MAX8765ETI [MAXIM]

Low-Cost Multichemistry Battery Chargers; 低成本,多种电池充电器
MAX8765ETI
型号: MAX8765ETI
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Low-Cost Multichemistry Battery Chargers
低成本,多种电池充电器

电池
文件: 总29页 (文件大小:404K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2764; Rev 4; 7/05  
Low-Cost Multichemistry Battery Chargers  
General Description  
Features  
The MAX1908/MAX8724/MAX8765 highly integrated, multi-  
chemistry battery-charger control ICs simplify the construc-  
tion of accurate and efficient chargers. These devices use  
analog inputs to control charge current and voltage, and  
can be programmed by the host or hardwired. The  
MAX1908/MAX8724/MAX8765 achieve high efficiency  
using a buck topology with synchronous rectification.  
±±0.5% OutOu%ꢀVouꢁag%ꢂAAOꢃꢁAc%ꢄUsia%ꢅiugꢃiꢁo  
RgfgꢃgiAg%(±°C%uV%+8.°C)  
±ꢆ5%ꢂAAOꢃꢁug%ꢅitOu%COꢃꢃgiu%ꢇsꢈsusia  
±.5%ꢂAAOꢃꢁug%Cꢉꢁꢃag%COꢃꢃgiu  
ꢂiꢁoVa%ꢅitOuU%CViuꢃVo%Cꢉꢁꢃag%COꢃꢃgiu%ꢁid  
Cꢉꢁꢃag%ꢀVouꢁag  
The MAX1908/MAX8724/MAX8765 feature input current  
limiting. This feature reduces battery charge current when  
the input current limit is reached to avoid overloading the  
AC adapter when supplying the load and the battery  
charger simultaneously. The MAX1908/MAX8724/  
MAX8765 provide outputs to monitor current drawn from  
the AC adapter (DC input source), battery-charging cur-  
rent, and the presence of an AC adapter. The MAX1908’s  
conditioning charge feature provides 300mA to safely  
charge deeply discharged lithium-ion (Li+) battery packs.  
 OutOuU%fVꢃ%MVisuVꢃsia  
COꢃꢃgiu%Dꢃꢁwi%fꢃVꢈ%ꢂC%ꢂdꢁtugꢃ  
Cꢉꢁꢃasia%COꢃꢃgiu  
ꢂC%ꢂdꢁtugꢃ%PꢃgUgiAg  
ꢄt%uV%1706ꢀ%Bꢁuugꢃc-ꢀVouꢁag%Sgu%PVsiu  
MꢁxsꢈOꢈ%28ꢀ%ꢅitOu%ꢀVouꢁag  
>%9.5%EffsAsgiAc  
The MAX1908 includes a conditioning charge feature  
while the MAX8724/MAX8765 do not.  
SꢉOudVwi%CViuꢃVo%ꢅitOu  
Cꢉꢁꢃag%ꢂic%Bꢁuugꢃc%CꢉgꢈsUuꢃc  
The MAX1908/MAX8724/MAX8765 charge two to four  
series Li+ cells, providing more than 5A, and are avail-  
able in a space-saving, 28-pin, thin QFN package (5mm  
× 5mm). An evaluation kit is available to speed designs.  
ꢇs+,%NsCd,%NsMH,%ꢇgꢁd%ꢂAsd,%guA0  
Ordering Information  
Applications  
PꢅN-  
PꢂCKꢂGE  
PꢂRT  
TEMP%RꢂNGE  
PKG%C DE  
Notebook and Subnotebook Computers  
Personal Digital Assistants  
Handheld Terminals  
MꢂX19±8ETI -40°C to +85°C 28 Thin QFN  
MꢂX872ꢆETI -40°C to +85°C 28 Thin QFN  
MꢂX876.ETI -40°C to +85°C 28 Thin QFN  
T2855-6  
T2855-6  
T2855-6  
Minimum Operating Circuit  
AC ADAPTER  
INPUT  
TO EXTERNAL  
LOAD  
0.01Ω  
Pin Configuration  
CSSP  
DCIN  
CSSN  
CELLS  
TOP VIEW  
LDO  
REFIN  
VCTL  
ICTL  
ACIN  
ACOK  
SHDN  
ICHG  
IINP  
21 20 19 18 17 16 15  
BST  
LDO  
DLOV  
22  
14  
13  
DLOV  
GND  
ICTL  
MAX1908  
MAX8724  
MAX8765  
23  
LX  
DHI  
LX  
24  
25  
26  
27  
28  
BST  
12 REFIN  
11  
10 ACIN  
FROM HOST μP  
MAX1908  
MAX8724  
MAX8765  
DLO  
PGND  
DHI  
CSSN  
CSSP  
IINP  
ACOK  
10μH  
CSIP  
CCV  
9
8
ICHG  
CCI  
0.015Ω  
SHDN  
CSIN  
BATT  
CCS  
BATT+  
1
2
3
4
5
6
7
REF  
CLS  
GND  
THꢅN%QFN  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Low-Cost Multichemistry Battery Chargers  
ꢂBS ꢇꢄTE%MꢂXꢅMꢄM%RꢂTꢅNGS  
DLOV, VCTL, ICTL, REFIN, CELLS, CLS,  
LDO, SHDN to GND .............................................-0.3V to +6V  
DLOV to LDO.........................................................-0.3V to +0.3V  
DLO to PGND .........................................-0.3V to (V  
LDO Short-Circuit Current...................................................50mA  
DCIN, CSSP, CSSN, ACOK to GND.......................-0.3V to +30V  
BST to GND............................................................-0.3V to +36V  
BST to LX..................................................................-0.3V to +6V  
+ 0.3V)  
DHI to LX...................................................-0.3V to (V  
+ 0.3V)  
DLOV  
BST  
LX to GND .................................................................-6V to +30V  
BATT, CSIP, CSIN to GND .....................................-0.3V to +20V  
CSIP to CSIN or CSSP to CSSN or  
Continuous Power Dissipation (T = +70°C)  
A
28-Pin Thin QFN (5mm × 5mm)  
(derate 20.8mW/°C above +70°C) .........................1666.7mW  
Operating Temperature Range ..........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-60°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
EꢇECTRꢅCꢂꢇ%CHꢂRꢂCTERꢅSTꢅCS  
(V  
= V  
BST  
= V  
= 18V, V  
= V  
= V  
= 12V, V  
= 3V, V  
= V  
= 0.75 x V  
, CELLS = float, CLS =  
REFIN  
DCIN  
CSSP  
CSSN  
BATT  
CSIP  
CSIN  
REFIN  
VCTL  
ICTL  
REF, V  
- V = 4.5V, ACIN = GND = PGND = 0, C  
= 1µF, LDO = DLOV, C  
= 1µF; CCI, CCS, and CCV are compensated  
LX  
LDO  
REF  
per Figure 1a; T =%±°C%uV%+8.°C, unless otherwise noted. Typical values are at T = +25°C.)  
A
PꢂRꢂMETER  
SYMB ꢇ  
C NDꢅTꢅ NS  
MꢅN  
TYP  
MꢂX  
ꢄNꢅTS  
CHꢂRGE-ꢀ ꢇTꢂGE%REGꢄꢇꢂTꢅ N  
V
V
V
V
= V  
= V  
= V  
(2, 3, or 4 cells)  
-0.5  
-0.5  
-0.5  
4.0  
+0.5  
+0.5  
+0.5  
4.2  
VCTL  
VCTL  
VCTL  
VCTL  
REFIN  
Battery-Regulation Voltage  
Accuracy  
%
/ 20 (2, 3, or 4 cells)  
REFIN  
(2, 3, or 4 cells)  
LDO  
VCTL Default Threshold  
REFIN Range  
rising  
4.1  
V
V
V
(Note 1)  
2.5  
3.6  
REFIN Undervoltage Lockout  
CHꢂRGE-CꢄRRENT%REGꢄꢇꢂTꢅ N  
V
falling  
1.20  
1.92  
REFIN  
CSIP-to-CSIN Full-Scale Current-  
Sense Voltage  
V
= V  
71.25  
75  
78.75  
mV  
%
ICTL  
REFIN  
V
V
V
= V  
= V  
= V  
-5  
-5  
+5  
+5  
ICTL  
ICTL  
ICTL  
REFIN  
REFIN  
LDO  
x 0.6  
Charging-Current Accuracy  
-6  
+6  
MAX8765 only; V  
MAX8724 only; V  
= V  
= V  
x 0.036  
x 0.058  
-45  
-33  
+45  
+33  
ICTL  
ICTL  
REFIN  
REFIN  
Charge-Current Gain Error  
(MAX8765 Only)  
-2  
+2  
%
Charge-Current Offset  
(MAX8765 Only)  
-2  
4.0  
0
+2  
4.2  
19  
mV  
V
ICTL Default Threshold  
V
V
rising  
4.1  
ICTL  
BATT/CSIP/CSIN Input Voltage  
Range  
V
= 0 or V  
= 0 or SHDN = 0  
ICTL  
1
DCIN  
CSIP/CSIN Input Current  
µA  
650  
Charging  
400  
2
_______________________________________________________________________________________  
Low-Cost Multichemistry Battery Chargers  
EꢇECTRꢅCꢂꢇ%CHꢂRꢂCTERꢅSTꢅCS%(AViusiOgd)  
(V  
= V  
BST  
= V  
= 18V, V  
= V  
= V  
= 12V, V  
= 3V, V  
= V  
= 0.75 x V  
, CELLS = float, CLS =  
REFIN  
DCIN  
CSSP  
CSSN  
BATT  
CSIP  
CSIN  
REFIN  
VCTL  
ICTL  
REF, V  
- V = 4.5V, ACIN = GND = PGND = 0, C  
= 1µF, LDO = DLOV, C  
= 1µF; CCI, CCS, and CCV are compensated  
LX  
LDO  
REF  
per Figure 1a; T =%±°C%uV%+8.°C, unless otherwise noted. Typical values are at T = +25°C.)  
A
PꢂRꢂMETER  
SYMB ꢇ  
C NDꢅTꢅ NS  
MꢅN  
TYP  
MꢂX  
ꢄNꢅTS  
Cycle-by-Cycle Maximum Current  
Limit  
I
RS2 = 0.015Ω  
6.0  
6.8  
7.5  
A
MAX  
ICTL Power-Down Mode  
Threshold Voltage  
(MAX1908/MAX8724 Only)  
REFIN / REFIN / REFIN  
V
rising  
V
ICTL  
100  
55  
/ 33  
V
V
V
V
= V  
= 0 or 3V  
-1  
-1  
-1  
-1  
+1  
+1  
+1  
+1  
VCTL  
DCIN  
DCIN  
REFIN  
ICTL  
ICTL, VCTL Input Bias Current  
REFIN Input Bias Current  
µA  
µA  
= 0, V  
= V  
= V  
= 5V  
REFIN  
VCTL  
ICTL  
= 5V, V  
= 5V  
= 3V  
REFIN  
ICHG Transconductance  
(MAX1908/MAX8724 Only)  
G
G
V
V
- V  
= 45mV  
= 45mV  
2.7  
2.85  
-5  
3
3
3.3  
3.15  
+5  
µA/mV  
µA/mV  
%
ICHG  
ICHG  
CSIP  
CSIP  
CSIN  
CSIN  
ICHG Transconductance  
(MAX8765 Only)  
- V  
ICHG Transconductance Error  
(MAX8765 Only)  
ICHG Transconductance Offset  
(MAX8765 Only)  
-5  
+5  
µA  
V
V
V
V
V
- V  
- V  
- V  
- V  
- V  
= 75mV  
= 45mV  
= 5mV  
-6  
-5  
+6  
+5  
CSIP  
CSIP  
CSIP  
CSIP  
CSIP  
CSIN  
CSIN  
CSIN  
CSIN  
CSIN  
ICHG Accuracy  
%
-40  
350  
3.5  
+40  
ICHG Output Current  
= 150mV, V  
= 0  
µA  
V
ICHG  
ICHG Output Voltage  
= 150mV, ICHG = float  
ꢅNPꢄT-CꢄRRENT%REGꢄꢇꢂTꢅ N  
CSSP-to-CSSN Full-Scale  
Current-Sense Voltage  
72  
75  
78  
mV  
%
V
V
V
= V  
= V  
-4  
+4  
CLS  
CLS  
CLS  
REF  
Input Current-Limit Accuracy  
/ 2  
-7.5  
-10  
+7.5  
+10  
REF  
= 1.1V (MAX8765 only)  
Input Current-Limit Gain Error  
(MAX8765 Only)  
-2  
-2  
8
+2  
+2  
28  
%
mV  
V
Input Current-Limit Offset  
(MAX8765 Only)  
CSSP, CSSN Input Voltage  
Range  
V
V
= 0  
= V  
0.1  
350  
0.1  
1
DCIN  
CSSP  
CSSP, CSSN Input Current  
(MAX1908/MAX8724 Only)  
µA  
µA  
= V  
> 8V  
DCIN  
600  
1
CSSN  
CSSN  
V
V
= 0V  
DCIN  
DCIN  
CSSP Input Current  
(MAX8765 Only)  
V
= V  
= 28V  
CSSP  
= 28V  
400  
650  
_______________________________________________________________________________________  
3
Low-Cost Multichemistry Battery Chargers  
EꢇECTRꢅCꢂꢇ%CHꢂRꢂCTERꢅSTꢅCS%(AViusiOgd)  
(V  
= V  
BST  
= V  
= 18V, V  
= V  
= V  
= 12V, V  
= 3V, V  
= V  
= 0.75 x V  
, CELLS = float, CLS =  
REFIN  
DCIN  
CSSP  
CSSN  
BATT  
CSIP  
CSIN  
REFIN  
VCTL  
ICTL  
REF, V  
- V = 4.5V, ACIN = GND = PGND = 0, C  
= 1µF, LDO = DLOV, C  
= 1µF; CCI, CCS, and CCV are compensated  
LX  
LDO  
REF  
per Figure 1a; T =%±°C%uV%+8.°C, unless otherwise noted. Typical values are at T = +25°C.)  
A
PꢂRꢂMETER  
SYMB ꢇ  
C NDꢅTꢅ NS  
MꢅN  
TYP  
0.1  
MꢂX  
ꢄNꢅTS  
V
V
= 0  
1
1
DCIN  
DCIN  
CSSN Input Current  
(MAX8765 Only)  
V
= V  
= 28V  
CSSN  
µA  
CSSP  
= 28V  
0.1  
CLS Input Range  
(MAX1908/MAX8724 Only)  
1.6  
REF  
V
CLS Input Range  
(MAX8765 Only)  
1.1  
-1  
REF  
+1  
V
CLS Input Bias Current  
V
V
= 2V  
µA  
CLS  
IINP Transconductance  
(MAX1908/MAX8724 Only)  
G
G
- V = 75mV  
CSSN  
2.7  
3
3
3.3  
µA/mV  
IINP  
IINP  
CSSP  
V
V
- V  
- V  
= 75mV  
-5  
+5  
CSSP  
CSSP  
CSSN  
IINP Accuracy  
%
µA/mV  
%
= 37.5mV  
-7.5  
+7.5  
CSSN  
IINP Transconductance  
(MAX8765 Only)  
V
- V  
= 75mV  
2.82  
-6  
3.18  
+6  
CSSP  
CCSN  
IINP Transconductance Error  
(MAX8765 Only)  
IINP Transconductance Offset  
(MAX8765 Only)  
-10  
+10  
µA  
IINP Output Current  
V
V
- V  
- V  
= 150mV, V  
= 0  
IINP  
350  
3.5  
µA  
V
CSSP  
CSSP  
CSSN  
IINP Output Voltage  
= 150mV, V  
= float  
CSSN  
IINP  
SꢄPPꢇY%ꢂND%ꢇD %REGꢄꢇꢂT R  
DCIN Input Voltage Range  
V
8
7
28  
V
V
DCIN  
V
V
falling  
rising  
7.4  
7.5  
3.2  
DCIN  
DCIN  
DCIN Undervoltage-Lockout Trip  
Point  
7.85  
6
DCIN Quiescent Current  
I
I
8.0V < V  
< 28V  
DCIN  
mA  
µA  
DCIN  
V
V
= 19V, V  
= 0  
1
BATT  
BATT  
DCIN  
BATT Input Current  
BATT  
= 2V to 19V, V  
= 19.3V  
200  
5.4  
34  
500  
5.55  
100  
DCIN  
LDO Output Voltage  
LDO Load Regulation  
8V < V  
< 28V, no load  
5.25  
3.20  
V
DCIN  
0 < I  
< 10mA  
