MAX870C/D [MAXIM]

Switched-Capacitor Voltage Inverters; 开关电容电压逆变器
MAX870C/D
型号: MAX870C/D
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Switched-Capacitor Voltage Inverters
开关电容电压逆变器

稳压器 开关式稳压器或控制器 电源电路 开关式控制器
文件: 总8页 (文件大小:100K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1240; Rev 0; 6/97  
S w it c h e d -Ca p a c it o r Vo lt a g e In ve rt e rs  
0/MAX871  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
5-Pin SOT23-5 Package  
The ultra-small MAX870/MAX871 monolithic, CMOS  
charge-pump inverters accept input voltages ranging  
from +1.4V to +5.5V. The MAX870 operates at 125kHz,  
and the MAX871 operates at 500kHz. Their high efficien-  
c y (90%) a nd low op e ra ting c urre nt (0.7mA for the  
MAX870) make these devices ideal for both battery-pow-  
ered and board-level voltage-conversion applications.  
99% Voltage Conversion Efficiency  
Invert Input Supply Voltage  
0.7mA Quiescent Current (MAX870)  
+1.4V to +5.5V Input Voltage Range  
Require Only Two Capacitors  
25mA Output Current  
Oscillator control circuitry and four power MOSFET  
s witc he s a re inc lud e d on-c hip . A typ ic a l MAX870/  
MAX871 application is generating a -5V supply from a  
+5V logic supply to power analog circuitry. Both parts  
come in a 5-pin SOT23-5 package and can deliver 25mA  
with a voltage drop of 500mV.  
Shutdown Control  
For applications requiring more power, the MAX860  
delivers up to 50mA with a voltage drop of 600mV, in a  
space-saving µMAX package.  
______________Ord e rin g In fo rm a t io n  
PIN-  
SOT  
PART  
TEMP. RANGE  
PACKAGE TOP MARK  
________________________Ap p lic a t io n s  
Local -5V Supply from 5V Logic Supply  
Small LCD Panels  
MAX870C/D  
0°C to +70°C  
Dice*  
MAX870EUK -40°C to +85°C  
MAX871C/D 0°C to +70°C  
MAX871EUK -40°C to +85°C  
* Dice are tested at T = +25°C.  
5 SOT23-5  
Dice*  
ABZN  
5 SOT23-5  
ABZO  
Cell Phones  
A
Medical Instruments  
Handy-Terminals, PDAs  
Battery-Operated Equipment  
__________________P in Co n fig u ra t io n  
__________Typ ic a l Op e ra t in g Circ u it  
TOP VIEW  
INPUT  
SUPPLY  
VOLTAGE  
5
2
IN  
C1+  
MAX870  
MAX871  
OUT  
IN  
1
2
3
C1+  
5
4
MAX870  
MAX871  
3
4
C1-  
NEGATIVE  
OUTPUT  
VOLTAGE  
1
OUT  
C1-  
GND  
GND  
SOT23-5  
NEGATIVE VOLTAGE CONVERTER  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800  
S w it c h e d -Ca p a c it o r Vo lt a g e In ve rt e rs  
ABSOLUTE MAXIMUM RATINGS  
IN to GND..............................................................+6.0V to -0.3V  
OUT to GND ..........................................................-6.0V to +0.3V  
Continuous Power Dissipation (T = +70°C)  
A
SOT23-5 (derate 7.1mW/°C above +70°C)...................571mW  
Operating Temperature Range  
C1+ ..............................................................(V + 0.3V) to -0.3V  
IN  
C1-............................................................(V  
OUT Output Current ...........................................................50mA  
OUT Short Circuit to GND .............................................Indefinite  
- 0.3V) to +0.3V  
MAX870EUK/MAX871EUK ...............................-40°C to +85°C  
Storage Temperature Range .............................-65°C to +160°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
OUT  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = +5V, C1 = C2 = 1µF (MAX870), C1 = C2 = 0.33µF (MAX871), T = 0°C to +85°C, unless otherwise noted. Typical values  
IN  
A
are at T = +25°C.)  
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
0.7  
MAX  
1.0  
UNITS  
MAX870  
MAX871  
Supply Current  
T
A
= +25°C  
mA  
8
2.7  
3.8  
T
= +25°C  
1.4  
1.5  
1.0  
A
Minimum Supply Voltage  
Maximum Supply Voltage  
Oscillator Frequency  
R
R
= 10k  
V
V
LOAD  
