MAX8934BETI+ [MAXIM]

Dual-Input Linear Chargers, Smart Power Selector with Advanced Battery Temperature Monitoring; 双输入线性充电器,智能电源选择器,提供高级电池温度监测
MAX8934BETI+
型号: MAX8934BETI+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Dual-Input Linear Chargers, Smart Power Selector with Advanced Battery Temperature Monitoring
双输入线性充电器,智能电源选择器,提供高级电池温度监测

电池 监控
文件: 总31页 (文件大小:2669K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ordering Information  
PART  
MAX8934AETI+  
TEMP RANGE  
PIN-PACKAGE  
-40NC to +85NC  
28 Thin QFN-EP*  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
Ordering Information continued and Selector Guide appears  
at end of data sheet.  
Typical Operating Circuit  
LDO  
3.3V ALWAYS-ON  
LINEAR  
REGULATOR  
SYS  
AC  
ADAPTER  
Q1  
DC  
CHARGE  
CURRENT  
LOAD  
CURRENT  
SYSTEM  
LOAD  
Q3  
CHARGE  
AND  
SYS LOAD  
SWITCH  
USB Q2  
BATT  
GND  
USB  
BATTERY  
MAX8934A−  
MAX8934E  
*Protected by U.S.Patent #6,507,172.  
Smart Power Selector is a trademark of Maxim Integrated  
Products, Inc.  
Dual-Input Linear Chargers, Smart Power Selector  
with Advanced Battery Temperature Monitoring  
ABSOLUTE MAXIMUM RATINGS  
DC, PEN1 to GND.................................................-0.3V to +16V  
USB to GND ............................................................-0.3V to +9V  
BATT Continuous Current (total in two pins).................2.4A  
LDO Continuous Current.............................................50mA  
RMS  
RMS  
V to GND ...............................................................-0.3V to +4V  
L
LDO Short-Circuit Duration .........................................  
Continuous  
LDO to GND......... -0.3V to the lower of +4V and (V  
THMEN, THMSW to GND..................... -0.3V to +(V  
+ 0.3V)  
+ 0.3V)  
+ 0.3V)  
Continuous Power Dissipation (T = +70NC)  
Single-Layer Board  
(derate 20.8mW/NC above +70NC)......................1666.7mW  
Multilayer Board  
SYS  
LDO  
A
THM to GND.......................................-0.3V to (V  
THMSW  
PSET, ISET, CT to GND............................... -0.3V to (V + 0.3V)  
L
BATT, SYS, CEN, CHG, OT, DOK,  
UOK, FLT, DONE, USUS, PEN2 to GND.............-0.3V to +6V  
EP (Exposed Pad) to GND...................................-0.3V to +0.3V  
DC Continuous Current (total in two pins) ....................2.4A  
SYS Continuous Current (total in two pins)...................2.4A  
USB Continuous Current (total in two pins) ..................2.0A  
(derate 28.6mW/NC above +70NC)......................2285.7mW  
Operating Temperature Range.......................... -40NC to +85NC  
Junction Temperature ...................................... -40NC to +125NC  
Storage Temperature ....................................... -65NC to +150NC  
Lead Temperature (soldering, 10s) ................................+300NC  
Soldering Temperature (reflow) ......................................+260NC  
RMS  
RMS  
RMS  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
DC  
= V  
= V  
= 5V, CEN = USUS = THMEN = GND, V  
= 4V, V  
= 1.65V, USB, THMSW, CHG, DONE, OT, DOK,  
PEN1  
PEN2  
BATT  
THM  
UOK, FLT are unconnected, C = 0.068FF, T = -40NC to +85NC, unless otherwise noted. Typical values are at T = +25NC.) (Note 1)  
CT  
A
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DC-to-SYS PREREGULATOR  
DC Operating Voltage Range  
DC Withstand Voltage  
4.1  
6.6  
14  
V
V
V
V
V
= V  
= 0V  
BATT  
SYS  
DC Undervoltage Threshold  
DC Overvoltage Threshold  
When V  
When V  
goes low, V  
rising, 500mV hysteresis  
3.95  
6.8  
4.0  
6.9  
1
4.05  
7.0  
2
DOK  
DOK  
BATT  
BATT  
DC  
goes high, V  
rising, 360mV hysteresis  
DC  
I
I
= I  
= I  
= 0mA, V  
= 0mA, V  
= 0V  
SYS  
SYS  
CEN  
CEN  
DC Operating Supply Current  
mA  
= 5V  
0.8  
195  
0.2  
1.5  
340  
0.35  
DC Suspend Current  
V
DC  
= V  
= V  
= 5V, V = 0V  
PEN1  
FA  
I
CEN  
USUS  
DC-to-SYS On-Resistance  
I
= 400mA, V  
= 5V  
CEN  
SYS  
When SYS regulation and charging stops, V  
150mV hysteresis  
falling,  
DC  
DC to BATT Dropout Voltage  
DC Current Limit  
10  
50  
90  
mV  
mA  
R
R
R
= 1.5kI  
= 3kI  
1800  
900  
2000  
1000  
475  
2200  
1100  
500  
PSET  
PSET  
PSET  
PEN1  
V
= 6V, V  
= +25NC  
= 5V,  
DC  
SYS  
T
A
= 6.3kI  
450  
(MAX8934A);  
= 5V, V  
V
DC  
= 4V,  
SYS  
V
= 0V, V  
= 5V  
PEN2  
450  
80  
475  
95  
500  
100  
T
= +25NC  
A
(500mA USB mode)  
(MAX8934B–  
MAX8934E)  
V
= V = 0V  
PEN1  
PEN2  
(100mA USB mode)  
PSET Resistance Range  
SYS Regulation Voltage  
1.5  
5.2  
6.3  
5.4  
4.4  
kI  
MAX8934A  
5.3  
4.35  
1.5  
V
= 6V, I  
= 1mA  
= 5V  
DC  
SYS  
V
to 1.75A, V  
CEN  
MAX8934B–MAX8934E  
4.29  
Connecting DC with USB not present  
Connecting DC with USB present  
ms  
Input Current Soft-Start Time  
Thermal-Limit Temperature  
50  
Fs  
Die temperature at when the charging current and input  
current limits are reduced  
100  
NC  
2
______________________________________________________________________________________  
Dual-Input Linear Chargers, Smart Power Selector  
with Advanced Battery Temperature Monitoring  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
DC  
= V  
= V  
= 5V, CEN = USUS = THMEN = GND, V  
= 4V, V  
= 1.65V, USB, THMSW, CHG, DONE, OT, DOK,  
PEN1  
PEN2  
BATT  
THM  
UOK, FLT are unconnected, C = 0.068FF, T = -40NC to +85NC, unless otherwise noted. Typical values are at T = +25NC.) (Note 1)  
CT  
A
A
PARAMETER  
Thermal-Limit Gain  
V Voltage  
CONDITIONS  
reduction with die temperature (above +100NC)  
MIN  
TYP  
5
MAX  
UNITS  
%/C  
V
I
I
SYS  
= 0 to 5mA, USB = unconnected  
VL  
3
3.3  
3.6  
L
USB-TO-SYS PREREGULATOR  
USB Operating Voltage Range  
USB Withstand Voltage  
4.1  
6.6  
8
V
V
V
V
V
= V  
= 0V  
BATT  
SYS  
USB Undervoltage Threshold  
USB Overvoltage Threshold  
When V  
When V  
goes low, V  
rising, 500mV hysteresis  
3.95  
6.8  
4.0  
6.9  
1
4.05  
7.0  
2
UOK  
UOK  
BATT  
BATT  
USB  
goes high, V  
rising, 360mV hysteresis  
USB  
I
I
= I  
= I  
= 0mA, V  
= 0mA, V  
= V  
= 0V  
SYS  
SYS  
CEN  
CEN  
PEN2  
USB Operating Supply Current  
mA  
= 5V, V  
= 0V  
0.9  
190  
0.22  
1.5  
340  
0.33  
PEN2  
USB Suspend Current  
DC = unconnected, V  
= V  
= V = 5V  
USUS  
FA  
I
USB  
CEN  
USB to SYS On-Resistance  
DC unconnected, V  
= V  
= 5V, I  
= 400mA  
USB  
CEN  
SYS  
When SYS regulation and charging stops, V  
150mV hysteresis  
falling,  
USB  
USB-to-BATT Dropout Voltage  
10  
50  
90  
mV  
mA  
MAX8934D only,  
1350  
1500  
1650  
USB Current Limit  
(See Tables 2a and 2b for Input  
Source Control)  
R
= 2kI  
PSET  
PEN1  
PEN1  
DC unconnected,  
= 5V, T = +25NC  
V
USB  
A
V
V
= 0V, V  
= 5V  
450  
80  
475  
95  
500  
100  
PEN2  
= V  
= 0V  
PEN2  
MAX8934A  
5.2  
5.3  
5.4  
4.4  
DC unconnected, V  
USB  
= 6V, V  
= 5V, I  
=
PEN2  
SYS  
MAX8934B/MAX8934C/  
MAX8934E  
4.29  
4.35  
1mA to 400mA, V  
= 5V  
CEN  
SYS Regulation Voltage  
V
DC unconnected, V  
USB  
= 6V, V  
= 5V, I  
=
MAX8934D  
4.29  
4.35  
4.4  
PEN2  
SYS  
1mA to 1.2A, V  
= 5V  
CEN  
Input Limiter Soft-Start Time  
Thermal-Limit Temperature  
Thermal-Limit Gain  
Input current ramp time  
50  
Fs  
NC  
Die temperature at when the charging current and input  
current limits are reduced  
100  
I
reduction with die temperature (above +100NC)  
5
%/NC  
SYS  
V Voltage  
L
DC unconnected, V  
= 5V, I = 0 to 5mA  
3
3.3  
3.6  
V
USB  
USB  
VL  
LDO LINEAR REGULATOR  
LDO Output Voltage  
DC unconnected, V  
= 5V, I  
= 0mA  
= 0mA  
3.234  
3.234  
3.234  
3.3  
3.3  
3.366  
3.366  
3.366  
LDO  
V
DC  
= 5V, USB unconnected, I  
V
LDO  
DC and USB unconnected, V  
= 4V, I  
= 0mA  
3.3  
BATT  
LDO  
LDO Load Regulation  
I
= 0 to 30mA  
0.003  
%/mA  
LDO  
_______________________________________________________________________________________  
3
Dual-Input Linear Chargers, Smart Power Selector  
with Advanced Battery Temperature Monitoring  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
DC  
= V  
= V  
= 5V, CEN = USUS = THMEN = GND, V  
= 4V, V  
= 1.65V, USB, THMSW, CHG, DONE, OT, DOK,  
PEN1  
PEN2  
BATT  
THM  
UOK, FLT are unconnected, C = 0.068FF, T = -40NC to +85NC, unless otherwise noted. Typical values are at T = +25NC.) (Note 1)  
CT  
A
A
PARAMETER  
BATTERY CHARGER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
BATT-to-SYS On-Resistance  
V
V
= 0V, V  
= 4.2V, I = 1A  
0.04  
75  
0.08  
105  
DC  
BATT  
SYS  
BATT-to-SYS Reverse  
Regulation Voltage  
= V  
= 0V, I = 200mA  
SYS  
50  
mV  
PEN1  
PEN2  
T
V
= +25NC, V  
THM_T3  
< V  
<
A
THM_T1  
THM  
4.175  
4.158  
4.05  
4.2  
4.2  
4.225  
4.242  
4.1  
T
V
= 0NC to +85NC, V  
<
A
THM_T1  
< V  
THM_T3  
THM  
BATT Regulation Voltage—Safety  
Region 1 (MAX8934A)  
I
= 0mA  
V
BATT  
T
V
= +25NC, V  
< V  
<
A
THM_T3  
THM  
4.075  
4.075  
4.2  
THM_T4  
T
V
= 0NC to +85NC, V  
<
A
THM_T3  
4.034  
4.175  
4.158  
4.1  
< V  
THM_T4  
THM  
T
V
= +25NC, V  
< V  
<
A
THM_T2  
THM  
4.225  
4.242  
THM_T3  
T
V
= 0NC to +85NC, V  
<
A
THM_T2  
4.2  
< V  
THM_T3  
THM  
BATT Regulation Voltage—Safety  
Region 2  
T
V
V
= +25NC, V  
< V  
< V <  
THM  
<
A
THM_T1  
THM  
I
= 0mA  
V
BATT  
or V  
4.05  
4.075  
4.1  
THM_T2  
THM_T4  
THM_T3  
T
V
V
= 0NC to +85NC, V  
<
<
A
THM_T1  
< V  
< V  
or V  
4.034  
-145  
4.075  
-104  
4.1  
-65  
THM  
THM  
THM_T2  
THM_T4  
THM_T3  
Change in V  
from DONE to fast-  
charge restart  
BATT  
V
< V  
< V  
THM_T1  
THM  
THM_T3  
BATT Recharge Threshold—  
Safety Region 1 (MAX8934A)  
mV  
V
V
< V  
< V  
< V  
< V  
-120  
-145  
-80  
-40  
-65  
THM_T3  
THM  
THM_T4  
-104  
THM_T2  
THM  
THM_T3  
Change in V  
BATT  
BATT Recharge Threshold—  
Safety Region 2  
from DONE to fast-  
charge restart  
mV  
A
V
V
< V  
< V  
< V  
< V  
or  
THM_T1  
THM  
THM_T2  
-120  
0.3  
-80  
-40  
1.5  
THM_T3  
THM  
THM_T4  
BATT Fast-Charge  
Current Range  
R
ISET  
= 10kIto 2kI  
4
