MAX873BCSA-T [MAXIM]

Three Terminal Voltage Reference, 1 Output, 2.5V, Trim/Adjustable, BIPolar, PDSO8, PLASTIC, SO-8;
MAX873BCSA-T
型号: MAX873BCSA-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Three Terminal Voltage Reference, 1 Output, 2.5V, Trim/Adjustable, BIPolar, PDSO8, PLASTIC, SO-8

光电二极管
文件: 总12页 (文件大小:370K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0038; Rev 3; 6/07  
Low-Power, Low-Drift, +2.5V/+5V/+10V  
Precision Voltage References  
35/MAX876  
General Description  
Features  
The MAX873/MAX875/MAX876 precision 2.5V, 5V, and  
10V references offer excellent accuracy and very low  
power consumption. Extremely low temperature drift  
combined with excellent line and load regulation permit  
stable operation over a wide range of electrical and envi-  
ronmental conditions. Operation for the MAX873 is guar-  
anteed with a +4.5V supply, making the part ideal in  
systems running from a +5V 10ꢀ supply. ꢁow 10ꢂH to  
MAX873/MAX875/MAX876  
+2.5V/+5V/+10V Outputs  
1.5ꢀV/ 2.0ꢀV/ 3.0ꢀV mꢀꢁ(ꢂ x)ꢃtꢃꢁꢄ Allucꢁlr  
7ppꢀ/°C mꢀꢁ(ꢂ Teꢀpecꢁtuce Coeffꢃlꢃe)t  
450µA mꢀꢁ(ꢂ Quꢃesle)t Cucce)t  
Low Noꢃse: 3.8µV  
mtrp ꢁt 2.5Vꢂ  
P-P  
1kꢂH noise—typically 3.8µV  
, 9µV  
, and 18µV  
,
RMS  
RMS  
RMS  
Soucles 10ꢀA, Sꢃ)ks 2ꢀA  
respectively, for the MAX873, MAX875, MAX876—make  
the parts suitable for 12-bit data-acquisition systems.  
15ppꢀ/ꢀA Loꢁd Reguꢄꢁtꢃo) mꢀꢁ(ꢂ  
4ppꢀ/V Lꢃ)e Reguꢄꢁtꢃo) mꢀꢁ(ꢂ  
A TRIM pin facilitates adjustment of the reference voltage  
over a 6ꢀ range, using only a 100kpotentiometer. A  
voltage output proportional to temperature provides a  
source for temperature compensation circuits, tempera-  
ture warning circuits, and other applications.  
Wꢃde Suppꢄr Voꢄtꢁge Rꢁ)ge, +4.5V to +18V  
mMAX873ꢂ  
TEMP Output Pcopoctꢃo)ꢁꢄ to Teꢀpecꢁtuce  
Applications  
Typical Operating Circuit  
12-Bit ADCs and DACs  
V+  
Digital Multimeters  
Portable Data-Acquisition Systems  
ꢁow-Power Test Equipment  
IN  
MAX873  
MAX875  
+2.5V (MAX873)  
+5.0V (MAX875)  
+10.0V (MAX876)  
MAX876  
0.1µF*  
OUT  
GND  
*OPTIONAL  
0V  
Pꢃ) Co)fꢃgucꢁtꢃo) ꢁppeꢁcs ꢁt e)d of dꢁtꢁ sheet.  
Ordering Information/Selector Guide  
OUTPUT  
PxN-  
PACKAGE  
MAX  
TEMPCO  
mppꢀ/°Cꢂ  
xNxTxAL  
ACCURACY  
%
PKG  
CODE  
PART  
VOLTAGE  
mVꢂ  
MAX873AESA+  
MAX873BESA+  
8 SO  
8 SO  
8 SO  
8 SO  
8 SO  
8 SO  
2.500  
2.500  
5.000  
5.000  
10.000  
10.000  
7
20  
7
0.06  
0.10  
0.04  
0.06  
0.03  
0.05  
S8-4  
S8-4  
S8-4  
S8-4  
S8-4  
S8-4  
MAX875AESA+  
MAX875BESA+  
20  
7
MAX876AESA+  
MAX876BESA+  
20  
+Denotes a lead-free package.  
Note: All devices are specified over the -40°C to +85°C operating temperature range.  
________________________________________________________________ Mꢁ(ꢃꢀ x)tegcꢁted Pcodults  
1
Foc pcꢃlꢃ)g, deꢄꢃvecr, ꢁ)d ocdecꢃ)g ꢃ)focꢀꢁtꢃo), pꢄeꢁse lo)tꢁlt Mꢁ(ꢃꢀ Dꢃcelt ꢁt 1-888-629-4642,  
oc vꢃsꢃt Mꢁ(ꢃꢀ’s websꢃte ꢁt www.ꢀꢁ(ꢃꢀ-ꢃl.loꢀ.  
Low-Power, Low-Drift, +2.5V/+5V/+10V  
Precision Voltage References  
ABSOLUTE MAXxMUM RATxNGS  
IN to GND...............................................................-0.3V to +20V  
OUT, TRIM, TEMP, TEST..............................- 0.3V to (IN + 0.3V)  
Output Short-Circuit Duration (to GND)....................................5s  
Operating Temperature Ranges:  
