MAX8890EGCAGF [MAXIM]

Analog Circuit;
MAX8890EGCAGF
型号: MAX8890EGCAGF
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Analog Circuit

文件: 总12页 (文件大小:419K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2075; Rev 0; 7/01  
Integrated Cellular RF-Section  
Power-Management IC  
General Description  
Features  
The MAX8890 is a power-management IC intended for  
cellular handsets using a single lithium-ion (Li+) cell  
battery with input voltages from +2.5V to +5.5V. The IC  
contains three identical, low-noise, low-dropout (LDO)  
linear regulators to provide all of the supply voltage  
requirements for the RF portion of the handset.  
Three 100mA Low-Dropout Linear Regulators  
Low 50mV Dropout Voltage at 100mA  
1ꢀ ꢁutput Voltage Aꢂꢂuraꢂc ꢁOer Temperature  
Preset 1.8V to 3.3V ꢁutput Voltages  
(in 50mV Inꢂrements)  
The first LDO is intended to power the transmitter,  
receiver, and synthesizer. The second LDO is intended  
to power the TCXO, and high-power voltage-controlled  
oscillators (VCOs). The third LDO is intended to power  
the UHF offset VCO.  
Low 45µV  
ꢁutput Voltage Noise  
RMS  
Low 180µA ꢁperating Supplc Current  
2.5V to 5.5V Input Voltage Range  
67dB PSRR  
Each LDO has its own individual enable (ON/OFF) con-  
trol to maximize design flexibility. The reference is pow-  
ered on if any of the enable inputs (EN1, EN2, EN3) are  
logic high. The high-accuracy output voltage of each  
LDO is preset at an internally trimmed voltage (1.8V to  
3.3V in 50mV increments). Each LDO is capable of sup-  
plying 100mA with a low 50mV dropout and is opti-  
mized for low noise and high crosstalk-isolation.  
Designed with internal P-channel MOSFET pass transis-  
tors, the MAX8890’s low 180µA operating supply cur-  
rent is independent of load.  
10µVp-p Channel-to-Channel Crosstalk  
Short-Cirꢂuit Proteꢂtion  
Thermal ꢁOerload Proteꢂtion  
0.01µA Shutdown Current  
Tinc 12-Pin 4mm x 4mm QFN Paꢂkage  
Ordering Information  
PART  
TEMP. RANGE  
PIN-PACKAGE  
Other features include short-circuit and thermal over-  
load protection. The MAX8890 is available in a com-  
MAX8890EGCxyz*  
-40°C to +85°C  
12 (4 x 4) QFN  
pact, high-power, 12-pin 4mm 4mm QFN package  
*Each preset output voltage of these devices is factory  
trimmed to one of ten voltages. Replace “xyz” with the letters  
corresponding to the desired output voltages (see Standard  
Preset Output Voltage Suffixes table), where the three letter  
suffix corresponds to the following output voltages: “x” =  
with a metal pad on the underside.  
Applications  
Cellular Handsets  
V
OUT1  
, “y” = V  
, and “z” = V  
.
OUT2  
OUT3  
Single-Cell Li+ Systems  
Note: There are five standard versions available (see Standard  
Versions table). Sample stock is generally held on standard  
versions only. Standard versions have an order increment  
requirement of 2500 pieces. Nonstandard versions have an  
order increment requirement of 10,000 pieces. Contact the  
factory for availability of nonstandard versions.  
3-Cell NiMH, NiCD, or Alkaline Systems  
Personal Digital Assistants (PDAs)  
Standard Preset Output  
Voltage Suffixes  
Typical Operating Circuit  
ꢁUTPUT  
VꢁLTAGE (V)  
ꢁUTPUT  
VꢁLTAGE (V)  
INPUT  
SUFFIX  
SUFFIX  
OUTPUT #1  
IN1  
OUT1  
A
B
D
F
3.30  
3.00  
2.90  
2.85  
2.80  
H
J
2.75  
2.70  
2.50  
2.00  
1.80  
OUTPUT #2  
OUTPUT #3  
IN2  
IN3  
EN1  
OUT2  
OUT3  
BP  
K
L
MAX8890  
G
M
ON  
OFF  
*Nonstandard output voltages between 1.80V and 3.30V are  
available in 50mV increments.  
EN2  
EN3  
GND  