______________________________________________________________________________________  
Dual-Input Linear Chargers, Smart Power Selector  
with Advanced Battery Temperature Monitoring  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
DC  
= V  
= V  
= 5V, CEN = USUS = THMEN = GND, V  
= 4V, V  
= 1.65V, USB, THMSW, CHG, DONE, OT, DOK,  
PEN1  
PEN2  
BATT  
THM  
UOK, FLT are unconnected, C = 0.068FF, T = -40NC to +85NC, unless otherwise noted. Typical values are at T = +25NC.) (Note 1)  
CT  
A
A
PARAMETER  
CONDITIONS  
MIN  
1350  
675  
TYP  
1500  
750  
MAX  
1650  
825  
UNITS  
R
ISET  
R
ISET  
R
ISET  
R
ISET  
= 2kI  
= 4kI  
V
V
< V  
region 1) or V  
< V  
= 5.5V,  
SYS  
= 10kI  
270  
300  
330  
< V  
THM_T2  
THM  
= 2kI, V  
= 2.5V  
= 2.5V  
BATT  
BATT  
130  
50  
150  
75  
170  
100  
(safety  
THM_T4  
(prequal)  
THM_T1  
< V  
THM_T4  
R
ISET  
= 4kI, V  
THM  
(prequal)  
(safety region 2)  
R
= 10kI, V  
= 2.5V  
BATT  
ISET  
30  
(prequal)  
BATT Charge Current Accuracy  
mA  
R
R
R
R
= 2kI  
675  
337.5  
130  
750  
375  
150  
825  
412.5  
170  
ISET  
ISET  
ISET  
ISET  
= 4kI  
= 10kI  
V
V
< V  
= 5.5V,  
SYS  
= 2kI, V  
= 2.5V  
= 2.5V  
BATT  
BATT  
100  
50  
150  
75  
30  
1
200  
100  
< V  
THM_T1  
THM  
(prequal)  
(safety  
THM_T2  
R
ISET  
= 4kI, V  
region 1)  
(prequal)  
R
ISET  
= 10kI, V  
= 2.5V  
BATT  
(prequal)  
R
= 4kI, I  
= 500mA (V  
THM_T2  
= 1.5V at full  
ISET  
ISET  
BATT  
ISET Output Voltage  
0.9  
2.9  
1.1  
V
charge current) V  
< V  
< V  
THM THM_T4  
Charger Soft-Start Time  
BATT Prequal Threshold  
Charge-current ramp time  
1.5  
3
ms  
V
V
rising, 180mV hysteresis  
3.1  
12  
BATT  
No DC or USB power  
connected, THMEN = low,  
5
V
CEN  
= 5V  
No DC or USB power  
connected, THMEN = high,  
V
= 4.2V,  
= 0  
BATT  
BATT Input Current  
FA  
12  
25  
2
I
I
LDO  
V
= 5V  
CEN  
DC or USB power connected,  
= 5V  
0.003  
V
CEN  
DONE Threshold as a  
Percentage of Fast-Charge  
Current  
decreasing  
10  
%
BATT  
_______________________________________________________________________________________  
5
Dual-Input Linear Chargers, Smart Power Selector  
with Advanced Battery Temperature Monitoring  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
DC  
= V  
= V  
= 5V, CEN = USUS = THMEN = GND, V  
= 4V, V  
= 1.65V, USB, THMSW, CHG, DONE, OT, DOK,  
PEN1  
PEN2  
BATT  
THM  
UOK, FLT are unconnected, C = 0.068FF, T = -40NC to +85NC, unless otherwise noted. Typical values are at T = +25NC.) (Note 1)  
CT  
A
A
PARAMETER  
Maximum Prequal Time  
Maximum Fast-Charge Time  
CONDITIONS  
MIN  
TYP  
30  
MAX  
UNITS  
min  
min  
s
From CEN falling to end of prequal charge, V  
From CEN falling to FLT falling  
MAX8934A/MAX8934C/MAX8934E  
MAX8934B/MAX8934D  
= 2.5V  
BATT  
300  
15  
Maximum Top-Off Time  
Timer Accuracy  
60  
min  
%
-20  
+20  
Percentage of fast-charge current below where the timer  
clock operates at half-speed  
Timer Extend Threshold  
50  
20  
%
%
Percentage of fast-charge current below where timer  
clock pauses  
Timer Suspend Threshold  
THERMISTOR MONITOR (Beta = 3477) (Note 2)  
-2.2  
73.9  
8
0
+2.4  
75.1  
12  
NC  
THM Cold No-Charge Threshold  
(T1)  
I
= 0A, when charging is suspended, 2NC hysteresis  
CHG  
% of  
THMSW  
74.4  
10  
NC  
I
reduced (safety region 1 only), V  
CHG  
BATT_REG  
THM Cold Threshold (T2)  
% of  
THMSW  
reduced (safety region 2 only), 2NC hysteresis  
64.5  
42.8  
32.1  
57  
65  
65.5  
47.5  
32.8  
63.5  
23  
45  
NC  
THM Hot Threshold (T3)  
V
reduced (safety region 1), 2.5NC hysteresis  
BATT_REG  
% of  
THMSW  
32.4  
60  
NC  
THM Hot No-Charge Threshold  
(T4)  
I
= 0mA, when charging is suspended, 3NC  
CHG  
% of  
THMSW  
hysteresis  
22.4  
71  
22.7  
75  
80  
NC  
THM Hot Overtemperature  
OT asserts low, 5NC hysteresis  
% of  
THMSW  
Threshold (T )  
OT  
15.5  
15.8  
16  
THERMISTOR MONITOR (Beta = 3964) (Note 3)  
-2.1  
76.4  
8.2  
0
77.2  
10  
+2.4  
77.9  
12  
NC  
THM Cold No-Charge Threshold  
(T1)  
I
= 0A, when charging is suspended, 2NC hysteresis  
CHG  
% of  
THMSW  
NC  
I
reduced (safety region 1 only), V  
CHG  
BATT_REG  
THM Cold Threshold (T2)  
% of  
THMSW  
reduced (safety region 2), 2NC hysteresis  
66.2  
67  
67.6  
6
______________________________________________________________________________________  
Dual-Input Linear Chargers, Smart Power Selector  
with Advanced Battery Temperature Monitoring  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
DC  
= V  
= V  
= 5V, CEN = USUS = THMEN = GND, V  
= 4V, V  
= 1.65V, USB, THMSW, CHG, DONE, OT, DOK,  
PEN1  
PEN2  
BATT  
THM  
UOK, FLT are unconnected, C = 0.068FF, T = -40NC to +85NC, unless otherwise noted. Typical values are at T = +25NC.) (Note 1)  
CT  
A
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
42.8  
45  
47.5  
NC  
THM Hot Threshold (T3)  
V
reduced, safety region 1, 2.5NC hysteresis  
BATT_REG  
% of  
THMSW  
29.8  
57  
30  
60  
30.6  
63.5  
20.1  
80  
NC  
THM Hot No-Charge Threshold  
(T4)  
I
= 0mA, when charging is suspended, 3NC  
CHG  
% of  
THMSW  
hysteresis  
19.5  
71  
19.8  
75  
NC  
THM Hot Discharge Threshold  
OT asserts low, 5NC hysteresis  
% of  
THMSW  
(T  
OT  
)
12.6  
-1  
12.9  
13.1  
+1  
T
A
T
A
T
A
T
A
= +25NC  
= +85NC  
= +25NC  
= +85NC  
+0.001  
0.01  
THM Input leakage  
THM = GND or LDO  
THMSW = GND  
Sourcing 1mA  
FA  
FA  
V
-0.2  
+0.001  
0.01  
+1  
THMSW Output Leakage  
THMSW Output Voltage High  
V
LDO  
0.05  
-
LOGIC I/O: PEN1, PEN2, CHG, FLT, DONE, DOK, UOK, USUS, THMEN)  
High level  
1.3  
V
Logic-Input Thresholds  
Low level  
0.4  
1
Hysteresis  
50  
0.001  
0.01  
25  
mV  
FA  
mV  
FA  
T
T
= +25NC  
= +85NC  
A
Logic-Input Leakage Current  
Logic-Low Output Voltage  
V
IN  
= 0 to 5.5V  
A
Sinking 1mA  
= 5.5V  
100  
1
T
T
= +25NC  
= +85NC  
0.001  
0.01  
Logic-High Output Leakage  
Current  
A
V
OUT  
A
Note 1: Limits are 100% production tested at T = +25NC. Limits over the operating temperature range are guaranteed by design.  
A
Note 2: NC includes external NTC thermistor error. % of THMSW excludes thermistor beta error and external pullup error. NTC  
thermistor assumed to be 10kI nominal, part number Vishay NTHS0603N02N1002FF, external pullup resistor = 10kI.  
Note 3: NC includes external NTC thermistor error. % of THMSW excludes thermistor beta error and external pullup error. NTC  
thermistor assumed to be 100kI Q1% nominal, part number Vishay NTHS0603N01N1003FF, external pullup resistor =  
100kI Q1%.  
_______________________________________________________________________________________  
7
Dual-Input Linear Chargers, Smart Power Selector  
with Advanced Battery Temperature Monitoring  
Typical Operating Characteristics  
(MAX8934A, T = +25NC, circuit of Figure 2, V  
= 6V, V  
= 3.6V, thermistor Beta = 3964, unless otherwise noted. Negative bat-  
A
DC  
BATT  
tery current indicates charging.)  
USB OPERATING SUPPLY CURRENT  
vs. USB VOLTAGE (CHARGER ENABLED)  
1200  
USB OPERATING SUPPLY CURRENT  
vs. USB VOLTAGE (CHARGER DISABLED)  
USB SUSPEND CURRENT  
vs. USB VOLTAGE  
900  
250  
200  
150  
100  
50  
V
V
= 4.2V,  
= 0V  
V
= 4.2V,  
USUS = 1  
V
V
= 4.2V,  
= 0V  
BATT  
USUS  
BATT  
BATT  
USUS  
800  
700  
600  
500  
400  
300  
200  
100  
0
1000  
800  
600  
400  
200  
0
CEN = 1  
= 0A  
CHARGER IN  
DONE MODE  
I
SYS  
PEN1 = X, PEN2 = 1  
I
= 0A  
SYS  
V
V
RISING  
FALLING  
USB  
USB  
V
USB  
V
USB  
RISING  
FALLING  
ENTERING OVLO  
ENTERING OVLO  
0
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
USB VOLTAGE (V)  
USB VOLTAGE (V)  
USB VOLTAGE (V)  
BATTERY INPUT CURRENT  
vs. BATTERY VOLTAGE  
(USB DISCONNECTED)  
BATTERY INPUT CURRENT  
vs. TEMPERATURE  
CHARGE CURRENT vs.  
BATTERY VOLTAGE (100mA USB)  
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
4.4  
4.3  
4.2  
4.1  
4.0  
14  
12  
10  
8
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 4V, THMEN = 0, I = 0  
LDO  
BATT  
USB AND DC UNCONNECTED  
V
= 5V  
USB  
THMEN = 1  
PEN1 = X, PEN2 = 0  
V
BATT  
V
BATT  
RISING  
FALLING  
6
4
THMEN = 0  
2
0
-40  
-15  
10  
35  
60  
85  
0
1
2
3
4
5
0
1
2
3
4
5
TEMPERATURE (°C)  
BATTERY VOLTAGE (V)  
BATTERY VOLTAGE (V)  
CHARGE CURRENT vs.  
BATTERY VOLTAGE (500mA USB)  
CHARGE CURRENT vs.  
BATTERY VOLTAGE (1A DC)  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
1200  
V
= 5V  
USB  
V
= 5V  
DC  
PEN1 = X, PEN2 = 1  
1000  
800  
600  
400  
200  
0
PEN1 = 1, PEN2 = X  
V
BATT  
V
BATT  
RISING  
FALLING  
V
BATT  
V
BATT  
RISING  
FALLING  
0
0
1
2
3
4
5
0
1
2
3
4
5
BATTERY VOLTAGE (V)  
BATTERY VOLTAGE (V)  
8
______________________________________________________________________________________  
Dual-Input Linear Chargers, Smart Power Selector  
with Advanced Battery Temperature Monitoring  
Typical Operating Characteristics (continued)  
(MAX8934A, T = +25NC, circuit of Figure 2, V  
= 6V, V = 3.6V, thermistor Beta = 3964, unless otherwise noted. Negative bat-  
BATT  
A
DC  
tery current indicates charging.)  
NORMALIZED CHARGE CURRENT  
vs. AMBIENT TEMPERATURE  
(LOW IC POWER DISSIPATION)  
BATTERY REGULATION VOLTAGE  
vs. TEMPERATURE  
1.0100  
1.0075  
1.0050  
1.0025  
1.0000  
0.9975  
0.9950  
0.9925  
0.9900  
4.220  
V
= 5V, V  
= 4V  
BATT  
USB  
4.215  
4.210  
4.205  
4.200  
4.195  
4.190  
4.185  
4.180  
4.175  
4.170  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
AMBIENT TEMPERATURE (°C)  
BATTERY VOLTAGE (V)  
SYS OUTPUT VOLTAGE  
vs. USB VOLTAGE  
SYS OUTPUT VOLTAGE  
vs. DC VOLTAGE  
5.4  
5.2  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
5.4  
5.2  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
V
= 4.0V  
V
= 4.0V  
BATT  
BATT  
NO SYS LOAD  
NO SYS LOAD  
MAX8934A  
MAX8934A  
MAX8934B–  
MAX8934E  
MAX8934B–  
MAX8934E  
0
1
2
3
4
5
6
7
8
0
2
4
6
8
10  
12  
14  
USB VOLTAGE (V)  
DC VOLTAGE (V)  
SYS OUTPUT VOLTAGE vs. SYS OUTPUT  
CURRENT (USB AND DC DISCONNECTED)  
SYS OUTPUT VOLTAGE  
