MAX8903GETI [MAXIM]

2A 1-Cell Li DC-DC Chargers for USB and Adapter Power Thermistor Monitor; 2A 1节锂DC-DC充电器,用于USB和适配器电源热敏电阻监控器
MAX8903GETI
型号: MAX8903GETI
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

2A 1-Cell Li DC-DC Chargers for USB and Adapter Power Thermistor Monitor
2A 1节锂DC-DC充电器,用于USB和适配器电源热敏电阻监控器

监控
文件: 总30页 (文件大小:1298K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-4410; Rev 4; 5/11  
2A 1-Cell Li+ DC-DC Chargers for USB  
and Adapter Power  
MX8903A–EGHJ/Y  
General Description  
Features  
o Efficient DC-DC Converter Eliminates Heat  
The MAX8903A–MAX8903E/MAX8903G/MAX8903H/  
MAX8903J/MAX8903Y are integrated 1-cell Li+ charg-  
ers and Smart Power Selectors™ with dual (AC adapter  
and USB) power inputs. The switch mode charger uses  
a high switching frequency to eliminate heat and allow  
tiny external components. It can operate with either  
separate inputs for USB and AC adapter power, or from  
a single input that accepts both. All power switches for  
charging and switching the load between battery and  
external power are included on-chip. No external  
MOSFETs, blocking diodes, or current-sense resistors  
are required.  
o 4MHz Switching for Tiny External Components  
o Instant On—Works with No/Low Battery  
o Dual Current-Limiting Inputs—AC Adapter or USB  
Automatic Adapter/USB/Battery Switchover to  
Support Load Transients  
50mSystem-to-Battery Switch  
Supports USB Spec  
o Thermistor Monitor  
o Integrated Current-Sense Resistor  
o No External MOSFETs or Diodes  
o 4.1V to 16V Input Operating Voltage Range  
The MAX8903_ features optimized smart power control  
to make the best use of limited USB or adapter power.  
Battery charge current and SYS output current limit are  
independently set. Power not used by the system  
charges the battery. Charge current and SYS output cur-  
rent limit can be set up to 2A while USB input current can  
be set to 100mA or 500mA. Automatic input selection  
switches the system from battery to external power. The  
DC input operates from 4.15V to 16V with up to 20V pro-  
tection, while the USB input has a range of 4.1V to 6.3V  
with up to 8V protection.  
Ordering Information  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
28 Thin QFN-EP*  
28 Thin QFN-EP*  
28 Thin QFN-EP*  
28 Thin QFN-EP*  
28 Thin QFN-EP*  
28 Thin QFN-EP*  
28 Thin QFN-EP*  
28 Thin QFN-EP*  
28 Thin QFN-EP*  
MAX8903AETI+T  
MAX8903BETI+T  
MAX8903CETI+T  
MAX8903DETI+T  
MAX8903EETI+T  
MAX8903GETI+T  
MAX8903HETI+T  
MAX8903JETI+T**  
MAX8903YETI+T  
The MAX8903_ internally blocks current from the bat-  
tery and system back to the DC and USB inputs when  
no input supply is present. Other features include pre-  
qual charging and timer, fast charge timer, overvoltage  
protection, charge status and fault outputs, power-OK  
monitors, and a battery thermistor monitor. In addition,  
on-chip thermal limiting reduces battery charge rate  
and AC adapter current to prevent charger overheat-  
ing. The MAX8903_ is available in a 4mm x 4mm, 28-pin  
thin QFN package.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
**Future product—contact factory for availability.  
T = Tape and reel.  
Typical Operating Circuit  
The various versions of the MAX8903_ allow for design  
flexibility to choose key parameters such as system  
regulation voltage, battery prequalification threshold,  
and battery regulation voltage. The MAX8903B/  
MAX8903E/MAX8903G also includes power-enable on  
battery detection. See the Selector Guide section for  
complete details.  
AC  
ADAPTER  
OR USB  
LX  
CS  
DC  
SYS  
LOAD  
CURRENT  
CHARGE  
CURRENT  
CHARGE  
AND  
SYS LOAD  
SWITCH  
SYSTEM  
LOAD  
Applications  
PDAs, Palmtops, and  
Wireless Handhelds  
Portable Multimedia  
Players  
PWM  
STEP-DOWN  
Personal Navigation  
Devices  
Smart Cell Phones  
Mobile Internet Devices  
Ultra Mobile PCs  
BAT  
BATTERY  
USB  
USB  
MAX8903_  
GND  
Selector Guide appears at end of data sheet.  
Smart Power Selector is a trademark of Maxim Integrated  
Products, Inc.  
Pin Configuration appears at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
2A 1-Cell Li+ DC-DC Chargers for USB  
and Adapter Power  
ABSOLUTE MAXIMUM RATINGS  
DC, LX to GND .......................................................-0.3V to +20V  
LX Continuous Current (total in two pins).......................2.4A  
RMS  
RMS  
RMS  
RMS  
DCM to GND ..............................................-0.3V to (V  
+ 0.3V)  
CS Continuous Current (total in two pins) ......................2.4A  
SYS Continuous Current (total in two pins) .......................3A  
BAT Continuous Current (total in two pins) .......................3A  
DC  
DC to SYS .................................................................-6V to +20V  
BST to GND ...........................................................-0.3V to +26V  
BST TO LX................................................................-0.3V to +6V  
USB to GND .............................................................-0.3V to +9V  
USB to SYS..................................................................-6V to +9V  
VL to GND ................................................................-0.3V to +6V  
VL Short Circuit to GND .............................................Continuous  
Continuous Power Dissipation (T = +70°C)  
A
28-Pin Thin QFN-EP  
Multilayer (derate 28.6mW/°C above +70°C) ..........2286mW  
28-Pin Thin QFN-EP  
THM, IDC, ISET, CT to GND........................-0.3V to (V + 0.3V)  
VL  
DOK, FLT, CEN, UOK, CHG, USUS,  
Single-Layer (derate 20.8mW/°C above +70°C)...1666.7mW  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature Range............................-40°C to +150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Soldering Temperature (reflow) .......................................+260°C  
BAT, SYS, IUSB, CS to GND ................................-0.3V to +6V  
SYS to BAT ...............................................................-0.3V to +6V  
PG, EP (exposed pad) to GND .............................-0.3V to +0.3V  
DC Continuous Current (total in two pins)......................2.4A  
USB Continuous Current.......................................................1.6A  
RMS  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
(Note 1)  
= V  
= 5V, V  
= 4V, circuit of Figure 2, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
BAT A A  
DC  
USB  
MX8903A–EGHJ/Y  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DC INPUT  
DC Operating Range  
4.15  
3.9  
16  
4.1  
4.4  
V
V
No valid USB input  
Valid USB input  
4.0  
4.3  
When V  
goes low, V  
DC  
DOK  
DC Undervoltage Threshold  
DC Overvoltage Threshold  
rising, 500mV typical hysteresis  
4.0  
When V goes high, V  
hysteresis  
rising, 500mV typical  
DC  
DOK  
16.5  
17  
17.5  
4
V
Charger enabled, no switching, V  
= 5V  
2.3  
15  
SYS  
Charger enabled, f = 3MHz, V  
= 5V  
DC  
DC Supply Current  
mA  
Charger enabled, V  
Charger enabled, V  
= 0V, 100mA USB mode (Note 2)  
= 5V, 100mA USB mode (Note 2)  
1
2
2
C EN  
C EN  
1
V
= 0V, V  
= 5V  
USUS  
0.10  
0.15  
0.15  
0.31  
0.25  
DCM  
DC High-Side Resistance  
DC Low-Side Resistance  
DC-to-BAT Dropout Resistance  
Assumes a 40minductor resistance (R )  
L
When SYS regulation and charging stops, V  
200mV hysteresis  
falling,  
DC  
DC-to-BAT Dropout Voltage  
0
15  
30  
mV  
Minimum Off Time (t  
Minimum On Time (t  
)
100  
70  
4
ns  
ns  
OFFMIN  
)
ONMIN  
V
V
V
V
= 8V, V  
= 5V, V  
= 9V, V  
= 9V, V  
= 4V  
= 3V  
= 4V  
= 3V  
DC  
DC  
DC  
DC  
BAT  
BAT  
BAT  
BAT  
MAX8903A/B/C/D/E/H/J/Y  
MAX8903G  
3
Switching Frequency (f  
)
MHz  
SW  
1
1
DC Step-Down Output Current-  
Limit Step Range  
0.5  
2
A
R
IDC  
R
IDC  
R
IDC  
= 3kΩ  
= 6kΩ  
= 12kΩ  
1900  
950  
2000  
1000  
500  
2100  
1050  
550  
DC Step-Down Output Current  
V
= 6V, V  
= 4V  
SYS  
mA  
DC  
Limit (I  
)
SDLIM  
450  
2
_______________________________________________________________________________________  
2A 1-Cell Li+ DC-DC Chargers for USB  
and Adapter Power  
MX8903A–EGHJ/Y  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V  
= 5V, V  
= 4V, circuit of Figure 2, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
DC  
USB  
BAT  
A
A
(Note 1)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
1
MAX  
UNITS  
ms  
No valid USB input  
DC Soft-Start Time  
Valid USB input before soft-start  
20  
µs  
DC Output Current  
500mA USB Mode (Note 3)  
V
V
V
= 0V, V  
= 0V, V  
= 5V  
= 0V  
= 0V  
450  
90  
475  
95  
500  
100  
mA  
mA  
µA  
DCM  
DCM  
IUSB  
IUSB  
DC Output Current  
100mA USB Mode (Note 2)  
SYS to DC Reverse Current  
Blocking  
= 5.5V, V  
0.01  
SYS  
DC  
USB INPUT  
USB Operating Range  
USB Standoff Voltage  
USB Undervoltage Threshold  
USB Overvoltage Threshold  
4.1  
6.3  
8
V
V
V
V
When V  
When V  
goes low, V  
rising, 500mV hysteresis  
3.95  
6.8  
90  
4.0  
6.9  
95  
4.05  
7.0  
100  
500  
3
UOK  
UOK  
USB  
goes high, V  
rising, 500mV hysteresis  
USB  
V
V
= 0V (100mA setting)  
= 5V (500mA setting)  
IUSB  
IUSB  
USB Current Limit  
mA  
450  
475  
1.3  
0.8  
0.115  
15  
I
I
= I  
= 0mA, V  
= 0mA, V  
= 0V  
SYS  
SYS  
BAT  
BAT  
CEN  
CEN  
USB Supply Current  
mA  
= I  
= 5V  
2
V
= 5V (USB suspend mode)  
0.25  
30  
USUS  
Minimum USB to BAT Headroom  
USB to SYS Dropout Resistance  
0
mV  
0.2  
1
0.35  
V
V
rising  
ms  
µs  
USB  
USB Soft-Start Time  
falling below DC UVLO to initiate USB soft-start  
20  
DC  
SYS OUTPUT  
MAX8903A/MAX8903B/MAX8903E/  
MAX8903G/MAX8903Y  
3.0  
3.4  
4.4  
Minimum SYS Regulation Voltage  
I
V
= 1A,  
< V  
BAT  
SYS  
V
V
(V  
SYSMIN  
)
SYSMIN MAX8903C/MAX8903D/MAX8903H/  
MAX8903J  
MAX8903A/MAX8903C/  
MAX8903D/MAX8903H/MAX8903Y  
4.3  
4.5  
Regulation Voltage  
I
= 0A  
MAX8903B/MAX8903E/  
MAX8903G  
SYS  
4.265  
4.325  
4.5  
4.395  
MAX8903J  
MAX8903A/MAX8903C/  
MAX8903D/MAX8903H  
40  
Load Regulation  
I
= 0 to 2A  
mV/A  
SYS  
MAX8903B/MAX8903E/  
MAX8903G/MAX8903J/MAX8903Y  
25  
CS to SYS Resistance  
SYS to CS Leakage  
V
V
V
= 6V, V  
= 5V, V  
= 4V, I = 1A  
0.07  
0.01  
0.05  
µA  
DC  
SYS  
DC  
DCM  
SYS  
CS  
= 5.5V, V  
= V = 0V  
CS  
DC  
BAT to SYS Resistance  
= V  
= 0V, V  
= 4.2V, I = 1A  
SYS  
0.1  
100  
2.0  
USB  
BAT  
BAT to SYS Reverse Regulation  
Voltage  
V
= 5V, V  
= 0V, V  
= 0V, I = 200mA  
SYS  
50  
75  
mV  
V
USB  
DC  
IUSB  
SYS Undervoltage Threshold  
SYS falling, 200mV hysteresis (Note 4)  
1.8  
1.9  
_______________________________________________________________________________________  
3