mV  
LDO  
LDO Undervoltage-Lockout Trip  
Point  
V
= 8V  
4
5.15  
V
DCIN  
REFERENCE  
REF Output Voltage  
0 < I  
< 500µA  
4.072  
4.096  
3.1  
4.120  
3.9  
V
V
REF  
REF Undervoltage-Lockout Trip  
Point  
V
falling  
REF  
_______________________________________________________________________________________  
Low-Cost Multichemistry Battery Chargers  
EꢇECTRꢅCꢂꢇ%CHꢂRꢂCTERꢅSTꢅCS%(AViusiOgd)  
(V  
= V  
BST  
= V  
= 18V, V  
= V  
= V  
= 12V, V  
= 3V, V  
= V  
= 0.75 x V  
, CELLS = float, CLS =  
REFIN  
DCIN  
CSSP  
CSSN  
BATT  
CSIP  
CSIN  
REFIN  
VCTL  
ICTL  
REF, V  
- V = 4.5V, ACIN = GND = PGND = 0, C  
= 1µF, LDO = DLOV, C  
= 1µF; CCI, CCS, and CCV are compensated  
LX  
LDO  
REF  
per Figure 1a; T =%±°C%uV%+8.°C, unless otherwise noted. Typical values are at T = +25°C.)  
A
PꢂRꢂMETER  
SYMB ꢇ  
C NDꢅTꢅ NS  
MꢅN  
TYP  
MꢂX  
ꢄNꢅTS  
TRꢅP%P ꢅNTS  
V
falling, referred to V  
CSIN  
DCIN  
50  
50  
100  
100  
200  
150  
150  
(MAX1908/MAX8724 only)  
BATT Power-Fail Threshold  
mV  
mV  
V
falling, referred to V  
CSSP  
CSIN  
(MAX8765 only)  
BATT Power-Fail Threshold  
Hysteresis  
ACIN rising (MAX8765 only)  
2.028  
2.007  
2.048  
2.048  
20  
2.068  
2.089  
V
V
ACIN Threshold  
ACIN rising (MAX1908/MAX8724 only)  
0.5% of REF  
ACIN Threshold Hysteresis  
ACIN Input Bias Current  
SWꢅTCHꢅNG%REGꢄꢇꢂT R  
mV  
µA  
V
= 2.048V  
-1  
+1  
ACIN  
V
V
= 16V, V  
= 19V,  
= 17V,  
BATT  
DCIN  
DHI Off-Time  
0.36  
0.4  
0.44  
0.33  
µs  
µs  
= V  
CELLS  
REFIN  
V
V
= 16V, V  
BATT  
DCIN  
DHI Minimum Off-Time  
0.24  
2.5  
0.28  
= V  
CELLS  
REFIN  
DHI Maximum On-Time  
DLOV Supply Current  
BST Supply Current  
5
5
6
7.5  
10  
15  
ms  
µA  
µA  
I
DLO low  
DHI high  
DLOV  
I
BST  
V
V
= 0, V  
= 24.5V,  
DCIN  
BATT  
BST  
BST Input Quiescent Current  
0.3  
1
µA  
= V = 20V  
LX  
LX Input Bias Current  
V
V
= 28V, V  
= V = 20V  
150  
0.3  
500  
1
µA  
µA  
%
DCIN  
DCIN  
BATT  
LX  
LX Input Quiescent Current  
DHI Maximum Duty Cycle  
= 0, V  
= V = 20V  
BATT LX  
99  
99.9  
Minimum Discontinuous-Mode  
Ripple Current  
0.5  
A
Battery Undervoltage Charge  
Current  
V
= 3V per cell (RS2 = 15mΩ),  
BATT  
150  
300  
450  
mA  
MAX1908 only, V  
rising  
BATT  
CELLS = GND, MAX1908 only, V  
rising  
rising  
6.1  
6.2  
9.3  
12.4  
4
6.3  
9.45  
12.6  
7
BATT  
Battery Undervoltage Current  
Threshold  
CELLS = float, MAX1908 only, V  
CELLS = V  
9.15  
12.2  
V
BATT  
, MAX1908 only, V  
rising  
BATT  
REFIN  
DHI On-Resistance High  
DHI On-Resistance Low  
DLO On-Resistance High  
DLO On-Resistance Low  
V
V
V
V
- V = 4.5V, I  
= +100mA  
= -100mA  
Ω
Ω
Ω
Ω
BST  
LX  
DHI  
DHI  
- V = 4.5V, I  
1
3.5  
7
BST  
LX  
= 4.5V, I  
= +100mA  
= -100mA  
4
DLOV  
DLOV  
DLO  
DLO  
= 4.5V, I  
1
3.5  
_______________________________________________________________________________________  
.
Low-Cost Multichemistry Battery Chargers  
EꢇECTRꢅCꢂꢇ%CHꢂRꢂCTERꢅSTꢅCS%(AViusiOgd)  
(V  
= V  
BST  
= V  
= 18V, V  
= V  
= V  
= 12V, V  
= 3V, V  
= V  
= 0.75 x V  
, CELLS = float, CLS =  
REFIN  
DCIN  
CSSP  
CSSN  
BATT  
CSIP  
CSIN  
REFIN  
VCTL  
ICTL  
REF, V  
- V = 4.5V, ACIN = GND = PGND = 0, C  
= 1µF, LDO = DLOV, C  
= 1µF; CCI, CCS, and CCV are compensated  
LX  
LDO  
REF  
per Figure 1a; T =%±°C%uV%+8.°C, unless otherwise noted. Typical values are at T = +25°C.)  
A
PꢂRꢂMETER  
SYMB ꢇ  
C NDꢅTꢅ NS  
MꢅN  
TYP  
MꢂX  
ꢄNꢅTS  
ERR R%ꢂMPꢇꢅFꢅERS  
V
= V  
, V  
REFIN  
= 16.8V,  
VCTL  
LDO BATT  
GMV Amplifier Transconductance  
GMV  
0.0625  
0.125 0.2500 µA/mV  
CELLS = V  
GMI Amplifier Transconductance  
GMS Amplifier Transconductance  
CCI, CCS, CCV Clamp Voltage  
ꢇ GꢅC%ꢇEꢀEꢇS  
GMI  
V
V
= V  
, V  
- V  
= 75mV  
= 75mV  
0.5  
0.5  
150  
1
1
2.0  
2.0  
600  
µA/mV  
µA/mV  
mV  
ICTL  
CLS  
REFIN CSIP  
CSIN  
GMS  
= V  
, V  
- V  
REF CSSP CSSN  
0.25V < V  
< 2V  
300  
CCV,CCS,CCI  
CELLS Input Low Voltage  
0.4  
V
V
(V  
/ 2) -  
0.2V  
(V  
REFIN  
REFIN  
/ 2) +  
0.2V  
V
REFIN  
/ 2  
CELLS Input Float Voltage  
CELLS = float  
V
REFIN  
CELLS Input High Voltage  
V
- 0.4V  
CELLS Input Bias Current  
ACOK%ꢂND%SHDN  
CELLS = 0 or V  
-2  
+2  
28  
µA  
REFIN  
ACOK Input Voltage Range  
ACOK Sink Current  
0
1
V
mA  
µA  
V
V
V
= 0.4V, V  
= 3V  
= 0  
ACOK  
ACOK  
ACIN  
ACOK Leakage Current  
SHDN Input Voltage Range  
= 28V, V  
1
ACIN  
0
LDO  
+1  
V
V
= 0 or V  
-1  
-1  
SHDN  
LDO  
SHDN Input Bias Current  
SHDN Threshold  
µA  
= 0, V  
= 5V  
SHDN  
+1  
DCIN  
% of  
REFIN  
V
falling  
22  
23.5  
1
25  
SHDN  
V
% of  
REFIN  
SHDN Threshold Hysteresis  
V
6
_______________________________________________________________________________________  
Low-Cost Multichemistry Battery Chargers  
EꢇECTRꢅCꢂꢇ%CHꢂRꢂCTERꢅSTꢅCS  
(V  
= V  
BST  
= V  
= 18V, V  
= V  
= V  
= 12V, V  
= 3V, V  
= V  
= 0.75 x V  
, CELLS = FLOAT, CLS =  
REFIN  
DCIN  
CSSP  
CSSN  
BATT  
CSIP  
CSIN  
REFIN  
VCTL  
ICTL  
REF, V  
- V = 4.5V, ACIN = GND = PGND = 0, C  
= 1µF, LDO = DLOV, C  
= 1µF; CCI, CCS, and CCV are compensated  
LX  
LDO  
REF  
per Figure 1a; T =%-ꢆ±°C%uV%+8.°C, unless otherwise noted.) (Note 2)  
PꢂRꢂMETER  
SYMB ꢇ  
C NDꢅTꢅ NS  
MꢅN  
TYP  
MꢂX  
ꢄNꢅTS  
CHꢂRGE-ꢀ ꢇTꢂGE%REGꢄꢇꢂTꢅ N  
V
V
V
= V  
= V  
= V  
(2, 3, or 4 cells)  
-0.6  
-0.6  
-0.6  
2.5  
+0.6  
+0.6  
+0.6  
3.6  
VCTL  
VCTL  
VCTL  
REFIN  
Battery Regulation Voltage  
Accuracy  
/ 20 (2, 3, or 4 cells)  
%
REFIN  
(2, 3, or 4 cells)  
LDO  
REFIN Range  
(Note 1)  
V
V
REFIN Undervoltage Lockout  
CHꢂRGE%CꢄRRENT%REGꢄꢇꢂTꢅ N  
V
falling  
1.92  
REFIN  
CSIP-to-CSIN Full-Scale Current-  
Sense Voltage  
V
= V  
70.5  
79.5  
mV  
%
ICTL  
REFIN  
V
V
V
= V  
= V  
= V  
-6  
+6  
ICTL  
ICTL  
ICTL  
REFIN  
REFIN  
LDO  
x 0.6  
-7.5  
-7.5  
-50  
+7.5  
+7.5  
+50  
Charging-Current Accuracy  
MAX8765 only; V  
= V  
x 0.036  
REFIN  
ICTL  
MAX8724 only;  
-33  
-2  
-2  
0
+33  
+2  
+2  
19  
V
= V  
x 0.058  
REFIN  
ICTL  
Charge-Current Gain Error  
(MAX8765 Only)  
%
mV  
V
Charge-Current Offset  
(MAX8765 Only)  
BATT/CSIP/CSIN Input Voltage  
Range  
V
= 0 or V  
= 0 or SHDN = 0  
ICTL  
1
DCIN  
CSIP/CSIN Input Current  
µA  
A
Charging  
650  
Cycle-by-Cycle Maximum Current  
Limit  
I
RS2 = 0.015Ω  
6.0  
7.5  
MAX  
ICTL Power-Down Mode  
Threshold Voltage  
(MAX1908/MAX8724 Only)  
REFIN /  
100  
REFIN /  
33  
V
rising  
V
ICTL  
ICHG Transconductance  
(MAX1908/MAX8724 Only)  
G
G
V
V
- V  
- V  
= 45mV  
= 45mV  
2.7  
2.785  
-7.5  
3.3  
3.225  
+7.5  
+6.5  
µA/mV  
µA/mV  
%
ICHG  
ICHG  
CSIP  
CSIP  
CSIN  
ICHG Transconductance  
(MAX8765 Only)  
CSIN  
ICHG Transconductance Error  
(MAX8765 Only)  
ICHG Transconductance Offset  
(MAX8765 Only)  
-6.5  
µA  
_______________________________________________________________________________________  
7
Low-Cost Multichemistry Battery Chargers  
EꢇECTRꢅCꢂꢇ%CHꢂRꢂCTERꢅSTꢅCS%(AViusiOgd)  
(V  
= V  
BST  
= V  
= 18V, V  
= V  
= V  
= 12V, V  
= 3V, V  
= V  
= 0.75 x V  
, CELLS = FLOAT, CLS =  
REFIN  
DCIN  
CSSP  
CSSN  
BATT  
CSIP  
CSIN  
REFIN  
VCTL  
ICTL  
REF, V  
- V = 4.5V, ACIN = GND = PGND = 0, C  
= 1µF, LDO = DLOV, C  
= 1µF; CCI, CCS, and CCV are compensated  
LX  
LDO  
REF  
per Figure 1a; T =%-ꢆ±°C%uV%+8.°C, unless otherwise noted.) (Note 2)  
PꢂRꢂMETER  
SYMB ꢇ  
C NDꢅTꢅ NS  
= 75mV  
MꢅN  
-7.5  
-7.5  
-40  
TYP  
MꢂX  
+7.5  
+7.5  
+40  
ꢄNꢅTS  
V
V
V
- V  
- V  
- V  
CSIP  
CSIP  
CSIP  
CSIN  
CSIN  
CSIN  
ICHG Accuracy  
= 45mV  
%
= 5mV  
ꢅNPꢄT-CꢄRRENT%REGꢄꢇꢂTꢅ N  
CSSP-to-CSSN Full-Scale  
Current-Sense Voltage  
71.25  
78.75  
mV  
%
V
V
V
= V  
= V  
-5  
+5  
CLS  
CLS  
CLS  
REF  
Input Current-Limit Accuracy  
/ 2  
-7.5  
-10  
+7.5  
+10  
REF  
= 1.1V (MAX8765 only)  
Input Current-Limit Gain Error  
(MAX8765 Only)  
-2  
-2  
8
+2  
+2  
28  
%
mV  
V
Input Current-Limit Offset  
(MAX8765 Only)  
CSSP, CSSN Input Voltage  
Range  
V
V
= 0  
= V  
1
600  
1
DCIN  
CSSP  
CSSP, CSSN Input Current  
(MAX1908/MAX8724 Only)  
µA  
µA  
µA  
V
= V  
> 8V  
DCIN  
CSSN  
CSSN  
V
= 0V  
DCIN  
DCIN  
DCIN  
DCIN  
CSSP Input Current  
(MAX8765 Only)  
V
V
= V  
= V  
= 28V  
= 28V  
CSSP  
CSSP  
V
V
V
= 28V  
= 0V  
650  
1
CSSN Input Current  
(MAX8765 Only)  
CSSN  
= 28V  
1
CLS Input Range  
(MAX1908/MAX8724 Only)  
1.6  
1.1  
2.7  
REF  
REF  
3.3  
CLS Input Range  
(MAX8765 Only)  
V
IINP Transconductance  
(MAX1908/MAX8724 Only)  
G
G
V
V
- V  
- V  
= 75mV  
= 75mV  
µA/mV  
IINP  
IINP  
CSSP  
CSSP  
CSSN  
IINP Transconductance  
(MAX8765 Only)  
2.785  
-7.5  
3.225  
+7.5  
µA/mV  
%
CCSN  
IINP Transconductance Error  
(MAX8765 Only)  
IINP Transconductance Offset  
(MAX8765 Only)  
-12  
+12  
µA  
%
V
V
- V  
- V  
= 75mV  
-7.5  
-7.5  
+7.5  
+7.5  
CSSP  
CSSP  
CSSN  
IINP Accuracy  
= 37.5mV  
CSSN  
8
_______________________________________________________________________________________  
Low-Cost Multichemistry Battery Chargers  
EꢇECTRꢅCꢂꢇ%CHꢂRꢂCTERꢅSTꢅCS%(AViusiOgd)  
(V  
= V  
BST  
= V  
= 18V, V  
= V  
= V  
= 12V, V  
= 3V, V  
= V  
= 0.75 x V  
, CELLS = FLOAT, CLS =  
REFIN  
DCIN  
CSSP  
CSSN  
BATT  
CSIP  
CSIN  
REFIN  
VCTL  
ICTL  
REF, V  
- V = 4.5V, ACIN = GND = PGND = 0, C  
= 1µF, LDO = DLOV, C  
= 1µF; CCI, CCS, and CCV are compensated  
LX  
LDO  
REF  
per Figure 1a; T =%-ꢆ±°C%uV%+8.°C, unless otherwise noted.) (Note 2)  
PꢂRꢂMETER  
SYMB ꢇ  
C NDꢅTꢅ NS  
MꢅN  
TYP  
MꢂX  
ꢄNꢅTS  
SꢄPPꢇY%ꢂND%ꢇD %REGꢄꢇꢂT R  
DCIN Input Voltage Range  
DCIN Quiescent Current  
V
8
28  
6
V
DCIN  
I
8V < V  
< 28V  
mA  
DCIN  
DCIN  
V
V
= 19V, V  
= 0  
1
BATT  
BATT  
DCIN  
BATT Input Current  
I
µA  
BATT  
= 2V to 19V, V  
= 19.3V  
500  
5.55  
100  
DCIN  
LDO Output Voltage  
LDO Load Regulation  
REFERENCE  
8V < V  
< 28V, no load  
5.25  
V
DCIN  
0 < I  
< 10mA  
mV  
LDO  
REF  
REF Output Voltage  
TRꢅP%P ꢅNTS  
0 < I  
< 500µA  
4.065  
4.120  
V
V
falling, referred to V  
DCIN  
CSIN  
50  
50  
150  
150  
(MAX1908/MAX8724 only)  
BATT Power-Fail Threshold  
mV  
V
V
falling, referred to V  
CSSP  
CSIN  
(MAX8765 only)  
ACIN rising (MAX8765 only)  
ACIN rising (MAX1908/MAX8724 only)  
2.028  
2.007  
2.068  
2.089  
ACIN Threshold  
SWꢅTCHꢅNG%REGꢄꢇꢂT R  
DHI Off-Time  
V
V
= 16V, V  
= 19V,  
= 17V,  
BATT  
DCIN  
0.35  
0.24  
0.45  
µs  
µs  
= V  
CELLS  
REFIN  
V
V
= 16V, V  
BATT  
DCIN  
DHI Minimum Off-Time  