vs. SYS OUTPUT CURRENT (DC)  
4.5  
4.4  
4.3  
4.2  
4.1  
4.0  
3.9  
3.8  
3.7  
3.6  
5.5  
5.1  
4.7  
4.3  
3.9  
3.5  
V
= 4.0V  
BATT  
V
= 6V  
DC  
THE SLOPE OF THIS LINE  
SHOWS THAT THE BATT-TO-SYS  
RESISTANCE IS 40mI.  
MAX8934A  
V
= 5V  
DC  
V
= 6V  
DC  
MAX8934B–  
MAX8934E  
V
= 5V  
DC  
V
= 4V,  
BATT  
PEN1 = 1, PEN2 = X  
CEN = 1  
0
0.5  
1.0  
1.5  
2.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
SYS OUTPUT CURRENT (A)  
SYS OUTPUT CURRENT (A)  
_______________________________________________________________________________________  
9
Dual-Input Linear Chargers, Smart Power Selector  
with Advanced Battery Temperature Monitoring  
Typical Operating Characteristics (continued)  
(MAX8934A, T = +25NC, circuit of Figure 2, V  
= 6V, V = 3.6V, thermistor Beta = 3964, unless otherwise noted. Negative bat-  
BATT  
A
DC  
3.0  
14  
tery current indicates charging.)  
SYS OUTPUT VOLTAGE vs.  
SYS OUTPUT CURRENT (USB)  
5.5  
SYS OUTPUT VOLTAGE vs.  
SYS OUTPUT CURRENT (USB)  
5.5  
V
V
= 4.0V,  
= 5.0V  
BATT  
USB  
5.3  
5.1  
4.9  
4.7  
4.5  
4.3  
4.1  
3.9  
3.7  
3.5  
V
V
= 4.0V,  
= 5.0V  
5.3  
5.1  
4.9  
4.7  
4.5  
4.3  
4.1  
3.9  
3.7  
3.5  
BATT  
USB  
CEN = 1  
CEN = 1  
0.14A, MAX8934B/MAX8934C/  
MAX8934D PEN1 = 0, PEN2 = 0  
0.5A, MAX8934B/MAX8934C/  
MAX8934D PEN1 = 0, PEN2 = 0  
0.5A, MAX8934A,  
PEN1 = 0, PEN2 = 1  
1.5A, MAX8934D  
PEN1 = 1, PEN2 = 1  
0.1A, MAX8934A, PEN1 = 0, PEN2 = 0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
SYS OUTPUT CURRENT (A)  
SYS OUTPUT CURRENT (A)  
V OUTPUT VOLTAGE vs.  
L
CHARGE PROFILE—820mAh BATTERY  
DC VOLTAGE  
USB INPUT—500mA CHARGE  
MAX8934A toc17  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
V
BATT  
I
BATT  
I
VL  
= 5mA  
I
= 0mA  
6
VL  
0
0
2
4
8
10  
12  
0
20  
40  
60  
80 100 120 140  
DC VOLTAGE (V)  
TIME (min)  
CHARGE PROFILE—820mAh BATTERY  
ADAPTER INPUT—1A CHARGE  
DC CONNECT WITH USB  
CONNECTED (R = 22I)  
SYS  
MAX8934A/B/C toc19  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
4.2V  
CHARGING  
5.3V  
C
V
SYS  
5V/div  
1A/div  
CHARGING  
SYS  
C
DC  
V
1.24A  
BATT  
I
DC  
0A  
500mA/div  
1A/div  
I
USB  
475mA  
I
BATT  
BATTERY CHARGER SOFT-START  
0A  
-190mA  
I
BATT  
-1A  
0
10 20 30 40 50 60 70 80  
TIME (min)  
400Fs/div  
10 _____________________________________________________________________________________  
Dual-Input Linear Chargers, Smart Power Selector  
with Advanced Battery Temperature Monitoring  
Typical Operating Characteristics (continued)  
(MAX8934A, T = +25NC, circuit of Figure 2, V  
= 6V, V = 3.6V, thermistor Beta = 3964, unless otherwise noted. Negative bat-  
BATT  
A
DC  
tery current indicates charging.)  
DC CONNECT WITH NO  
DC DISCONNECT WITH NO  
USB (R  
= 22I)  
USB (R  
= 22I)  
SYS  
SYS  
MAX8934A/B/C toc20  
MAX8934A/B/C toc21  
V
V
BATT  
BATT  
5V/div  
5V/div  
5V/div  
3.6V  
3.5V  
3.6V  
V
V
SYS  
SYS  
5V/div  
5V  
3.5V  
1.2A  
1A  
1A/div  
I
DC  
C
CHARGING  
1A/div  
DC  
I
DC  
0A  
0A  
160mA  
160mA  
0mA  
I
BATT  
I
BATT  
1A/div  
-1A  
1A/div  
BATTERY CHARGER  
SOFT-START  
-820mA  
-I  
BATT  
= CHARGING  
400Fs/div  
400Fs/div  
USB CONNECT WITH NO  
USB DISCONNECT WITH NO  
DC (R  
= 22I)  
DC (R  
= 22I)  
SYS  
SYS  
MAX8934A/B/C toc22  
MAX8934A/B/C toc23  
V
USB  
USB  
5V/div  
5V/div  
V
USB  
USB  
5V  
C
CHARGING  
5V  
SYS  
500mA/div  
3V  
500mA/div  
I
I
475mA  
4.2V  
475mA  
0A  
0mA  
C
CHARGING  
USB  
5V  
V
V
5V/div  
SYS  
3.6V  
3.9V  
V
V
3.6V  
SYS  
5V/div  
5V/div  
5V/div  
UOK  
CHG  
3.3V  
3.3V  
UOK  
CHG  
5V/div  
5V/div  
3.3V  
V
V
I
3.3V  
I
BATT  
-260mA  
+160mA  
-260mA  
500mA/div  
BATT  
+160mA  
500mA/div  
BATTERY  
CHARGER SOFT-START  
200Fs/div  
200Fs/div  
USB RESUME (R  
= 22I)  
MAX8934A/B/C toc25  
USB SUSPEND (R  
= 22I)  
MAX8934A/B/C toc24  
SYS  
SYS  
5V/div  
0V  
0V  
V
5V/div  
USUS  
3V  
V
USUS  
3V  
I
USB  
500mA/div  
5V/div  
475mA  
4.2V  
475mA  
4.2V  
I
0A  
500mA/div  
5V/div  
USB  
0A  
4.6V  
3.3V  
3.2V  
V
SYS  
V
SYS  
5V/div  
5V/div  
3.3V  
0A  
V
3.3V  
0A  
V
CHG  
CHG  
3.3V  
I
BATT  
500mA/div  
I
500mA/div  
BATT  
BATTERY  
CHARGER SOFT-START  
V
= 5V  
V
USB  
= 5V  
USB  
200Fs/div  
200Fs/div  
______________________________________________________________________________________ 11  
Dual-Input Linear Chargers, Smart Power Selector  
with Advanced Battery Temperature Monitoring  
Typical Operating Characteristics (continued)  
(MAX8934A, T = +25NC, circuit of Figure 2, V  
= 6V, V = 3.6V, thermistor Beta = 3964, unless otherwise noted. Negative bat-  
BATT  
A
DC  
tery current indicates charging.)  
LDO OUTPUT VOLTAGE vs. LDO OUTPUT  
CURRENT (USB DISCONNECTED)  
LDO STARTUP WAVEFORMS  
MAX8934A/B/C toc27  
3.35  
3.30  
3.25  
3.20  
3.15  
3.10  
3.05  
3.00  
2.95  
I
= 0  
V
= 4.0V  
LDO  
BATT  
3.6V  
3.3V  
2V/div  
2V/div  
V
BATT  
DC UNCONNECTED  
= 5.0V  
V
LDO  
V
DC  
50mA/div  
I
BATT  
400Fs/div  
0
25  
50  
75 100 125 150 175  
LDO OUTPUT CURRENT (mA)  
LDO OUTPUT VOLTAGE vs.  
BATTERY VOLTAGE  
ALWAYS-ON LDO POWER-SUPPLY  
REJECTION RATIO vs. FREQUENCY  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0
V
= 3.6V  
SYS  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
I
= 10mA  
LDO  
RESISTIVE LOAD  
V
FALLING  
RISING  
BATT  
V
BATT  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
BATTERY VOLTAGE (V)  
0.1  
1
10  
100  
FREQUENCY (kHz)  
LDO NOISE DENSITY  
vs. FREQUENCY  
THM NORMAL TO THM COLD  
(< T2) TRANSITION  
MAX8934A/B/C toc31  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
V
= 3.8V,  
BATT  
= 10mA  
I
LDO  
500mV/div  
2V/div  
V
THM  
RESISTIVE LOAD  
2.2V  
3.6V  
V
BATT  
1A  
I
BATT  
500mA  
500mA/div  
0.01  
0.1  
1
10  
100 1000 10,000  
10ms/div  
FREQUENCY (kHz)  
12 _____________________________________________________________________________________  
Dual-Input Linear Chargers, Smart Power Selector  
with Advanced Battery Temperature Monitoring  
Typical Operating Characteristics (continued)  
(MAX8934A, T = +25NC, circuit of Figure 2, V  
= 6V, V = 3.6V, thermistor Beta = 3964, unless otherwise noted. Negative bat-  
BATT  
A
DC  
tery current indicates charging.)  
THM NORMAL TO THM HOT  
(> T3) TRANSITION  
THM NORMAL TO THM HOT NO  
CHARGE (> T4) TRANSITION  
MAX8934A/B/C toc32  
MAX8934A/B/C toc33  
0.65V  
500mV/div  
500mV/div  
2V/div  
V
V
THM  
THM  
1.0V  
4.2V  
4.075V  
4.2V  
V
I
V
I
0V  
BATT  
BATT  
4.075V  
200mV/div  
500mA/div  
100mA  
BATT  
940mA  
BATT  
100mA/div  
0mA  
HP6060B ELECTRONIC LOAD  
SET TO CC MODE  
HP6060B ELECTRONIC  
LOAD SET TO CC MODE  
10ms/div  
20ms/div  
THM NORMAL TO THM HOT  
THM NORMAL TO THM COLD NO  
CHARGE (< T1) TRANSITION  
THRESHOLD DISCHARGE T  
OT  
MAX8934A/B/C toc35  
MAX8934A toc34  
V
THM  
2V/div  
2V/div  
500mV/div  
2V/div  
V
THM  
BATT  
BATT  
4.025V  
2.54V  
V
OT  
3V  
2.2V  
3.6V  
V
I
V
2V/div  
2V/div  
BATT  
1A  
3.6V  
3.6V  
500mA  
500mA/div  
V
SYS  
0mA  
10ms/div  
4ms/div  
______________________________________________________________________________________ 13  
Dual-Input Linear Chargers, Smart Power Selector  
with Advanced Battery Temperature Monitoring  
Pin Description  
PIN  
NAME  
FUNCTION  
Charge Complete Output. The DONE active-low, open-drain output pulls low when the charger enters  
the DONE state. The charger current = 0mA when DONE is low. See Figure 8.  
1
DONE  
DC Power Input. DC is capable of delivering up to 2A to SYS. DC supports both AC adapter and USB  
inputs. The DC current limit is set with PEN1, PEN2, and R  
connected together externally. Connect a 10FF ceramic capacitor from DC to GND. The DC inputs should  
. See Table 2. Both DC pins must be  
PSET  
2, 3  
DC  
be grounded if not used.  
Active-Low Charger Enable Input. Connect CEN to GND or drive low with a logic signal to enable  
battery charging when a valid source is connected at DC or USB. Drive high with a logic signal to  
disable battery charging.  
4
5
CEN  
Input Limit Control 1. See Table 2a for complete information (MAX8934A/MAX8934B/MAX8934C/  
MAX8934E).  
PEN1  
Input Limit Control 1. See Table 2b for complete information (MAX8934D).  
Input Limit Control 2. See Table 2a for complete information (MAX8934A/MAX8934B/MAX8934C/  
MAX8934E).  
6
7
8
PEN2  
PSET  
Input Limit Control 2. See Table 2b for complete information (MAX8934D).  
DC Input Current-Limit Setting. Connect a resistor from PSET to GND to program the DC current limit up  
to 2A (3000/R ).  
PSET  
Internal Logic LDO Output Bypass Pin. Provides 3.3V when DC or USB is present. Connect a 0.1FF  
ceramic capacitor from V to GND. V powers the internal circuitry and provides up to 5mA to an  
V
L
L
L
external load.  
9, 13  
10  
GND  
CT  
Ground. Both GND pins must be connected together externally.  
Charge Timer Program Input. A capacitor from CT to GND sets the maximum prequal and fast-charge  
timers. Connect CT to GND to disable the timer.  
Charge Current-Limit Setting. A resistor (R ) from ISET to GND programs the fast-charge charge  
ISET  
11  
12  
ISET  
current up to 1.5A (3000/R  
current.  
). The prequal charge current is 10% of the set fast-charge charge  
ISET  
USB Suspend Digital Input. As shown in Table 2a, driving USUS high suspends the DC or USB inputs if  
they are configured as a USB power input (MAX8934A/MAX8934B/MAX8934C/MAX8934E).  
USUS  
USB Suspend Digital Input. As shown in Table 2b, driving USUS high suspends the DC or USB inputs if  
they are configured as a USB power input (MAX8934D).  
Thermistor Input. Connect a negative temperature coefficient (NTC) thermistor with good thermal  
contact with the battery from THM to GND. Use a thermistor with Beta = 3964. Connect a resistor  
of equal resistance to the thermistor resistance at +25°C from THM to THMSW so that the battery  
temperature can be monitored, and the fast-charge current and/or the charge termination voltage is  