MAX87_ _E_A ..................................................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
ꢁead Temperature (soldering, 10s) .................................+300°C  
Continuous Power Dissipation (T = +70°C)  
A
SO (derate 5.88mW/°C above +70°C).........................471mW  
Junction Temperature (T )...............................................+150°C  
J
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRxCAL CHARACTERxSTxCS—MAX873  
(V = +5V, I = 0mA, C  
< 100pF, T = -40°C to +85°C, unless otherwise noted.)  
A
IN  
ꢁOAD  
PARAMETER  
SYMBOL  
CONDxTxONS  
MAX873A (0.06ꢀ)  
MxN  
TYP  
2.5000  
2.5000  
2
MAX  
2.5015  
2.5025  
7
UNxTS  
2.4985  
2.4975  
Output Voltage  
V
T
= +25°C  
V
OUT  
A
MAX873B (0.10ꢀ)  
MAX873A  
MAX873B  
Output-Voltage Drift  
(Note 1)  
TCV  
ppm/°C  
OUT  
n
5
20  
0.1ꢂH to 10ꢂH  
10ꢂH to 1kꢂH  
3.8  
6.8  
1
µV  
P-P  
Output-Noise Voltage  
ꢁine Regulation  
e
T = +25°C  
A
µV  
RMS  
T
A
T
A
T
A
T
A
T
A
T
A
= +25°C  
4.0  
6
V
= 4.5V to 18V  
ppm/V  
ppm/mA  
µA  
IN  
= -40°C to +85°C  
= +25°C  
2
3
15  
I = 0 to 10mA  
(source)  
35/MAX876  
= -40°C to +85°C  
= +25°C  
3
20  
ꢁoad Regulation  
100  
150  
300  
300  
60  
900  
1900  
450  
600  
I = 0 to -1mA (sink)  
= -40°C to +85°C  
T
T
= +25°C  
A
Quiescent Supply Current  
Short-Circuit Output Current  
I
Q
= -40°C to +85°C  
A
I
Output shorted to GND  
mA  
mV  
SC  
V
Adjust Range  
100  
50  
OUT  
ꢁong-Term Output Drift  
TEMP PxN  
ppm/kh  
Voltage Output  
V
T
A
= +25°C  
570  
1.9  
mV  
TEMP  
Temperature Sensitivity  
TCV  
mV/°C  
TEMP  
ELECTRxCAL CHARACTERxSTxCS—MAX875  
(V = +15V, I = 0mA, C  
< 100pF, T = -40°C to +85°C, unless otherwise noted.)  
A
IN  
ꢁOAD  
PARAMETER  
SYMBOL  
CONDxTxONS  
MAX875A (0.04ꢀ)  
MxN  
4.998  
4.997  
TYP  
MAX  
5.002  
5.003  
7
UNxTS  
5.000  
Output Voltage  
V
T
= +25°C  
V
OUT  
A
MAX875B (0.06ꢀ)  
5.000  
MAX875A  
MAX875B  
2
5
Output Voltage Drift  
(Note 1)  
TCV  
e
ppm/°C  
OUT  
20  
0.1ꢂH to 10ꢂH  
10ꢂH to 1kꢂH  
9
µV  
P-P  
Output-Noise Voltage  
ꢁine Regulation  
T = +25°C  
A
n
14.5  
1
µV  
RMS  
T
= +25°C  
4.0  
6
A
A
V
= 7V to 18V  
ppm/V  
IN  
T
= -40°C to +85°C  
2
2
_______________________________________________________________________________________  
Low-Power, Low-Drift, +2.5V/+5V/+10V  
Precision Voltage References  
35/MAX876  
ELECTRxCAL CHARACTERxSTxCS—MAX875 mlo)tꢃ)uedꢂ  
(V = +15V, I = 0mA, C  
< 100pF, T = -40°C to +85°C, unless otherwise noted.)  
A
IN  
ꢁOAD  
PARAMETER  
SYMBOL  
CONDxTxONS  
MxN  
TYP  
3
MAX  
15  
UNxTS  
T
A
T
A
T
A
T
A
= +25°C  
I = 0 to 10mA  
(source)  
= -40°C to +85°C  
= +25°C  
3
20  
ꢁoad Regulation  
ppm/mA  
100  
150  
320  
320  
60  
900  
1900  
550  
700  
I = 0 to -1mA (sink)  
= -40°C to +85°C  
T
T
= +25°C  
A
A
Quiescent Supply Current  
Short-Circuit Output Current  
I
µA  
Q
= -40°C to +85°C  
I
Output shorted to GND  
mA  
mV  
SC  
V
Adjust Range  
300  
50  
OUT  
ꢁong-Term Output Drift  
TEMP PxN  
ppm/kh  
Voltage Output  
V
T
= +25°C  
A
630  
2.1  
mV  
TEMP  
Temperature Sensitivity  
TCV  
mV/°C  
TEMP  
ELECTRxCAL CHARACTERxSTxCS—MAX876  
(V = +15V, I = 0mA, C  
< 100pF, T = -40°C to +85°C, unless otherwise noted.)  
A
IN  
ꢁOAD  
PARAMETER  
SYMBOL  
CONDxTxONS  