0.33  
7.5  
= V  
CELLS  
REFIN  
DHI Maximum On-Time  
2.5  
99  
ms  
%
DHI Maximum Duty Cycle  
Battery Undervoltage Charge  
Current  
V
= 3V per cell (RS2 = 15mΩ),  
BATT  
150  
450  
mA  
MAX1908 only, V  
rising  
BATT  
CELLS = GND, MAX1908 only, V  
rising  
rising  
6.09  
9.12  
6.30  
9.45  
12.60  
7
BATT  
Battery Undervoltage Current  
Threshold  
CELLS = float, MAX1908 only, V  
CELLS = V  
V
BATT  
, MAX1908 only, V  
rising 12.18  
BATT  
REFIN  
DHI On-Resistance High  
DHI On-Resistance Low  
DLO On-Resistance High  
DLO On-Resistance Low  
V
V
V
V
- V = 4.5V, I  
= +100mA  
= -100mA  
Ω
Ω
Ω
Ω
BST  
LX  
DHI  
DHI  
- V = 4.5V, I  
3.5  
7
BST  
LX  
= 4.5V, I  
= 4.5V, I  
= +100mA  
= -100mA  
DLOV  
DLOV  
DLO  
DLO  
3.5  
_______________________________________________________________________________________  
9
Low-Cost Multichemistry Battery Chargers  
EꢇECTRꢅCꢂꢇ%CHꢂRꢂCTERꢅSTꢅCS%(AViusiOgd)  
(V  
= V  
BST  
= V  
= 18V, V  
= V  
= V  
= 12V, V  
= 3V, V  
= V  
= 0.75 x V  
, CELLS = FLOAT, CLS =  
REFIN  
DCIN  
CSSP  
CSSN  
BATT  
CSIP  
CSIN  
REFIN  
VCTL  
ICTL  
REF, V  
- V = 4.5V, ACIN = GND = PGND = 0, C  
= 1µF, LDO = DLOV, C  
= 1µF; CCI, CCS, and CCV are compensated  
LX  
LDO  
REF  
per Figure 1a; T =%-ꢆ±°C%uV%+8.°C, unless otherwise noted.) (Note 2)  
PꢂRꢂMETER  
SYMB ꢇ  
C NDꢅTꢅ NS  
MꢅN  
TYP  
MꢂX  
ꢄNꢅTS  
ERR R%ꢂMPꢇꢅFꢅERS  
V
= V  
, V  
= 16.8V,  
VCTL  
LDO BATT  
GMV Amplifier Transconductance  
GMV  
0.0625  
0.250  
µA/mV  
CELLS = V  
REFIN  
GMI Amplifier Transconductance  
GMS Amplifier Transconductance  
CCI, CCS, CCV Clamp Voltage  
ꢇ GꢅC%ꢇEꢀEꢇS  
GMI  
V
V
= V  
, V  
- V  
= 75mV  
= 75mV  
0.5  
0.5  
150  
2.0  
2.0  
600  
µA/mV  
µA/mV  
mV  
ICTL  
CLS  
REFIN CSIP  
CSIN  
GMS  
= V  
, V  
- V  
REF CSSP CSSN  
0.25V < V  
< 2V  
CCV,CCS,CCI  
CELLS Input Low Voltage  
0.4  
V
V
(V  
/ 2) -  
0.2V  
(V  
REFIN  
REFIN  
/ 2) +  
0.2V  
CELLS Input Float Voltage  
CELLS = float  
V
REFIN  
CELLS Input High Voltage  
V
- 0.4V  
ACOK%ꢂND%SHDN  
ACOK Input Voltage Range  
ACOK Sink Current  
0
1
0
28  
V
mA  
V
V
V
= 0.4V, V  
falling  
= 3V  
ACIN  
A COK  
S HDN  
SHDN Input Voltage Range  
LDO  
25  
% of  
REFIN  
SHDN Threshold  
22  
V
NVug%1: If both ICTL and VCTL use default mode (connected to LDO), REFIN is not used and can be connected to LDO.  
NVug%2: Specifications to -40°C are guaranteed by design and not production tested.  
Typical Operating Characteristics  
(Circuit of Figure 1, V  
= 20V, T = +25°C, unless otherwise noted.)  
A
DCIN  
LOAD-TRANSIENT RESPONSE  
(STEP IN-LOAD CURRENT)  
LOAD-TRANSIENT RESPONSE  
LOAD-TRANSIENT RESPONSE  
(STEP IN-LOAD CURRENT)  
(BATTERY INSERTION AND REMOVAL)  
MAX1908 toc01  
MAX1908 toc03  
MAX1908 toc02  
ADAPTER  
CURRENT  
5A/div  
LOAD  
CURRENT  
5A/div  
I
BATT  
2A/div  
LOAD  
CURRENT  
5A/div  
0
0
0
0
ADAPTER  
CURRENT  
5A/div  
0
V
BATT  
5V/div  
V
BATT  
16.8V  
CCV  
CCI  
2V/div  
CHARGE  
CURRENT  
2A/div  
CCS  
CCI  
V
CCI  
V
CCI  
500mV/div  
CCI  
500mV/div  
V
CCS  
V
CCV  
V
BATT  
CCS  
500mV/div  
500mV/div  
2V/div  
1ms/div  
CHARGING CURRENT = 3A  
1ms/div  
1ms/div  
CHARGING CURRENT = 3A  
ICTL = LDO  
ICTL = LDO  
ICTL = LDO  
VCTL = LDO  
V
BATT  
= 16.8V  
V
= 16.8V  
BATT  
LOAD STEP = 0 TO 4A  
LIMIT = 5A  
LOAD STEP = 0 TO 4A  
I LIMIT = 5A  
SOURCE  
I
SOURCE  
 ______________________________________________________________________________________  
Low-Cost Multichemistry Battery Chargers  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, V  
= 20V, T = +25°C, unless otherwise noted.)  
A
DCIN  
LINE-TRANSIENT RESPONSE  
LDO LOAD REGULATION  
LDO LINE REGULATION  
MAX1908 toc04  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
-0.9  
-1.0  
0.05  
0.04  
0.03  
0.02  
0.01  
0
V
DCIN  
I
V
= 0  
LDO  
10V/div  
= 5.4V  
LDO  
V
BATT  
500mV/div  
-0.01  
-0.02  
-0.03  
-0.04  
-0.05  
INDUCTOR  
CURRENT  
500mA/div  
V
= 5.4V  
LDO  
1
10ms/div  
0
2
3
4
5
6
7
8
9
10  
8
10 12 14 16 18 20 22 24 26 28  
(V)  
ICTL = LDO  
VCTL = LDO  
LDO CURRENT (mA)  
V
IN  
I
= 3A  
CHARGE  
LINE STEP 18.5V TO 27.5V  
REF VOLTAGE LOAD REGULATION  
REF VOLTAGE ERROR vs. TEMPERATURE  
EFFICIENCY vs. CHARGE CURRENT  
0
-0.01  
-0.02  
-0.03  
-0.04  
-0.05  
-0.06  
-0.07  
-0.08  
-0.09  
-0.10  
0.10  
0.08  
0.06  
0.04  
0.02  
0
100  
90  
80  
V
= 16V  
BATT  
70  
60  
V
= 12V  
BATT  
50  
40  
V
= 8V  
BATT  
-0.02  
-0.04  
-0.06  
-0.08  
-0.10  
30  
20  
10  
0
0
100  
200  
300  
400  
500  
-40  
-15  
10  
35  
60  
85  
0.01  
0.1  
1
10  
REF CURRENT (μA)  
TEMPERATURE (°C)  
CHARGE CURRENT (A)  
FREQUENCY vs. V - V  
BATT VOLTAGE ERROR vs. VCTL  
OUTPUT V/I CHARACTERISTICS  
IN  
BATT  
0.5  
0.4  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
2 CELLS  
3 CELLS  
3 CELLS  
0.3  
0.2  
4 CELLS  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
4 CELLS  
I
= 3A  
CHARGE  
4 CELLS  
REFIN = 3.3V  
NO LOAD  
VCTL = ICTL = LDO  
0
1.0  
0
2
4
6
8
10 12 14 16 18 20 22  
0
1
2
3
4
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
VCTL/REFIN (%)  
(V - V ) (V)  
BATT CURRENT (A)  
IN  
BATT  
______________________________________________________________________________________ 11  
Low-Cost Multichemistry Battery Chargers  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, V  
= 20V, T = +25°C, unless otherwise noted.)  
A
DCIN  
ICHG ERROR vs. CHARGE CURRENT  
CURRENT-SETTING ERROR vs. ICTL  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5
4
3
2
1
0
V = 3.3V  
REFIN  
V
= 3.3V  
REFIN  
V
= 16V  
BATT  
V
V
= 12V  
= 8V  
BATT  
BATT  
-1  
0
0
0.5  
1.0  
1.5  
(A)  
2.0  
2.5  
3.0  
0.5  
1.0  
(V)  
1.5  
2.0  
I
V
BATT  
ICTL  
IINP ERROR vs. SYSTEM LOAD CURRENT  
IINP ERROR vs. INPUT CURRENT  
40  
30  
80  
60  
20  
40  
ERROR DUE TO SWITCHING NOISE  
I
= 0  
BATT  
10  
20  
0
0
-10  
-20  
-30  
-40  
-20  
-40  
-60  
-80  
SYSTEM LOAD = 0  
0
1
2
3
4
0
0.5  
1.0  
1.5  
2.0  
SYSTEM LOAD CURRENT (A)  
INPUT CURRENT (A)  
12 ______________________________________________________________________________________  
Low-Cost Multichemistry Battery Chargers  
Pin Description  
PꢅN  
1
NꢂME  
DCIN  
LDO  
CLS  
FꢄNCTꢅ N  
Charging Voltage Input. Bypass DCIN with a 1µF capacitor to PGND.  
2
Device Power Supply. Output of the 5.4V linear regulator supplied from DCIN. Bypass with a 1µF capacitor to GND.  
Source Current-Limit Input. Voltage input for setting the current limit of the input source.  
4.096V Voltage Reference. Bypass REF with a 1µF capacitor to GND.  
3
4
REF  
5
CCS  
CCI  
Input-Current Regulation Loop-Compensation Point. Connect a 0.01µF capacitor to GND.  
Output-Current Regulation Loop-Compensation Point. Connect a 0.01µF capacitor to GND.  
Voltage Regulation Loop-Compensation Point. Connect 1kΩ in series with a 0.1µF capacitor to GND.  
6
7
CCV  
Shutdown Control Input. Drive SHDN logic low to shut down the MAX1908/MAX8724/MAX8765. Use with a  
thermistor to detect a hot battery and suspend charging.  
8
9
SHDN  
Charge-Current Monitor Output. ICHG is a scaled-down replica of the charger output current. Use ICHG to  
monitor the charging current and detect when the chip changes from constant-current mode to constant-  
voltage mode. The transconductance of (CSIP - CSIN) to ICHG is 3µA/mV.  
ICHG  
ACIN  
10  
11  
12  
AC Detect Input. Input to an uncommitted comparator. ACIN can be used to detect AC-adapter presence.  
ACOK AC Detect Output. High-voltage open-drain output is high impedance when V  
is less than V  
/ 2.  
REF  
ACIN  
REFIN Reference Input. Allows the ICTL and VCTL inputs to have ratiometric ranges for increased accuracy.  
Output Current-Limit Set Input. ICTL input voltage range is V / 32 to V . The MAX1908/MAX8724  
REFIN  
REFIN  
13  
ICTL  
shut down if ICTL is forced below V  
set point for CSIP - CSIN is 45mV.  
/ 100 while the MAX8765 does not. When ICTL is equal to LDO, the  
REFIN  
14  
15  
GND  
VCTL  
BATT  
Analog Ground  
Output Voltage-Limit Set Input. VCTL input voltage range is 0 to V  
point is (4.2 x CELLS)V.  
. When VCTL is equal to LDO, the set  
REFIN  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
Battery Voltage Input  
CELLS Cell Count Input. Tri-level input for setting number of cells. GND = 2 cells, float = 3 cells, REFIN = 4 cells.  
CSIN  
CSIP  
Output Current-Sense Negative Input  
Output Current-Sense Positive Input. Connect a current-sense resistor from CSIP to CSIN.  
PGND Power Ground  
DLO  
DLOV  
LX  
Low-Side Power MOSFET Driver Output. Connect to low-side nMOS gate.  
Low-Side Driver Supply. Bypass DLOV with a 1µF capacitor to GND.  
High-Side Power MOSFET Driver Power-Return Connection. Connect to the source of the high-side nMOS.  
High-Side Power MOSFET Driver Power-Supply Connection. Connect a 0.1µF capacitor from LX to BST.  
High-Side Power MOSFET Driver Output. Connect to high-side nMOS gate.  
Input Current-Sense Negative Input  
BST  
DHI  
CSSN  
CSSP  
Input Current-Sense Positive Input. Connect a current-sense resistor from CSSP to CSSN.  
Input-Current Monitor Output. IINP is a scaled-down replica of the input current. IINP monitors the total  
system current. The transconductance of (CSSP - CSSN) to IINP is 3µA/mV.  
28  
IINP  
______________________________________________________________________________________ 13  
Low-Cost Multichemistry Battery Chargers  
external resistor mismatch error is reduced from 1% to  
Detailed Description  
0.05% of the regulation voltage. Therefore, an overall  
The MAX1908/MAX8724/MAX8765 include all the func-  
voltage accuracy of better than 0.7% is maintained  
tions necessary to charge Li+ batteries. A high-efficien-  
while using 1% resistors. The per-cell battery termina-  
cy synchronous-rectified step-down DC-DC converter  
tion voltage is a function of the battery chemistry.  
controls charging voltage and current. The device also  
Consult the battery manufacturer to determine this volt-  
includes input-source current limiting and analog inputs  
age. Connect VCTL to LDO to select the internal default  
for setting the charge current and charge voltage.  
setting V  
= 4.2V × number of cells, or program the  
BATT  
Control charge current and voltage using the ICTL and  
VCTL inputs, respectively. Both ICTL and VCTL are  
ratiometric with respect to REFIN, allowing compatibility  