automatically adjusted, in accordance with safety region 1 or safety region 2 of the JEITA specification.  
14  
15  
THM  
Thermistor Enable Input. THMEN controls THMSW by connecting the external thermistor pullup resistor  
and the thermistor monitoring circuit to LDO. Drive THMEN high to enable the thermistor circuit in  
discharge mode and to connect the external thermistor pullup resistor. Drive THMEN low to disconnect  
the external thermistor pullup resistor and to disable the thermistor monitoring circuit to conserve  
battery energy when not charging.  
THMEN  
14 _____________________________________________________________________________________  
Dual-Input Linear Chargers, Smart Power Selector  
with Advanced Battery Temperature Monitoring  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
Thermistor Pullup Supply Switch. Drive THMEN high to enable the THMSW, shorting the THMSW output  
to LDO. Drive THMEN low to open the THMSW switch. THMSW is always on when a valid input source  
is present and the battery is being charged. When no input source is present, THMSW is controlled by  
THMEN. THMSW is also active when the battery is being discharged, so that the battery temperature  
can be monitored for an overtemperature condition.  
16  
THMSW  
Always-On Linear Regulator Output. LDO is the output of an internal always-on 3.3V LDO that provides  
power to external circuitry. The LDO output provides up to 30mA of current for indicator LEDs or other  
loads. LDO remains active even when only a battery is present, so that the thermistor monitor circuitry  
can be activated when the battery is being discharged, and other circuitry can remain powered.  
Connect a 1FF ceramic capacitor from LDO to GND.  
17  
LDO  
USB  
USB Power Input. USB is capable of delivering up to 0.5A to SYS in the MAX8934A/MAX8934B/  
MAX8934C/MAX8934E. The USB current limit is set with PEN2 and USUS. See Table 2a. In the  
MAX8934D, USB is capable of delivering up to 1.5A to SYS. Both USB pins must be connected together  
externally. Connect a 4.7FF ceramic capacitor from USB to GND.  
18, 19  
Battery Connection. Connect the positive terminal of a single-cell Li+ battery to BATT. The battery  
charges from SYS when a valid source is present at DC or USB. BATT powers SYS when neither DC nor  
USB power is present, or when the SYS load exceeds the input current limit. Both BATT pins must be  
connected together externally.  
20, 21  
22  
BATT  
Charger Status Output. The CHG active-low, open-drain output pulls low when the battery is in fast  
charge or prequal. Otherwise, CHG is high impedance.  
CHG  
System Supply Output. SYS is connected to BATT through an internal 40mIsystem load switch when  
DC or USB are invalid, or when the SYS load is greater than the input current limit.  
When a valid voltage is present at DC or USB, SYS is limited to 5.3V (MAX8934A) or 4.35V (MAX8934B/  
23, 24  
SYS  
MAX8934C/MAX8934D/MAX8934E). When the system load (I ) exceeds the DC or USB current limit,  
SYS  
SYS is regulated to 68mV below V  
and both the input and the battery service the SYS load.  
BATT  
Bypass SYS to GND with a 10FF ceramic capacitor. Both SYS pins must be connected together  
externally.  
Battery Overtemperature Flag. The OT active-low, open-drain output pulls low when THMEN is high and  
the battery temperature is R+75NC.  
25  
26  
27  
28  
OT  
DOK  
UOK  
FLT  
EP  
DC Power-OK Output. The DOK active-low, open-drain output pulls low when a valid input is detected  
at DC.  
USB Power-OK Output. The UOK active-low, open-drain output pulls low when a valid input is detected  
at USB.  
Fault Output. The FLT active-low, open-drain output pulls low when the battery timer expires before  
prequal or fast charge complete.  
Exposed Pad. Connect the exposed pad to GND. Connecting the exposed pad does not remove the  
requirement for proper ground connections to the appropriate pins.  
______________________________________________________________________________________ 15  
Dual-Input Linear Chargers, Smart Power Selector  
with Advanced Battery Temperature Monitoring  
OT  
LDO  
DC POWER MANAGEMENT  
DC  
DC  
SYS  
SYS  
Li+ BATTERY CHARGER  
AND SYS LOAD SWITCH  
PWR OK  
3.3V ALWAYS-ON  
LOW-I LDO  
Q
CHARGER  
CURRENT AND  
VOLTAGE  
CURRENT-  
LIMITED VOLTAGE  
REGULATOR  
DOK  
ISET  
CONTROL  
BATT  
BATT  
SET INPUT  
LIMIT  
V
L
V LDO FOR  
L
IC POWER  
THERMISTOR  
MONITOR  
(SEE FIGURE 5)  
USB POWER MANAGEMENT  
T
THM  
USB  
UOK  
THMSW  
PWR OK  
THMEN  
CHG  
CURRENT-  
LIMITED VOLTAGE  
REGULATOR  
THERMAL  
REGULATION  
CHG  
CHARGE  
TERMINATION  
AND MONITOR  
DONE  
SET INPUT  
LIMIT  
FLT  
CT  
CHARGE  
TIMER  
PEN1  
INPUT AND  
CHARGER  
CURRENT-LIMIT  
LOGIC CONTROL  
PEN2  
USUS  
PSET  
MAX8934A–  
MAX8934E  
CEN  
GND  
EP  
Figure 1. Block Diagram  
16 _____________________________________________________________________________________  
Dual-Input Linear Chargers, Smart Power Selector  
with Advanced Battery Temperature Monitoring  
TO LDO  
R
1MI  
PU  
R
PU  
4x 1MI  
1
CHARGE  
DONE  
ADAPTER  
25  
28  
27  
26  
DONE  
OT  
FLT  
OVERTEMPERATURE  
MAX8934A–  
MAX8934E  
FAULT OUTPUT  
USB PWR OK  
DC PWR OK  
2
3
DC  
DC  
UOK  
DOK  
C
DC  
10FF  
5
4
PEN1  
OFF  
CHARGE ON  
500mA  
100mA  
TO  
SYSTEM  
LOAD  
23  
SYS  
CEN  
C
10FF  
SYS  
SYS 24  
6
7
PEN2  
PSET  
1MI  
LDO  
22  
CHARGE  
INDICATOR  
R
PSET  
CHG  
1.5kI  
11  
8
BATT 20  
BATT 21  
ISET  
R
3kI  
ISET  
1-CELL  
Li+  
C
4.7FF  
BATT  
V
L
C
VL  
0.1FF  
9, 13  
USB 18  
USB 19  
GND  
1
VBUS  
D-  
C
CT  
2
3
C
4.7FF  
USB  
0.068FF  
10  
15  
16  
CT  
D+  
THMSW  
ACTIVE  
4
5
ID  
THMEN  
GND  
17  
DISABLED  
LDO  
THMSW  
THM  
C
1FF  
LDO  
14  
100kI  
NTC  
100kI  
25C  
USB SUSPEND  
12  
USUS  
EP  
Figure 2. Typical Application Circuit Using Separate DC and USB Connector  
______________________________________________________________________________________ 17  
Dual-Input Linear Chargers, Smart Power Selector  
with Advanced Battery Temperature Monitoring  
TO LDO  
R
1MI  
PU  
R
PU  
4x 1MI  
5-PIN USB  
CONNECTOR  
CHARGE  
DONE  
1
2
3
25  
28  
27  
26  
DONE  
DC  
OT  
FLT  
OVERTEMPERATURE  
MAX8934A–  
MAX8934E  
1
FAULT OUTPUT  
USB PWR OK  
VBUS  
D-  
2
3
UOK  
DOK  
C
10FF  
DC  
DC  
D+  
DC PWR OK  
4
5
ID  
GND  
OFF  
CHARGE ON  
DC  
TO  
SYSTEM  
LOAD  
4
SYS 23  
SYS 24  
CEN  
C
10FF  
SYS  
5
PEN1  
1MI  
USB  
V
LDO  
22  
CHARGE  
INDICATOR  
500mA  
6
7
CHG  
PEN2  
100mA  
PSET  
BATT 20  
BATT 21  
R
PSET  
1-CELL  
Li+  
C
BATT  
1.5kI  
4.7FF  
11  
8
ISET  
R
3kI  
ISET  
USB 18  
USB 19  
V
L
C
VL  
0.1FF  
9, 13  
GND  
C
CT  
0.068FF  
10  
15  
16  
17  
CT  
LDO  
THMSW  
ACTIVE  
C
1FF  
LDO  
THMEN  
DISABLED  
THMSW  
THM  
USB SUSPEND  
12  
USUS  
14  
100kI  
NTC  
100kI  
25C  
EP  
Figure 3. Typical Application Circuit Using a 5-Pin USB Connector or Other DC/USB Common Connector  
18 _____________________________________________________________________________________  
Dual-Input Linear Chargers, Smart Power Selector  
with Advanced Battery Temperature Monitoring  
Table 1. External Components List for Figures 2 and 3  
COMPONENT  
(Figures 2 and 3)  
FUNCTION  
PART NUMBER  
10FF ±10%, 16V X5R ceramic capacitor (0805)  
Taiyo Yuden EMK212BJ106KG  
C
DC  
DC filter capacitor  
0.1FF ±10%, 10V X5R ceramic capacitor (0402)  
Taiyo Yuden LMK105BJ104KV  
C
VL  
V filter capacitor  
L
10FF ±10%, 6.3V X5R ceramic capacitor (0805)  
Taiyo Yuden JMK212BJ106KD  
C
SYS output bypass capacitors  
Battery bypass capacitor  
Charger timing capacitor  
LDO output capacitor  
SYS  
4.7FF ±10%, 6.3V X5R ceramic capacitor (0805)  
Taiyo Yuden JMK212BJ475KD  
C
BATT  
0.068FF ±10%, 16V X5R ceramic capacitor (0402)  
Taiyo Yuden EMK105BJ683KV  
C
CT  
1FF ±10%, 6.3V X5R ceramic capacitor (0402)  
Taiyo Yuden JMK105BJ105KV  
C
LDO  
R
(x5)  
Logic-output pullup resistors  
Negative TC thermistor  
1MI ±5% resistor  
PU  
THM  
Vishay NTC Thermistor P/N NTHS0603N01N1003FF  
100kI  
R
THM pullup resistor  
THMSW  
R
DC input current-limit programming resistor  
Fast-charge current programming resistor  
1.5kI ±1% for 2A limit  
PSET  
R
3kI ±1% for 1A charging  
ISET  
input pin. If both the DC and USB sources are con-  
nected, DC takes precedence.  
Detailed Description  
The MAX8934_ is a dual-input linear charger with  
Smart Power Selector that safely charges a single Li+/  
Li-Poly cell in accordance with JEITA specifications.  
The MAX8934_ integrates power MOSFETs and control  
circuitry to manage power flow in portable devices. See  
Figure 1. The charger has two power inputs, DC and  
USB. These can be separately connected to an AC  
adapter output and a USB port, or the DC input could be  
a single power input that connects to either an adapter  
or USB. Logic inputs, PEN1 and PEN2, select the cor-  
rect current limits for two-input or single-input operation.  
Figure 2 is the typical application circuit using separate  
DC and USB connectors. Figure 3 is the typical applica-  
tion circuit using a 5-pin USB connector or another DC/  
USB common connector.  
In some instances, there may not be enough adapter  
current or USB current to supply peak system loads. The  
MAX8934_ Smart Power Selector circuitry offers flexible  
power distribution from an AC adapter or USB source  
to the battery and system load. The battery is charged  
with any available power not used by the system load.  
If a system load peak exceeds the input current limit,  
supplemental current is taken from the battery. Thermal  
limiting prevents overheating by reducing power drawn  
from the input source.  
The MAX8934_ features an overvoltage limiter at SYS. If  
the DC or USB input voltage exceeds the SYS regulation  
voltage, V  
does not follow V  
or V , but remains  
USB  
SYS  
DC  
at its regulation voltage. The MAX8934_ has numerous  
other charging and power-management features that are  
detailed in the following sections.  