2A 1-Cell Li+ DC-DC Chargers for USB  
and Adapter Power  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V  
= 5V, V  
= 4V, circuit of Figure 2, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
BAT A A  
DC  
USB  
(Note 1)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
BATTERY CHARGER  
MAX8903A/  
T
= +25°C  
4.179  
4.158  
4.200  
4.200  
4.221  
4.242  
A
MAX8903B/  
MAX8903C/  
MAX8903G/  
MAX8903H  
T
= -40°C to +85°C  
A
BAT Regulation Voltage  
T
T
T
T
T
T
= +25°C  
4.079  
4.059  
4.328  
4.307  
4.129  
4.109  
-150  
4.100  
4.100  
4.350  
4.350  
4.150  
4.150  
-100  
4.121  
4.141  
4.372  
4.394  
4.171  
4.192  
-60  
A
A
A
A
A
A
MAX8903D/  
MAX8903E  
I
= 0mA  
V
BAT  
(V  
BATREG  
)
= -40°C to +85°C  
= +25°C  
MAX8903J  
MAX8903Y  
= -40°C to +85°C  
= +25°C  
= -40°C to +85°C  
Charger Restart Threshold  
BAT Prequal Threshold (V  
Prequal Charge Current  
Fast-Charge Current  
Change in V  
from DONE to fast-charge  
mV  
V
BAT  
MX8903A–EGHJ/Y  
MAX8903A/MAX8903C/MAX8903D/  
MAX8903H/MAX8903J/MAX8903Y  
2.9  
2.4  
3.0  
3.1  
2.6  
V
rising  
BAT  
)
BATPQ  
180mV hystersis  
MAX8903B/MAX8903E/MAX8903G  
2.5  
10  
Percentage of fast-charge current set at ISET  
%
R
R
R
= 600Ω  
1800  
900  
2000  
1000  
500  
10  
2200  
1100  
550  
ISET  
ISET  
ISET  
= 1.2k(MAX8903A/MAX8903C/MAX8903D)  
= 2.4kΩ  
mA  
450  
DONE Threshold (I  
)
Percentage of fast-charge, I  
decreasing  
BAT  
%
kΩ  
TERM  
R
ISET  
Resistor Range  
0.6  
2.4  
ISET Output Voltage  
1.5  
1.25  
0.05  
3
V
ISET Current Monitor Gain  
BAT Leakage Current  
Charger Soft-Start Time  
mA/A  
No DC or USB input  
4
6
µA  
With valid input power, V  
= 5V  
CEN  
1.0  
ms  
°C  
Charger Thermal Limit  
Temperature  
100  
5
Charger Thermal Limit Gain  
CHARGER TIMER  
Charge current = 0 at +120°C  
%/°C  
Prequalification Time  
Fast-Charge Time  
C
C
= 0.15µF  
= 0.15µF  
33  
min  
min  
CT  
CT  
660  
MAX8903A/MAX8903C/MAX8903D/MAX8903H/  
MAX8903J/MAX8903Y (fixed)  
15  
s
Top-Off Timer (t  
Timer Accuracy  
)
TOP-OFF  
MAX8903B/MAX8903E/MAX8903G, C = 0.15µF  
CT  
132  
min  
%
-15  
40  
+15  
60  
Percentage of fast-charge current below which the timer  
clock operates at half-speed  
Timer Extend Current Threshold  
Timer Suspend Current Threshold  
50  
20  
%
%
Percentage of fast-charge current below which timer  
clock pauses  
16  
24  
4
_______________________________________________________________________________________  
2A 1-Cell Li+ DC-DC Chargers for USB  
and Adapter Power  
MX8903A–EGHJ/Y  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V  
= 5V, V  
= 4V, circuit of Figure 2, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
BAT A A  
DC  
USB  
(Note 1)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
THERMISTOR MONITOR  
0.27 x  
0.28 x 0.29 x  
THM Threshold, Hot  
When charging is suspended, 1% hysteresis  
When charging is suspended, 1% hysteresis  
THM function is disabled below this voltage  
MAX8903B/MAX8903E/MAX8903G  
V
V
V
V
V
V
V
VL  
VL  
VL  
0.73 x  
0.74 x 0.75 x  
THM Threshold, Cold  
V
V
V
VL  
VL  
VL  
0.0254 0.03 x 0.036 x  
x V  
THM Threshold, Disabled  
THM Threshold DC, USB Enable  
V
V
VL  
VL  
VL  
0.83 x  
0.87 x 0.91 x  
V
V
V
VL  
VL  
VL  
THM = GND or VL;  
= +25°C  
-0.100  
0.001 +0.200  
0.010  
MAX8903A/MAX8903C/  
MAX8903D/MAX8903H/  
MAX8903J/MAX8903Y  
T
A
THM = GND or VL;  
= +85°C  
THM Input Leakage  
µA  
T
A
MAX8903B/MAX8903E/  
MAX8903G  
THM = GND or VL;  
= -40°C to +85°C  
-0.200  
0.001 +0.200  
T
A
THERMAL SHUTDOWN, VL, AND LOGIC I/O: CHG, FLT, DOK, UOK, DCM, CEN, USUS, IUSB  
High level  
1.3  
V
Logic-Input Thresholds  
(DCM, CEN, USUS, IUSB)  
Low level  
0.4  
Hysteresis  
50  
mV  
V
= 0V to 5.5V  
INPUT  
T
T
= +25°C  
= +85°C  
-1.000  
0.001 +1.000  
0.010  
A
(MAX8903A/MAX8903C/  
MAX8903D/MAX8903H/  
MAX8903J/MAX8903Y)  
A
Logic-Input Leakage Current  
(CEN, USUS, IUSB)  
µA  
V
= 0V to 5.5V  
INPUT  
(MAX8903B/MAX8903E/  
MAX8903G)  
T
A
= -40°C to +85°C  
-0.200  
0.001 +0.200  
T
T
= +25°C  
= +85°C  
0.001  
0.01  
8
1
50  
1
A
Logic-Input Leakage Current  
(DCM)  
V
V
= 0V to 16V  
DCM  
µA  
mV  
µA  
= 16V  
DC  
A
Sinking 1mA  
Sinking 10mA  
Logic Output Voltage, Low  
(CHG, FLT, DOK, UOK)  
80  
T
T
= +25°C  
= +85°C  
0.001  
0.01  
A
Open-Drain Output Leakage  
Current, High (CHG,  FLT, DOK, UOK)  
V
= 5.5V  
OUT  
A
_______________________________________________________________________________________  
5
2A 1-Cell Li+ DC-DC Chargers for USB  
and Adapter Power  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V  
= 5V, V  
= 4V, circuit of Figure 2, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
DC  
USB  
BAT  
A
A
(Note 1)  
PARAMETER  
CONDITIONS  
= 0 to 1mA  
MIN  
TYP  
MAX  
UNITS  
I
VL  
(MAX8903A/MAX8903C/  
MAX8903D/MAX8903H/  
MAX8903J/MAX8903Y)  
4.6  
5.0  
5.4  
VL Output Voltage  
V
V
= V  
= 6V  
USB  
V
DC  
VL  
I
VL  
= 0 to 10mA  
(MAX8903B/MAX8903E/  
MAX8903G)  
4.6  
5.0  
5.4  
VL UVLO Threshold  
falling; 200mV hysteresis  
3.2  
160  
15  
V
Thermal Shutdown Temperature  
Thermal Shutdown Hysteresis  
°C  
°C  
Note 1: Limits are 100% production tested at T = +25°C. Limits over the operating temperature range are guaranteed by design.  
A
Note 2: For the 100mA USB mode using the DC input, the step-down regulator is turned off and its high-side switch operates as a  
linear regulator with a 100mA current limit. The linear regulator’s output is connected to LX and its output current flows  
through the inductor into CS and finally to SYS.  
MX8903A–EGHJ/Y  
Note 3: For the 500mA USB mode, the actual current drawn from USB is less than the output current due to the input/output current  
ratio of the DC-DC converter.  
Note 4: For short-circuit protection, SYS sources 25mA below V  
= 400mV, and 50mA for V  
between 400mV and 2V.  
SYS  
SYS  
Typical Operating Characteristics  
(T = +25°C, unless otherwise noted.)  
A
BATTERY CHARGER EFFICIENCY  
SWITCHING FREQUENCY  
MAX8903G BATTERY CHARGER  
EFFICIENCY vs. BATTERY VOLTAGE  
vs. BATTERY VOLTAGE  
vs. V  
DC  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
90  
80  
V
= 6V  
DC  
V
= 5V  
DC  
70  
60  
50  
40  
30  
20  
10  
0
V
= 9V  
V
= 3V  
= 4V  
DC  
BAT  
V
= 8V  
DC  
V
BAT  
V
= 12V  
V
= 12V  
I
DC  
DC  
I
= 0.15A  
= 1.5A  
I
= 0.15A  
I
= 1.5A  
BAT  
BATT  
BATT  
BAT  
R
V
= 1.2k  
= 0V  
ISET  
CEN  
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
BATTERY VOLTAGE (V)  
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
BATTERY VOLTAGE (V)  
4
6
8
10  
12  
14  
16  
DC VOLTAGE (V)  
6
_______________________________________________________________________________________  
2A 1-Cell Li+ DC-DC Chargers for USB  
and Adapter Power  
MX8903A–EGHJ/Y  
Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
SYS EFFICIENCY  
vs. SYS OUTPUT CURRENT  
MAX8903G SYS EFFICIENCY  
vs. SYS OUTPUT CURRENT  
MAX8903G SWITCHING  
FREQUENCY vs. V  
DC  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
V
= 1V  
= 4.4V  
CEN  
SYS  
V
= 1  
CEN  
V
= 16V  
DC  
V
= 11V  
DC  
V
= 12V  
V
= 4V  
DC  
BAT  
V
= 16V  
DC  
V
= 9V  
V
= 3V  
DC  
BAT  
V
= 6V  
DC  
V
DC  
= 6V  
R
V
= 1.2kI  
= 0V  
ISET  
CEN  
V
= 4.5V  
1000  
DC  
1
10  
100  
10000  
1
10  
100  
1000  
10,000  
4
6
8
10  
12  
14  
16  
SYS OUTPUT CURRENT (mA)  
SYS OUTPUT CURRENT (mA)  
DC VOLTAGE (V)  
USB SUPPLY CURRENT  
vs. USB VOLTAGE  
BATTERY LEAKAGE CURRENT  
vs. BATTERY VOLTAGE  
USB SUPPLY CURRENT  
vs. USB VOLTAGE (SUSPEND)  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
140  
120  
100  
80  
CHARGER  
ENABLED  
60  
40  
CHARGER  
DISABLED  
20  
NO DC OR USB INPUT  
USB SUSPEND  
0
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
0
1
2
3
4
5
6
7
USB VOLTAGE (V)  
BATTERY VOLTAGE (V)  
USB VOLTAGE (V)  
CHARGE CURRENT  
vs. BATTERY VOLTAGE—USB MODE  
BATTERY LEAKAGE CURRENT  
vs. AMBIENT TEMPERATURE  
CHARGE CURRENT  
vs. BATTERY VOLTAGE—DC MODE  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1200  
1000  
800  
600  
400  
200  
0
CHARGER ENABLED  
CHARGE ENABLED  
I
I
SET TO 1A  
SET TO 2A  
I
SET TO 1.5A  
BAT  
BAT  
MAX8903D  
DC  
MAX8903A/MAX8903C  
RISING  
V
RISING  
BAT  
V
BAT  
V
= V  
USB  
IUSB  
V
= 0V  
IUSB  
NO DC OR USB INPUT  
0
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
-40  
-15  
10  
35  
60  
85  
BATTERY VOLTAGE (V)  
BATTERY VOLTAGE (V)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
7
2A 1-Cell Li+ DC-DC Chargers for USB  
and Adapter Power  
Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
MAX8903A/C  
NORMALIZED CHARGE CURRENT  
vs. AMBIENT TEMPERATURE  
1.015  
BATTERY REGULATION VOLTAGE  
vs. AMBIENT TEMPERATURE  
SYS VOLTAGE vs. USB VOLTAGE  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
100.5  
100.4  
100.3  
100.2  
100.1  
100.0  
99.9  
V
V
V
= 5V  
= 0V  
= 0V  
CEN  
BAT  
DC  
V
= 5V, V = 4V  
BAT  
USB  
1.010  
1.005  
1.000  
0.995  
0.990  
0.985  
V
FALLING  
USB  
V
RISING  
USB  
99.8  
99.7  
99.6  
R
= 1MΩ  
SYS  
22ppm/°C  
99.5  
0
1
2
3
4
5
6
7
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
USB VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
MX8903A–EGHJ/Y  
MAX8903A/MAX8903C/MAX8903D  
SYS VOLTAGE vs. DC VOLTAGE  
SYS VOLTAGE  
vs. SYS OUTPUT CURRENT  
SYS VOLTAGE  
vs. SYS OUTPUT CURRENT, USB INPUT  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
4.50  
4.40  
4.30  
4.20  
4.10  
4.00  
3.90  
3.80  
4.41  
4.40  
4.39  
4.38  
4.37  
4.36  
4.35  
4.34  
4.33  
4.32  
4.31  
4.30  
MAX8903A/MAX8903C/MAX8903D  
= 5.75V  
V
= 5V  
USB  
V
DC  
MAX8903A/MAX8903C/  
MAX8903D  
V
RISING  
DC  
MAX8903B/MAX8903E  
= 5.75V  
V
DC  
USB AND DC  
UNCONNECTED  
V
FALLING  
DC  
V
BATT  
= 4V  
MAX8903B/MAX8903E  
V
CEN  
V
BAT  
V
USB  
= 5V  
= 0V  
= 0V  
0
2
4
6
8
10 12 14 16 18  
0
0.5  
1.0  
1.5  
2.0  
0
100  
200  
300  
400  
500  
DC VOLTAGE (V)  
SYS OUTPUT CURRENT (A)  
SYS OUTPUT CURRENT (mA)  
CHARGE PROFILE—1400mAh BATTERY  
VL VOLTAGE vs. DC VOLTAGE  
ADAPTER INPUT—1A CHARGE  
MAX8903A toc17  
6
5
4
3
2
1
0
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
I
SET TO 1A  
SET TO 2A  
DC  
I
BAT  
V
BAT  
I
BAT  
MAX8903A/MAX8903B/MAX8903C  
0
2
4
6
8
10 12 14 16 18  
0
20  
40  
60  
80  
100 120 140  
DC VOLTAGE (V)  
TIME (min)  
8
_______________________________________________________________________________________  
2A 1-Cell Li+ DC-DC Chargers for USB  
and Adapter Power  
MX8903A–EGHJ/Y  
Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
MAX8903A/B/C/D/E/H/J/Y DC SWITCHING  