MAX876A (0.03ꢀ)  
MxN  
9.997  
9.995  
TYP  
10.000  
10.000  
2
MAX  
10.003  
10.005  
7
UNxTS  
Output Voltage  
V
T
= +25°C  
A
V
OUT  
MAX876B (0.05ꢀ)  
MAX876A  
MAX876B  
Output Voltage Drift  
(Note 1)  
TCV  
e
ppm/°C  
OUT  
5
20  
0.1ꢂH to 10ꢂH  
10ꢂH to 1kꢂH  
18  
µV  
P-P  
Output-Noise Voltage  
ꢁine Regulation  
T = +25°C  
A
n
29  
µV  
RMS  
T
A
T
A
T
A
T
A
T
A
T
A
= +25°C  
1
4.0  
6
V
= 12V to 18V  
ppm/V  
ppm/mA  
µA  
IN  
= -40°C to +85°C  
= +25°C  
1
1
15  
I = 0 to 10mA  
(source)  
= -40°C to +85°C  
= +25°C  
1
20  
ꢁoad Regulation  
100  
150  
320  
340  
60  
900  
1900  
550  
700  
I = 0 to -1mA (sink)  
= -40°C to +85°C  
T
T
= +25°C  
A
A
Quiescent Supply Current  
Short-Circuit Output Current  
I
Q
= -40°C to +85°C  
I
Output shorted to GND  
mA  
mV  
SC  
V
Adjust Range  
600  
50  
OUT  
ꢁong-Term Output Drift  
TEMP PxN  
ppm/kh  
Voltage Output  
V
T
= +25°C  
A
630  
2.1  
mV  
TEMP  
Temperature Sensitivity  
TCV  
mV/°C  
TEMP  
Note 1: Temperature coefficient is defined as maximum V  
divided by maximum T of the temperature range.  
OUT  
_______________________________________________________________________________________  
3
Low-Power, Low-Drift, +2.5V/+5V/+10V  
Precision Voltage References  
Typical Operating Characteristics  
(V = +5V for V  
IN  
= +2.5V, V = +15V for V  
= +10V, I  
= 0, T = +25°C, unless otherwise noted.)  
OUT  
IN  
OUT  
OUT A  
OUTPUT VOLTAGE vs. TEMPERATURE  
(V = 2.5V)  
OUTPUT VOLTAGE vs. TEMPERATURE  
(V = 10V)  
LOAD REGULATION vs.  
OUT  
SOURCE CURRENT (V  
= 2.5V)  
OUT  
OUT  
2.502  
2.501  
2.500  
2.499  
2.498  
10.003  
10.002  
10.001  
10.000  
9.999  
9.998  
9.997  
9.996  
9.995  
9.994  
9.993  
0.50  
0.25  
0
T
= -40°C  
A
T
= +25°C  
A
-0.25  
-0.50  
T
= +125°C  
A
THREE TYPICAL PARTS  
THREE TYPICAL PARTS  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
0
5
10  
15  
20  
25  
30  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SOURCE CURRENT (mA)  
LOAD REGULATION  
vs. SOURCE CURRENT (V  
LOAD REGULATION  
LOAD REGULATION  
= 10V)  
vs. SINK CURRENT (V  
= 2.5V)  
vs. SINK CURRENT (V = 10V)  
OUT  
OUT  
OUT  
0.50  
0.25  
0
1.00  
0.75  
0.50  
2.0  
1.5  
1.0  
T
= +25°C  
A
35/MAX876  
T
= -40°C  
A
T
A
= +25°C  
T
= +125°C  
A
T
= +125°C  
A
T
= +125°C  
A
0.25  
0
0.5  
0
T
= +25°C  
A
T
= -40°C  
A
-0.25  
-0.50  
T
= -40°C  
A
-0.25  
-0.5  
-0.50  
-1.0  
0
5
10  
15  
20  
25  
30  
0
0.5  
1.0  
SINK CURRENT (mA)  
1.5  
2.0  
0
0.5  
1.0  
1.5  
2.0  
SOURCE CURRENT (mA)  
SINK CURRENT (mA)  
MINIMUM INPUT-OUTPUT DIFFERENTIAL  
vs. SOURCE CURRENT (V = 2.5V)  
LINE REGULATION vs. TEMPERATURE  
(V = 2.5V)  
LINE REGULATION vs. TEMPERATURE  
(V = 10V)  
OUT  
OUT  
OUT  
100  
300  
250  
200  
150  
100  
50  
2.5  
2.0  
1.5  
1.0  
0.5  
80  
60  
40  
20  
T
= +125°C  
A
T
= -40°C  
A
T
= +125°C  
A
T
= -40°C  
A
T
= +125°C  
A
T
= +25°C  
= -40°C  
A
T
A
T
= +25°C  
A
T
= +25°C  
A
0
0
0
5
10 15 20 25 30 35 40  
INPUT VOLTAGE (V)  
12  
16  
20  
24  
28  
32  
36  
40  
0
4
8
12  
16  
20  
INPUT VOLTAGE (V)  
SOURCE CURRENT (mA)  
4
_______________________________________________________________________________________  
Low-Power, Low-Drift, +2.5V/+5V/+10V  
Precision Voltage References  
35/MAX876  