In addition to charging the battery, the MAX8934_ also  
supplies power to the system through the SYS output.  
The charging current is also provided from SYS so that  
the set input current limit controls the total SYS current,  
where total SYS current is the sum of the system load  
current and the battery-charging current. SYS is pow-  
ered from either the DC input pin or the USB sources  
A 3.3V ultra-low quiescent current, always-on LDO pro-  
vides up to 30mA for indicator LEDs and for backup  
power to the system. This LDO powers the thermistor  
monitor circuitry and provides bias to the external pullup  
resistor for the thermistor.  
*JEITA (Japan Electronics and Information Technology Industries Association) Standard, A Guide to the Safe Use of Secondary  
Lithium Ion Batteries on Notebook–Type Personal Computers, April 20, 2007.  
______________________________________________________________________________________ 19  
Dual-Input Linear Chargers, Smart Power Selector  
with Advanced Battery Temperature Monitoring  
and charger loads at SYS, it performs several additional  
functions to optimize use of available power.  
Smart Power Selector  
The MAX8934_ Smart Power Selector seamlessly distrib-  
utes power among the external inputs, the battery, and  
the system load (see the Typical Operating Circuit). The  
basic functions performed are:  
Input Voltage Limiting  
If an input voltage is above the overvoltage threshold  
(6.9V typ), the MAX8934_ enters overvoltage lockout  
(OVLO). OVLO protects the MAX8934_ and downstream  
circuitry from high-voltage stress up to 14V at DC and  
U With both an external power supply (USB or adapter)  
and battery connected:  
8V at USB. In OVLO, V remains on, the input switch that  
L
U When the system load requirements are less than  
the input current limit, the battery is charged with  
residual power from the input.  
sees overvoltage (Q1, Q2, Typical Operating Circuit)  
opens, and the appropriate power-monitor output (DOK,  
UOK) is high impedance, and CHG is high impedance.  
If both DC and USB see overvoltage, both input switches  
(Q1 and Q2, Typical Operating Circuit) open and the  
charger turns off. The BATT-to-SYS switch (Q3, Typical  
Operating Circuit) closes, allowing the battery to power  
SYS. An input is also invalid if it is less than BATT, or less  
than the DC undervoltage threshold of 3.5V (falling). With  
an invalid input voltage, SYS connects to BATT through a  
40mI switch (Q3, Typical Operating Circuit).  
U When the system load requirements exceed the  
input current limit, the battery supplies supplemen-  
tal current to the load.  
U When the battery is connected and there is no external  
power input, the system is powered from the battery.  
U When an external power input is connected and there  
is no battery, the system is powered from the external  
power input.  
Input Overcurrent Protection  
The current at DC and USB is limited to prevent input  
overload. This current limit can be selected to match the  
capabilities of the source, whether it is a 100mA or 500mA  
USB source, or an AC adapter. When the load exceeds  
the input current limit, SYS drops to 75mV below BATT  
and the battery supplies supplemental load current.  
A thermal-limiting circuit reduces the battery charge  
rate and external power-source current to prevent the  
MAX8934_ from overheating.  
System Load Switch  
An internal 40mI MOSFET connects SYS to BATT (Q3  
in the Typical Operating Circuit) when no voltage source  
is available at DC or USB. When an external source is  
detected at DC or USB, this switch is opened and SYS  
is powered from the valid input source through the input  
limiter.  
Thermal Limiting  
The MAX8934_ reduces input limiter current by 5%/NC  
when its die temperature exceeds +100NC. The system  
load (SYS) has priority over the charger current, so low-  
ering the charge current first reduces the input current. If  
the junction temperature still reaches +120NC in spite of  
charge current reduction, no input (DC or USB) current  
is drawn, the battery supplies the entire system load,  
and SYS is regulated at 75mV below BATT. Note that  
this on-chip thermal-limiting circuitry is not related to and  
operates independently from the thermistor input.  
The SYS-BATT switch also holds up SYS when the system  
load exceeds the input current limit. If that should happen,  
the SYS-BATT switch turns on so that the battery supplies  
additional SYS load current. If the system load continu-  
ously exceeds the input current limit, the battery does not  
charge, even though external power is connected. This is  
not expected to occur in most cases, since high loads usu-  
ally occur only in short peaks. During these peaks, battery  
energy is used, but at all other times the battery charges.  
Adaptive Battery Charging  
While the system is powered from DC, the charger  
draws power from SYS to charge the battery. If the  
charger load plus system load exceeds the input current  
limit, an adaptive charger control loop reduces charge  
current to prevent the SYS voltage from collapsing.  
Maintaining a higher SYS voltage improves efficiency  
and reduces power dissipation in the input limiter. The  
total current through the switch (Q1 or Q2 in the Typical  
Operating Circuit) is the sum of the load current at SYS  
and the battery charging current. The MAX8934A limiter  
clamps at 5.3V (4.35V for the MAX8934B/MAX8934C/  
Input Limiter  
The input voltage limiter is essentially an LDO regula-  
tor. While in dropout, the regulator dissipates a small  
I2R loss through the 0.2I MOSFET (Q1 in the Typical  
Operating Circuit) between DC and SYS. With an AC  
adapter or USB source connected, the input limiter  
distributes power from the external power source to the  
system load and battery charger. In addition to the input  
limiter’s primary function of passing power to the system  
20 _____________________________________________________________________________________  
Dual-Input Linear Chargers, Smart Power Selector  
with Advanced Battery Temperature Monitoring  
MAX9834D), so input voltages greater than 5.3V (4.35V  
for the MAX8934B/MAX8934C/MAX8934E) can increase  
power dissipation in the limiter. The MAX8934_ input  
USB or AC adapter output. Input and charger current  
limit are controlled by PEN1, PEN2, R  
as shown in Tables 2a and 2b.  
, and R  
PSET  
,
ISET  
limiter power loss is (V  
be as high as 5.3V for the MAX8934A or 4.35V for the  
MAX8934B–MAX8934E. The input limiter power loss is  
– V  
) x I , where V  
may  
DC  
SYS  
DC  
SYS  
Separate Adapter and USB Connectors  
When the AC adapter and USB have separate connec-  
tors, the adapter output connects to DC and the USB  
source connects to USB. PEN1 is permanently connected  
not less than 0.2I x I  
. Also note that the MAX8934_  
DC2  
turns off when any input exceeds 6.9V (typ).  
high (to DC or V ). The DC current limit is set by R  
,
L
PSET  
DC and USB Connections and  
while the USB current limit is set by PEN2 and USUS.  
Current-Limit Options  
Single Common Connector  
for USB or Adapter  
When a single common connector is used for both AC  
adapter and USB sources, the DC input is used for  
both input sources. The unused USB inputs should be  
grounded when an AC adapter is connected at DC,  
PEN1 should be pulled high to select the current limit  
Input Current Limit  
The input and charger current limits are set as shown in  
Tables 2a and 2b. It is often preferable to change the  
input current limit as the input power source is changed.  
The MAX8934_ facilitates this by allowing different input  
current limits for DC and USB as shown in Tables 2a  
and 2b.  
set by R  
. When a USB source is connected, PEN1  
PSET  
When the input current limit is reached, the first action  
taken by the MAX8934_ is to reduce the battery charge  
current. This allows the regulator to stay in dropout, or  
at 5.3V (MAX8934A), during heavy loads, thus reducing  
power dissipation. If, after the charge current is reduced  
to 0mA, the load at SYS still exceeds the input current  
limit, SYS voltage begins to fall. When the SYS voltage  
drops to BATT, the SYS-to-BATT switch turns on, using  
battery power to support the system load during the load  
peak. The MAX8934_ features flexible input connections  
(at the DC and USB input pins) and current-limit settings  
(set by PEN1, PEN2, PSET, and ISET) to accommodate  
nearly any input power configuration. However, it is  
expected that most systems use one of two external  
power schemes: separate connections for USB and an  
AC adapter, or a single connector that accepts either  
should be low to select 500mA, 100mA, or USB suspend  
(further selected by PEN2 and USUS). PEN1 can be  
pulled up by the AC adapter power to implement hard-  
ware adapter/USB selection.  
USB Suspend  
Driving USUS high when PEN1 is low turns off charging,  
as well as the SYS output and reduces input current to  
190FA to accommodate USB suspend mode.  
Power Monitor Outputs (UOK, DOK)  
DOK is an open-drain output that pulls low when the DC  
input has valid power. UOK is an open-drain output that  
pulls low when the USB input has valid power. A valid  
input for DC or USB is between 4.1V and 6.6V. If a single  
power-OK output is preferred, DOK and UOK can be  
Table 2a. Input Limiter Control Logic (MAX8934A/MAX8934B/MAX8934C/MAX8934E)  
POWER  
SOURCE  
DC INPUT  
CURRENT LIMIT CURRENT LIMIT  
USB INPUT  
MAXIMUM CHARGE  
PEN1  
PEN2  
USUS  
DOK  
UOK  
CURRENT*  
AC adapter at  
DC input  
L
X
H
X
X
3000V/R  
3000V/R  
ISET  
PSET  
USB input off;  
DC input has  
priority  
L
L
X
X
X
L
L
L
L
L
L
X
X
X
H
L
L
L
475mA  
95mA  
475mA  
95mA  
0
USB power at  
DC input  
L
X
H
L
H
L
USB suspend  
H
H
H
475mA  
95mA  
USB power at  
USB input; DC  
unconnected  
3000V/R  
ISET  
L
No DC input  
X
H
USB suspend  
0
0
DC and USB  
unconnected  
H
H
X
X
X
No USB input  
