq-Max, CMOS, PDSO8, 0.150 INCH, PLASTIC, SOIC-8
MAXIM

MAX861ESA/V+

暂无描述
MAXIM

MAX861ISA

50mA, Frequency-Selectable, Switched-Capacitor Voltage Converters
MAXIM

MAX861ISA-T

Switched Capacitor Converter, 0.06A, 250kHz Switching Freq-Max, CMOS, PDSO8, 0.150 INCH, PLASTIC, SOIC-8
MAXIM

MAX861IUA

50mA, Frequency-Selectable, Switched-Capacitor Voltage Converters
MAXIM

MAX861IUA+

暂无描述
MAXIM

MAX861IUA+T

Switched Capacitor Converter, 0.06A, 250kHz Switching Freq-Max, CMOS, PDSO8, 1.11 MM HEIGHT, LEAD FREE, UMAX-8
MAXIM