LOAD  
T
A
= 0°C to + 85°C  
= 10kΩ  
5.5  
169  
675  
MAX870  
MAX871  
MAX870  
MAX871  
MAX870  
MAX871  
81  
125  
500  
90  
T
A
= +25°C  
kHz  
325  
R
LOAD  
= 500k,  
Power Efficiency  
%
%
T =+25°C  
A
75  
98  
96  
99.3  
99  
R
= ∞, T =+25°C  
Voltage Conversion Efficiency  
LOAD  
A
C1 = C2 = 1µF  
20  
50  
50  
MAX870  
MAX871  
C1 = C2 = 0.47µF  
C1 = C2 = 0.33µF  
C1 = C2 = 0.22µF  
C1 = C2 = 0.1µF  
25  
T
=
= +25°C  
20  
A
I
OUT  
Output Resistance (Note 1)  
5mA  
25  
35  
T
A
= 0°C to + 85°C  
65  
Note 1: Capacitor contribution is approximately 20% of the output impedance [ESR + 1 / (pump frequency x capacitance)].  
ELECTRICAL CHARACTERISTICS  
(V = +5V, C1 = C2 = 1µF (MAX870), C1 = C2 = 0.33µF (MAX871), T = -40°C to +85°C, unless otherwise noted.) (Note 2)  
IN  
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
1.3  
UNITS  
MAX870  
MAX871  
Supply Current  
mA  
4.4  
Minimum Supply-Voltage Range  
Maximum Supply-Voltage Range  
R
R
= 10kΩ  
= 10kΩ  
1.6  
V
V
LOAD  
LOAD  
5.5  
194  
775  
65  
MAX870  
MAX871  
56  
Oscillator Frequency  
kHz  
225  
Output Resistance  
I
= 5mA  
OUT  
MAX870  
MAX871  
97  
95  
R
= ∞  
Voltage Conversion Efficiency  
%
LOAD  
Note 2: All -40°C to +85°C specifications are guaranteed by design.  
2
_______________________________________________________________________________________  
S w it c h e d -Ca p a c it o r Vo lt a g e In ve rt e rs  
0/MAX871  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(Circuit of Figure 1, V = +5V, C1 = C2 = C3, T = +25°C, unless otherwise noted.)  
IN  
A
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
OUTPUT RESISTANCE  
vs. SUPPLY VOLTAGE  
MAX870  
OUTPUT RESISTANCE vs. TEMPERATURE  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
60  
50  
40  
30  
20  
10  
V
IN  
= 1.5V  
V
IN  
= 3.3V  
MAX871  
MAX871  
MAX870  
V
= 5.0V  
IN  
MAX870  
0
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
SUPPLY VOLTAGE (V)  
-40  
-15  
10  
35  
60  
85  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
MAX870  
MAX871  
MAX870  
OUTPUT VOLTAGE RIPPLE  
vs. CAPACITANCE  
OUTPUT RESISTANCE vs. TEMPERATURE  
OUTPUT CURRENT vs. CAPACITANCE  
450  
400  
350  
300  
250  
200  
150  
100  
50  
70  
60  
50  
40  
30  
20  
10  
0
45  
40  
35  
30  
25  
20  
15  
10  
5
V
IN  
= 4.75V, V = -4.0V  
OUT  
V = 4.75V, V = -4.0V  
IN OUT  
V
IN  
= 3.15V, V = -2.5V  
OUT  
V
= 1.5V  
IN  
V
IN  
= 1.9V, V = -1.5V  
OUT  
V
IN  
= 3.15V, V = -2.5V  
OUT  
V
IN  
= 3.3V  
= 5.0V  
V
IN  
= 1.9V, V = -1.5V  
OUT  
V
IN  
0
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
-40  
-15  
10  
35  
60  
85  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5  
CAPACITANCE (µF)  
TEMPERATURE (°C)  
CAPACITANCE (µF)  
MAX870  
MAX871  
OUTPUT VOLTAGE  
vs. OUTPUT CURRENT  
MAX871  
OUTPUT VOLTAGE RIPPLE  
vs. CAPACITANCE  
OUTPUT CURRENT vs. CAPACITANCE  
0
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
-3.5  
-4.0  
-4.5  
-5.0  
500  
35  
30  
25  
20  
15  
10  
5
V
= 4.75V, V = -4.0V  
OUT  
IN  
450  
400  
350  
300  
250  
200  
150  
100  
50  
V = 2.0V  
IN  
V
IN  
= 4.75V, V = -4.0V  
OUT  
V
= 3.15V, V = -2.5V  
OUT  
IN  
V = 3.3V  
IN  
V
IN  
= 3.15V, V = -2.5V  
OUT  
V
IN  
= 1.9V, V = -1.5V  
OUT  
V
= 1.9V, V = -1.5V  
OUT  
IN  
V = 5.0V  
IN  
0
0
0
5
10 15 20 25 30 35 40 45  
OUTPUT CURRENT (mA)  
0
0.5  
1.0  
1.5  
2.0  
2.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
CAPACITANCE (µF)  
CAPACITANCE (µF)  
_______________________________________________________________________________________  
3
S w it c h e d -Ca p a c it o r Vo lt a g e In ve rt e rs  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(Circuit of Figure 1, V = +5V, C1 = C2 = C3, T = +25°C, unless otherwise noted.)  