Standard Versions table and Pin Configuration appear at  
end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Integrated Cellular RF-Section  
Power-Management IC  
ABSꢁLUTE MAXIMUM RATINGS  
IN_, EN_ to GND.......................................................-0.3V to +6V  
Operating Temperature Range ...........................-40°C to +85°C  
OUT_, BP to GND ......................................-0.3V to (V _ + 0.3V)  
Output Short-Circuit Protection (Note A) .......................indefinite  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
IN  
Continuous Power Dissipation (T = +70°C)  
A
12-Pin 4 x 4 QFN (derate 16.9mW/°C above +70°C).......1349mW  
Note A: As long as the maximum continuous power dissipation rating is not exceeded, the output may be shorted indefinitely.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V _ = 3.6V, EN_ = IN_, C = 6.8µF, C  
_ = 2.2µF, C = 0.01µF, all ceramic capacitors T = 0°C to +85°C, unless otherwise  
OUT BP A  
IN  
IN  
noted. Typical values are at T = +25°C.)  
A
PARAMETER  
GENERAL  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input Voltage  
V
_
2.5  
5.5  
V
V
IN  
Input Undervoltage Lockout  
Threshold  
V
Rising and falling edge  
2.10  
2.25  
45  
2.45  
UVLO  
Input Undervoltage Hysteresis  
SUPPLY CURRENT  
mV  
Quiescent Supply Current  
Shutdown Supply Current  
LINEAR REGULATORS  
I
I
_ = 0  
180  
330  
10  
µA  
µA  
Q
OUT  
EN_ = OUT_ = GND  
0.01  
V
_ = 0.5V + the  
IN  
T
T
= +85°C  
-1  
-2  
+1  
+2  
A
highest of  
(V , V  
, or  
OUT1 OUT2  
Output Voltage Accuracy  
V
R
_
_
%
OUT  
V
I
),  
OUT3  
_ = 1mA to  
= 0°C +85°C  
OUT  
A
100mA  
Current Limit  
I
OUT_ = GND  
EN_ = GND  
120  
3
250  
5
500  
8
mA  
LIM  
Output Pulldown Resistance  
kΩ  
OUT  
I
I
I
_ = 1mA  
1
OUT  
OUT  
OUT  
V
_ -  
_
IN  
Dropout Voltage (Note 1)  
Line Regulation  
_ = 50mA  
_ = 100mA  
25  
50  
mV  
V
OUT  
100  
V
_ = (V  
_+ 0.1V) to 5.5V for V  
_ ≥  
_ <  
IN  
OUT  
OUT  
2.4V, or V _ = 2.5V to 5.5V for V  
-0.15  
+0.15  
%/V  
IN  
OUT  
2.4V, I  
= 1mA  
OUT  
10Hz to 100kHz, C  
_ = 10µF ceramic,  
_ = 10mA  
OUT  
Output Voltage Noise  
45  
67  
64  
µV  
RMS  
V
_ = 2.8V, I  
OUT  
OUT  
100Hz, C  
_ = 2.2µF ceramic,  
OUT  
Output Voltage PSRR  
dB  
dB  
I
_ = 10mA  
OUT  
10kHz, C  
_ = 2.2µF ceramic,  
OUT  
Channel-to-Channel Isolation  
I
_ = 10mA  
OUT  
2
_______________________________________________________________________________________  
Integrated Cellular RF-Section  
Power-Management IC  
ELECTRICAL CHARACTERISTICS (continued)  
(V _ = 3.6V, EN_ = IN_, C = 6.8µF, C  
_ = 2.2µF, C = 0.01µF, all ceramic capacitors T = 0°C to +85°C, unless otherwise  
OUT BP A  
IN  
IN  
noted. Typical values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ENABLE LOGIC CONTROL  
EN_ Input Threshold  
V
_
2.5V V _ 5.5V  
0.4  
-1  
1.6  
+1  
V
EN  
IN  
EN_ Input Bias Current  
I
_
V
_ = 5.5V or 0, T = +85°C  
EN  
µA  
EN  
A
THERMAL PROTECTION  
Thermal Shutdown Temperature  
Thermal Shutdown Hysteresis  
T
Rising temperature  
160  
15  
°C  
°C  
SHDN  
T  
SHDN  
ELECTRICAL CHARACTERISTICS  
(V _ = 3.6V, EN_ = IN_, C = 6.8µF, C  
_ = 2.2µF, C = 0.01µF, all ceramic capacitors T = -40°C to +85°C, unless otherwise  
OUT BP A  
IN  
IN  
noted.) (Note 2)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
MAX  
UNITS  
GENERAL  
Input Voltage  
V
_
2.5  
5.5  
V
V
IN  
Input Undervoltage Lockout  
Threshold  
V
Rising and Falling edge  
2.10  
2.45  
UVLO  
SUPPLY CURRENT  
Quiescent Supply Current  
Shutdown Supply Current  