CHARGE PROFILE—1400mAh BATTERY  
USB INPUT—500mA CHARGE  
WAVEFORMS—LIGHT LOAD  
MAX8903A toc19  
MAX8903A toc18  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0.500  
0.450  
0.400  
0.350  
0.300  
0.250  
0.200  
0.150  
0.100  
0.050  
0
20mV/div  
AC-COUPLED  
V
OUT  
V
BAT  
5V/div  
0V  
V
LX  
LX  
I
BAT  
I
MAX8903A/MAX8903B/MAX8903C  
SET TO 500mA  
500mA/div  
0A  
I
USB  
R
SYS  
= 44  
I
SET TO 2A  
BAT  
200ns/div  
0
20 40 60 80 100 120 140 160 180 200  
TIME (min)  
MAX8903A/B/C/D/E/H/J/Y DC SWITCHING  
MAX8903G DC SWITCHING  
WAVEFORMS—HEAVY LOAD  
WAVEFORMS—LIGHT LOAD  
MAX8903A toc20  
MAX8903A toc19a  
20mV/div  
50mV/div  
AC-COUPLED  
AC-COUPLED  
V
V
SYS  
OUT  
V
= 9V, L = 2.2µH  
DC  
C
R
= 22µF,  
= 44I  
SYS  
SYS  
5V/div  
0V  
V
I
V
10V/div  
LX  
LX  
0V  
1A/div  
LX  
I
LX  
0A  
500mA/div  
0A  
R
= 5Ω  
SYS  
200ns/div  
1µs/div  
DC CONNECT WITH  
USB CONNECTED (R = 25)  
MAX8903G DC SWITCHING  
WAVEFORMS—HEAVY LOAD  
SYS  
MAX8903A toc21  
MAX8903A toc20a  
3.6V  
2V/div  
V
50mV/div  
SYS  
V
SYS  
AC-COUPLED  
V
= 9V, L = 2.2µH  
I
DC  
DC  
500mA/div  
347mA  
C
SYS  
= 22µF, R = 5I  
SYS  
CEN = 1  
10V/div  
0V  
475mA  
500mA/div  
V
I
LX  
I
USB  
-I = CHARGING  
BAT  
0A  
I
-335mA  
BAT  
500mA/div  
LX  
1A/div  
0A  
200µs/div  
1µs/div  
_______________________________________________________________________________________  
9
2A 1-Cell Li+ DC-DC Chargers for USB  
and Adapter Power  
Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
DC CONNECT WITH NO USB  
DC DISCONNECT WITH NO USB  
(R = 25)  
(R  
SYS  
= 25)  
SYS  
MAX8903A toc22  
MAX8903A toc23  
3.84V  
3.68V  
3.6V  
3.6V  
3.6V  
3.6V  
2V/div  
5V/div  
2V/div  
5V/div  
V
V
SYS  
SYS  
3.44V  
V
V
BAT  
BAT  
C
DC  
C
SYS  
CHARGING  
CHARGING  
850mA  
1A/div  
1A/div  
1A/div  
1A/div  
I
0A  
0A  
DC  
850mA  
-1A  
I
DC  
-I = CHARGING  
BAT  
I
BAT  
I
144mA  
BAT  
144mA  
-I = CHARGING  
BATTERY  
CHARGER  
SOFT-START  
-1A  
BAT  
400µs/div  
40µs/div  
MX8903A–EGHJ/Y  
MAX8903A/C/D/H/Y SYS LOAD TRANSIENT  
MAX8903B/E SYS LOAD TRANSIENT  
MAX8903A toc24a  
MAX8903A toc24b  
MAX8903B  
V
= 10.5V  
DC  
L = 2.2µH  
4.400V  
C
SYS  
= 22µF  
MAX8903A  
V
4.325V  
R
= 3kI (2A)  
SYS  
IDC  
20mV/div  
AC-COUPLED  
V
= 10.5V  
DCM = HIGH  
CEN = 1  
DC  
V
I
SYS  
4.360V  
1A  
20mV/div  
L = 2.2µH  
4.305V  
C
= 10µF  
SYS  
R
= 3kI (2A)  
IDC  
1A  
DCM = HIGH  
CEN = 1  
I
SYS  
SYS  
500mA/div  
0A  
0A  
500mA/div  
0A  
0A  
100µs/div  
100µs/div  
USB CONNECT WITH NO DC  
(R  
= 25)  
MAX8903G SYS LOAD TRANSIENT  
SYS  
MAX8903A toc25  
MAX8903A toc24c  
3.6V  
3.75V  
2V/div  
5V/div  
V
4.325V  
= 9V  
SYS  
3.5V  
USB  
5V  
4.305V  
50mV/div  
V
SYS  
V
USB  
V
DC  
C
L = 2.2µH  
CHARGING  
475mA  
C
= 22µF  
SYS  
500mA/div  
500mA/div  
R
= 3kI (2A)  
IDC  
1A  
I
USB  
DCM = 1  
CEN = 1  
I
SYS  
I
BAT  
144mA  
BATTERY  
CHARGER  
SOFT-START  
500mA/div  
0A  
0A  
-330mA  
400µs/div  
100µs/div  
10 ______________________________________________________________________________________  
2A 1-Cell Li+ DC-DC Chargers for USB  
and Adapter Power  
MX8903A–EGHJ/Y  
Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
USB DISCONNECT WITH NO DC  
(R = 25)  
USB SUSPEND  
USB RESUME  
SYS  
MAX8903A toc26  
MAX8903A toc27  
MAX8903A toc28  
0V  
0V  
3.6V  
3V  
3V  
V
V
2V/div  
5V/div  
5V/div  
5V/div  
USUS  
USUS  
V
SYS  
C
USB  
CHARGING  
500mA/div  
500mA/div  
V
USB  
475mA  
475mA  
3.6V  
5V  
I
0A  
0A  
USB  
I
USB  
475mA  
3.8V  
3.6V  
V
V
SYS  
SYS  
500mA/div  
500mA/div  
2V/div  
2V/div  
3.7V  
I
USB  
I
I
BAT  
BAT  
-330mA  
144mA  
I
BAT  
0A  
-475mA  
-475mA  
0A  
BATTERY  
CHARGER  
500mA/div  
500mA/div  
SOFT-START  
100µs/div  
200µs/div  
200µs/div  
Pin Description  
PIN  
NAME  
FUNCTION  
Power Ground for Step-Down Low-Side Synchronous n-Channel MOSFET. Both PG pins must be  
connected together externally.  
1, 2  
PG  
DC Power Input. DC is capable of delivering up to 2A to SYS. DC supports both AC adapter and USB  
inputs. The DC current limit is set through DCM, IUSB, or IDC depending on the input source used. See  
Table 2. Both DC pins must be connected together externally. Connect at least a 4.7µF ceramic capacitor  
from DC to PG.  
3, 4  
DC  
Current-Limit Mode Setting for the DC Power Input. When logic-high, the DC input current limit is set by  
the resistance from IDC to GND. When logic-low, the DC input current limit is internally programmed to  
500mA or 100mA, as set by the IUSB logic input. There is an internal diode from DCM (anode) to DC  
(cathode) as shown in Figure 1.  
5
DCM  
6
7
BST  
High-Side MOSFET Driver Supply. Bypass BST to LX with a 0.1µF ceramic capacitor.  
USB Current-Limit Set Input. Drive IUSB logic-low to set the USB current limit to 100mA. Drive IUSB logic-  
high to set the USB current limit to 500mA.  
IUSB  
DC Power-OK Output. Active-low open-drain output pulls low when a valid input is detected at DC. DOK  
is still valid when the charger is disabled (CEN high).  
8
9
DOK  
VL  
Logic LDO Output. VL is the output of an LDO that powers the MAX8903_ internal circuitry and charges  
the BST capacitor. Connect a 1µF ceramic capacitor from VL to GND.  
Charge Timer Set Input. A capacitor (C ) from CT to GND sets the fast-charge and prequal fault timers.  
CT  
Connect to GND to disable the timer.  
10  
CT  
DC Current-Limit Set Input. Connect a resistor (R ) from IDC to GND to program the current limit of the  
IDC  
step-down regulator from 0.5A to 2A when DCM is logic-high.  
11  
12  
IDC  
GND  
Ground. GND is the low-noise ground connection for the internal circuitry.  
______________________________________________________________________________________ 11  
2A 1-Cell Li+ DC-DC Chargers for USB  
and Adapter Power  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
Charge Current Set Input. A resistor (R  
The prequal charge current is 10% of the fast-charge current.  
) from ISET to GND programs the fast-charge current up to 2A.  
ISET  
13  
ISET  
Charger Enable Input. Connect CEN to GND to enable battery charging when a valid source is connected  
at DC or USB. Connect to VL, or drive high to disable battery charging.  
14  
15  
CEN  
USB Suspend Input. Drive USUS logic-high to enter USB suspend mode, lowering USB current to 115µA,  
and internally shorting SYS to BAT.  
USUS  
Thermistor Input. Connect a negative temperature coefficient (NTC) thermistor from THM to GND.  
Connect a resistor equal to the thermistor +25°C resistance from THM to VL. Charging is suspended  
when the thermistor is outside the hot and cold limits. Connect THM to GND to disable the thermistor  
temperature sensor.  
16  
THM  
USB Power Input. USB is capable of delivering 100mA or 500mA to SYS as set by the IUSB logic input.  
Connect a 4.7µF ceramic capacitor from USB to GND.  
17  
18  
19  
USB  
FLT  
Fault Output. Active-low, open-drain output pulls low when the battery timer expires before prequal or  
fast-charge completes.  
MX8903A–EGHJ/Y  
USB Power-OK Output. Active-low, open-drain output pulls low when a valid input is detected at USB.  
UOK is still valid when the charger is disabled (CEN high).  
UOK  
Battery Connection. Connect to a single-cell Li+ battery. The battery charges from SYS when a valid  
source is present at DC or USB. BAT powers SYS when neither DC nor USB power is present, or when the  
SYS load exceeds the input current limit. Both BAT pins must be connected together externally.  
20, 21  
22  
BAT  
Charger Status Output. Active-low, open-drain output pulls low when the battery is in fast-charge or  
prequal. Otherwise, CHG is high impedance.  
CHG  
System Supply Output. SYS connects to BAT through an internal 50msystem load switch when DC or  
USB are invalid, or when the SYS load is greater than the input current limit.  
When a valid voltage is present at DC or USB, SYS is limited to V . When the system load (I  
SYSREG  
)
SYS  
exceeds the DC or USB current limit, SYS is regulated to 50mV below BAT, and both the powered input  
and the battery service SYS.  
23, 24  
SYS  
Bypass SYS to GND with a 10µF (MAX8903A/MAX8903C/MAX8903D/MAX8903H/MAX8903J/MAX8903Y)  
or 22µF (MAX8903B/MAX8903E/MAX8903G/MAX8903Y) X5R or X7R ceramic capacitor. Both SYS pins  
must be connected together externally.  
70mCurrent-Sense Input. Connect the step-down inductor from LX to CS. When the step-down  
regulator is on, there is a 70mcurrent-sense MOSFET from CS to SYS. When the step-down regulator is  
off, the internal CS MOSFET turns off to block current from SYS back to DC.  
25, 26  
CS  
Inductor Connection. Connect the inductor between LX and CS. Both LX pins must be connected together  
externally.  
27, 28  
LX  
EP  
Exposed Pad. Connect the exposed pad to GND. Connecting the exposed pad does not remove the  
requirement for proper ground connections to the appropriate pins.  
12 ______________________________________________________________________________________  
2A 1-Cell Li+ DC-DC Chargers for USB  
and Adapter Power  
MX8903A–EGHJ/Y  
PG  
LX  
BST  
CS  
MAX8903A–  
MAX8903E  
MAX8903G  
MAX8903Y  
DC POWER  
MANAGEMENT  
TO  
SYSTEM  
LOAD  
DC  
SYS  
ISET  
AC  
ADAPTER  
PWR  
OK  
Li+ BATTERY  
CHARGER  
AND SYS LOAD SWITCH  
PWM  
STEP-DOWN  
REGULATOR  
DOK  
CHARGER  
CURRENT-  
VOLTAGE  
CONTROL  
BATTERY  
CONNECTOR  
SET  
INPUT  
LIMIT  
BAT  
BAT+  
+
BAT-  
NTC  
USB POWER  
MANAGEMENT  
USB  
UOK  
T
USB  
THERMISTOR  
MONITOR  
(SEE FIGURE 7)  
THM  
VL  
PWR  
OK  
CURRENT-  
LIMITED  
VOLTAGE  
IC  
THERMAL  
REGULATION  
REGULATOR  
CHG  
CHARGE  
TERMINATION  
AND MONITOR  
SET  
INPUT  
LIMIT  
DC  
DCM  
IUSB  
FLT  
CT  
DC MODE  
500mA  
CHARGE  
TIMER  
INPUT AND  
USB  
CHARGER  
CURRENT-LIMIT  
SET LOGIC  
LIMIT  
100mA  
USUS  
IDC  
USB  
SUSPEND  
CEN  
GND  
DC  
EP  
LIMIT  
Figure 1. Functional Block Diagram  
______________________________________________________________________________________ 13  
2A 1-Cell Li+ DC-DC Chargers for USB  
and Adapter Power  
R
PU  
4 x 100k  
TO VL  
1
2
PG  
PG  
18  
19  
8
FAULT  
FLT  
UOK  
DOK  
CHG  
MAX8903A–  
MAX8903E  
MAX8903G  
MAX8903Y  
OUTPUT  
C
DC  
4.7µF  
USB PWR OK  
DC PWR OK  
3
DC  
DC  
ADAPTER  
4
6
22  
CHARGE  
INDICATOR  
BST  
C
0.1µF  
BST  
R
R
ISET  
27 LX  
LX  
13  
11  
ISET  
IDC  
28  
IDC  
L1  
1µH  
25 CS  
26 CS  
(SEE TABLE 5 FOR  
INDUCTOR SELECTION)  
SYS 24  
TO SYSTEM  
LOAD  
C
SYS  
MX8903A–EGHJ/Y  
23  
SYS  
10µF (MAX8903A/MAX8903C/MAX8903D/MAX8903H/MAX8903J)  