with DACs or microcontrollers (µCs). Ratiometric ICTL  
and VCTL improve the accuracy of the charge current  
battery voltage with the following equation:  
V
VCTL  
V
= CELLS × 4V + 0.4 ×  
BATT  
⎟⎟  
V
REFIN  
and voltage set point by matching V  
to the refer-  
REFIN  
CELLS is the programming input for selecting cell count.  
Connect CELLS as shown in Table 2 to charge 2, 3, or 4  
Li+ cells. When charging other cell chemistries, use  
CELLS to select an output voltage range for the charger.  
ence of the host. For standard applications, internal set  
points for ICTL and VCTL provide 3A charge current  
(with 0.015Ω sense resistor), and 4.2V (per cell) charge  
voltage. Connect ICTL and VCTL to LDO to select the  
internal set points. The MAX1908 safely conditions  
overdischarged cells with 300mA (with 0.015Ω sense  
resistor) until the battery-pack voltage exceeds 3.1V ×  
number of series-connected cells. The SHDN input  
allows shutdown from a microcontroller or thermistor.  
The internal error amplifier (GMV) maintains voltage  
regulation (Figure 3). The voltage error amplifier is  
compensated at CCV. The component values shown in  
Figures 1 and 2 provide suitable performance for most  
applications. Individual compensation of the voltage reg-  
ulation and current regulation loops allows for optimal  
compensation (see the Compensation section).  
The DC-DC converter uses external n-channel  
MOSFETs as the buck switch and synchronous rectifier  
to convert the input voltage to the required charging  
current and voltage. The Typical Application Circuit  
shown in Figure 1 uses a µC to control charging cur-  
rent, while Figure 2 shows a typical application with  
charging voltage and current fixed to specific values  
for the application. The voltage at ICTL and the value of  
RS2 set the charging current. The DC-DC converter  
generates the control signals for the external MOSFETs  
to regulate the voltage and the current set by the VCTL,  
ICTL, and CELLS inputs.  
Tꢁbog%10%ꢀgꢃUsViU%CVꢈtꢁꢃsUVi  
DESCRꢅPTꢅ N  
MꢂX19±8  
MꢂX872ꢆ  
MꢂX876.  
Conditioning  
Charge Feature  
Yes  
No  
No  
ICTL Shutdown  
Mode  
The MAX1908/MAX8724/MAX8765 feature a voltage  
regulation loop (CCV) and two current regulation loops  
(CCI and CCS). The CCV voltage regulation loop moni-  
tors BATT to ensure that its voltage does not exceed  
the voltage set by VCTL. The CCI battery current regu-  
lation loop monitors current delivered to BATT to ensure  
that it does not exceed the current limit set by ICTL. A  
third loop (CCS) takes control and reduces the battery-  
charging current when the sum of the system load and  
the battery-charging input current exceeds the input  
current limit set by CLS.  
Yes  
Yes  
No  
ACOK Enable  
Condition  
REFIN must REFIN must Independent  
be ready be ready of REFIN  
Tꢁbog%20%Cgoo-CVOiu%PꢃVaꢃꢁꢈꢈsia  
CEꢇꢇS  
GND  
CEꢇꢇ%C ꢄNT  
Setting the Battery-Regulation Voltage  
The MAX1908/MAX8724/MAX8765 use a high-accuracy  
voltage regulator for charging voltage. The VCTL input  
adjusts the charger output voltage. VCTL control volt-  
2
3
4
Float  
V
REFIN  
age can vary from 0 to V  
, providing a 10% adjust-  
REFIN  
ment range on the V  
regulation voltage. By limiting  
BATT  
the adjust range to 10% of the regulation voltage, the  
1ꢆ ______________________________________________________________________________________  
Low-Cost Multichemistry Battery Chargers  
Typical Application Circuits  
RS1  
0.01Ω  
TO EXTERNAL  
LOAD  
AC ADAPTER INPUT  
8.5V TO 28V  
D1  
C1  
2 × 10μF  
0.1μF  
0.1μF  
D2  
CSSP  
DCIN  
CSSN  
CELLS  
R6  
59kΩ  
1%  
FLOAT (3 CELLS SELECT)  
R7  
19.6kΩ  
1%  
C5  
1μF  
LDO  
C13  
R13  
1μF  
33Ω  
LDO  
VCTL  
D3  
BST  
DAC OUTPUT  
ICTL  
DLOV  
12.6V OUTPUT VOLTAGE  
C15  
0.1μF  
C16  
1μF  
V
REFIN  
CC  
R8  
1MΩ  
ACIN  
N1a  
DHI  
LX  
ACOK  
SHDN  
ICHG  
OUTPUT  
N1b  
DLO  
ADC INPUT  
MAX1908  
MAX8724  
MAX8765  
L1  
PGND  
10μH  
ADC INPUT  
IINP  
CCV  
CSIP  
C14  
0.1μF  
C20  
R10  
R9  
R5  
0.1μF  
10kΩ  
20kΩ  
1kΩ  
RS2  
HOST  
0.015Ω  
C11  
0.1μF  
CSIN  
BATT  
GND  
CCI  
+
BATT  
CCS  
C9  
0.01μF  
C10  
0.01μF  
C4  
22μF  
REF  
CLS  
AVDD/REF  
R19, R20, R21  
10kΩ  
7.5A INPUT  
CURRENT LIMIT  
C12  
1μF  
SMART  
BATTERY  
SCL  
SDA  
SCL  
SDA  
ADC INPUT  
GND  
TEMP  
BATT-  
PGND  
GND  
Figure 1. µC-Controlled Typical Application Circuit  
______________________________________________________________________________________ 1.  
Low-Cost Multichemistry Battery Chargers  
Typical Application Circuits (continued)  
AC ADAPTER  
INPUT  
8.5V TO 28V  
RS1  
0.01Ω  
TO EXTERNAL  
LOAD  
P1  
R11  
15kΩ  
C1  
2 × 10μF  
0.01μF 0.01μF  
R12  
12kΩ  
REFIN (4 CELLS SELECT)  
CSSP  
ACOK  
CSSN  
D2  
R6  
59kΩ  
1%  
CELLS  
R7  
19.6kΩ  
1%  
DCIN  
LDO  
C5  
1μF  
LDO  
R14  
10.5kΩ  
1%  
VCTL  
LDO  
C13  
R13  
1μF  
33Ω  
D3  
REFIN  
BST  
R15  
8.25kΩ  
1%  
DLOV  
C15  
C16  
0.1μF  
1μF  
ICTL  
N1a  
16.8V OUTPUT VOLTAGE  
2.5A CHARGE LIMIT  
R16  
8.25kΩ  
1%  
DHI  
LX  
ACIN  
R19  
C12  
10kΩ  
1%  
1.5nF  
N1b  
FROM HOST μP  
(SHUTDOWN)  
N
DLO  
MAX1908  
MAX8724  
MAX8765  
L1  
10μH  
SHDN  
PGND  
R20  
10kΩ  
1%  
ICHG  
IINP  
CSIP  
CCV  
R5  
1kΩ  
RS2  
0.015Ω  
C11  
0.1μF  
CSIN  
BATT  
GND  
CCI  
+
BATT  
CCS  
C9  
0.01μF  
C10  
0.01μF  
C4  
22μF  
BATTERY  
THM  
BATT-  
REF  
CLS  
C12  
1μF  
R17  
19.1kΩ  
1%  
PGND GND  
R18  
22kΩ  
1%  
4A INPUT CURRENT LIMIT  
Figure 2. Typical Application Circuit with Fixed Charging Parameters  
16 ______________________________________________________________________________________  
Low-Cost Multichemistry Battery Chargers  
Functional Diagram  
MAX1908  
MAX8724  
MAX8765  
DCIN  
SHDN  
GND  
23.5%  
REFIN  
LDO  
RDY  
5.4V  
LINEAR  
REGULATOR  
4.096V  
REFERENCE  
REF  
LOGIC  
BLOCK  
MAX1908/MAX8724 ONLY  
1/55  
GND  
REFIN  
ICTL  
SRDY  
ACIN  
ACOK  
DCIN  
x
N
REF/2  
CCS  
CLS  
75mV  
REF  
IINP  
GM  
GMS  
CSSP  
CSSN  
LEVEL  
SHIFTER  
ICHG  
GM  
CSI  
CSIP  
CSIN  
LEVEL  
SHIFTER  
BST  
DHI  
LX  
GMI  
75mV  
REFIN  
x
LEVEL  
SHIFTER  
ICTL  
CCI  
DRIVER  
MAX1908 ONLY  
3.1V/CELL  
BATT  
BAT_UV  
LVC  
DC-DC  
LVC  
CONVERTER  
R1  
REFIN  
GMV  
CELL  
SELECT  
LOGIC  
CELLS  
DLOV  
DLO  
DRIVER  
CCV  
PGND  
400mV  
REFIN  
x
VCTL  
4V  
Figure 3. Functional Diagram  
______________________________________________________________________________________ 17  
Low-Cost Multichemistry Battery Chargers  
exceeded, ensuring the battery charger does not load  
down the AC adapter voltage. An internal amplifier  
compares the voltage between CSSP and CSSN to the  
Setting the Charging-Current Limit  
The ICTL input sets the maximum charging current. The  
current is set by current-sense resistor RS2, connected  
between CSIP and CSIN. The full-scale differential  
voltage between CSIP and CSIN is 75mV; thus, for a  
0.015Ω sense resistor, the maximum charging current  
is 5A. Battery-charging current is programmed with  
ICTL using the equation:  
voltage at CLS. V  
can be set by a resistive divider  
CLS  
between REF and GND. Connect CLS to REF for the  
full-scale input current limit. The CLS voltage range for  
the MAX1908/MAX8724 is from 1.6V to REF, while the  
MAX8765 CLS voltage is from 1.1V to REF.  
The input current is the sum of the device current, the  
charger input current, and the load current. The device  
current is minimal (3.8mA) in comparison to the charge  
and load currents. Determine the actual input current  
required as follows:  
V
0.075  
RS2  
ICTL  
I
=
×
CHG  
V
REFIN  
The input voltage range for ICTL is V  
/ 32 to  
REFIN  
V
. The MAX1908/MAX8724 shut down if ICTL is  
REFIN  
I
× V  
BATT  
forced below V  
does not.  
/ 100 (min), while the MAX8765  
REFIN  
CHG  
I
= I  
+
INPUT  
LOAD  
V
× η  
IN  
Connect ICTL to LDO to select the internal default full-  
scale, charge-current sense voltage of 45mV. The  
charge current when ICTL = LDO is:  
where η is the efficiency of the DC-DC converter.  
determines the reference voltage of the GMS  
V
CLS  
error amplifier. Sense resistor RS1 and V  
determine  
CLS  
0.045V  
the maximum allowable input current. Calculate the  
input current limit as follows:  
I
=
CHG  
RS2  
V
0.075  
RS1  
CLS  
I
=
×
where RS2 is 0.015Ω, providing a charge-current set  
point of 3A.  
INPUT  
V
REF  
Once the input current limit is reached, the charging  
current is reduced until the input current is at the  
desired threshold.  
The current at the ICHG output is a scaled-down replica  
of the battery output current being sensed across CSIP  
and CSIN (see the Current Measurement section).  
When choosing the current-sense resistor, note that the  
voltage drop across this resistor causes further power  
loss, reducing efficiency. Choose the smallest value for  
RS1 that achieves the accuracy requirement for the  
input current-limit set point.  
When choosing the current-sense resistor, note that the  
voltage drop across this resistor causes further power  
loss, reducing efficiency. However, adjusting ICTL to  
reduce the voltage across the current-sense resistor  
can degrade accuracy due to the smaller signal to the  
input of the current-sense amplifier. The charging-  
current-error amplifier (GMI) is compensated at CCI  
(see the Compensation section).  
Conditioning Charge  
The MAX1908 includes a battery-voltage comparator  
that allows a conditioning charge of overdischarged  
Li+ battery packs. If the battery-pack voltage is less  
than 3.1V × number of cells programmed by CELLS,  
the MAX1908 charges the battery with 300mA current  
when using sense resistor RS2 = 0.015Ω. After the  
battery voltage exceeds the conditioning charge  
threshold, the MAX1908 resumes full-charge mode,  
charging to the programmed voltage and current limits.  
The MAX8724/MAX8765 do not offer this feature.  
Setting the Input Current Limit  
The total input current (from an AC adapter or other DC  
source) is a function of the system supply current and  
the battery-charging current. The input current regulator  
limits the input current by reducing the charging  
current when the input current exceeds the input  
current-limit set point. System current normally fluc-  
tuates as portions of the system are powered up or  
down. Without input current regulation, the source must  