Typical Operating Characteristics (continued)  
(V = +5V for V  
IN  
= +2.5V, V = +15V for V  
= +10V, I  
= 0, T = +25°C, unless otherwise noted.)  
OUT  
IN  
OUT  
OUT A  
POWER-SUPPLY REJECTION RATIO  
MINIMUM INPUT-OUTPUT DIFFERENTIAL  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY (V  
= 10V)  
vs. SOURCE CURRENT (V  
= 10V)  
vs. FREQUENCY (V  
= 2.5V)  
OUT  
OUT  
OUT  
0
0
-20  
2.5  
2.0  
1.5  
1.0  
0.5  
-20  
-40  
T
A
= +125°C  
-40  
-60  
-60  
T
T
= +25°C  
= -40°C  
A
-80  
-80  
-100  
-120  
-140  
A
-100  
-120  
0.001 0.01  
0.1  
1
10  
100 1000  
0.001 0.01  
0.1  
1
10  
100 1000  
0
4
8
12  
16  
20  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
SOURCE CURRENT (mA)  
SUPPLY CURRENT vs. INPUT VOLTAGE  
(V = 10V)  
SUPPLY CURRENT vs. INPUT VOLTAGE  
(V = 2.5V)  
OUTPUT IMPEDANCE vs. FREQUENCY  
OUT  
(V  
OUT  
= 2.5V)  
OUT  
400  
350  
300  
250  
200  
150  
100  
50  
400  
350  
300  
250  
200  
150  
100  
50  
100  
10  
T
= +125°C  
T
= +125°C  
A
A
T
= +25°C  
A
T
= +25°C  
A
1
T
= -40°C  
A
T
= -40°C  
0.1  
A
0.01  
0.001  
0
0
0
5
10 15 20 25 30 35 40  
INPUT VOLTAGE (V)  
0
5
10 15 20 25 30 35 40  
INPUT VOLTAGE (V)  
0.01  
0.1  
1
10  
100  
1000  
FREQUENCY (kHz)  
SUPPLY CURRENT vs. TEMPERATURE  
SUPPLY CURRENT vs. TEMPERATURE  
TEMP VOLTAGE  
(V  
OUT  
= 2.5V)  
(V  
OUT  
= 10V)  
vs. TEMPERATURE (V  
= 2.5V)  
OUT  
350  
325  
300  
275  
250  
375  
350  
325  
300  
275  
250  
800  
700  
600  
500  
400  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
5
Low-Power, Low-Drift, +2.5V/+5V/+10V  
Precision Voltage References  
Typical Operating Characteristics (continued)  
(V = +5V for V  
IN  
= +2.5V, V = +15V for V  
= +10V, I  
= 0, T = +25°C, unless otherwise noted.)  
OUT  
IN  
OUT  
OUT A  
TEMP VOLTAGE  
vs. TEMPERATURE (V  
LONG-TERM STABILITY vs. TIME  
(V = 2.500V)  
OUTPUT VOLTAGE  
vs. TRIM VOLTAGE (V  
= 10V)  
= 2.5V)  
OUT  
OUT  
OUT  
900  
800  
700  
600  
500  
400  
2.65  
2.502  
2.501  
2.500  
2.499  
2.498  
TWO TYPICAL PARTS  
2.60  
2.55  
2.50  
2.45  
2.40  
2.35  
-50 -25  
0
25  
50  
75 100 125  
0
200  
400  
600  
800  
1000  
0
0.5  
1.0  
1.5  
2.0  
2.5  
TEMPERATURE (°C)  
TIME (hours)  
TRIM VOLTAGE (V)  
LONG-TERM STABILITY vs. TIME  
OUTPUT-VOLTAGE NOISE DENSITY  
OUTPUT-VOLTAGE NOISE DENSITY  
(V  
OUT  
= 10.0V)  
vs. FREQUENCY (V  
= 2.5V)  
vs. FREQUENCY (V  
= 10V)  
OUT  
OUT  
10.002  
10.001  
10.000  
9.999  
1000  
10,000  
TWO TYPICAL PARTS  
35/MAX876  
1000  
9.998  
100  
100  
0
200  
400  
600  
800  
1000  
0.1  
1
10  
FREQUENCY (Hz)  
100  
1000  
0.1  
1
10  
FREQUENCY (Hz)  
100  
1000  
TIME (hours)  
0.1Hz TO 10Hz OUTPUT NOISE  
(V = 10V)  
0.1Hz TO 10Hz OUTPUT NOISE  
(V  
OUT  
= 2.5V)  
OUT  
MAX873/75/76 toc26  
MAX873/75/76 toc25  
4µV/div  
1µV/div  
1s/div  
1s/div  
6
_______________________________________________________________________________________  
Low-Power, Low-Drift, +2.5V/+5V/+10V  
Precision Voltage References  
35/MAX876  
Typical Operating Characteristics (continued)  
(V = +5V for V  
IN  
= +2.5V, V = +15V for V  
IN  
= +10V, I = 0, T = +25°C, unless otherwise noted.)  
OUT A  
OUT  
OUT  
LOAD TRANSIENT  
LOAD TRANSIENT  
(V  
OUT  
= 10V, C  
= 0, 0 TO 20mA)  
OUT  
MAX873/75/76 toc28  