22µF (MAX8903B/MAX8903E/MAX8903G/MAX8903Y)  
USB  
BAT  
BAT  
21  
20  
17 USB  
VBUS  
C
4.7µF  
C
10µF  
USB  
BAT  
1-CELL  
LI+  
GND  
5
TO DC  
DCM  
9
VL  
14  
OFF  
CHARGE ON  
C
1µF  
VL  
CEN  
R
T
10kΩ  
16  
500mA  
100mA  
7
THM  
IUSB  
NTC  
10kΩ  
USB SUSPEND  
15  
USUS  
12  
10  
CT  
GND  
C
CT  
EP  
0.15µF  
Figure 2. Typical Application Circuit Using a Separate DC and USB Connector  
A USB charge input can charge the battery and power  
the system from a USB power source. When powered  
from USB or the DC input, system load current peaks  
that exceed what can be supplied by the input are sup-  
plemented by the battery.  
Circuit Description  
The MAX8903_ is a dual input charger with a 16V input  
for a wide range of DC sources and USB inputs. The IC  
includes a high-voltage (16V) input DC-DC step-down  
converter that reduces charger power dissipation while  
also supplying power to the system load. The step-  
down converter supplies up to 2A to the system, the  
battery, or a combination of both.  
The MAX8903_ also manages load switching from the  
battery to and from an external power source with an  
on-chip 50mMOSFET. This switch also helps support  
load peaks using battery power when the input source  
is overloaded.  
14 ______________________________________________________________________________________  
2A 1-Cell Li+ DC-DC Chargers for USB  
and Adapter Power  
MX8903A–EGHJ/Y  
R
PU  
4 x 100kΩ  
TO VL  
1
2
PG  
PG  
18  
19  
8
FAULT  
FLT  
UOK  
DOK  
CHG  
MAX8903A–  
MAX8903E  
MAX8903G  
MAX8903Y  
OUTPUT  
C
DC  
4.7µF  
USB PWR-OK  
DC PWR-OK  
3
DC  
DC  
VBUS  
4
6
D-  
22  
CHARGE  
INDICATOR  
BST  
D+  
C
0.1µF  
BST  
R
R
ISET  
27 LX  
LX  
13  
11  
ID  
ISET  
IDC  
GND  
28  
IDC  
L1  
1µH  
25 CS  
26 CS  
SYS 24  
TO SYSTEM  
LOAD  
499kΩ  
C
SYS  
23  
SYS  
(SEE TABLE 5 FOR  
INDUCTOR VALUE  
SELECTION)  
10µF (MAX8903A/MAX8903C/MAX8903D/MAX8903H/MAX8903J)  
22µF (MAX8903B/MAX8903E/MAX8903Y)  
BAT  
BAT  
21  
20  
17 USB  
C
BAT  
1-CELL  
LI+  
USB  
ADAPTER  
DC MODE  
10µF  
5
DCM  
9
VL  
14  
OFF  
CHARGE ON  
C
1µF  
VL  
CEN  
R
T
10kΩ  
16  
500mA  
100mA  
7
THM  
IUSB  
NTC  
10kΩ  
USB SUSPEND  
15  
USUS  
12  
10  
CT  
GND  
C
CT  
EP  
0.15µF  
Figure 3. Typical Application Circuit Using a Mini 5 Style Connector or Other DC/USB Common Connector  
As shown in Figure 1, the IC includes a full-featured  
charger with thermistor monitor, fault timer, charger  
status, and fault outputs. Also included are power-OK  
signals for both USB and DC. Flexibility is maintained  
with adjustable charge current, input current limit, and  
a minimum system voltage (when charging is scaled  
back to hold the system voltage up).  
DC Input—Fast Hysteretic  
Step-Down Regulator  
If a valid DC input is present, the USB power path is  
turned off and power for SYS and battery charging is  
supplied by the high-frequency step-down regulator  
from DC. If the battery voltage is above the minimum  
system voltage (V  
, Figure 4), the battery charger  
SYSMIN  
connects the system voltage to the battery for lowest  
power dissipation. The step-down regulation point is  
then controlled by three feedback signals: maximum  
step-down output current programmed at IDC, maximum  
charger current programmed at ISET, and maximum  
The MAX8903_ prevents overheating during high ambi-  
ent temperatures by limiting charging current when the  
die temperature exceeds +100°C.  
______________________________________________________________________________________ 15  
2A 1-Cell Li+ DC-DC Chargers for USB  
and Adapter Power  
Table 1. External Components List for Figures 2 and 3  
COMPONENT  
(FIGURES 2 AND 3)  
FUNCTION  
PART  
C
, C  
Input filter capacitor  
4.7µF ceramic capacitor  
1.0µF ceramic capacitor  
DC USB  
C
VL filter capacitor  
VL  
10µF (MAX8903A/MAX8903C/MAX8903D/MAX8903H/MAX8903J) or  
22µF (MAX8903B/MAX8903E/MAX8903G/MAX8903Y) ceramic capacitor  
C
SYS output bypass capacitor  
SYS  
C
Battery bypass capacitor  
Charger timing capacitor  
Logic output pullup resistors  
Negative TC thermistor  
10µF ceramic capacitor  
BAT  
C
0.15µF low TC ceramic capacitor  
CT  
R
(X4)  
100k  
PU  
THM  
Philips NTC thermistor, P/N 2322-640-63103, 0k5% at +25°C  
R
THM pullup resistor  
10kΩ  
T
DC input current-limit programming  
Fast-charge current programming  
R
3k1%, for 2A limit  
1.2k1%, for 1A charging  
IDC  
R
ISET  
L1  
DC input step-down inductor  
1µH inductor with I  
> 2A  
SAT  
MX8903A–EGHJ/Y  
die temperature. The feedback signal requiring the  
smallest current controls the average output current in  
the inductor. This scheme minimizes total power dissi-  
pation for battery charging and allows the battery to  
absorb any load transients with minimum system volt-  
age disturbance.  
4MHz operation due to the minimum on-time, the con-  
troller becomes a minimum on-time, valley current regu-  
lator. In this way, ripple current in the inductor is always  
as small as possible to reduce ripple voltage on SYS for  
a given capacitance. The ripple current is made to vary  
with input voltage and output voltage in a way that  
reduces frequency variation. However, the frequency  
still varies somewhat with operating conditions. See the  
Typical Operating Characteristics.  
If the battery voltage is below V , the charger does  
SYSMIN  
not directly connect the system voltage to the battery  
and the system voltage (V ) is slightly above V  
SYS  
SYSMIN  
as shown in Figure 4. The battery charger independently  
controls the battery charging current. V is set to  
3.0V in the MAX8903A/MAX8903B/MAX8903E/  
MAX8903G/MAX8903Y and 3.4V for MAX8903C/  
MAX8903D/MAX8903H/MAX8903J.  
DC Mode (DCM)  
As shown in Table 2, the DC input supports both AC  
adapters (up to 2A) and USB (up to 500mA). With the  
DCM logic input set high, the DC input is in adapter  
mode and the DC input current limit is set by the resis-  
SYSMIN  
After the battery charges to 50mV above V  
, the  
tance from IDC to GND (R  
). Calculate R  
accord-  
SYSMIN  
IDC  
IDC  
system voltage is connected to the battery. The battery  
fast-charge current then controls the step-down con-  
verter to set the average inductor current so that both  
the programmed input current limit and fast-charge cur-  
rent limit are satisfied.  
ing to the following equation:  
R
IDC  
= 6000V/I  
DC-MAX  
With the DCM logic input set low, the DC input current  
limit is internally programmed to 500mA or 100mA as  
set by the IUSB logic input. With the IUSB logic input  
set high, the DC input current limit is 500mA and the  
DC input delivers current to SYS through the step-down  
regulator. With the IUSB logic input set low, the DC  
input current limit is 100mA. In this 100mA mode, the  
step-down regulator is turned off and its high-side  
switch operates as a linear regulator with a 100mA cur-  
rent limit. The linear regulator’s output is connected to  
LX and its output current flows through the inductor into  
CS and finally to SYS.  
DC-DC Step-Down Control Scheme  
A proprietary hysteretic current PWM control scheme  
ensures fast switching and physically tiny external com-  
ponents. The feedback control signal that requires the  
smallest input current controls the center of the peak  
and valley currents in the inductor. The ripple current is  
internally set to provide 4MHz operation. When the  
input voltage decreases near the output voltage, very  
high duty cycle occurs and, due to minimum off-time,  
4MHz operation is not achievable. The controller then  
provides minimum off-time, peak current regulation.  
Similarly, when the input voltage is too high to allow  
The DCM pin has an internal diode to DC as shown in  
Figure 1. To prevent current from flowing from DCM  
through the internal diode and to the DC input, DCM  
16 ______________________________________________________________________________________  
2A 1-Cell Li+ DC-DC Chargers for USB  
and Adapter Power  
MX8903A–EGHJ/Y  
cannot be driven to a voltage higher than DC. The  
UOK is an open-drain, active-low output that indicates  
the USB input power status. UOK is low when a valid  
source is connected at USB. The source at USB is valid  
circuit of Figure 3 shows a simple MOSFET and resistor  
on DCM to prevent any current from flowing from DCM  
through the internal diode to DC. This circuit of Figure 3  
allows a microprocessor to drive the gate of the MOS-  
FET to any state at any time.  
when 4.1V < V  
< 6.6V. If the USB power-OK output  
USB  
feature is not required, connect UOK to ground.  
Both the UOK and the DOK circuitry remain active in  
thermal overload, USB suspend, and when the charger  
is disabled. DOK and UOK can also be wire-ORed  
together to generate a single power-OK (POK) output.  
An alternative to the simple MOSFET and resistor on  
DCM as shown in Figure 3 is to place a 1Mresistor in  
series with the DCM input to the microprocessor. The  
microprocessor can then monitor the DOK output and  
make sure that whenever DOK is high DCM is also low.  
In the event that DCM is driven to a higher voltage than  
DC, the 1Mseries resistance limits the current from  
DCM through the internal diode to DC to a few µA.  
Thermal Limiting  
When the die temperature exceeds +100°C, a thermal  
limiting circuit reduces the input current limit by 5%/°C,  
bringing the charge current to 0mA at +120°C. Since  
the system load gets priority over battery charging, the  
battery charge current is reduced to 0mA before the  
input limiter drops the load voltage at SYS. To avoid  
false charge termination, the charge termination detect  
function is disabled in this mode. If the junction temper-  
ature rises beyond +120°C, no current is drawn from  
USB Input—Linear Regulator  
If a valid USB input is present with no valid DC input,  
current for SYS and battery charging is supplied by a  
low-dropout linear regulator connected from USB to  
SYS. The SYS regulation voltage shows the same char-  
acteristic as when powering from the DC input (see  
Figure 4). The battery charger operates from SYS with  
any extra available current, while not exceeding the  
maximum-allowed USB current. If both USB and DC  
inputs are valid, power is only taken from the DC input.  
The maximum USB input current is set by the logic  
state of the IUSB input to either 100mA or 500mA.  
DC or USB, and V  
regulates at 50mV below V  
.
SYS  
BAT  
System Voltage Switching  
DC Input  
When charging from the DC input, if the battery is  
above the minimum system voltage, SYS is connected  