*Charge current cannot exceed the input current limit. Charge may be less than the maximum charge current if the total SYS load  
exceeds the input current limit.  
______________________________________________________________________________________ 21  
Dual-Input Linear Chargers, Smart Power Selector  
with Advanced Battery Temperature Monitoring  
Table 2b. Input Limiter Control Logic (MAX8934D)  
FEATURE  
DC INPUT  
USB INPUT  
NOTES  
Absolute Maximum Rating  
16V  
9V  
Set by R  
, PEN1, PEN2, and  
USUS;  
2A (max)  
Set by R  
PEN2, and USUS;  
1.5A (max)  
, PEN1,  
PSET sets the same input  
current limit for DC and USB  
paths.  
PSET  
PSET  
Input Current Limit  
DC INPUT  
CURRENT  
LIMIT  
USB INPUT  
CURRENT  
LIMIT  
MAXIMUM  
CHARGE  
CURRENT  
POWER  
DOK  
UOK  
PEN1  
PEN2  
USUS  
SOURCE  
AC Adapter  
L
X
H
X
X
3000V/R  
3000V/R  
3000V/R  
3000V/R  
PSET  
ISET  
at DC  
USB Input  
Off; DC input  
has priority  
L
X
X
X
X
L
L
L
L
H
L
X
H
L
X
L
L
H
L
L
L
L
PSET  
ISET  
L
L
475mA  
95mA  
475mA  
95mA  
0
USB Power  
at DC  
L
L
L
X
H
L
USB suspend  
H
H
H
H
H
H
L
3000V/R  
3000V/R  
3000V/R  
PSET  
ISET  
ISET  
600V/R  
PSET  
USB Power  
at USB;  
DC Open  
H
L
475mA  
475mA  
95mA  
L
95mA  
No DC input  
H
H
L
X
X
X
X
H
X
USB suspend  
0
0
DC and  
USB Open  
H
No USB input  
wire-ORed together. The combined output then pulls low  
if either USB or DC is valid.  
support the load during input power transitions. When  
the charger is turned on, charge current ramps from  
zero to the ISET current value in typically 1.5ms. Charge  
current also ramps when transitioning to fast-charge  
from prequal and when changing the USB charge cur-  
rent from 100mA to 500mA with PEN2. There is no dI/dt  
limiting, however, if ISET is changed suddenly using a  
Soft-Start  
To prevent input transients that can cause instability in  
the USB or AC adapter power source, the rate of change  
of input current and charge current is limited. When a  
valid DC or USB input is connected, the input current  
limit is ramped from zero to the set current-limit value  
(as shown in Tables 2a and 2b). If DC is connected with  
no USB power present, input current ramps in 1.5ms. If  
DC is connected with USB already present, input current  
ramps in 50Fs. When USB is connected with no DC pres-  
ent, input current also ramps in 50Fs. If USB is connect-  
ed with DC already present, the USB input is ignored.  
switch at R  
.
ISET  
Battery Charger  
The battery charger state diagram is illustrated in Figure  
8. With a valid DC or USB input, the battery charger  
initiates a charge cycle when the charger is enabled. It  
first detects the battery voltage. If the battery voltage is  
less than the BATT prequal threshold (3.0V), the charger  
enters prequal mode and charges the battery at 10% of  
the maximum fast-charge current. This reduced charge  
rate ensures that the maximum fast-charge current set-  
ting does not damage a deeply discharged battery.  
Once the battery voltage rises to 3.0V, the charger tran-  
sitions to fast-charge mode and applies the maximum  
charge current. As charging continues, the battery volt-  
age rises until it approaches the battery regulation volt-  
If an adapter is plugged into DC while USB is already  
powered, the input current limit reramps from zero back  
up to the DC current limit so that the AC adapter does  
not see a load step. During this transition, if the input  
current limit is below the SYS load current, the battery  
supplies the additional current needed to support the  
load. Additionally, capacitance can be added to SYS to  
22 _____________________________________________________________________________________  
Dual-Input Linear Chargers, Smart Power Selector  
with Advanced Battery Temperature Monitoring  
age where charge current starts tapering down. When  
charge current decreases to 10% of the fast-charge  
MONITORING THE BATTERY  
CHARGE CURRENT WITH V  
ISET  
current, the charger enters a brief 15s top-off, (60min  
for the MAX8934B and MAX8934D) and then charging  
stops. If the battery voltage subsequently drops below  
the recharge threshold, charging restarts and the timers  
reset.  
1.5  
Charge Enable (CEN)  
When CEN is low, the charger is on. When CEN is high,  
the charger turns off. CEN does not affect the SYS out-  
put. In many systems, there is no need for the system  
controller (typically a microprocessor) to disable the  
charger, because the MAX8934_ Smart Power Selector  
circuitry independently manages charging and adapter/  
battery power hand-off. In these situations, CEN can be  
connected to ground.  
V
ISET  
0
Setting the Charge Current  
ISET adjusts charge current to match the capacity of the  
battery. A resistor from ISET to ground sets the maximum  
fast-charge current:  
2000 (1.5V/R )  
ISET  
DISCHARGING  
0
BATTERY CHARGING CURRENT (A)  
Figure 4. Monitoring the Battery Charge Current with V  
ISET  
I
= 2000 x 1.5V/R = 3000V/R  
ISET ISET  
CHGMAX  
reduces charge current. This prevents the charger from  
overloading the input source or overheating the system.  
Determine the I  
value by considering the char-  
CHGMAX  
acteristics of the battery. It is not necessary to limit the  
charge current based on the capabilities of the expected  
AC adapter/USB charging input, the system load, or  
thermal limitations of the PCB. The MAX8934_ automati-  
cally adjusts the charging algorithm to accommodate  
these factors.  
Charge Termination  
When the charge current falls to the termination thresh-  
old and the charger is in voltage mode, charging is  
complete. Charging continues for a brief 15s top-off  
period (60min for the MAX8934B and MAX8934D) and  
then enters the DONE state where charging stops. The  
) is set to 10% of the fast-  
charge current setting. Note that if charge current falls  
to I as a result of the input or thermal limiter, the  
Monitoring the Charge Current  
In addition to setting the charge current, ISET can also  
be used to monitor the actual current charging the bat-  
tery. See Figure 4. The ISET output voltage is:  
DONE current threshold (I  
DONE  
DONE  
charger does not enter the DONE state. For the charger  
to enter the DONE state, the charge current must be  
V
ISET  
= I  
x 1.5V/I  
= I  
x R /2000  
ISET  
CHG  
CHGMAX  
CHG  
less than I  
, the charger must be in voltage mode,  
TERM  
where I  
is the set fast-charge current and I  
CHG  
CHGMAX  
and the input or thermal limiter must not be reducing the  
charge current. The charger exits the DONE state, and  
fast-charge resumes if the battery voltage subsequently  
drops 104mV or if CEN is cycled.  
is the actual battery charge current. A 1.5V output indi-  
cates the battery is being charged at the maximum set  
fast charge current; 0V indicates no charging. This volt-  
age is also used by the charger control circuitry to set  
and monitor the battery current. Avoid adding more than  
10pF capacitance directly to the ISET pin. If filtering of  
the charge-current monitor is necessary, add a resistor  
of 100kI or more between ISET and the filter capacitor  
to preserve charger stability.  
Charge Status Outputs  
Charge Output (CHG)  
CHG is an open-drain, active-low output that is low dur-  
ing charging. CHG is low when the battery charger is in  
its prequalification and fast-charge states. When charge  
current falls to the charge termination threshold and the  
charger is in voltage mode, CHG goes high impedance.  
CHG goes high impedance if the thermistor causes the  
charger to enter temperature suspend mode.  
Note that the actual charge current can be less than the  
set fast-charge current when the charger enters voltage  
mode or when the input current limiter or thermal limiter  
______________________________________________________________________________________ 23  
Dual-Input Linear Chargers, Smart Power Selector  
with Advanced Battery Temperature Monitoring  
When the MAX8934_ is used with a microprocessor (FP),  
connect a pullup resistor between CHG and the logic I/O  
voltage to indicate charge status to the FP. Alternatively,  
CHG can sink up to 20mA for an LED indicator.  
Thermistor Monitor  
The MAX8934_ thermistor monitor is configured to  
execute JEITA recommendations regarding Li+/Li-Poly  
battery charging by adjusting the fast charge current  
and/or the charge termination voltage accordingly (see  
Figures 6 and 7). Connect the THM input to an external  
negative temperature coefficient (NTC) thermistor to  
monitor battery or system temperature. Since the therm-  
istor monitoring circuit employs an external bias resistor  
from THM to THMSW, the thermistor is not limited only  
to 10kI (at +25NC). Any thermistor resistance can be  
Charge DONE Output (DONE)  
DONE is an open-drain, active-low output that goes low  
when charging is complete. The charger enters its DONE  
state 15s (60min for the MAX8934B and MAX8934D)  
after the charge current falls to the charge-termination  
threshold and the charger is in voltage mode. The char-  
ger exits the DONE state, and fast-charge resumes, if the  
battery voltage subsequently drops 104mV, or if input  
power or CEN is cycled. When the MAX8934_ is used in  
conjunction with a FP, connect a pullup resistor between  
DONE and the logic I/O voltage to indicate charge status  
to the FP. Alternatively, DONE can sink up to 20mA for  
an LED indicator.  
used as long as the value of R  
is equivalent to  
THMSW  
the thermistor’s +25NC resistance. The MAX8934_ THM  
thresholds are optimized for a thermistor Beta of 3964  
or 3477 (see the Selector Guide). The general relation  
of thermistor resistance to temperature is defined by the  
following equation:  
1
1
β
-
Fault Output (FLT) and Charge Timer  
FLT is an open-drain, active-low output that goes low  
during a battery fault. The fault state occurs when either  
the prequal or fast-charge timer expires. The prequal  