LINEAR REGULATORS  
I
I
_ = 0  
330  
10  
µA  
µA  
Q
OUT  
EN_ = OUT_ = GND  
V
or V  
_ = 0.5V + the highest of (V  
, V  
,
IN  
OUT1 OUT2  
Output Voltage Accuracy  
V
R
_
_
-2  
+2  
%
OUT  
), I  
_ = 1mA to 100mA  
OUT3 OUT  
Current Limit  
I
OUT_ = GND  
EN_ = GND  
110  
3
500  
8
mA  
LIM  
Output Pulldown Resistance  
kΩ  
OUT  
V
_ -  
_
IN  
Dropout Voltage (Note 1)  
Line Regulation  
I
_ = 100mA  
100  
mV  
OUT  
V
OUT  
V
_ = (V  
_+ 0.1V) to 5.5V for V  
_ ≥  
_ <  
IN  
OUT  
OUT  
2.4V, or V _ = 2.5V to 5.5V for V  
-0.15  
+0.15  
%/V  
IN  
OUT  
2.4V, I  
= 1mA  
OUT  
ENABLE LOGIC CONTROL  
EN_ Input Threshold  
V
_
2.5V V _ 5.5V  
0.4  
-1  
1.6  
1
V
EN  
IN  
EN_ Input Bias Current  
I
_
V
_ = 5.5V or 0, T = +85°C  
EN  
µA  
EN  
A
Note 1: The Dropout Voltage is defined as V _ - V  
_, when V  
_ is 100mV below the set output voltage (the value of V  
_ for  
OUT  
IN  
OUT  
OUT  
V _ = V  
IN  
_ + 500mV). Since the minimum input voltage range is 2.5V, this specification is only meaningful when the set  
OUT  
output voltage exceeds 2.7V (V  
2.7V).  
OUT_(NOM)  
Note 2: Specifications to -40°C are guaranteed by design, not production tested.  
_______________________________________________________________________________________  
3
Integrated Cellular RF-Section  
Power-Management IC  
Typical Operating Characteristics  
(Circuit of Figure 1, MAX8890EGCGGG, V = 3.3V, EN_ = IN_, T = +25°C, unless otherwise noted.)  
IN  
A
OUTPUT VOLTAGE  
vs. INPUT VOLTAGE  
OUTPUT VOLTAGE  
vs. LOAD CURRENT  
OUTPUT VOLTAGE  
vs. TEMPERATURE  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.83  
2.82  
2.81  
2.80  
2.79  
2.78  
2.77  
2.83  
2.82  
2.81  
2.80  
2.79  
2.78  
2.77  
I
= 100mA  
60  
I
= NO LOAD  
OUT  
OUT  
0
1
2
3
4
5
6
0
20  
40  
60  
80  
100  
-40  
-15  
10  
35  
85  
INPUT VOLTAGE (V)  
LOAD CURRENT (mA)  
TEMPERATURE (°C)  
DROPOUT VOLTAGE  
vs. LOAD CURRENT  
GROUND-PIN CURRENT  
vs. INPUT VOLTAGE  
GROUND-PIN CURRENT  
vs. LOAD CURRENT  
200  
180  
160  
140  
120  
100  
80  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
70  
60  
50  
40  
30  
20  
10  
0
ONLY ONE OUTPUT ENABLED  
(EN1 = IN, EN2 = EN3 = GND)  
T
A
= +25°C  
I
= 100mA  
OUT1  
T
A
= +85°C  
60  
T
A
= -40°C  
I
= NO LOAD  
OUT  
40  
ONLY ONE OUTPUT ENABLED  
(EN1 = IN, EN2 = EN3 = GND)  
20  
0
0
20  
40  
60  
80  
100  
0
1
2
3
4
5
6
0
20  
40  
60  
80  
100  
LOAD CURRENT (mA)  
INPUT VOLTAGE (V)  
LOAD CURRENT (mA)  
GROUND-PIN CURRENT  
vs. TEMPERATURE  
POWER-SUPPLY REJECTION RATIO  
CHANNEL-TO-CHANNEL ISOLATION  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
120  
110  
100  
90  
80  
70  
LOW-IMPEDANCE INPUT  
I
= 100mA  
OUT1  
C
OUT  
= 1µF + 0.1µF  
60  
IN  
I
I
= 100mA SINUSOIDAL LOAD  
= 10mA  
ONLY ONE OUTPUT ENABLED  
(EN1 = IN, EN2 = EN3 = GND)  
OUT1  
OUT3  
I
= 10mA  
50  
1000  
-40  
-15  
10  
35  
60  
85  
0.01  
0.1  
1
10  
100  
0.1  
1
10  
100  
1000  
TEMPERATURE (°C)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
4
_______________________________________________________________________________________  
Integrated Cellular RF-Section  
Power-Management IC  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, MAX8890EGCGGG, V = 3.3V, EN_ = IN_, T = +25°C, unless otherwise noted.)  
IN  
A
LINE TRANSIENT RESPONSE  
LOAD TRANSIENT  
LOAD TRANSIENT NEAR DROPOUT  
MAX8890 toc12  
MAX8890 toc10  
MAX8890 toc11  
4.0V  
3.5V  
A
A
B
A
B
B
2.8V  
40µs/div  
20µs/div  
20µs/div  
A. V = 3.5V to 4.0V, 200mV/div  
IN  
A. I _ = 1mA to 100mA, 50mA/div  