be able to supply the maximum system current and the  
maximum charger input current simultaneously. By using  
the input current limiter, the current capability of the AC  
adapter can be lowered, reducing system cost.  
AC Adapter Detection  
Connect the AC adapter voltage through a resistive  
divider to ACIN to detect when AC power is available,  
as shown in Figure 1. ACIN voltage rising trip point is  
V
REF  
/ 2 with 20mV hysteresis. ACOK is an open-drain  
output and is high impedance when ACIN is less than  
/ 2. Since ACOK can withstand 30V (max), ACOK  
The MAX1908/MAX8724/MAX8765 limit the battery  
charge current when the input current-limit threshold is  
V
REF  
18 ______________________________________________________________________________________  
Low-Cost Multichemistry Battery Chargers  
can drive a p-channel MOSFET directly at the charger  
input, providing a lower dropout voltage than a  
Schottky diode (Figure 2). In the MAX1908/MAX8724  
the ACOK comparator is enabled after REFIN is ready.  
In the MAX8765, the ACOK comparator is independent  
of REFIN.  
CCV, CCI, CCS, and LVC Control Blocks  
The MAX1908/MAX8724/MAX8765 control input current  
(CCS control loop), charge current (CCI control loop),  
or charge voltage (CCV control loop), depending on  
the operating condition.  
The three control loops, CCV, CCI, and CCS are brought  
together internally at the LVC amplifier (lowest voltage  
clamp). The output of the LVC amplifier is the feedback  
control signal for the DC-DC controller. The output of the  
Current Measurement  
Use ICHG to monitor the battery-charging current being  
sensed across CSIP and CSIN. The ICHG voltage is  
proportional to the output current by the equation:  
G
M
amplifier that is the lowest sets the output of the LVC  
amplifier and also clamps the other two control loops to  
within 0.3V above the control point. Clamping the other  
two control loops close to the lowest control loop ensures  
fast transition with minimal overshoot when switching  
between different control loops.  
V
= ICHG x RS2 x G  
x R9  
ICHG  
ICHG  
where I  
is the battery-charging current, G  
is  
ICHG  
CHG  
the transconductance of ICHG (3µA/mV typ), and R9 is  
the resistor connected between ICHG and ground.  
Leave ICHG unconnected if not used.  
DC-DC Controller  
The MAX1908/MAX8724/MAX8765 feature a variable off-  
time, cycle-by-cycle current-mode control scheme.  
Depending upon the conditions, the MAX1908/MAX8724/  
MAX8765 work in continuous or discontinuous-conduc-  
tion mode.  
Use IINP to monitor the system input current being  
sensed across CSSP and CSSN. The voltage of IINP is  
proportional to the input current by the equation:  
V
IINP  
= I  
x RS1 x G  
x R10  
INPUT  
IINP  
where I  
is the DC current being supplied by the AC  
INPUT  
adapter power, G  
is the transconductance of IINP  
IINP  
Continuous-Conduction Mode  
With sufficient charger loading, the MAX1908/MAX8724/  
MAX8765 operate in continuous-conduction mode  
(inductor current never reaches zero) switching at  
400kHz if the BATT voltage is within the following range:  
(3µA/mV typ), and R10 is the resistor connected between  
IINP and ground. ICHG and IINP have a 0 to 3.5V output  
voltage range. Leave IINP unconnected if not used.  
LDO Regulator  
LDO provides a 5.4V supply derived from DCIN and  
can deliver up to 10mA of load current. The MOSFET  
drivers are powered by DLOV and BST, which must be  
connected to LDO as shown in Figure 1. LDO supplies  
the 4.096V reference (REF) and most of the control cir-  
cuitry. Bypass LDO with a 1µF capacitor to GND.  
3.1V x (number of cells) < V  
< (0.88 x V  
)
BATT  
DCIN  
The operation of the DC-DC controller is controlled by  
the following four comparators as shown in Figure 4:  
•%ꢅMꢅN—Compares the control point (LVC) against  
0.15V (typ). If IMIN output is low, then a new cycle  
cannot begin.  
Shutdown  
The MAX1908/MAX8724/MAX8765 feature a low-power  
shutdown mode. Driving SHDN low shuts down the  
MAX1908/MAX8724/MAX8765. In shutdown, the DC-  
DC converter is disabled and CCI, CCS, and CCV are  
pulled to ground. The IINP and ACOK outputs continue  
to function.  
•%CCMP—Compares the control point (LVC) against the  
charging current (CSI). The high-side MOSFET on-  
time is terminated if the CCMP output is high.  
•%ꢅMꢂX—Compares the charging current (CSI) to 6A  
(RS2 = 0.015Ω). The high-side MOSFET on-time is  
terminated if the IMAX output is high and a new cycle  
cannot begin until IMAX goes low.  
SHDN can be driven by a thermistor to allow automatic  
shutdown of the MAX1908/MAX8724/MAX8765 when  
the battery pack is hot. The shutdown falling threshold  
•%ZCMP—Compares the charging current (CSI) to  
333mA (RS2 = 0.015Ω). If ZCMP output is high, then  
both MOSFETs are turned off.  
is 23.5% (typ) of V  
with 1% V  
hysteresis to  
REFIN  
REFIN  
provide smooth shutdown when driven by a thermistor.  
DC-DC Converter  
The MAX1908/MAX8724/MAX8765 employ a buck reg-  
ulator with a bootstrapped nMOS high-side switch and  
a low-side nMOS synchronous rectifier.  
______________________________________________________________________________________ 19  
Low-Cost Multichemistry Battery Chargers  
DC-DC Functional Diagram  
5ms  
S
R
CSSP  
AC ADAPTER  
RESET  
1.8V  
BST  
CSS  
X20  
MAX1908  
MAX8724  
MAX8765  
RS1  
LDO  
D3  
IMAX  
CCMP  
IMIN  
CSSN  
BST  
Q
N1a  
DHI  
LX  
R
S
Q
Q
C
BST  
DHI  
CHG  
L1  
0.15V  
0.1V  
N1b  
DLO  
DLO  
t
OFF  
GENERATOR  
CSIP  
ZCMP  
CSI  
X20  
RS2  
CSIN  
BATT  
GMS  
GMI  
LVC  
C
OUT  
BATTERY  
GMV  
SETV  
CONTROL SETI  
CELL  
SELECT  
LOGIC  
CLS  
CELLS  
CCS CCI  
CCV  
Figure 4. DC-DC Functional Diagram  
 ______________________________________________________________________________________  
Low-Cost Multichemistry Battery Chargers  
In normal operation, the controller starts a new cycle by  
turning on the high-side n-channel MOSFET and  
turning off the low-side n-channel MOSFET. When the  
charge current is greater than the control point (LVC),  
CCMP goes high and the off-time is started. The  
off-time turns off the high-side n-channel MOSFET and  
turns on the low-side n-channel MOSFET. The opera-  
tional frequency is governed by the off-time and is  
Discontinuous Conduction  
The MAX1908/MAX8724/MAX8765 enter discontinuous-  
conduction mode when the output of the LVC control  
point falls below 0.15V. For RS2 = 0.015Ω, this corre-  
sponds to 0.5A:  
0.15V  
20 × RS2  
IMIN =  
= 0.5A  
dependent upon V  
and V  
. The off-time is set  
BATT  
DCIN  
by the following equations:  
for RS2 = 0.015Ω.  
In discontinuous mode, a new cycle is not started until  
the LVC voltage rises above 0.15V. Discontinuous-  
mode operation can occur during conditioning charge  
of overdischarged battery packs, when the charge cur-  
rent has been reduced sufficiently by the CCS control  
loop, or when the battery pack is near full charge (con-  
stant-voltage-charging mode).  
V
V  
DCIN  
BATT  
t
= 2.5μs ×  
OFF  
t
V
DCIN  
L ×I  
RIPPLE  
V  
BATT  
=
ON  
V
CSSN  
MOSFET Drivers  
The low-side driver output DLO switches between  
PGND and DLOV. DLOV is usually connected through  
a filter to LDO. The high-side driver output DHI is boot-  
where:  
V
× t  
OFF  
L
BATT  
I
=
RIPPLE  
strapped off LX and switches between V and V  
.
BST  
LX  
When the low-side driver turns on, BST rises to one  
diode voltage below DLOV.  
1
+ t  
f =  
Filter DLOV with a lowpass filter whose cutoff frequency  
is approximately 5kHz (Figure 1):  
t
ON  
OFF  
These equations result in fixed-frequency operation  
over the most common operating conditions.  
1
1
f =  
=
= 4.8kHz  
C
2πRC 2π × 33Ω ×1μF  
At the end of the fixed off-time, another cycle begins if  
the control point (LVC) is greater than 0.15V, IMIN =  
high, and the peak charge current is less than 6A (RS2  
= 0.015Ω), IMAX = high. If the charge current exceeds  
IMAX, the on-time is terminated by the IMAX compara-  
tor. IMAX governs the maximum cycle-by-cycle current  
limit and is internally set to 6A (RS2 = 0.015Ω). IMAX  
protects against sudden overcurrent faults.  
Dropout Operation  
The MAX1908/MAX8724/MAX8765 have 99% duty-cycle  
capability with a 5ms (max) on-time and 0.3µs (min) off-  
time. This allows the charger to achieve dropout perfor-  
mance limited only by resistive losses in the DC-DC  
converter components (D1, N1, RS1, and RS2, Figure 1).  
Replacing diode D1 with a p-channel MOSFET driven by  
ACOK improves dropout performance (Figure 2). The  
dropout voltage is set by the difference between DCIN  
and CSIN. When the dropout voltage falls below 100mV,  
the charger is disabled; 200mV hysteresis ensures that  
the charger does not turn back on until the dropout volt-  
age rises to 300mV.  
If, during the off-time, the inductor current goes to zero,  
ZCMP = high, both the high- and low-side MOSFETs  
are turned off until another cycle is ready to begin.  
There is a minimum 0.3µs off-time when the (V  
-
DCIN  
0.88 ×  
V
V
) differential becomes too small. If V  
BATT  
DCIN  
BATT  
, then the threshold for minimum off-time is  
is fixed at 0.3µs. A maximum on-  
reached and the t  
OFF  
Compensation  
Each of the three regulation loops—input current limit,  
charging current limit, and charging voltage limit—are  
compensated separately using CCS, CCI, and CCV,  
respectively.  
time of 5ms allows the controller to achieve > 99% duty  
cycle in continuous-conduction mode. The switching  
frequency in this mode varies according to the equation:  
1
f =  
L ×I  
RIPPLE  
+ 0.3μs  
V
V  
(
)
CSSN  
BATT  
______________________________________________________________________________________ 21  
Low-Cost Multichemistry Battery Chargers  
where R varies with load according to R = V / I  
BATT CHG.  
L
L
Output zero due to output capacitor ESR:  
BATT  
1
f
=
GM  
OUT  
Z _ESR  
2πR  
× C  
OUT  
ESR  
The loop transfer function is given by:  
LTF = GM ×R ×GMV ×R ×  
OGMV  
R
R
L
ESR  
CCV  
OUT  
L
GMV  
C
OUT  
1+sC  
× R  
1+sC × R  
(
)(  
)
)
OUT  
ESR CV CV  
1+sC × R  
1+sC  
)(  
× R  
L
(
CV  
OGMV  
OUT  
R
CV  
R
OGMV  
REF  
Assuming the compensation pole is a very low  
frequency, and the output zero is a much higher fre-  
quency, the crossover frequency is given by:  
C
CV  
GMV × R  
× GM  
OUT  
CV  
f
=
CO_CV  