T+273°C 298°C  
R
= R × e  
25  
T
where:  
and fast-charge fault timers are set by C  
:
R
T
= The resistance in ohms of the thermistor at  
temperature T in Celsius  
CT  
C
CT  
PREQUAL: t  
= 30min ×  
PQ  
R
25  
= The resistance in ohms of the thermistor at  
+25NC  
0.068FF  
C
CT  
0.068FF  
A = The material constant of the thermistor  
T = The temperature of the thermistor in NC  
FAST CHARGE:t  
= 300min ×  
FC  
Charging is suspended when the thermistor tempera-  
TOPOFF:t  
=15s (60 minutes for the  
TO  
ture is out of range (V  
> V  
> V  
). The  
THM_T4  
THM_T1  
THM  
MAX8934B and MAX8934D)  
charge timers are also suspended and hold their state  
but no fault is indicated. When the thermistor comes  
back into range, charging resumes and the charge timer  
continues from where it left off.  
While in fast-charge mode, a large system load or device  
self-heating can cause the MAX8934_ to reduce charge  
current. Under these circumstances, the fast-charge  
timer adjusts to ensure that adequate charge time is still  
allowed. Consequently, the fast-charge timer is slowed  
by 2x if charge current is reduced below 50% of the pro-  
grammed fast-charge level. If charge current is reduced  
to below 20% of the programmed level, the fast-charge  
timer is paused. The fast-charge timer is not adjusted  
if the charger is in voltage mode where charge current  
reduces due to current tapering under normal charging.  
The THMEN input controls THMSW and the thermistor  
monitor circuitry when the battery charger is disabled,  
providing the user with the means to minimize the bat-  
tery current drain caused by the thermistor monitor. The  
THMEN input is ignored while the battery is charging,  
since the thermistor must be monitored at all times.  
While charging, the thermistor monitor is used to auto-  
matically adjust the charge termination voltage and/or  
the fast-charge current, depending on the sensed bat-  
tery temperature and the safety region set at the factory.  
If the battery temperature exceeds the THM hot overtem-  
perature threshold and THMEN is high, the OT flag pulls  
low. Typical systems connect OT to a FP input so that the  
system can safely shut down.  
To exit a fault state, toggle CEN or remove and reconnect  
the input source(s). Note also that thermistor out of range  
or on-chip thermal-limit conditions are not considered  
faults. When the MAX8934_ is used in conjunction with a  
FP, connect a pullup resistor between FLT and the logic  
I/O voltage to indicate fault status to the FP. Alternatively,  
FLT can sink up to 20mA for an LED indicator.  
24 _____________________________________________________________________________________  
Dual-Input Linear Chargers, Smart Power Selector  
with Advanced Battery Temperature Monitoring  
SYS  
LOW-I , ALWAYS-ON 3.3V LDO  
Q
TRACKS SYS WHEN DC AND USB ARE NOT  
PRESENT, THE BATTERY IS BEING  
LDO  
DISCHARGED, AND V  
P 3.3V.  
BATT  
CHG  
VINT  
THMEN  
THMSW  
CHG  
CHG  
CHARGER  
CONTROL  
R
THMSW  
T4  
(60NC)  
THM  
-
VINT  
+
VINT  
VINT  
T
OT  
CHG  
T3  
(45NC)  
-
THERMISTOR  
MONITOR  
+
CHG  
VINT  
VINT  
T2  
(10NC)  
+
-
CHG  
VINT  
VINT  
T
OT  
-
(75NC)  
+
CHG  
THMEN  
VINT  
VINT  
T1  
+
-
(0NC)  
CHG  
Figure 5. Thermistor Monitor Details  
______________________________________________________________________________________ 25  
Dual-Input Linear Chargers, Smart Power Selector  
with Advanced Battery Temperature Monitoring  
T1  
T2  
T3  
T4  
T1  
T2  
T3  
T4  
4.2  
4.2  
4.1  
4.075  
4.1  
4.075  
4.0  
4.0  
0
10  
T2  
25  
45  
60  
T4  
85  
0
10  
T2  
25  
45  
60  
T4  
85  
TEMPERATURE (NC)  
TEMPERATURE (NC)  
T1  
T3  
T1  
T3  
C
C
0.5C  
0.5C  
0
10  
25  
45  
60  
85  
0
10  
25  
45  
60  
85  
TEMPERATURE (NC)  
TEMPERATURE (NC)  
Figure 6. Safety Region 1: Fast-Charge Currents and Charge  
Termination Voltages  
Figure 7. Safety Region 2: Fast-Charge Currents and Charge  
Termination Voltages  
26 _____________________________________________________________________________________  
Dual-Input Linear Chargers, Smart Power Selector  
with Advanced Battery Temperature Monitoring  
CEN = HIGH  
OR  
NOT READY  
REMOVE AND RECONNECT  
UOK AND DOK = HIGH-Z  
THE INPUT SOURCE(S)  
CHG = HIGH-Z  
FLT = HIGH-Z  
DONE = HIGH-Z  
ANY STATE  
I
= 0mA  
CHG  
TOGGLE CEN  
OR REMOVE AND RECONNECT  
THE INPUT SOURCE(S)  
UOK OR DOK = LOW  
CEN = 0  
RESET TIMER  
STATE DIAGRAM IS FOR 10NC < TEMP < +45NC,  
OUTSIDE OF THIS RANGE SEE FIGURE 7  
PREQUAL  
UOK OR DOK = LOW  
CHG = LOW  
TIMER > t  
PQ  
FLT = HIGH-Z  
DONE = HIGH-Z  
0V P V  
P 3V  
BATT  
I
= I  
10  
CHG CHGMAX  
FAULT  
V
> 3V,  
BATT  
V
< 2.82V,  
BATT  
UOK AND DOK = LOW  
CHG = HIGH-Z  
FLT = LOW  
RESET TIMER  
RESET TIMER  
DONE = HIGH-Z  
FAST-CHARGE  
I
= 0mA  
CHG  
UOK OR DOK = LOW  
CHG = LOW  
FLT = HIGH-Z  
DONE = HIGH-Z  
V
< 2.82V  
BATT  
RESET TIMER  
3V P V  
P 4.2V  
BATT  
I
= I  
CHG CHGMAX  
TIMER > t  
FC  
I
< I  
BATT  
CHG DONE  
(TIMER SLOWED BY 2X IF  
< I /2, AND  
AND V  
= 4.2V  
I
CHG CHGMAX  
AND THERMAL  
OR OUTPUT LIMIT  
NOT EXCEEDED  
RESET TIMER  
PAUSED IF I  
< I  
/5  
CHG CHGMAX  
I
> I  
CHG DONE  
WHILE BATT < 4.2V)  
RESET TIMER  
TOP-OFF  
(PQ, FC, TOP-OFF)  
ANY CHARGING  
STATE  
UOK OR DOK = LOW  
CHG = HIGH-Z  
FLT = HIGH-Z  
V
< 4.1V  
BATT  
V
< V  
< V  
V
> V  
> V  
DONE = HIGH-Z  
BATT = 4.2V  
THM_T1  
THM  
THM_T4  
THMT1  
THM THMT4  
RESET TIMER  
TIMER RESUME  
TIMER SUSPEND  
I
= I  
CHG DONE  
TEMPERATURE  
SUSPEND  
= 0mA  
TIMER > 15s (MAX8934A/MAX8934C  
/MAX8934E)  
TIMER > 60min (MAX8934B/MAX8934D)  
I
CHG  
UOK OR DOK = PREVIOUS STATE  
CHG = HIGH-Z  
FLT = HIGH-Z  
DONE  
DONE = HIGH-Z  
UOK OR DOK = LOW  
CHG = HIGH-Z  
FLT = HIGH-Z  
V
THM  
< V  
THM_OT  
V
> V  
THM_OT  
THM  
DONE = LOW  
4.1V < V  
< 4.2V  
= 0mA  
BATT  
OVERTEMP  
OT = LOW  
I
CHG  
Figure 8. Charger State Diagram  
______________________________________________________________________________________ 27  
Dual-Input Linear Chargers, Smart Power Selector  
with Advanced Battery Temperature Monitoring  
Always-On LDO  
The ultra-low quiescent current LDO is always on and is  
preset to an output voltage of 3.3V. The LDO provides  
up to 30mA output current. When DC and USB are inval-  
id and the battery is discharging, the LDO output volt-  
Power Dissipation  
PCB Layout and Routing  
Good design minimizes ground bounce and voltage  
gradients in the ground plane. GND should connect to  
the power-ground plane at only one point to minimize the  
effects of power-ground currents. Battery ground should  
connect directly to the power-ground plane. Connect  
GND to the exposed pad directly under the IC. Use mul-  
tiple tightly spaced vias to the ground plane under the  
exposed pad to help cool the IC. Position input capaci-  
tors from DC, SYS, BATT, and USB to the power-ground  
plane as close as possible to the IC. Keep high current  
traces such as those to DC, SYS, and BATT as short and  
wide as possible. Refer to the MAX8934 Evaluation Kit  
for a suitable PCB layout example.  
age tracks V  
as it drops below 3.3V. A 1FF ceramic  
SYS  
capacitor connected from LDO to GND is recommended  
for most applications.  
Table 3. Package Thermal Characteristics  
28-PIN 4mm x 4mm THIN QFN  
SINGLE-LAYER PCB  
Continuous 1666.7mW  
Power (derate 20.8mW/NC  
Dissipation above +70NC)  
MULTILAYER PCB  
2286mW  
(derate 28.6mW/NC  
above +70NC)  
B
48NC/W  
3NC/W  
35NC/W  
3NC/W  
JA  
JC  
Chip Information  
B
PROCESS: BiCMOS  
Pin Configuration  
Ordering Information  
TOP VIEW  
PART  
TEMP RANGE  
-40NC to +85NC  
-40NC to +85NC  
-40NC to +85NC  
-40NC to +85NC  
PIN-PACKAGE  
28 Thin QFN-EP*  
28 Thin QFN-EP*  
28 Thin QFN-EP*  
28 Thin QFN-EP*  
MAX8934BETI+  
MAX8934CETI+  
MAX8934DETI+  
MAX8934EETI+  
21 20 19 18 17 16 15  
14  
13  
CHG 22  
SYS 23  
THM  
GND  
12 USUS  
24  
25  
26  
27  
28  
SYS  
OT  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
MAX8934A–  
MAX8934E  
ISET  
CT  
11  
10  
9
DOK  
UOK  
FLT  
GND  
*EP  
6
8
V
L
1
2
3
4
5
7
THIN QFN  
*EXPOSED PAD  
Selector Guide  
USB INPUT CURRENT  
SAFETY  
REGION**  
THERMISTOR  
PART  
SYS VOLTAGE (V)  
TOP-OFF TIMER  
LIMIT (max)  
BETA  
500mA  
500mA  
500mA  
1.5A  
MAX8934AETI+  
MAX8934BETI+  
MAX8934CETI+  
MAX8934DETI+  
MAX8934EETI+  
1
1
1
1
1
5.3  
3964  
3477  
3964  
3477  
3477  
15s  
60min  
15s  
4.35  
4.35  
4.35  
4.35  
60min  
15s  
500mA  
**For safety region 2, contact factory.  
For thermistor Beta = 3477, contact factory.  
28 _____________________________________________________________________________________  
Dual-Input Linear Chargers, Smart Power Selector  
with Advanced Battery Temperature Monitoring  
Package Information  
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in the  
package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the  
package regardless of RoHS status.  
PACKAGE TYPE  
PACKAGE CODE  
DOCUMENT NO.  
21-0139  
28 TQFN-EP  
T2844+1  
______________________________________________________________________________________ 29  
Dual-Input Linear Chargers, Smart Power Selector  
with Advanced Battery Temperature Monitoring  
Package Information (continued)  
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in the  
package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the  
package regardless of RoHS status.  
30 _____________________________________________________________________________________  
Dual-Input Linear Chargers, Smart Power Selector  
with Advanced Battery Temperature Monitoring  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
CHANGED  
DESCRIPTION DATE  
0
1
2/10  
3/10  
Initial release  
Added lead temperature and tightened BATT regulation voltage specs  
2, 4  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied.  
Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
31  
©
2010 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX8934BETI+T