(V  
OUT  
= 2.5V, C  
= 0, 0 TO 20mA)  
OUT  
MAX873/75/76 toc27  
20mA  
20mA  
I
OUT  
I
OUT  
0
0
V
V
OUT  
OUT  
AC-COUPLED  
1V/div  
AC-COUPLED  
1V/div  
10µs/div  
10µs/div  
LOAD TRANSIENT  
LOAD TRANSIENT  
(V  
OUT  
= 10V, C  
= 1µF, 0 TO 20mA)  
OUT  
MAX873/75/76 toc30  
(V  
OUT  
= 2.5V, C  
= 1µF, 0 TO +20mA)  
OUT  
MAX873/75/76 toc29  
20mA  
20mA  
I
OUT  
I
OUT  
0
0
V
V
OUT  
OUT  
AC-COUPLED  
100mV/div  
AC-COUPLED  
50mV/div  
100µs/div  
200µs/div  
LOAD TRANSIENT  
LOAD TRANSIENT  
(V  
OUT  
= 10V, C  
= 0, 0 TO -2mA)  
OUT  
MAX873/75/76 toc32  
(V  
OUT  
= 2.5V, C  
= 0, 0 TO -2mA)  
OUT  
MAX873/75/76 toc31  
0
0
I
OUT  
I
OUT  
-2mA  
-2mA  
V
V
OUT  
OUT  
AC-COUPLED  
20mV/div  
AC-COUPLED  
200mV/div  
200µs/div  
40µs/div  
_______________________________________________________________________________________  
7
Low-Power, Low-Drift, +2.5V/+5V/+10V  
Precision Voltage References  
Typical Operating Characteristics (continued)  
(V = +5V for V  
IN  
= +2.5V, V = +15V for V  
IN  
= +10V, I  
= 0, T = +25°C, unless otherwise noted.)  
OUT  
OUT  
OUT A  
LOAD TRANSIENT  
LOAD TRANSIENT  
(V  
OUT  
= 10V, C  
= 1µF, 0 TO -2mA)  
OUT  
MAX873/75/76 toc34  
(V  
OUT  
= 2.5V, C  
= 1µF, 0 TO -2mA)  
OUT  
MAX873/75/76 toc33  
0
0
I
OUT  
I
OUT  
-2mA  
-2mA  
V
V
OUT  
OUT  
AC-COUPLED  
5mV/div  
AC-COUPLED  
20mV/div  
400µs/div  
400µs/div  
LINE TRANSIENT  
LINE TRANSIENT  
(V  
= 10V)  
OUT  
(V  
= 2.5V)  
OUT  
MAX873/75/76 toc36  
MAX873/75/76 toc35  
5.5V  
15.5V  
V
IN  
35/MAX876  
V
IN  
1V/div  
14.5V  
4.5V  
V
OUT  
V
OUT  
AC-COUPLED  
200mV/div  
AC-COUPLED  
200mV/div  
C
= 0  
OUT  
2µs/div  
10µs/div  
TURN-ON TRANSIENT  
TURN-ON TRANSIENT  
(V = 2.5V, C = 1µF)  
OUT  
(V  
OUT  
= 2.5V, C  
= 0)  
OUT  
OUT  
MAX873/75/76 toc38  
MAX873/75/76 toc37  
V
IN  
2V/div  
V
IN  
2V/div  
GND  
GND  
V
OUT  
1V/div  
V
OUT  
1V/div  
GND  
C
= 0  
OUT  
GND  
40µs/div  
10µs/div  
8
_______________________________________________________________________________________  
Low-Power, Low-Drift, +2.5V/+5V/+10V  
Precision Voltage References  
35/MAX876  
Typical Operating Characteristics (continued)  
(V = +5V for V  
IN  
= +2.5V, V = +15V for V  
IN  
= +10V, I = 0, T = +25°C, unless otherwise noted.)  
OUT A  
OUT  
OUT  
TURN-ON TRANSIENT  
TURN-ON TRANSIENT  
(V  
OUT  
= 10V, C  
= 0)  
OUT  
MAX873/75/76 toc39  
(V  
= 10V, C  
= 1µF)  
OUT  
MAX873/75/76 toc40  
OUT  
V
IN  
V
IN  
5V/div  
5V/div  
GND  
GND  
V
OUT  
V
OUT  
5V/div  
5V/div  
GND  
GND  
100µs/div  
200µs/div  
Pin Description  
PxN  
1, 8  
2
NAME  
I.C.  
FUNCTxON  
Internally Connected. Do not connect externally.  
Positive Power-Supply Input  
IN  
Temperature Proportional Output Voltage. TEMP generates an output voltage proportional to the die  
temperature.  
3
4
5
TEMP  
GND  
TRIM  
Ground  
Output Voltage Trim. Connect TRIM to the center of a voltage-divider between OUT and GND for  
trimming. ꢁeave unconnected to use the preset output voltage.  
6
7
OUT  
N.C.  
Output Voltage  
No Connection. Not internally connected.  
Use the following formula to calculate the change in  
output voltage from its preset value:  
Detailed Description  
The MAX873/MAX875/MAX876 precision voltage refer-  