OUT  
A. I _ = 1mA to 100mA, 50mA/div  
OUT  
OUT  
V = 2.9V (V _ + 100mV)  
IN OUT  
B. V  
= 2.8V, 2mV/div  
B. V _ = 2.8V, 20mV/div  
B. V _ = 2.8V, 20mV/div  
OUT_  
OUT  
I
= 100mA  
V
IN  
= 3.3V (V _ +500mV)  
OUT  
OUT  
STARTUP WAVEFORM  
STARTUP WAVEFORM  
(C = 0.01µF)  
BP  
(C = 0.1µF)  
BP  
CROSSTALK VOLTAGE  
MAX8890 toc14  
MAX8890 toc15  
1000  
LOW-IMPEDANCE INPUT  
I
I
= 100mA SINUSOIDAL LOAD  
= 10mA  
OUT1  
OUT3  
A
B
A
B
100  
10  
C
C
1
1000  
0.1  
1
10  
100  
20µs/div  
5ms/div  
FREQUENCY (kHz)  
A. V = 0 to 3.3V, 5V/div  
A. V = 0 to 3.3V, 5V/div  
IN  
IN  
B. V  
= 2.8V, 2V/div  
B. V _ = 2.8V, 2V/div  
OUT_  
OUT  
C. V = 1.25V, 1V/div  
C. V = 1.25V, 1V/div  
BP  
BP  
OUT  
R
_ = 28(100mA)  
R
_ = 28(100mA)  
OUT  
_______________________________________________________________________________________  
5
Integrated Cellular RF-Section  
Power-Management IC  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, MAX8890EGCGGG, V = 3.3V, EN_ = IN_, T = +25°C, unless otherwise noted.)  
IN  
A
ENABLE WAVEFORM  
(1ST OUTPUT)  
ENABLE WAVEFORM  
(2ND OUTPUT)  
MAX8890 toc16  
MAX8890 toc17  
A
A
B
B
C
D
C
D
20µs/div  
20µs/div  
A. V = 0 to 3.3V, 5V/div  
A. V = 0 to 3.3V, 5V/div  
EN1  
B. V  
EN2  
B. V  
= 2.8V, R  
= 28(100mA), 2V/div  
= 2.8V, R  
= 28(100mA), 2V/div  
OUT1  
OUT1  
OUT2  
OUT2  
C. V = 1.25V, 1V/div  
C. V = 1.25V, 1V/div  
BP  
BP  
D. I , 200mA/div  
IN  
D. I , 200mA/div  
IN  
V
IN  
= 3.3V, EN2 = EN3 = GND, C = 0.01µF  
V
IN  
= 3.3V, EN1 = IN, EN3 = GND, C = 0.01µF  
BP  
BP  
Pin Description  
PIN  
NAME  
FUNCTION  
Regulator 1 Input. Supply voltage can range from 2.5V to 5.5V. Bypass with a capacitor to GND (see  
Capacitor Selection and Regulator Stability).  
1
IN1  
Regulator 2 Input. Supply voltage can range from 2.5V to V . Bypass with a capacitor to GND (see  
IN1  
Capacitor Selection and Regulator Stability).  
2
3
4
IN2  
OUT2  
EN1  
Regulator 2 Output. Sources up to 100mA. Bypass with a 2.2µF ceramic capacitor to GND.  
Active-High Enable Input for Regulator 1. A logic low shuts down the first linear regulator. In shutdown,  
OUT1 is pulled low through an internal 5kresistor. Connect to IN1 for normal operation.  
Active-High Enable Input for Regulator 2. A logic low shuts down the second linear regulator. In  
shutdown, OUT2 is pulled low through an internal 5kresistor. Connect to IN2 for normal operation.  
5
6
EN2  
EN3  
Active-High Enable Input for Regulator 3. A logic low shuts down the third linear regulator. In  
shutdown, OUT3 is pulled low through an internal 5kresistor. Connect to IN3 for normal operation.  
1.25V Voltage Reference Bypass Pin. Connect a 0.01µF ceramic bypass capacitor from BP to GND to  
minimize the output noise. Make no other connection to this pin.  
7
8
9
BP  
GND  
IN3  
Ground. Connect both ground pins together externally, as close to the IC as possible.  
Regulator 3 Input. Supply voltage can range from 2.5V to V . Bypass with a capacitor to GND (see  
IN1  
Capacitor Selection and Regulator Stability).  
10  
11  
12  
OUT3  
GND  
Regulator 3 Output. Sources up to 100mA. Bypass with a 2.2µF ceramic capacitor to GND.  
Ground. Connect both ground pins together externally, as close to the IC as possible.  
Regulator 1 Output. Sources up to 100mA. Bypass with a 2.2µF ceramic capacitor to GND.  
OUT1  
Ground. THE EXPOSED PAD AND ALL FOUR CORNER TABS ON THE QFN PACKAGE ARE  
INTERNALLY CONNECTED TO GROUND. The exposed pad functions as a heatsink. Solder to a large pad  