Power Management Circuit, BICMOS, PQCC28,
MAXIM

MAX8934CETI+

Dual-Input Linear Chargers, Smart Power Selector with Advanced Battery Temperature Monitoring
MAXIM

MAX8934CETI+T

Power Management Circuit, BICMOS, PQCC28,
MAXIM

MAX8934DETI+

Dual-Input Linear Chargers, Smart Power Selector with Advanced Battery Temperature Monitoring
MAXIM

MAX8934DETI+T

Power Management Circuit, BICMOS, PQCC28,
MAXIM

MAX8934E

Dual-Input Linear Chargers, Smart Power Selector with Advanced Battery Temperature Monitoring
MAXIM

MAX8934EETI+

Dual-Input Linear Chargers, Smart Power Selector with Advanced Battery Temperature Monitoring
MAXIM

MAX8934EETI+T

Power Management Circuit, BICMOS, PQCC28,
MAXIM

MAX8934G

Dual-Input Linear Charger, Smart Power Selector with Advanced Battery Temperature Monitoring
MAXIM

MAX8934GETI+

Dual-Input Linear Charger, Smart Power Selector with Advanced Battery Temperature Monitoring
MAXIM

MAX8939

System Power Management for Mobile Handset
MAXIM

MAX8939A

System Power Management for Mobile Handset
MAXIM