Figure 5. CCV Loop Diagram  
2πC  
OUT  
CCV Loop Definitions  
Compensation of the CCV loop depends on the para-  
meters and components shown in Figure 5. C and  
To calculate R and C values of the circuit of Figure 2:  
Cells = 4  
CV  
CV  
CV  
C
OUT  
= 22µF  
R
are the CCV loop compensation capacitor and  
CV  
V
I
= 16.8V  
= 2.5A  
BATT  
CHG  
series resistor. R  
(ESR) of the charger output capacitor (C  
equivalent charger output load, where R = V  
CHG  
is the equivalent series resistance  
ESR  
). R is the  
L
OUT  
/
BATT  
GMV = 0.125µA/mV  
L
I
. The equivalent output impedance of the GMV  
GM  
= 3.33A/V  
OUT  
amplifier, R  
10MΩ. The voltage amplifier  
OGMV  
R
OGMV  
= 10MΩ  
transconductance, GMV = 0.125µA/mV. The DC-DC  
converter transconductance, GM = 3.33A/V:  
f = 400kHz  
OUT  
Choose crossover frequency to be 1/5th the  
MAX1908’s 400kHz switching frequency:  
1
GM  
=
OUT  
A
× RS2  
CSI  
GMV × R  
× GM  
OUT  
CV  
f
=
= 80kHz  
CO_CV  
2πC  
OUT  
where A  
= 20, and RS2 is the charging current-  
CSI  
sense resistor in the Typical Application Circuits.  
Solving yields R = 26kΩ.  
CV  
The compensation pole is given by:  
Conservatively set R = 1kΩ, which sets the crossover  
CV  
frequency at:  
1
f
=
P _CV  
f
= 3kHz  
2πR  
× C  
CV  
CO_CV  
OGMV  
Choose the output-capacitor ESR so the output-capacitor  
zero is 10 times the crossover frequency:  
The compensation zero is given by:  
1
1
f
=
R
=
= 0.24Ω  
Z _CV  
ESR  
2πR  
× C  
CV  
2π ×10× f  
×C  
OUT  
CV  
CO_CV  
The output pole is given by:  
1
f
=
= 2.412MHz  
Z_ESR  
2πR  
×C  
1
ESR  
OUT  
f
=
P _OUT  
2πR × C  
L
OUT  
22 ______________________________________________________________________________________  
Low-Cost Multichemistry Battery Chargers  
The 22µF ceramic capacitor has a typical ESR of  
CCI Loop Definitions  
0.003Ω, which sets the output zero at 2.412MHz.  
Compensation of the CCI loop depends on the parame-  
ters and components shown in Figure 7. C is the CCI  
CI  
The output pole is set at:  
loop compensation capacitor. A  
is the internal gain  
CSI  
of the current-sense amplifier. RS2 is the charge cur-  
1
f
=
= 1.08kHz  
P _OUT  
rent-sense resistor, RS2 = 15mΩ. R  
is the equiva-  
OGMI  
2πR × C  
L
OUT  
lent output impedance of the GMI amplifier 10MΩ.  
GMI is the charge-current amplifier transconductance  
where:  
= 1µA/mV. GM  
is the DC-DC converter transcon-  
OUT  
ductance = 3.3A/V. The CCI loop is a single-pole sys-  
ΔV  
ΔI  
BATT  
CHG  
tem with a dominant pole compensation set by f  
:
R =  
= Battery ESR  
P_CI  
L
1
f
=
P _CI  
Set the compensation zero (f  
) so it is equivalent to  
Z_CV  
2πR  
× C  
CI  
OGMI  
the output pole (f  
= 1.08kHz), effectively produc-  
P_OUT  
ing a pole-zero cancellation and maintaining a single-  
pole system response:  
The loop transfer function is given by:  
R
1
OGMI  
LTF = GM  
× A ×RS2×GMI  
CSI  
f
=
OUT  
Z _CV  
1+sR  
×C  
2πR  
× C  
OGMI  
CI  
CV  
CV  
Since:  
1
C
=
=147nF  
1
CV  
2πR ×1.08kHz  
GM  
=
CV  
OUT  
A
× RS2  
CSI  
Choose C  
= 100nF, which sets the compensation  
CV  
The loop transfer function simplifies to:  
zero (f  
) at 1.6kHz. This sets the compensation pole:  
Z_CV  
1
R
OGMI  
f
=
= 0.16Hz  
LTF = GMI ×  
P _CV  
2πR  
× C  
CV  
1+sR  
×C  
OGMV  
OGMI  
CI  
CCV LOOP PHASE  
vs. FREQUENCY  
CCV LOOP GAIN  
vs. FREQUENCY  
80  
60  
-45  
-60  
40  
-75  
20  
-90  
0
-105  
-120  
-135  
-20  
-40  
-60  
1
10  
100  
1k  
10k  
100k  
1M  
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 6. CCV Loop Gain/Phase vs. Frequency  
______________________________________________________________________________________ 23  
Low-Cost Multichemistry Battery Chargers  
To calculate the CCI loop compensation pole, C :  
CI  
GMI = 1µA/mV  
CSIP  
CSIN  
GM  
= 3.33A/V  
OUT  
GM  
OUT  
R
= 10MΩ  
OGMI  
RS2  
CSI  
f = 400kHz  
Choose crossover frequency f  
to be 1/5th the  
CI  
CO_  
MAX1908/MAX8724/MAX8765 switching frequency:  
GMI  
CCI  
C
f
=
= 80kHz  
CO_CI  
2πC  
GMI  
CI  
Solving for C , C = 2nF.  
CI CI  
R
OGMI  
CI  
ICTL  
To be conservative, set C = 10nF, which sets the  
CI  
crossover frequency at:  
GMI  
2π10nF  
f
=
= 16kHz  
Figure 7. CCI Loop Diagram  
CO_CI  
The crossover frequency is given by:  
GMI  
The compensation pole, f  
is set at:  
P_CI  
f
=
CO_CI  
GMI  
2πC  
CI  
f
=
= 0.0016Hz  
P_CI  
2πR  
×C  
CI  
OGMI  
The CCI loop dominant compensation pole:  
1
CCS Loop Definitions  
Compensation of the CCS loop depends on the parame-  
f
=
P _CI  
ters and components shown in Figure 9. C is the CCS  
CS  
2πR  
× C  
CI  
OGMI  
loop compensation capacitor. A  
is the internal gain of  
CSS  
the current-sense amplifier. RS1 is the input current-  
where the GMI amplifier output impedance, R  
10MΩ.  
=
OGMI  
sense resistor, RS1 = 10mΩ. R  
output impedance of the GMS amplifier 10MΩ. GMS is  
is the equivalent  
OGMS  
CCI LOOP GAIN  
vs. FREQUENCY  
CCI LOOP PHASE  
vs. FREQUENCY  
100  
0
80  
60  
-15  
-30  
40  
-45  
20  
-60  
0
-75  
-20  
-40  
-60  
-90  
-105  
0.1  
1
10 100 1k  
FREQUENCY (Hz)  
10k 100k 1M  
0.1  
1
10 100 1k  
FREQUENCY (Hz)  
10k 100k 1M  
Figure 8. CCI Loop Gain/Phase vs. Frequency  
2ꢆ ______________________________________________________________________________________  
Low-Cost Multichemistry Battery Chargers  
the charge-current amplifier transconductance = 1µA/mV.  
GM is the DC-DC converter transconductance =  
IN  
3.3A/V. The CCS loop is a single-pole system with a dom-  
CSSP  
CSSN  
inant pole compensation set by f  
:
P_CS  
GM  
IN  
RS1  
CSS  
1
f
=
P _CS  
2πR  
× C  
CS  
OGMS  
The loop transfer function is given by:  
CCS  
C
R
OGMS  
LTF = GM × A  
×RS1×GMS×  
CSS  
GMS  
IN  
1+sR  
×C  
OGMS  
CS  
R
OGMS  
Since:  
CS  
CLS  
1
GM  
=
IN  
A
× RS1  
CSS  
Then, the loop transfer function simplifies to:  
Figure 9. CCS Loop Diagram  
R
OGMS  
The CCS loop dominant compensation pole:  
1
LTF = GMS×  
1+sR  
×C  
OGMS  
CS  
f
=
P _CS  
2πR  
× C  
CS  
OGMS  
The crossover frequency is given by:  
GMS  
where the GMS amplifier output impedance, R  
10MΩ.  
=
OGMS  
f
=
CO_CS  
2πC  
CS  
To calculate the CCI loop compensation pole, C  
:
CS  
GMS = 1µA/mV  
GM = 3.33A/V  
IN  
R
OGMS  
= 10MΩ  
f = 400kHz  
CCS LOOP GAIN  
vs. FREQUENCY  
CCS LOOP PHASE  
vs. FREQUENCY  
100  
0
-15  
-30  
-45  
-60  
-75  
-90  
80  
60  
40  
20  
0
-20  
-40  
-60  
-105  
0.1  
0.1  
1
10 100 1k  
FREQUENCY (Hz)  
10k 100k 1M  
1
10 100 1k  
FREQUENCY (Hz)  
10k 100k 1M  
Figure 10. CCS Loop Gain/Phase vs. Frequency  
______________________________________________________________________________________ 2.  
Low-Cost Multichemistry Battery Chargers  
Choose crossover frequency f  
to be 1/5th the  
where:  
CO_CS  
MAX1908/MAX8724/MAX8765 switching frequency:  
t
= 2.5µs × (V  
– V  
) / V  
DCIN  
OFF  
DCIN  
BATT  
V
< 0.88 × V  
BATT  
DCIN  
GMS  
f
=
= 80kHz  
CO_CS  
or:  
2πC  
CS  
t
= 0.3µs  
OFF  
Solving for C , C = 2nF.  
CS CS  
V
> 0.88 × V  
BATT  
DCIN  
To be conservative, set C  
crossover frequency at:  
= 10nF, which sets the  
CS  
Figure 11 illustrates the variation of ripple current vs.  
battery voltage when charging at 3A with a fixed 19V  
input voltage.  
GMS  
2π10nF  
f
=
= 16kHz  
Higher inductor values decrease the ripple current.  
Smaller inductor values require higher saturation cur-  
rent capabilities and degrade efficiency. Designs for  
CO_CS  
The compensation pole, f  
is set at:  
P_CS  
ripple current, I  
= 0.3 × I  
usually result in a  
RIPPLE  
CHG  
good balance between inductor size and efficiency.  
1
f
=
= 0.0016Hz  
P_CS  
Input Capacitor  
Input capacitor C1 must be able to handle the input  
ripple current. At high charging currents, the DC-DC  
converter operates in continuous conduction. In this  
case, the ripple current of the input capacitor can be  
approximated by the following equation:  
2πR  
×C  
CS  
OGMS  
Component Selection  
Table 3 lists the recommended components and refers  
to the circuit of Figure 2. The following sections  
describe how to select these components.  
Inductor Selection  
Inductor L1 provides power to the battery while it is  
being charged. It must have a saturation current of at  
2
I
= I  
D D  
C1 CHG  
where:  
= input capacitor ripple current.  
least the charge current (I  
), plus 1/2 the current rip-  
CHG  
I
ple I  
:
C1  
RIPPLE  
D = DC-DC converter duty ratio.  
= battery-charging current.  
I
= I  
+ (1/2) I  
CHG RIPPLE  
SAT  
I
Ripple current varies according to the equation:  
CHG  
Input capacitor C1 must be sized to handle the maxi-  
mum ripple current that occurs during continuous con-  
duction. The maximum input ripple current occurs at  
50% duty cycle; thus, the worst-case input ripple cur-  
I
= (V  
) × t  
/ L  
OFF  
RIPPLE  
BATT  
RIPPLE CURRENT vs.  
BATTERY VOLTAGE  
rent is 0.5 × I  
. If the input-to-output voltage ratio is  
CHG  
1.5  
1.0  
0.5  
0
such that the DC-DC converter does not operate at a  
50% duty cycle, then the worst-case capacitor current  
occurs where the duty cycle is nearest 50%.  
3 CELLS  
4 CELLS  
The input capacitor ESR times the input ripple current  
sets the ripple voltage at the input, and should not  
exceed 0.5V ripple. Choose the ESR of C1 according to:  
0.5V  
ESR  
<
C1  
I
V
DCIN  
= 19V  
C1  
VCTL = ICTL = LDO  
The input capacitor size should allow minimal output  
voltage sag at the highest switching frequency:  
8
9
10 11 12 13 14 15 16 17 18  
(V)  
V
BATT  
I
dV  
dt  
C1  
2
= C1  
Figure 11. Ripple Current vs. Battery Voltage  
26 ______________________________________________________________________________________  
Low-Cost Multichemistry Battery Chargers  
where dV is the maximum voltage sag of 0.5V while  
delivering energy to the inductor during the high-side  
MOSFET on-time, and dt is the period at highest oper-  
ating frequency (400kHz):  
the MOSFET. Choose N1b with either an internal  
Schottky diode or body diode capable of carrying the  
maximum charging current during the dead time. The  
Schottky diode D3 provides the supply current to the  
high-side MOSFET driver.  
I
2.5μs  
C1  
C1>  
×
Layout and Bypassing  
2
0.5V  
Bypass DCIN with a 1µF capacitor to power ground  
(Figure 1). D2 protects the MAX1908/MAX8724/  
MAX8765 when the DC power source input is reversed.  