to the battery. Current is provided to both SYS and the  
battery, up to the maximum program value. The step-  
down output current sense and the charger current  
sense provide feedback to ensure the current loop  
demanding the lower input current is satisfied. The  
advantage of this approach when powering from DC is  
that power dissipation is dominated by the step-down  
regulator efficiency, since there is only a small voltage  
drop from SYS to BAT. Also, load transients can be  
absorbed by the battery while minimizing the voltage  
disturbance on SYS. If both the DC and USB inputs are  
valid, the DC input takes priority and delivers the input  
current, while the USB input is off.  
Power Monitor Outputs (UOK, DOK)  
DOK is an open-drain, active-low output that indicates  
the DC input power status. With no source at the USB  
pin, the source at DC is considered valid and DOK is  
driven low when: 4.15V < V  
< 16V. When the USB  
DC  
voltage is also valid, the DC source is considered valid  
and DOK is driven low when: 4.45V < V < 16V. The  
DC  
higher minimum DC voltage with USB present helps  
guarantee cleaner transitions between input supplies. If  
the DC power-OK output feature is not required, con-  
nect DOK to ground.  
After the battery is done charging, the charger is turned  
off and the SYS load current is supplied from the DC  
input. The SYS voltage is regulated to V  
. The  
V
SYSREG  
SYSREG  
V
BATREG  
charger turns on again after the battery drops to the  
restart threshold. If the load current exceeds the input  
limiter, SYS drops down to the battery voltage and the  
50mSYS-to-BAT PMOS switch turns on to supply the  
extra load current. The SYS-to-BAT switch turns off again  
once the load is below the input current limit. The 50mΩ  
PMOS also turns on if valid DC input power is removed.  
MAX8903A–  
MAX8903E  
MAX8903G  
MAX8903Y  
V
SYS  
I
x R  
ON  
BAT  
V
SYSMIN  
V
V
= 0V  
AND/OR V  
CEN  
= 5.0V  
DC  
USB  
V
BAT  
USB Input  
When charging from the USB input, the DC input step-  
down regulator turns off and a linear regulator from  
Figure 4. SYS Tracking V  
to the Minimum System Voltage  
BAT  
______________________________________________________________________________________ 17  
2A 1-Cell Li+ DC-DC Chargers for USB  
and Adapter Power  
Table 2. Input Limiter Control Logic  
DC STEP-DOWN  
OUTPUT  
CURRENT LIMIT  
MAXIMUM  
CHARGE  
CURRENT**  
USB INPUT  
CURRENT LIMIT  
POWER SOURCE  
DOK  
UOK DCM*** IUSB USUS  
Lesser of  
1200V/R  
6000V/R  
and  
AC Adapter at DC Input  
L
L
X
X
H
L
X
L
X
L
6000V/R  
IDC  
ISET  
IDC  
Lesser of  
100mA  
1200V/R  
and  
USB input off. DC  
input has priority.  
ISET  
100mA  
USB Power at DC Input  
Lesser of  
1200V/R  
and  
L
L
X
X
L
L
L
X
H
X
L
L
H
L
500mA  
ISET  
500mA  
USB suspend  
0
Lesser of  
H
100mA  
500mA  
1200V/R  
and  
ISET  
MX8903A–EGHJ/Y  
100mA  
USB Power at USB Input,  
DC Unconnected  
Lesser of  
1200V/R  
ISET  
No DC input  
H
L
X
H
L
and  
500mA  
H
H
L
X
X
X
X
H
X
USB suspend  
No USB input  
0
0
DC and USB Unconnected  
H
**Charge current cannot exceed the input current limit. Charge may be less than the maximum charge current if the total SYS load  
exceeds the input current limit.  
***There is an internal diode from DCM (anode) to DC (cathode) as shown in Figure 1. If the DCM level needs to be set by a µP, use  
a MOSFET for isolation as shown in FIgure 3.  
X = Don’t care.  
USB to SYS powers the system and charges the bat-  
tery. If the battery is greater than the minimum system  
voltage, the SYS voltage is connected to the battery.  
The USB input then supplies the SYS load and charges  
the battery with any extra available current, while not  
exceeding the maximum-allowed USB current. Load  
transients can be absorbed by the battery while mini-  
mizing the voltage disturbance on SYS. When battery  
charging is completed, or the charger is disabled, SYS  
put. In many systems, there is no need for the system  
controller (typically a microprocessor) to disable the  
charger, because the MAX8903_ smart power selector  
circuitry independently manages charging and  
adapter/battery power hand-off. In these situations, CEN  
may be connected to ground.  
Soft-Start  
To prevent input transients that can cause instability in  
the USB or AC adapter power source, the rate of change  
of the input current and charge current is limited. When  
an input source is valid, SYS current is ramped from  
zero to the set current-limit value in typically 50µs. This  
also means that if DC becomes valid after USB, the  
SYS current limit is ramped down to zero before switch-  
ing from the USB to DC input. At some point, SYS is no  
longer able to support the load and may switch over to  
is regulated to V  
. If both USB and DC inputs are  
SYSREG  
valid, power is only taken from the DC input.  
USB Suspend  
Driving USUS high and DCM low turns off charging as  
well as the SYS output and reduces input current to  
170µA to accommodate USB suspend mode. See  
Table 2 for settings.  
BAT. The switchover to BAT occurs when V  
< V  
.
BAT  
SYS  
Charge Enable (CEN)  
When CEN is low, the charger is on. When CEN is high,  
the charger turns off. CEN does not affect the SYS out-  
This threshold is a function of the SYS capacitor size  
and SYS load. The SYS current limit then ramps from  
zero to the set current level and SYS supports the load  
18 ______________________________________________________________________________________  
2A 1-Cell Li+ DC-DC Chargers for USB  
and Adapter Power  
MX8903A–EGHJ/Y  
again as long as the SYS load current is less than the  
mum fast-charge rate until the voltage of the deeply  
discharged battery recovers. When the battery voltage  
set current limit.  
reaches V  
and the charge current drops to 10%  
BATREG  
When the charger is turned on, the charge current ramps  
from 0A to the ISET current value in typically 1.0ms.  
Charge current also soft-starts when transitioning to fast-  
charge from prequal, when the input power source is  
switched between USB and DC, and when changing the  
USB charge current from 100mA to 500mA with the IUSB  
of the maximum fast-charge current, the charger enters  
the DONE state. The charger restarts a fast-charge  
cycle if the battery voltage drops by 100mV.  
Charge Termination  
When the charge current falls to the termination thresh-  
logic input. There is no di/dt limiting, however, if R  
changed suddenly using a switch.  
is  
ISET  
old (I  
) and the charger is in voltage mode, charg-  
TERM  
ing is complete. Charging continues for a brief 15s  
top-off period and then enters the DONE state where  
charging stops.  
Battery Charger  
While a valid input source is present, the battery charg-  
er attempts to charge the battery with a fast-charge  
current determined by the resistance from ISET to  
Note that if charge current falls to I  
as a result of  
TERM  
the input or thermal limiter, the charger does not enter  
DONE. For the charger to enter DONE, charge current  
GND. Calculate the R  
following equation:  
resistance according to the  
ISET  
must be less than I  
, the charger must be in volt-  
TERM  
age mode, and the input or thermal limiter must not be  
reducing charge current.  
R
= 1200V/I  
CHGMAX  
ISET  
Monitoring Charge Current  
Charge Status Outputs  
The voltage from ISET to GND is a representation of the  
battery charge current and can be used to monitor the  
current charging the battery. A voltage of 1.5V repre-  
sents the maximum fast-charge current.  
Charge Output (CHG)  
CHG is an open-drain, active-low output that indicates  
charger status. CHG is low when the battery charger is  
in its prequalification and fast-charge states. CHG goes  
high impedance if the thermistor causes the charger to  
go into temperature suspend mode.  
If necessary, the charge current is reduced automati-  
cally to prevent the SYS voltage from dropping.  
Therefore, a battery never charges at a rate beyond the  
capabilities of a 100mA or 500mA USB input, or over-  
loads an AC adapter. See Figure 5.  
When used in conjunction with a microprocessor (µP),  
connect a pullup resistor between CHG and the logic  
I/O voltage to indicate charge status to the µP.  
Alternatively, CHG can sink up to 20mA for an LED  
charge indicator.  
When V  
is below V  
, the charger enters pre-  
BATPQ  
BAT  
qual mode and the battery charges at 10% of the maxi-  
MONITORING THE BATTERY  
Fault Output (FLT)  
FLT is an open-drain, active-low output that indicates  
charger status. FLT is low when the battery charger has  
entered a fault state when the charge timer expires.  
This can occur when the charger remains in its prequal  
state for more than 33 minutes or if the charger remains  
in fast-charge state for more than 660 minutes (see  
Figure 6). To exit this fault state, toggle CEN or remove  
and reconnect the input source.  
CHARGE CURRENT WITH V  
ISET  
1.5  
ISET  
0
V
(V)  
When used in conjunction with a microprocessor (µP),  
connect a pullup resistor between FLT and the logic I/O  
voltage to indicate charge status to the µP.  
Alternatively, FLT can sink up to 20mA for an LED fault  
indicator. If the FLT output is not required, connect FLT  
to ground or leave unconnected.  
0
BATTERY CHARGING CURRENT (A)  
DISCHARGING  
1200V/R  
ISET  
Charge Timer  
A fault timer prevents the battery from charging indefi-  
nitely. The fault prequal and fast-charge timers are con-  
Figure 5. Monitoring the Battery Charge Current with the  
Voltage from ISET to GND  
trolled by the capacitance at CT (C ).  
CT  
______________________________________________________________________________________ 19  
2A 1-Cell Li+ DC-DC Chargers for USB  
and Adapter Power  
CEN = HI OR  
NOT READY  
REMOVE AND RECONNECT  
UOK AND DOK = HIGH IMPEDANCE  
THE INPUT SOURCE(S)  
CHG = HIGH IMPEDANCE  
FLT = HIGH IMPEDANCE  
ANY STATE  
I
= 0mA  
CHG  
UOK AND/OR DOK = LOW  
CEN = 0  
RESET TIMER  
TOGGLE CEN OR  
REMOVE AND RECONNECT  
THE INPUT SOURCE(S)  
PREQUALIFICATION  
UOK AND/OR DOK = LOW  
CHG = LOW  
TIMER > t  
PREQUAL  
FLT = HIGH IMPEDANCE  
FAULT  
0 < V < V  
BAT  
BATPQ  
UOK AND/OR DOK = LOW  
CHG = HIGH IMPEDANCE  
FLT = LOW  
I
I  
/10  
CHG CHGMAX  
V
BAT  
< V  
BATPQ  
- 180mV  
V
> V  
BAT BATPQ  
I
= 0mA  
CHG  
RESET TIMER = 0  
RESET TIMER  
TIMER > t  
FSTCHG  
(TIMER SLOWED BY 2x IF  
< I /2, AND  
FAST-CHARGE  
UOK AND/OR DOK = LOW  
CHG = LOW  
I
CHG CHGMAX  
V
< V  
- 180mV  
RESET TIMER  
BAT  