or to the circuit board ground plane to maximize power dissipation. Do not use as device ground.  
EXPOSED  
PAD  
GND  
6
_______________________________________________________________________________________  
Integrated Cellular RF-Section  
Power-Management IC  
INPUT  
2.5V TO 5.5V  
OUTPUT #1  
(1.8V TO 3.3V)*  
IN1  
OUT1  
C
OUT1  
C
IN  
2.2µF  
4.7µF  
OUTPUT #2  
IN2  
IN3  
EN1  
OUT2  
OUT3  
BP  
(1.8V TO 3.3V)*  
C
2.2µF  
OUT2  
OUTPUT #3  
(1.8V TO 3.3V)*  
OUT3  
2.2µF  
MAX8890  
C
ON  
OFF  
C
BP  
EN2  
EN3  
0.01µF  
GND  
*SEE THE Ordering Information AND  
Preset Output Voltage Suffixes SECTIONS  
Figure 1. Typical Application Circuit  
battery, each LDO is designed with 45µV  
from 10Hz to 100kHz and PSRR of 67dB.  
noise  
RMS  
Detailed Description  
The MAX8890 is an RF power-management IC for a  
cellular phone. The MAX8890 contains three low-noise,  
low quiescent current, low-dropout, linear regulators for  
powering the transmitter, receiver, synthesizer, TCXO,  
and voltage controlled oscillators (VCOs). Each low-  
dropout linear regulator (LDO) supplies loads up to  
100mA and is available with preset output voltages  
from 1.8V to 3.3V in 50mV increments. Furthermore, the  
MAX8890s input voltage range of 2.5V to 5.5V is per-  
fect for single-cell Li+ battery or 3-cell NiMH battery  
applications.  
The MAX8890 also features output current limiting  
(short-circuit protection), a low-power shutdown mode,  
and thermal overload protection.  
Internal P-Channel Pass MOSFET  
Each linear regulator features a 0.5P-channel MOS-  
FET pass transistor. Unlike similar designs using PNP  
pass transistors, P-channel MOSFETs require no base  
drive, which reduces the quiescent current. PNP based  
regulators also waste considerable current in dropout  
when the pass transistor saturates and use high base-  
drive currents under large loads. The MAX8890 does  
not suffer from these problems and consumes only  
180µA of quiescent current (all 3 regulators enabled).  
As illustrated in Figure 2, each regulator consists of an  
error amplifier, internal feedback resistive-divider, and  
P-channel MOSFET pass transistor. The output voltage  
feeds back through the internal resistive-divider con-  
nected to OUT_. This feedback voltage connects to the  
error amplifier, which compares the feedback voltage  
with the internal 1.25V reference voltage and amplifies  
the difference. If the feedback voltage is lower than the  
reference voltage, the pass-transistor gate is pulled  
lower, which allows more current to flow to the output  
and increases the output voltage. If the feedback volt-  
age is too high, the pass-transistor gate is pulled up,  
allowing less current to flow to the output.  
Current Limit (Short-Circuit Protection)  
The MAX8890 contains separate current-limit circuitry  
for each linear regulator. The device monitors and con-  
trols the gate voltage of each pass transistor, limiting  
the regulators output current to 250mA (typ). The out-  
put can be shorted to ground for an indefinite period of  
time without damage to the part as long as the maxi-  
mum continuous power dissipation rating is not  
exceeded.  
Clear transmission and reception in a cellular phone  
can only be achieved with a low-noise power supply.  
Therefore, all three LDOs on the MAX8890 feature low  
output voltage noise, high power-supply rejection  
ratios, and excellent load and line regulation character-  
istics. Designed for single-cell Li+ battery applications  
where a pulsed current demand is required from the  