IN  
A
MAX870  
MAX871  
EFFICIENCY vs. OUTPUT CURRENT  
EFFICIENCY vs. OUTPUT CURRENT  
PUMP FREQUENCY vs. TEMPERATURE  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
IN  
= 5.0V  
V
IN  
= 3.3V OR 5.0V, MAX871  
V
IN  
= 5.0V  
V
IN  
= 3.3V  
V
IN  
= 1.5V, MAX871  
V
IN  
= 2.0V  
V
IN  
= 3.3V  
V
IN  
= 2.0V  
V
IN  
= 1.5V, MAX870  
V
IN  
= 3.3V OR 5.0V, MAX870  
0/MAX871  
0
5
10 15 20 25 30 35 40 45 50  
OUTPUT CURRENT (mA)  
0
5
10 15 20 25 30 35 40  
OUTPUT CURRENT (mA)  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
MAX870  
MAX871  
OUTPUT NOISE AND RIPPLE  
OUTPUT NOISE AND RIPPLE  
2µs/div  
1µs/div  
V
IN  
= 3.3V, V  
= -3.18V, I = 5mA,  
V
IN  
= 3.3V, V  
= -3.14V, I = 5mA,  
OUT  
OUT  
OUT OUT  
20mV/div, AC COUPLED  
20mV/div, AC COUPLED  
_____________________P in De s c rip t io n  
V
IN  
C3  
0.33µF*  
R
L
PIN  
1
NAME  
OUT  
IN  
FUNCTION  
V
OUT  
Inverting Charge-Pump Output  
Positive Power-Supply Input  
Flying Capacitors Negative Terminal  
Ground  
1
5
C1+  
OUT  
IN  
2
C2  
0.33µF*  
2
3
MAX870  
MAX871  
3
C1-  
C1  
0.33µF*  
4
GND  
C1+  
4
C1-  
GND  
5
Flying Capacitors Positive Terminal  
*1µF  
(MAX870)  
VOLTAGE INVERTER  
Figure 1. Test Circuit  
_______________________________________________________________________________________  
4
S w it c h e d -Ca p a c it o r Vo lt a g e In ve rt e rs  
0/MAX871  
_______________De t a ile d De s c rip t io n  
The MAX870/MAX871 capacitive charge pumps invert  
the voltage applied to their input. For highest perfor-  
mance, use low equivalent series resistance (ESR)  
capacitors (e.g., ceramic).  
S1  
S2  
IN  
C1  
During the first half-cycle, switches S2 and S4 open,  
switches S1 and S3 close, and capacitor C1 charges to  
the voltage at IN (Figure 2). During the second half-  
cycle, S1 and S3 open, S2 and S4 close, and C1 is level  
C2  
S3  
S4  
V
OUT  
= -(V )  
IN  
shifted downward by V volts. This connects C1 in par-  
IN  
allel with the reservoir capacitor C2. If the voltage across  
C2 is smaller than the voltage across C1, then charge  
flows from C1 to C2 until the voltage across C2 reaches  
-V . The actual voltage at the output is more positive  
IN  
than -V , since switches S1–S4 have resistance and the  
IN  
load drains charge from C2.  
Figure 2. Ideal Voltage Inverter  
Ch a rg e -P u m p Ou t p u t  
The MAX870/MAX871 are not voltage regulators: the  
charge pumps output source resistance is approxi-  
The internal losses are associated with the ICs internal  
functions, such as driving the switches, oscillator, etc.  
These losses are affected by operating conditions such  
as input voltage, temperature, and frequency.  
mately 20at room temperature (with V = +5V), and  
IN  
V
OUT  
approaches -5V when lightly loaded. V  
will  
OUT  
d roop towa rd GND a s loa d c urre nt inc re a s e s . The  
droop of the negative supply (V ) equals the cur-  
DROOP-  
The next two losses are associated with the voltage  
converter circuit’s output resistance. Switch losses  
occur because of the on-resistance of the MOSFET  
s witc he s in the IC. Cha rg e -p ump c a p a c itor los s e s  
occur because of their ESR. The relationship between  
these losses and the output resistance is as follows:  
rent draw from OUT (I ) times the negative convert-  
OUT  
ers source resistance (RS-):  
V
= I x RS-  
OUT  
DROOP-  
The negative output voltage will be:  
= -(V – V )  
DROOP-  
V
OUT  
IN  
P
+ P  
PUMP CAPACITOR LOSSES  
CONVERSION LOSSES  
Effic ie n c y Co n s id e ra t io n s  
2
The power efficiency of a switched-capacitor voltage  
converter is affected by three factors: the internal loss-  
es in the converter IC, the resistive losses of the pump  
capacitors, and the conversion losses during charge  