ences provide accurate preset +2.5V, +5.0V, and +10V  
reference voltages from up to +40V input voltages. These  
devices feature a proprietary temperature-coefficient  
curvature-correction circuit and laser-trimmed thin-film  
resistors that result in a very low 3ppm/°C temperature  
coefficient and excellent 0.05ꢀ initial accuracy. The  
MAX873/MAX875/MAX876 draw 340µA of supply current  
and source 30mA or sink 2mA of load current.  
V  
= 2 x (V  
- V  
) x k  
TRIM (open)  
OUT  
TRIM  
where:  
V
TRIM  
= 0V to V  
OUT  
V
= V  
(nominal) / 2 (typ)  
TRIM (open)  
OUT  
k = ±6ꢀ (typ)  
For example, use a 50kpotentiometer (such as the  
MAX5436) between OUT, TRIM, and GND with the  
potentiometer wiper connected to TRIM (see Figure 2).  
Trimming the Output Voltage  
Trim the factory-preset output voltage on the  
MAX873/MAX875/MAX876 by placing a resistive divider  
network between OUT, TRIM, and GND.  
As the TRIM voltage changes from V  
to GND, the  
OUT  
output voltage changes accordingly. Set R2 to 1Mor  
less. Currents through resistors R1 and R2 add to the  
quiescent supply current.  
_______________________________________________________________________________________  
9
Low-Power, Low-Drift, +2.5V/+5V/+10V  
Precision Voltage References  
supply can experience step changes, a larger output  
Temp Output  
The MAX873/MAX875/MAX876 provide a temperature  
output proportional to die temperature. TEMP can be cal-  
culated from the following formula:  
capacitor reduces the amount of overshoot (under-  
shoot) and improves the circuit’s transient response.  
Place output capacitors as close to the devices as pos-  
sible for best performance.  
TEMP (V) = T (°K) x n  
J
Supply Current  
The MAX873/MAX875/MAX876 consume 320µA (typ) of  
quiescent supply current. This improved efficiency  
reduces power dissipation and extends battery life.  
where T = the die temperature,  
J
n = the temperature multiplier,  
V
(at T = T )  
J 0  
TEMP  
n =  
1.9mV/°K  
Thermal Hysteresis  
T
0
Thermal hysteresis is the change in the output voltage  
at T = +25°C before and after the device is cycled  
A
T = the ambient temperature.  
A
over its entire operating temperature range. ꢂysteresis  
is caused by differential package stress appearing  
across the bandgap core transistors. The typical ther-  
mal hysteresis value is 120ppm.  
Self-heating affects the die temperature and conversely,  
the TEMP output. The TEMP equation assumes the output  
is not loaded. If device power dissipation is negligible,  
then T T .  
J
A
Turn-On Time  
The MAX873/MAX875/MAX876 typically turn on and settle  
to within 0.1ꢀ of the preset output voltage in 150µs  
(2.5V output). The turn-on time can increase up to  
150µs with the device operating with a 1µF load.  
Applications Information  
Bypassing/Output Capacitance  
For the best line-transient performance, decouple the  
input with a 0.1µF ceramic capacitor as shown in the  
Typical Operating Circuit. Place the capacitor as close  
to IN as possible. When transient performance is less  
important, no capacitor is necessary.  
Short-Circuited Outputs  
The MAX873/MAX875/MAX876 feature a short-circuit-pro-  
tected output. Internal circuitry limits the output current  
to 60mA when short circuiting the output to ground.  