BATPQ  
PAUSED IF I  
< I  
/5 WHILE V < V  
)
CHG CHGMAX  
BAT  
BATREG  
FLT = HIGH IMPEDANCE  
MX8903A–EGHJ/Y  
V
< V < V  
BAT BATREG  
BATPQ  
I
I  
CHG CHGMAX  
I
< I  
CHG TERM  
AND V = V  
BAT  
BATREG  
I
> I  
CHG TERM  
AND THERMAL  
OR INPUT LIMIT  
NOT EXCEEDED;  
RESET TIMER  
RESET TIMER  
ANY CHARGING  
STATE  
TOP-OFF  
UOK AND/OR DOK = LOW  
CHG = HIGH IMPEDANCE  
FLT = HIGH IMPEDANCE  
THM OK  
TIMER RESUME  
THM NOT OK  
TIMER SUSPEND  
V
BAT  
< V  
+ V  
BATREG RSTRT  
RESET TIMER  
V
= V  
BATREG  
BAT  
I
= I  
CHG TERM  
TEMPERATURE SUSPEND  
= 0mA  
UOK OR DOK PREVIOUS STATE  
CHG = HIGH IMPEDANCE  
FLT = HIGH IMPEDANCE  
I
CHG  
TIMER > t  
TOP-OFF  
DONE  
UOK AND/OR DOK = 0  
CHG = HIGH IMPEDANCE  
FLT = HIGH IMPEDANCE  
V
+ V < V < V  
RSTRT BAT BATREG  
BATREG  
I
= 0mA  
CHG  
Figure 6. MAX8903A Charger State Flow Chart  
C
While in fast-charge mode, a large system load or device  
self-heating may cause the MAX8903_ to reduce charge  
current. Under these circumstances, the fast-charge  
timer is slowed by 2x if the charge current drops below  
50% of the programmed fast-charge level, and suspend-  
ed if the charge current drops below 20% of the pro-  
grammed level. The fast-charge timer is not affected at  
any current if the charger is regulating the BAT voltage  
CT  
t
= 33min ×  
PREQUAL  
0.15µF  
C
CT  
t
= 660min ×  
FSTCHG  
0.15µF  
t
= 15s (MAX8903A/MAX8903C/MAX8903D/  
TOPOFF  
MAX8903H/MAX8903J /MAX8903Y  
C
CT  
t
= 132min ×  
(MAX8903B MAX8903E  
MAX8903G)  
at V  
(i.e., the charger is in voltage mode).  
BATREG  
TOPOFF  
0.15µF  
20 ______________________________________________________________________________________  
2A 1-Cell Li+ DC-DC Chargers for USB  
and Adapter Power  
MX8903A–EGHJ/Y  
CEN  
MAX8903A–  
VL  
THERMISTOR  
CIRCUITRY  
MAX8903E  
MAX8903G  
MAX8903Y  
VL  
MAX8903B/MAX8903E/  
MAX8903G ONLY  
THERMISTOR  
DETECTOR  
0.87 VL  
R
TB  
ALTERNATE  
THERMISTOR  
CONNECTION  
0.74 VL  
COLD  
THM  
R
TS  
THM  
0.28 VL  
0.03 VL  
OUT OF  
RANGE  
HOT  
R
TP  
R
T
DISABLE  
CHARGER  
ENABLE THM  
R
T
ALL COMPARATORS  
60mV HYSTERESIS  
GND  
Figure 7. Thermistor Monitor Circuitry  
Thermistor Input (THM)  
Table 3. Fault Temperatures for Different  
Thermistors  
The THM input connects to an external negative tem-  
perature coefficient (NTC) thermistor to monitor battery  
or system temperature. Charging is suspended when  
the thermistor temperature is out of range. The charge  
timers are suspended and hold their state but no fault is  
indicated. When the thermistor comes back into range,  
charging resumes and the charge timer continues from  
where it left off. Connecting THM to GND disables the  
thermistor monitoring function. Table 3 lists the fault  
temperature of different thermistors.  
Thermistor β (K)  
(k) (Figure 7)  
3000 3250 3500 3750 4250  
R
10  
10  
10  
10  
10  
TB  
Resistance at +25°C  
(k)  
10  
10  
10  
10  
10  
Resistance at +50°C  
(k)  
4.59  
4.30  
4.03  
3.78 3.316  
Resistance at 0°C (k) 25.14 27.15 29.32 31.66 36.91  
Since the thermistor monitoring circuit employs an exter-  
Nominal Hot Trip  
Temperature (°C)  
55  
-3  
53  
-1  
50  
0
49  
2
46  
nal bias resistor from THM to VL (R , Figure 7), the ther-  
TB  
mistor is not limited only to 10k(at +25°C). Any  
resistance thermistor can be used as long as the value is  
equivalent to the thermistor’s +25°C resistance. For  
example, with a 10kat +25°C thermistor, use 10kat  
Nominal Cold Trip  
Temperature (°C)  
4.5  
VL Regulator  
R , and with a 100kat +25°C thermistor, use 100k.  
TB  
VL is a 5V linear regulator that powers the MAX8903’s  
internal circuitry and charges the BST capacitor. VL is  
used externally to bias the battery’s thermistor. VL takes  
its input power from USB or DC. When input power is  
available from both USB and DC, VL takes power from  
DC. VL is enabled whenever the input voltage at USB  
or DC is greater than ~1.5V. VL does not turn off when  
the input voltage is above the overvoltage threshold.  
Similarly, VL does not turn off when the charger is dis-  
abled (CEN = high). Connect a 1µF ceramic capacitor  
from VL to GND.  
For a typical 10k(at +25°C) thermistor and a 10kΩ  
resistor, the charger enters a temperature suspend  
R
TB  
state when the thermistor resistance falls below 3.97kΩ  
(too hot) or rises above 28.7k(too cold). This corre-  
sponds to a 0°C to +50°C range when using a 10kΩ  
NTC thermistor with a beta of 3500. The general relation  
of thermistor resistance to temperature is defined by  
the following equation:  
1
1
β
T+273°C  
298°C  
R
= R × e  
25  
T
______________________________________________________________________________________ 21  
2A 1-Cell Li+ DC-DC Chargers for USB  
and Adapter Power  
where:  
completely, and so retain the ability to remove the battery  
and let the system continue to operate with external power.  
If the THM pin is tied to GND (voltage at THM is below 3%  
of VL), the thermistor option is disabled and the system  
does not respond to the thermistor input. In those cases, it  
is assumed that the system has its own temperature sens-  
ing, and halts changing through CEN when the tempera-  
ture is outside of the safe charging range.  
R = The resistance in of the thermistor at tempera-  
T
ture T in Celsius  
R
= The resistance in of the thermistor at +25°C  
25  
β = The material constant of the thermistor, which typi-  
cally ranges from 3000K to 5000K  
T = The temperature of the thermistor in °C  
Power Dissipation  
Table 3 shows the MAX8903A–MAX8903E/MAX8903Y  
THM temperature limits for different thermistor material  
constants.  
Table 4. Package Thermal Characteristics  
28-PIN 4mm x 4mm THIN QFN  
Some designs might prefer other thermistor temperature  
limits. Threshold adjustment can be accommodated by  
SINGLE-LAYER PCB  
MULTILAYER PCB  
changing R , connecting a resistor in series and/or in  
TB  
1666.7mW  
2286mW  
parallel with the thermistor, or using a thermistor with dif-  
ferent β. For example, a +45°C hot threshold and 0°C  
cold threshold can be realized by using a thermistor  
with a β of 4250 and connecting 120kin parallel. Since  
the thermistor resistance near 0°C is much higher than it  
is near +50°C, a large parallel resistance lowers the  
cold threshold, while only slightly lowering the hot  
threshold. Conversely, a small series resistance raises  
the hot threshold, while only slightly raising the cold  
Continuous  
Power  
Dissipation  
Derate 20.8mW/°C  
above +70°C  
Derate 28.6mW/°C  
above +70°C  
θ
θ
48°C/W  
3°C/W  
35°C/W  
3°C/W  
JA  
JC  
MX8903A–EGHJ/Y  
Minimum SYS Output Capacitor  
The MAX8903B/MAX8903E/MAX8903G have a SYS  
load regulation of 25mV/A versus a load regulation of  
40mV/A on the MAX8903A/MAX8903C/MAX8903D/  
MAX8903Y. To achieve tighter load regulation, the loop  
gain on the MAX8903B/MAX8903E/MAX8903G is high-  
er. To ensure feedback loop stability with higher gain, a  
larger SYS output capacitor is required (see Table 7).  
threshold. Raising R  
lowers both the cold and hot  
TB  
thresholds, while lowering R raises both thresholds.  
TB  
Note that since VL is active whenever valid input power  
is connected at DC or USB, thermistor bias current  
flows at all times, even when charging is disabled (CEN  
= high). When using a 10kthermistor and a 10kΩ  
pullup to VL, this results in an additional 250µA load.  
This load can be reduced to 25µA by instead using a  
100kthermistor and 100kpullup resistor.  
Inductor Selection for  
Step-Down DC-DC Regulator  
The MAX8903_'s control scheme requires an external  
Power Enable on Battery Detection  
The power enabled on battery detection function allows  
the MAX8903B/MAX8903E/MAX8903G to automatically  
enable/disable the USB and DC power inputs when the  
battery is applied/removed. This function utilizes the  
battery pack’s integrated thermistor as a sensing mech-  
anism to determine when the battery is applied or  
removed. With this function, MAX8903B/MAX8903E/  
MAX8903G-based systems shut down when the battery  
is removed regardless of whether external power is  
available at the USB or DC power inputs.  
inductor (L  
) from 1.0µH to 10µH for proper opera-  
OUT  
tion. This section describes the control scheme and the  
considerations for inductor selection. Table 5 shows  
recommended inductors for typical applications. For  
assistance with the calculations needed to select the  
optimum inductor for a given application, refer to the  
spreadsheet at: www.maxim-ic.com/tools/other/soft-  
ware/MAX8903-inductor-design.xls.  
The MAX8903 step-down DC-DC regulator implements a  
control scheme that typically results in a constant switch-  
ing frequency (f ). When the input voltage decreases to  
SW  
The MAX8903B/MAX8903E/MAX8903G implement the  
power enabled on battery detection function with the ther-  
mistor detector comparator as shown in Figure 7. If no bat-  
a value near the output voltage, high duty cycle operation  
occurs and the device can operate at less than f  
due  
SW  
to minimum off-time (t  
) constraints. In high duty  
OFFMIN  
tery is present, the absence of the thermistor allows R to  
TB  
cycle operation, the regulator operates with t  
and  
OFFMIN  
pull THM to VL. When the voltage at the THM pin increases  
above 87% of VL, it is assumed that the battery has been  
removed and the system powers down. However, there is  
also the option to bypass this thermistor sensing option  
a peak current regulation. Similarly, when the input volt-  
age is too high to allow f operation due to minimum on-  
SW  
time constraints (t  
), the regulator becomes a fixed  
ONMIN  
minimum on-time valley current regulator.  
22 ______________________________________________________________________________________  
2A 1-Cell Li+ DC-DC Chargers for USB  
and Adapter Power  
MX8903A–EGHJ/Y  
Versions of the MAX8903 with f  
= 4MHz offer the  
SW  
V
V  
SYS(MIN)  
× t  
(
)
DC(MAX)  
ON  
smallest L  
while delivering good efficiency with low  
OUT  
(4)  
L
=
OUT _MIN_ t  
ON  
input voltages (5V or 9V). For applications that use high  
K × I  
SDLIM  
input voltages (12V), the MAX8903G with f  
is the best choice because of its higher efficiency.  
= 1MHz  
SW  
where V  
is maximum input voltage, V  
the minimum charger output voltage, and t  
time at high input voltage, as given by the following  
equation:  
is  
DC(MAX)  
SYS(MIN)  
is the on-  
ON  
For a given maximum output voltage, the minimum  
inductor ripple current condition occurs at the lowest  