Output Voltage Selection  
The MAX8890 is supplied with factory-set output volt-  
ages from 1.8V to 3.3V in 50mV increments. The three-  
letter part number suffix identifies the output voltage for  
each regulator. For example, the MAX8890EGCAKMs  
output voltages are preset to 3.3V (V  
), 2.5V  
OUT1  
(V  
), and 1.8V (V  
).  
OUT3  
OUT2  
_______________________________________________________________________________________  
7
Integrated Cellular RF-Section  
Power-Management IC  
LINEAR REGULATOR #1  
R
SENSE  
IN1  
OUT1  
THERMAL  
SHDN  
ERROR  
AMPLIFIER  
CURRENT  
LIMIT  
CONTROL  
LOCIC  
IN1  
BP  
REF  
1.25V  
STARTUP  
CIRCUITRY  
EN1  
IN2  
GND  
LINEAR REGULATOR #2  
LINEAR REGULATOR #3  
OUT2  
OUT3  
EN2  
IN3  
EN3  
Figure 2. Functional Diagram  
5kresistor. The capacitance and load determine the  
rate at which V _ decays. Do not leave EN_ floating.  
Connect EN_ to IN_ for normal operation. EN_ can be  
pulled as high as 6V, regardless of the input and output  
voltages.  
Enable  
If any one of the three low-dropout linear regulators  
(LDOs) is enabled, the internal 1.25V reference powers  
up. Therefore, all three LDOs must be disabled to shut  
down the internal reference, reducing the supply cur-  
rent to 0.01µA.  
OUT  
Thermal Overload Protection  
Thermal overload protection limits the MAX8890s total  
power dissipation in the event of fault conditions. Each  
linear regulator has its own thermal shutdown circuitry.  
Pull EN_ low to enter shutdown. When any one of the  
linear regulators is shutdown, the corresponding  
MAX8890 output disconnects from the corresponding  
input, and the output discharges through an internal  
8
_______________________________________________________________________________________  
Integrated Cellular RF-Section  
Power-Management IC  
When the junction temperature exceeds T = 160°C, a  
Noise, PSRR, and Transient Response  
The MAX8890 is designed to operate with low dropout  
voltages and low quiescent currents in battery-powered  
systems while providing low noise, fast transient  
response, and high AC rejection. See the Typical  
Operating Characteristics for a plot of Power-Supply  
Rejection Ratio (PSRR) vs. Frequency. When operating  
from noisy sources, improved supply-noise rejection  
and transient response can be achieved by increasing  
the values of the input and output bypass capacitors  
and through passive filtering techniques.  
J
thermal sensor activates the shutdown logic, disabling  
the overheated regulator. The thermal sensor turns the  
linear regulator on again after the regulators junction  
temperature cools by 15°C, resulting in a pulsed output  
during continuous thermal-overload conditions. For  
continuous operation, do not exceed the absolute maxi-  
mum junction-temperature rating of T = 150°C.  
J
Applications Information  
The MAX8890 load-transient response graphs (see  
Typical Operating Characteristics) show two compo-  
nents of the output response: a DC shift from the output  
impedance due to the load current change and the  
transient response. Increasing the output capacitors  
value and decreasing the ESR reduces the transient  
under/overshoot.  
Capacitor Selection and Regulator  
Stability  
Capacitors are required at each input and each output  
of the MAX8890 for stable operation over the full load  
range and full temperature range. Connect a minimum  
2.2µF ceramic capacitor between OUT_ and ground to  
ensure stability and optimum transient response. Use  