The output current is limited to 3mA when short circuit-  
ing the output to the input.  
35/MAX876  
The MAX873/MAX875/MAX876 do not require an output  
capacitor for stability and are stable with capacitive  
loads up to 100µF. In applications where the load or the  
10,000  
1000  
100  
8-BIT  
TEMPERATURE  
10  
10-BIT  
COEFFICIENT  
(ppm/°C)  
12-BIT  
1
14-BIT  
16-BIT  
0.1  
18-BIT  
20-BIT  
100  
0.01  
1
10  
OPERATING TEMPERATURE RANGE (T  
- T ) (°C)  
MAX MIN  
Figure 1. Temperature Coefficient vs. Operating Temperature Range for a 1 ꢁSB Maximum Error  
10 ______________________________________________________________________________________  
Low-Power, Low-Drift, +2.5V/+5V/+10V  
Precision Voltage References  
35/MAX876  
Temperature Coefficient vs. Operating  
Temperature Range for a  
( V  
OUT  
+ 2V) TO 40V INPUT  
1 LSB Maximum Error  
In a data converter application, the reference voltage  
of the converter must stay within a certain limit to keep  
the error in the data converter smaller than the resolu-  
tion limit through the operating temperature range.  
Figure 1 shows the maximum allowable reference-volt-  
age temperature coefficient to keep the conversion  
error to less than 1 ꢁSB, as a function of the operating  
IN  
REFERENCE  
OUTPUT  
OUT  
temperature range (T  
- T  
) with the converter  
MIN  
MAX  
*
MAX873  
MAX875  
MAX876  
resolution as a parameter. The graph assumes the ref-  
erence-voltage temperature coefficient as the only  
parameter affecting accuracy.  
MAX5436  
50k  
POTENTIOMETER  
TEMP  
TRIM  
In reality, the absolute static accuracy of a data con-  
verter is dependent on the combination of many para-  
meters such as integral nonlinearity, differential  
nonlinearity, offset error, gain error, as well as voltage-  
reference changes.  
GND  
*OPTIONAL.  
Figure 2. Applications Circuit Using the MAX5436 Potentiometer  
Pin Configuration  
Chip Information  
TRANSISTOR COUNT: 429  
TOP VIEW  
PROCESS: BiCMOS  
I.C.*  
IN  
1
2
3
4
8
7
6
5
I.C.*  
N.C.  
OUT  
TRIM  
MAX873  
MAX875  
MAX876  
TEMP  
GND  
SO  
*INTERNALLY CONNECTED. DO NOT CONNECT.  
______________________________________________________________________________________ 11  
Low-Power, Low-Drift, +2.5V/+5V/+10V  
Precision Voltage References  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.ꢀꢁ(ꢃꢀ-ꢃl.loꢀ/pꢁlkꢁges.)  
INCHES  
MILLIMETERS  
DIM  
A
MIN  
MAX  
0.069  
0.010  
0.019  
0.010  
MIN  
1.35  
0.10  
0.35  
0.19  
MAX  
1.75  
0.25  
0.49  
0.25  
0.053  
0.004  
0.014  
0.007  
N
A1  
B
C
e
0.050 BSC  
1.27 BSC  
E
0.150  
0.228  
0.016  
0.157  
0.244  
0.050  
3.80  
5.80  
0.40  
4.00  
6.20  
1.27  
E
H
H
L
VARIATIONS:  
INCHES  
1
MILLIMETERS  
DIM  
D
MIN  
MAX  
0.197  
0.344  
0.394  
MIN  
4.80  
8.55  
9.80  
MAX  
5.00  
N
8
MS012  
AA  
TOP VIEW  
0.189  
0.337  
0.386  
D
8.75 14  
10.00 16  
AB  
D
AC  
D
C
A
35/MAX876  
B
0-8∞  
e
A1  
L
FRONT VIEW  
SIDE VIEW  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, .150" SOIC  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0041  
B
1
Revision History  
Pages changed at Rev 3: 1–12  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2007 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX873BEPA