input voltage that allows the regulator to maintain f  
SW  
operation. If the minimum input voltage dictates an off-  
time less than t , then the minimum inductor rip-  
V
1
f
SW  
SYS(MIN)  
OFFMIN  
(5)  
t
= t  
if  
×
t  
,
ON  
ONMIN  
ONMIN  
V
ple condition occurs just before the regulator enters  
fixed minimum off-time operation. To allow the current-  
mode regulator to provide a low-jitter, stable duty factor  
operation, the minimum inductor ripple current  
DC(MAX)  
otherwise,  
V
1
SYS(MIN)  
t
=
×
ON  
V
f
SW  
DC(MAX)  
(I  
) should be greater than 150mA in the  
L_RIPPLE_MIN  
minimum inductor ripple current condition. The maxi-  
mum allowed output inductance L is therefore  
The saturation current DC rating of the inductor (I  
)
SAT  
OUT_MAX  
must be greater than the DC step-down output current  
obtained using the equations (1) and (2) below.  
limit (I ) plus one-half the maximum ripple current,  
SDLIM  
as given by equation (6).  
V
1
SYS(MAX)  
(1)  
t
= t  
if 1−  
×
t  
,
IL  
OFF  
OFFMIN  
OFFMIN  
RIPPLE_MAX  
2
V
f
SW  
I
> I  
+
DC(MIN)  
SAT  
SDLIM  
(6)  
otherwise,  
where IL  
is the greater of the ripple currents  
RIPPLE_MAX  
obtained from (7) and (8).  
V
1
f
SW  
SYS(MAX)  
t
= 1−  
×
OFF  
V
V
× t  
OFF  
DC(MIN)  
SYS(MAX)  
(7)  
(8)  
IL  
=
RIPPLE _MIN_ T  
OFF  
L
OUT  
where t  
is the off-time, V  
is maximum charger  
OFF  
SYS(MAX)  
output voltage, and V  
age.  
is minimum DC input volt-  
DC(MIN)  
V
V  
× t  
ON  
(
)
DC(MAX)  
SYS(MIN)  
IL  
=
RIPPLE _MIN_ T  
ON  
L
V
× t  
OUT  
SYS(MAX)  
OFF  
L
=
OUT _MAX  
(2)  
I
L _RIPPLE _MIN  
PCB Layout and Routing  
Good design minimizes ground bounce and voltage gra-  
dients in the ground plane, which can result in instability  
or regulation errors. The GND and PGs should connect to  
the power-ground plane at only one point to minimize the  
effects of power-ground currents. Battery ground should  
connect directly to the power-ground plane. The ISET  
and IDC current-setting resistors should connect directly  
to GND to avoid current errors. Connect GND to the  
exposed pad directly under the IC. Use multiple tightly  
spaced vias to the ground plane under the exposed pad  
to help cool the IC. Position input capacitors from DC,  
SYS, BAT, and USB to the power-ground plane as close  
as possible to the IC. Keep high current traces such as  
those to DC, SYS, and BAT as short and wide as possi-  
ble. Refer to the MAX8903A Evaluation Kit for a suitable  
PCB layout example.  
where L  
is the maximum allowed inductance.  
OUT_MAX  
To obtain a small-sized inductor with acceptable core  
loss, while providing stable, jitter-free operation at the  
advertised f , the actual output inductance (L  
), is  
OUT  
SW  
obtained by choosing an appropriate ripple factor K, and  
picking an available inductor in the range inductance  
yielded by equations (2), (3), and (4). L  
should also  
OUT  
not be lower than the minimum allowable inductance as  
shown in Table 6. The recommended ripple factor  
ranges from (0.2 K 0.45) for (2A I  
designs.  
1A)  
S
DLIM  
V
× t  
SYS(MAX)  
OFF  
L
=
OUT _MIN_ T  
OFF  
(3)  
K × I  
SDLIM  
where t  
is the minimum off-time obtained from (1).  
OFF  
______________________________________________________________________________________ 23  
2A 1-Cell Li+ DC-DC Chargers for USB  
and Adapter Power  
Table 5. Recommended Inductor Examples  
DC STEP-DOWN  
OUTPUT  
CURRENT LIMIT  
DC INPUT  
VOLTAGE  
RANGE  
PART NUMBER,  
SWITCHING  
FREQUENCY*  
RECOMMENDED INDUCTOR  
(I  
)
SDMAX  
1.0µH, IFSC1008ABER1R0M01, Vishay  
2.5mm x 2mm x 1.2mm, 43m(max), 2.6A  
or 1.0µH, LQH32PN1R0-NN0, Murata,  
3.2mm x 2.5mm x 1.55mm, 54m(max), 2.3A  
5V 10%  
5V 10%  
5V 10%  
5V 10%  
9V 10%  
9V 10%  
2A  
MAX8903H/J/Y, 4MHz  
MAX8903H/J/Y, 4MHz  
1.5µH inductor, MDT2520-CN1R5M, TOKO  
2.5mm x 2.0mm x 1.2mm, 123.5m(max), 1.25A  
or 1.5uH Inductor, IFSC1008ABER1R5M01, Vishay  
2.5mm x 2mm x 1.2mm, 72m(max), 2.2A  
1A  
2A  
1A  
2A  
1A  
2.2µH inductor, DFE322512C-2R2N, TOKO  
3.2mm x 2.5mm x 1.2mm, 91m(max), 2.4A  
or 2.2µH inductor, IFSC1515AHER2R2M01, Vishay  
3.8mm x 3.8mm x 1.8mm, 45m(max), 3A  
MAX8903A/B/C/D/E,  
4MHz  
MX8903A–EGHJ/Y  
2.2µH inductor, IFSC1008ABER2R2M01, Vishay  
2.5mm x 2mm x 1.2mm, 90m(max), 2.15A  
or 2.2µH Inductor, LQH32PN2R2-NN0, Murata  
3.2mm x 2.5mm x 1.55mm, 91m(max), 1.55A  
MAX8903A/B/C/D/E,  
4MHz  
1.5uH inductor, IFSC1008ABER1R5M01, Vishay  
2.5mm x 2mm x 1.2mm, 72mW (max), 2.2A  
or 1.5µH Inductor, VLS4012ET-1R5N, TDK  
4mm x 4mm x 1.2mm, 72mW (max), 2.1A  
MAX8903H/J/Y, 4MHz  
MAX8903H/J/Y, 4MHz  
2.2µH inductor, IFSC1008ABER2R2M01, Vishay  
2.5mm x 2mm x 1.2mm, 90m(max), 2.15A  
or 2.2µH inductor, LQH3NPN2R2NJ0, Murata  
3mm x 3mm x 1.1mm, 83m(max), 1.15A  
24 ______________________________________________________________________________________  
2A 1-Cell Li+ DC-DC Chargers for USB  
and Adapter Power  
MX8903A–EGHJ/Y  
Table 5. Recommended Inductor Examples (continued)  
DC STEP-DOWN  
OUTPUT  
CURRENT LIMIT  
DC INPUT  
VOLTAGE  
RANGE  
PART NUMBER,  
SWITCHING  
FREQUENCY*  
RECOMMENDED INDUCTOR  
(I  
)
SDMAX  
2.2µH inductor, DFE3225±2C-2R2N, TOKO  
3.2mm x 2.5mm x ±.2mm, 9±m(max), 2.4A  
or 2.2µH Inductor, IFSC±5±5AHER2R2M1±, Vishay  
3.8mm x 3.8mm x ±.8mm, 45m(max), 3A  
MAX8913A/B/C/D/E,  
4MHz  
9V ±±10  
9V ±±10  
9V ±±10  
9V ±±10  
±2V ±±10  
±2V ±±10  
2A  
2.2µH Inductor, IFSC±118ABER2R2M1±, Vishay  
2.5mm x 2mm x ±.2mm, 91m(max), 2.±5A  
or 2.2µH Inductor, LQH3NPN2R2NJ1, Murata  
3mm x 3mm x ±.±mm, 83m(max), ±.±5A  
MAX8913A/B/C/D/E,  
4MHz  
±A  
2A  
±A  
2A  
±A  
4.3uH Inductor, DEM45±8C (±235AS-H-4R3M), TOKO  
4.7mm x 4.5mm x ±.8mm, 84m(max), 2.1A  
or 4.7µH Inductor, IFSC±5±5AHER4R7M1±, Vishay  
3.8mm x 3.8mm x ±.8mm, 91m(max), 2.1A  
MAX8913G, ±MHz  
MAX8913G, ±MHz  
MAX8913G, ±MHz  
MAX8913G, ±MHz  
4.7µH inductor, DEM28±8C (±227AS-H-4R7M), TOKO  
3.2mm x 2.8mm x ±.8mm, 92m(max), ±.±A  
or 4.7µH inductor, IFSC±118ABER4R7M1±, Vishay  
2.5mm x 2mm x ±.2mm, 2±2m(max), ±.2A  
4.3µH inductor, DEM45±8C (±235AS-H-4R3M), TOKO  
4.7mm x 4.5mm x ±.8mm, 84m(max), 2.1A  
or 4.7µH inductor, IFSC±5±5AHER4R7M1±, Vishay  
3.8mm x 3.8mm x ±.8mm, 91m(max), 2.1A  
6.8µH, IFSC±5±5AHER6R8M1±, Vishay  
3.8mm x 3.8mm x ±.8mm, ±±5m(max), ±.5A  
or 6.8µH, LQH44PN6R8MP1, Murata  
4mm x 4mm x ±.65mm, ±44m(max), ±.34A  
*See the Selector Guide for more information about part numbers.  
______________________________________________________________________________________ 25  
2A 1-Cell Li+ DC-DC Chargers for USB  
and Adapter Power  
MAX8903A–MAX8903E/MAX8903G/MAX8903Y are the  
Selector Guide  
The MAX8903_ is available in several options designat-  
ed by the first letter following the root part number. The  
basic architecture and functionality of the  
same. Their differences lie in certain electrical and  
operational parameters. Table 6 outlines these differ-  
ences.  
Table 6. Selector Guide  
PARAMETER  
MAX8903A MAX8903B MAX8903C MAX8903D MAX8903E MAX8903G MAX8903H MAX8903J MAX8903Y  
Minimum SYS  
Regulation  
Voltage  
3.0V  
3.0V  
3.4V  
3.4V  
3.0V  
3.0V  
3.4V  
3.4V  
3.0V  
(V  
SYSMIN  
)
SYS Regulation  
Voltage  
4.4V  
4.325V  
2.2µH  
4.4V  
4.4V  
4.325V  
2.2µH  
4.325V  
2.2µH  
4.4V  
1µH  
4.5V  
1µH  
4.4V  
1µH  
(V  
)
SYSREG  
Minimum  
Allowable  
Inductor  
2.2µH  
2.2µH  
2.2µH  
MX8903A–EGHJ/Y  
Switching  
Frequency  
4MHz  
4MHz  
4MHz  
4MHz  
4MHz  
1MHz  
4MHz  
4MHz  
4MHz  
SYS Load  
40mV/A  
25mV/A  
40mV/A  
40mV/A  
25mV/A  
25mV/A  
40mV/A  
25mV/A  
25mV/A  
Minimum SYS  
Output  
10µF  
22µF  
10µF  
10µF  
22µF  
22µF  
10µF  
10µF  
22µF  
Capacitor  
BAT Regulation  
Voltage  
4.2V  
4.2V  
4.2V  
4.1V  
4.1V  
4.2V  
4.2V  
4.35V  
4.15V  
(V  
BATREG  
)
(Note 5)  
BAT Prequal  
Threshold  
3V  
2.5V  
3V  
3V  
2.5V  
2.5V  
3V  
3V  
3V  
(V  
BATPQ  
)
(Note 5)  
Top-Off Timer  
(Note 6)  
15s (fixed)  
1mA  
132min  
10mA  
15s (fixed)  
1mA  
15s (fixed)  
1mA  
132min  
10mA  
132min  
10mA  
15s (fixed) 15s (fixed) 15s (fixed)  
VL Output  
1mA  
1mA  
1mA  
Power-Enable  
On Battery  
Detection  
No  
Yes  
No  
No  
Yes  
Yes  
No  
No  
No  
(Note 7)  
Comments  
(Note 8)  
Note 5: Typical values. See the Electrical Characteristics table for min/max values.  
Note 6: Note that this also changes the timing for the prequal and fast-charge timers.  
Note 7: See the Power Enable on Battery Detection section for details.  
Note 8: The MAX8903H is a newer version of the MAX8903C that is a recommended for new designs.  
26 ______________________________________________________________________________________  
2A 1-Cell Li+ DC-DC Chargers for USB  
and Adapter Power  
MX8903A–EGHJ/Y  
Pin Configuration  
Chip Information  
PROCESS: BiCMOS  
TOP VIEW  
21 20 19 18 17 16 15  
14  
13  
22  
CEN  
ISET  
CHG  
SYS 23  
12 GND  
24  
25  
26  
27  
28  
SYS  
CS  
CS  
LX  
MAX8903_  
IDC  
CT  
11  
10  
9
VL  
EP  
6
8
DOK  
LX  
+
1
2
3
4
5
7
TQFN  
4mm x 4mm  
______________________________________________________________________________________ 27  
2A 1-Cell Li+ DC-DC Chargers for USB  
and Adapter Power  
Package Information  
For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a "+", "#", or  
"-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing per-  
tains to the package regardless of RoHS status.  
LAND  
PATTERN NO.  
PACKAGE TYPE  
PACKAGE CODE  
OUTLINE NO.  
21-0139  
90-0035  
28 TQFN-EP  
T2844-1  
MX8903A–EGHJ/Y  
28 ______________________________________________________________________________________  
2A 1-Cell Li+ DC-DC Chargers for USB  
and Adapter Power  
MX8903A–EGHJ/Y  
Package Information (continued)  
For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a "+", "#", or  
"-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing per-  
tains to the package regardless of RoHS status.  
______________________________________________________________________________________ 29  
2A 1-Cell Li+ DC-DC Chargers for USB  
and Adapter Power  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
CHANGED  
DESCRIPTION  
0
1
2
3
4
12/08  
8/09  
Initial release  
1–20  
Added MAX8903C/MAX8903D to data sheet  
Made various corrections  
11/09  
10/10  
5/11  
1–7, 9, 11–21  
1–29  
Added MAX8903B, MAX8903E, MAX8903G, and MAX8903Y  
Added MAX8903H and MAX8903J and updated components  
1–29  
MX8903A–EGHJ/Y  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
30 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2011 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX8903GETI+T