A signal diode for D2 is adequate because DCIN only  
powers the internal circuitry. Bypass LDO, REF, CCV,  
CCI, CCS, ICHG, and IINP to analog ground. Bypass  
DLOV to power ground.  
Both tantalum and ceramic capacitors are suitable in  
most applications. For equivalent size and voltage  
rating, tantalum capacitors have higher capacitance,  
but also higher ESR than ceramic capacitors. This  
makes it more critical to consider ripple current and  
power-dissipation ratings when using tantalum capaci-  
tors. A single ceramic capacitor often can replace two  
tantalum capacitors in parallel.  
Good PC board layout is required to achieve specified  
noise, efficiency, and stable performance. The PC  
board layout artist must be given explicit instructions—  
preferably, a pencil sketch showing the placement of  
the power-switching components and high-current rout-  
ing. Refer to the PC board layout in the MAX1908 eval-  
uation kit for examples. Separate analog and power  
grounds are essential for optimum performance.  
Output Capacitor  
The output capacitor absorbs the inductor ripple cur-  
rent. The output capacitor impedance must be signifi-  
cantly less than that of the battery to ensure that it  
absorbs the ripple current. Both the capacitance and  
ESR rating of the capacitor are important for its effec-  
tiveness as a filter and to ensure stability of the DC-DC  
converter (see the Compensation section). Either tanta-  
lum or ceramic capacitors can be used for the output  
filter capacitor.  
Use the following step-by-step guide:  
1) Place the high-power connections first, with their  
grounds adjacent:  
MOSFETs and Diodes  
Schottky diode D1 provides power to the load when the  
AC adapter is inserted. This diode must be able to  
deliver the maximum current as set by RS1. For  
reduced power dissipation and improved dropout per-  
formance, replace D1 with a p-channel MOSFET (P1)  
as shown in Figure 2. Take caution not to exceed the  
a) Minimize the current-sense resistor trace lengths,  
and ensure accurate current sensing with Kelvin  
connections.  
b) Minimize ground trace lengths in the high-current  
paths.  
c) Minimize other trace lengths in the high-current  
paths.  
maximum V  
limit the V  
of P1. Choose resistors R11 and R12 to  
GS  
.
d) Use > 5mm wide traces.  
GS  
The n-channel MOSFETs (N1a, N1b) are the switching  
devices for the buck controller. High-side switch N1a  
should have a current rating of at least the maximum  
charge current plus one-half the ripple current and  
e) Connect C1 to high-side MOSFET (10mm max  
length).  
f) LX node (MOSFETs, inductor (15mm max  
length)).  
have an on-resistance (R  
) that meets the power  
DS(ON)  
Ideally, surface-mount power components are flush  
against one another with their ground terminals  
almost touching. These high-current grounds are  
then connected to each other with a wide, filled zone  
of top-layer copper, so they do not go through vias.  
dissipation requirements of the MOSFET. The driver for  
N1a is powered by BST. The gate-drive requirement for  
N1a should be less than 10mA. Select a MOSFET with a  
low total gate charge (Q  
) and determine the  
GATE  
required drive current by I  
= Q  
× f (where f is  
GATE  
GATE  
the DC-DC converter’s maximum switching frequency).  
The resulting top-layer power ground plane is  
connected to the normal ground plane at the  
MAX1908/MAX8724/MAX8765s’ backside exposed  
pad. Other high-current paths should also be mini-  
mized, but focusing primarily on short ground and  
current-sense connections eliminates most PC  
board layout problems.  
The low-side switch (N1b) has the same current rating  
and power dissipation requirements as N1a, and  
should have a total gate charge less than 10nC. N2 is  
used to provide the starting charge to the BST capacitor  
(C15). During the dead time (50ns, typ) between N1a  
and N1b, the current is carried by the body diode of  
______________________________________________________________________________________ 27  
Low-Cost Multichemistry Battery Chargers  
2) Place the IC and signal components. Keep the  
main switching node (LX node) away from sensitive  
analog components (current-sense traces and REF  
capacitor). ꢅꢈtVꢃuꢁiu: The IC must be no further  
than 10mm from the current-sense resistors.  
current-sense lines and REF. Place ceramic  
bypass capacitors close to the IC. The bulk capac-  
itors can be placed further away.  
3) Use a single-point star ground placed directly  
below the part at the backside exposed pad of the  
MAX1908/MAX8724/MAX8765. Connect the power  
ground and normal ground to this node.  
Keep the gate-drive traces (DHI, DLO, and BST)  
shorter than 20mm, and route them away from the  
Tꢁbog%30%CVꢈtVigiu%ꢇsUu%fVꢃ%CsꢃAOsu%Vf%FsaOꢃg%2  
DESꢅGNꢂTꢅ N QTY  
DESCRꢅPTꢅ N  
Schottky diode  
DESꢅGNꢂTꢅ N QTY  
DESCRꢅPTꢅ N  
10µF, 50V 2220-size ceramic  
capacitors  
TDK C5750X7R1H106M  
D3  
1
Central Semiconductor CMPSH1-4  
C1  
C4  
2
1
10µH, 4.4A inductor  
Sumida CDRH104R-100NC  
TOKO 919AS-100M  
L1  
1
22µF, 25V 2220-size ceramic  
capacitor  
TDK C5750X7R1E226M  
Dual, n-channel, 8-pin SO MOSFET  
Fairchild FDS6990A or FDS6990S  
N1  
P1  
1
1
1µF, 25V X7R ceramic capacitor  
(1206)  
Murata GRM31MR71E105K  
Taiyo Yuden TMK316BJ105KL  
TDK C3216X7R1E105K  
Single, p-channel, 8-pin SO MOSFET  
Fairchild FDS6675  
C5  
1
2
4
R5  
R6  
1
1
1
1
1
1
1
2
1
1
2
1kΩ 5% resistor (0603)  
59kΩ 1% resistor (0603)  
19.6kΩ 1% resistor (0603)  
12kΩ 5% resistor (0603)  
15kΩ 5% resistor (0603)  
33Ω 5% resistor (0603)  
10.5kΩ 1% resistor (0603)  
8.25kΩ 1% resistors (0603)  
19.1kΩ 1% resistor (0603)  
22kΩ 1% resistor (0603)  
10kΩ 1% resistors (0603)  
0.01µF, 16V ceramic capacitors (0402)  
Murata GRP155R71E103K  
Taiyo Yuden EMK105BJ103KV  
TDK C1005X7R1E103K  
R7  
C9, C10  
R11  
R12  
R13  
0.1µF, 25V X7R ceramic capacitors  
(0603)  
Murata GRM188R71E104K  
TDK C1608X7R1E104K  
C11, C14,  
C15, C20  
R14  
R15, R16  
R17  
1µF, 6.3V X5R ceramic capacitors  
(0603)  
Murata GRM188R60J105K  
Taiyo Yuden JMK107BJ105KA  
TDK C1608X5R1A105K  
R18  
R19, R20  
C12, C13, C16  
3
0.01Ω 1%, 0.5W 2010 sense resistor  
Vishay Dale WSL2010 0.010 1.0%  
IRC LRC-LR2010-01-R010-F  
RS1  
1
10A Schottky diode (D-PAK)  
Diodes, Inc. MBRD1035CTL  
ON Semiconductor MBRD1035CTL  
D1 (optional)  
D2  
1
1
0.015Ω 1%, 0.5W 2010 sense  
resistor  
Vishay Dale WSL2010 0.015 1.0%  
IRC LRC-LR2010-01-R015-F  
RS2  
U1  
1
1
Schottky diode  
Central Semiconductor  
CMPSH1–4  
MAX1908ETI, MAX8724ETI, or  
MAX8765ETI  
Chip Information  
TRANSISTOR COUNT: 3772  
PROCESS: BiCMOS  
28 ______________________________________________________________________________________  
Low-Cost Multichemistry Battery Chargers  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www0ꢈꢁxsꢈ-sA0AVꢈ/tꢁAkꢁagU.)  
D2  
D
b
0.10 M  
C A B  
C
L
D2/2  
D/2  
k
L
MARKING  
AAAAA  
E/2  
E2/2  
C
(NE-1) X  
e
L
E2  
E
PIN # 1 I.D.  
0.35x45°  
DETAIL A  
e/2  
PIN # 1  
I.D.  
e
(ND-1) X  
e
DETAIL B  
e
L
C
L
C
L
L1  
L
L
e
e
0.10  
C
A
0.08  
C
C
A3  
A1  
PACKAGE OUTLINE,  
16, 20, 28, 32, 40L THIN QFN, 5x5x0.8mm  
1
-DRAWING NOT TO SCALE-  
I
21-0140  
2
COMMON DIMENSIONS  
20L 5x5 28L 5x5  
EXPOSED PAD VARIATIONS  
D2 E2  
MIN. NOM. MAX. MIN. NOM. MAX.  
3.00 3.10 3.20 3.00 3.10 3.20  
3.00 3.10 3.20 3.00 3.10 3.20  
PKG.  
SYMBOL MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX.  
16L 5x5  
32L 5x5  
40L 5x5  
L
DOWN  
BONDS  
ALLOWED  
YES  
NO  
exceptions  
PKG.  
CODES  
±0.15  
A
0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80  
0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05  
0.20 REF. 0.20 REF. 0.20 REF. 0.20 REF. 0.20 REF.  
T1655-2  
T1655-3  
**  
**  
**  
**  
A1  
0
0
0
0
0
A3  
b
T1655N-1 3.00 3.10 3.20 3.00 3.10 3.20  
NO  
0.25 0.30 0.35 0.25 0.30 0.35 0.20 0.25 0.30 0.20 0.25 0.30 0.15 0.20 0.25  
4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10  
4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10  
T2055-3  
T2055-4  
3.00 3.10 3.20 3.00 3.10 3.20  
3.00 3.10 3.20 3.00 3.10 3.20  
YES  
D
E
NO  
**  
YES  
T2055-5  
T2855-3  
T2855-4  
T2855-5  
3.15 3.25 3.35 3.15 3.25 3.35 0.40  
e
0.80 BSC.  
0.25  
0.65 BSC.  
0.25  
0.50 BSC.  
0.25  
0.50 BSC.  
0.25  
0.40 BSC.  
3.15 3.25 3.35 3.15 3.25 3.35  
2.60 2.70 2.80 2.60 2.70 2.80  
2.60 2.70 2.80 2.60 2.70 2.80  
3.15 3.25 3.35 3.15 3.25 3.35  
2.60 2.70 2.80 2.60 2.70 2.80  
YES  
YES  
NO  
**  
**  
**  
k
-
-
-
-
-
-
-
-
0.25 0.35 0.45  
L
0.30 0.40 0.50 0.45 0.55 0.65 0.45 0.55 0.65 0.30 0.40 0.50 0.40 0.50 0.60  
L1  
-
-
-
-
-
-
-
-
-
-
-
-
0.30 0.40 0.50  
NO  
YES  
YES  
T2855-6  
T2855-7  
**  
**  
N
ND  
NE  
16  
4
4
20  
5
28  
7
32  
8
8
40  
10  
10  
5
7
T2855-8  
3.15 3.25 3.35 3.15 3.25 3.35 0.40  
JEDEC  
WHHB  
WHHC  
WHHD-1  
WHHD-2  
-----  
T2855N-1 3.15 3.25 3.35 3.15 3.25 3.35  
NO  
YES  
NO  
YES  
NO  
**  
**  
**  
**  
**  
**  
T3255-3  
T3255-4  
T3255-5  
3.00 3.10 3.20 3.00 3.10 .20  
3.00 3.10 3.20 3.00 3.10 .20  
3.00 3.10 3.20 3.00 3.10 3.20  
NOTES:  
1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.  
3. N IS THE TOTAL NUMBER OF TERMINALS.  
T3255N-1 3.00 3.10 3.20 3.00 3.10 3.20  
T4055-1 3.20 3.30 3.40 3.20 3.30 3.40  
YES  
**SEE COMMON DIMENSIONS TABLE  
4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL  
CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE  
OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1  
IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.  
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN  
0.25 mm AND 0.30 mm FROM TERMINAL TIP.  
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.  
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.  
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.  
9. DRAWING CONFORMS TO JEDEC MO220, EXCEPT EXPOSED PAD DIMENSION FOR  
T2855-3 AND T2855-6.  
10. WARPAGE SHALL NOT EXCEED 0.10 mm.  
11. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.  
12. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.  
13. LEAD CENTERLINES TO BE AT TRUE POSITION AS DEFINED BY BASIC DIMENSION "e", ±0.05.  
PACKAGE OUTLINE,  
16, 20, 28, 32, 40L THIN QFN, 5x5x0.8mm  
2
-DRAWING NOT TO SCALE-  
21-0140  
I
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 29  
© 2005 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX8765ETI+