Low-Power, Low-Drift, +2.5V/+5V/+10V Precision Voltage References
MAXIM

MAX873BEPA+

暂无描述
MAXIM

MAX873BESA

Low-Power, Low-Drift, +2.5V/+5V/+10V Precision Voltage References
MAXIM

MAX873BESA+

暂无描述
MAXIM

MAX873BESA+T

Three Terminal Voltage Reference, 1 Output, 2.5V, Trim/Adjustable, BIPolar, PDSO8, PLASTIC, SO-8
MAXIM

MAX873BMJA

Low-Power, Low-Drift, +2.5V/+5V/+10V Precision Voltage References
MAXIM

MAX873_07

Low-Power, Low-Drift, 2.5V/5V/10V Precision Voltage References
MAXIM

MAX874

10レA, Low-Dropout, Precision Voltage References
MAXIM

MAX8740

TFT-LCD Step-Up DC-DC Converter
MAXIM

MAX8740ETB

TFT-LCD Step-Up DC-DC Converter
MAXIM

MAX8740ETB+T

Switching Regulator,
MAXIM

MAX8740ETB-T

Switching Regulator, Current-mode, 5.3A, 1600kHz Switching Freq-Max, BICMOS, PDSO10, 3 X 3 MM, 0.80 MM HEIGHT, MO-229WEED-3, TDFN-10
MAXIM