2A 1-Cell Li DC-DC Chargers for USB and Adapter Power
MAXIM

MAX8903GETIT

2A 1-Cell Li DC-DC Chargers for USB and Adapter Power Thermistor Monitor
MAXIM

MAX8903HETI

2A 1-Cell Li DC-DC Chargers for USB and Adapter Power Thermistor Monitor
MAXIM

MAX8903HETI+T

2A 1-Cell Li DC-DC Chargers for USB and Adapter Power
MAXIM

MAX8903HETIT

2A 1-Cell Li DC-DC Chargers for USB and Adapter Power Thermistor Monitor
MAXIM

MAX8903JETI

2A 1-Cell Li DC-DC Chargers for USB and Adapter Power Thermistor Monitor
MAXIM

MAX8903JETI+T

Power Supply Support Circuit, Fixed, 1 Channel, BICMOS, 4 X 4 MM, 0.75 MM HEIGHT, ROHS COMPLIANT, MO-220WGGE, TQFN-28
MAXIM

MAX8903JETIT

2A 1-Cell Li DC-DC Chargers for USB and Adapter Power Thermistor Monitor
MAXIM

MAX8903NETI+T

2A 1-Cell Li DC-DC Chargers for USB and Adapter Power
MAXIM

MAX8903Y

Instant On—Works with No Battery or Low Battery
MAXIM

MAX8903YETI

2A 1-Cell Li DC-DC Chargers for USB and Adapter Power Thermistor Monitor
MAXIM

MAX8903YETI+T

2A 1-Cell Li DC-DC Chargers for USB and Adapter Power
MAXIM