larger 10µF ceramic output capacitors for lower noise  
requirements.  
Input-Output (Dropout) Voltage  
A regulators minimum input-to-output voltage differen-  
tial (dropout voltage) determines the lowest useable  
input supply voltage. Once the linear regulator reaches  
dropout, the series pass transistor is fully on and regu-  
lation ceases. The output voltage tracks the input volt-  
age as the input voltage drops lower. Because the  
MAX8890 uses P-channel MOSFET pass transistors, its  
dropout voltage is a function of the MOSFETs drain-to-  
The input capacitor (C _) lowers the source imped-  
IN  
ance of the input supply, thereby reducing the input  
noise and improving transient response. Connect a  
minimum 1µF ceramic capacitance between each IN_  
and ground. Place all input and output capacitors as  
close to the MAX8890 as possible to minimize the  
impact of PC board trace impedance. Because IN1  
and IN2 are next to each other, they may easily share a  
single 2.2µF or larger ceramic capacitor.  
source on-resistance (R  
) multiplied by the load  
DS(ON)  
current (see Typical Operating Characteristics):  
Surface-mount ceramic capacitors have very low ESR  
and are commonly available in values up to 10µF.  
However, note that some ceramic dielectrics exhibit  
large capacitance and ESR variation with temperature.  
Z5U and Y5V dielectrics may require a minimum 3.3µF  
nominal output capacitance, especially with low tem-  
perature operation.  
V
= V _ - V  
_ = R  
DS(ON)  
I _  
OUT  
DROPOUT  
IN  
OUT  
Reference Bypass Capacitor  
An external bypass capacitor is connected to BP to  
reduce the inherent reference noise. The capacitor  
forms a lowpass filter in conjunction with an internal  
network. Use a 0.01µF or greater ceramic capacitor  
connected as close to BP as possible. Capacitance  
values greater than 0.01µF will increase the startup  
time. (See Typical Operating Characteristics for startup  
waveforms.) For the lowest noise, increase the bypass  
capacitor to 0.1µF. Values above 0.1µF provide no per-  
formance improvement and are therefore not recom-  
mended. Do not place any additional loading on this  
reference bypass pin.  
_______________________________________________________________________________________  
9
Integrated Cellular RF-Section  
Power-Management IC  
Pin Configuration  
Standard Versions  
VERSION  
TOP MARK  
AAAA  
TOP VIEW  
OUT1 GND OUT3  
MAX8890EGCAAA  
MAX8890EGCDDD  
MAX8890EGCGGG  
MAX8890EGCMMM  
MAX8890EGCAKM  
11  
AAAC  
12  
10  
AAAE  
IN1  
1
9
IN3  
AAAJ  
AAAK  
IN2  
2
3
8
7
GND  
BP  
MAX8890  
OUT2  
Chip Information  
TRANSISTOR COUNT: 1472  
4
5
EN2  
6
PROCESS: BiCMOS  
EN1  
EN3  
4
4 QFN  
10 ______________________________________________________________________________________  
Integrated Cellular RF-Section  
Power-Management IC  
Package Information  
______________________________________________________________________________________ 11  
Integrated Cellular RF-Section  
Power-Management IC  
Package Information (continued)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2001 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX8890EGCAGK

Analog Circuit
MAXIM

MAX8890EGCAGL

Analog IC
MAXIM

MAX8890EGCAGM

Analog Circuit
MAXIM

MAX8890EGCAJA

Analog Circuit
MAXIM

MAX8890EGCAJB

Analog Circuit
MAXIM

MAX8890EGCAKA

Analog IC
MAXIM

MAX8890EGCAKD

Analog Circuit
MAXIM

MAX8890EGCAKF

Analog Circuit
MAXIM

MAX8890EGCAKH

Analog IC
MAXIM

MAX8890EGCAKJ

Analog Circuit
MAXIM

MAX8890EGCAKL

Analog IC
MAXIM

MAX8890EGCAKM

Analog IC
MAXIM