transfer between the capacitors. The total power loss is:  
= I  
x R  
1
OUT  
OUT  
R
+2R  
+ 4ESR +ESR  
OUT  
SWITCHES C1 C2  
f
x C1  
(
)
OSC  
where f  
is the oscillator frequency. The first term is  
OSC  
ΣP  
= P  
+ P  
LOSS  
INTERNAL LOSSES  
SWITCH LOSSES  
the e ffe c tive re s is ta nc e from a n id e a l s witc he d -  
capacitor circuit. See Figures 3a and 3b.  
+ P  
PUMP CAPACITOR LOSSES  
CONVERSION LOSSES  
+ P  
f
R
EQUIV  
V+  
V+  
V
OUT  
V
OUT  
1
R
EQUIV  
=
f × C1  
C2  
R
L
C1  
C2  
R
L
Figure 3b. Equivalent Circuit  
_______________________________________________________________________________________  
Figure 3a. Switched-Capacitor Model  
5
S w it c h e d -Ca p a c it o r Vo lt a g e In ve rt e rs  
Conversion losses occur during the charge transfer  
between C1 and C2 when there is a voltage difference  
between them. The power loss is:  
noise. The recommended bypassing depends on the cir-  
cuit configuration and on where the load is connected.  
When the inverter is loaded from OUT to GND, current  
from the supply switches between 2 x I  
Therefore, use a large bypass capacitor (e.g., equal to  
the value of C1) if the supply has a high AC impedance.  
and zero.  
OUT  
2
IN  
2
P
= [1/ C1  
V
V  
+
CONV.LOSS  
1/ C2  
2
OUT  
2
V
2V  
V
] x f  
2
RIPPLE  
OUT RIPPLE OSC  
When the inverter is loaded from IN to OUT, the circuit  
draws 2 x I  
constantly, except for short switching  
OUT  
spikes. A 0.1µF bypass capacitor is sufficient.  
__________Ap p lic a t io n s In fo rm a t io n  
Vo lt a g e In ve rt e r  
Ca p a c it o r S e le c t io n  
To maintain the lowest output resistance, use capaci-  
tors with low ESR (Table 1). The charge-pump output  
re s is ta nc e is a func tion of C1s a nd C2s ESR.  
Therefore, minimizing the charge-pump capacitors  
ESR minimizes the total output resistance.  
The most common application for these devices is a  
charge-pump voltage inverter (Figure 1). This applica-  
tion requires only two external components—capacitors  
C1 and C2—plus a bypass capacitor, if necessary.  
Refer to the Capacitor Selection section for suggested  
capacitor types.  
0/MAX871  
Flying Capacitor (C1)  
Increasing the flying capacitors size reduces the out-  
put resistance. Small C1 values increase the output  
re s is ta nc e . Ab ove a c e rta in p oint, inc re a s ing C1s  
capacitance has a negligible effect, because the out-  
p ut re s is ta nc e b e c ome s d omina te d b y the inte rna l  
switch resistance and capacitor ESR.  
Ca s c a d in g De vic e s  
Two devices can be cascaded to produce an even  
larger negative voltage (Figure 4). The unloaded output  
voltage is normally -2 x V , but this is reduced slightly  
IN  
by the output resistance of the first device multiplied by  
the quiescent current of the second. When cascading  
more than two devices, the output resistance rises dra-  
matically. For applications requiring larger negative  
voltages, see the MAX864 and MAX865 data sheets.  
Output Capacitor (C2)  
Increasing the output capacitors size reduces the out-  
put ripple voltage. Decreasing its ESR reduces both  
output resistance and ripple. Smaller capacitance val-  
ues can be used with light loads if higher output ripple  
can be tolerated. Use the following equation to calcu-  
late the peak-to-peak ripple:  
P a ra lle lin g De vic e s  
Paralleling multiple MAX870s or MAX871s reduces the  
output resistance. Each device requires its own pump  
capacitor (C1), but the reservoir capacitor (C2) serves  
all devices (Figure 5). Increase C2s value by a factor  
of n, where n is the number of parallel devices. Figure 5  
shows the equation for calculating output resistance.  
I
OUT  
x C2  
V
=
+ 2 x I  
x ESR  