Low-Cost Multichemistry Battery Chargers
MAXIM

MAX8765ETI+T

Power Supply Support Circuit, Adjustable, 1 Channel, BICMOS, 5 X 5 MM, 0.80 MM HEIGHT, ROHS COMPLIANT, MO-220WHHD-1, TQFN-28
MAXIM

MAX8765ETI+W

Power Supply Support Circuit,
MAXIM

MAX8765ETI-T

Power Supply Support Circuit, Adjustable, 1 Channel, BICMOS, 5 X 5 MM, 0.80 MM HEIGHT, MO-220WHHD-1, TQFN-28
MAXIM

MAX876ACPA

Low-Power, Low-Drift, +2.5V/+5V/+10V Precision Voltage References
MAXIM

MAX876ACPA+

Three Terminal Voltage Reference, 1 Output, 10V, Trim/Adjustable, BIPolar, PDIP8, PLASTIC, DIP-8
MAXIM

MAX876ACSA

Low-Power, Low-Drift, +2.5V/+5V/+10V Precision Voltage References
MAXIM

MAX876AEPA

Low-Power, Low-Drift, +2.5V/+5V/+10V Precision Voltage References
MAXIM

MAX876AESA

Low-Power, Low-Drift, +2.5V/+5V/+10V Precision Voltage References
MAXIM

MAX876AMJA

Low-Power, Low-Drift, +2.5V/+5V/+10V Precision Voltage References
MAXIM

MAX876BC/D

Low-Power, Low-Drift, +2.5V/+5V/+10V Precision Voltage References
MAXIM

MAX876BCPA

Low-Power, Low-Drift, +2.5V/+5V/+10V Precision Voltage References
MAXIM