RIPPLE  
OUT  
C2  
f
OSC  
Co m b in e d Do u b le r/In ve rt e r  
In the circuit of Figure 6, capacitors C1 and C2 form the  
inverter, while C3 and C4 form the doubler. C1 and C3  
are the pump capacitors; C2 and C4 are the reservoir  
Input Bypass Capacitor  
Bypass the incoming supply to reduce its AC impedance  
and the impact of the MAX870/MAX871s switching  
Table 1. Low-ESR Capacitor Manufacturers  
PRODUCTION  
METHOD  
MANUFACTURER  
SERIES  
PHONE  
FAX  
AVX  
TPS series  
267 series  
593D, 595D series  
X7R  
(803) 946-0690  
(714) 969-2491  
(603) 224-1961  
(803) 946-0690  
(714) 969-2491  
(803) 626-3123  
(714) 960-6492  
(603) 224-1430  
(803) 626-3123  
(714) 960-6492  
Surface-Mount  
Tantalum  
Matsuo  
Sprague  
AVX  
Surface-Mount  
Ceramic  
Matsuo  
X7R  
6
_______________________________________________________________________________________  
S w it c h e d -Ca p a c it o r Vo lt a g e In ve rt e rs  
0/MAX871  
IN  
+V  
2
1
2
1
+V  
IN  
3
4
3
4
2
2
1
MAX870  
MAX871  
“1”  
MAX870  
MAX871  
“n”  
C1  
3
4
5
3
4
5
C1  
V
OUT  
MAX870  
MAX871  
“1”  
MAX870  
MAX871  
“n”  
5
5
C1  
C1  
V
OUT  
1
C2  
C2  
V
OUT  
= -nV  
IN  
R
OF SINGLE DEVICE  
C2  
V
OUT  
= -V  
IN  
OUT  
R
OUT  
=
NUMBER OF DEVICES  
Figure 4. Cascading MAX870s or MAX871s to Increase  
Output Voltage  
Figure 5. Paralleling MAX870s or MAX871s to Reduce Output  
Resistance  
capacitors. Because both the inverter and doubler use  
part of the charge-pump circuit, loading either output  
causes both outputs to decline toward GND. Make sure  
the sum of the currents drawn from the two outputs  
does not exceed 40mA.  
+V  
IN  
D1, D2 = 1N4148  
3
4
2
1
C1  
MAX870  
MAX871  
D1  
D2  
He a vy Ou t p u t Cu rre n t Lo a d s  
Under heavy loads, where higher supply is sourcing cur-  
rent into OUT, the OUT supply must not be pulled above  
ground. Applications that sink heavy current into OUT  
require a Schottky diode (1N5817) between GND and  
OUT, with the anode connected to OUT (Figure 7).  
5
V
OUT  
= -V  
IN  
C2  
C4  
V
= (2V ) -  
IN  
OUT  
(V ) - (V  
)
FD2  
FD1  
C3  
La yo u t a n d Gro u n d in g  
Good layout is important, primarily for good noise per-  
formance. To ensure good layout, mount all compo-  
nents as close together as possible, keep traces short  
to minimize parasitic inductance and capacitance, and  
use a ground plane.  
Figure 6. Combined Doubler and Inverter  
4
GND  
MAX870  
MAX871  
1
OUT  
Figure 7. High V- Load Current  
_______________________________________________________________________________________  
7
S w it c h e d -Ca p a c it o r Vo lt a g e In ve rt e rs  
S h u t d o w n Co n t ro l  
If shutdown control is necessary, use the circuit in  
Figure 8. The output resistance of the MAX870/MAX871  
will typically be 20plus two times the output resis-  
tance of the buffer driving IN. The 0.1µF capacitor at  
the IN pin absorbs the transient input currents of the  
MAX870/MAX871.  
INPUT  
SHUTDOWN  
LOGIC  
SIGNAL  
2
1
3
IN  
C1-  
C1  
C
IN  
0.1µF  
MAX870  
MAX871  
5
4
OFF  
C1+  
ON  
The output resistance of the buffer driving the IN pin  
can be reduced by connecting multiple buffers in par-  
allel. The polarity of the shutdown signal can also be  
changed by using a noninverting buffer to drive IN.  
OUTPUT  
GND  
OUT  
C2  
Figure 8. Shutdown Control  
___________________Ch ip In fo rm a t io n  
TRANSISTOR COUNT: 58  
0/MAX871  
SUBSTRATE CONNECTED TO IN  
________________________________________________________P a c k a g e In fo rm a t io n  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
8
___________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 (4 0 8 ) 7 3 7 -7 6 0 0  
© 1997 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX870D

Switched-Capacitor Voltage Inverters
MAXIM

MAX870EUK

Switched-Capacitor Voltage Inverters
MAXIM

MAX870EUK+

Switched Capacitor Converter, 0.005A, 194kHz Switching Freq-Max, CMOS, PDSO5, SOT-23, 5 PIN
MAXIM

MAX870EUK-T

Switched Capacitor Converter, 0.005A, 194kHz Switching Freq-Max, CMOS, PDSO5, SOT-23, 5 PIN
MAXIM

MAX870EUK-T

SWITCHED CAPACITOR CONVERTER, 194kHz SWITCHING FREQ-MAX, PDSO5, SOT-23, 5 PIN
ROCHESTER

MAX871

Switched-Capacitor Voltage Inverters
MAXIM

MAX8710

Low-Cost, Linear-Regulator LCD Panel Power Supplies
MAXIM

MAX8710-MAX8761

Low-Cost, Linear-Regulator LCD Panel Power Supplies
MAXIM

MAX8710ETG

暂无描述
MAXIM

MAX8710ETG

5V FIXED POSITIVE REGULATOR, QCC24, 4 X 4 MM, 0.8 MM PITCH, MO220WGGD-2, QFN-24
ROCHESTER

MAX8710ETG+

Low-Cost, Linear-Regulator LCD Panel Power Supplies
MAXIM

MAX8710ETG+T

Fixed Positive Standard Regulator, 5VBICMOS, 4 X 4 MM, 0.80 MM HEIGHT, ROHS COMPLIANT, MO-220WGGD-2, TQFN-16
MAXIM