MAX8967EWV+T [MAXIM]

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor; 双路2A降压型转换器,带有6的LDO用于基带和应用处理器
MAX8967EWV+T
型号: MAX8967EWV+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor
双路2A降压型转换器,带有6的LDO用于基带和应用处理器

转换器
文件: 总59页 (文件大小:3136K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
General Description  
Benefits and Features  
The MAX8967 is an FPMIC with two DC-to-DC step-  
down switching converters and six remote capaci-  
tor-capable LDOs. The step-down converters deliv-  
er up to 2A of output current independently. Two  
of the LDOs deliver a load current up to 300mA,  
while the remaining four deliver up to 150mA. Both  
step-down converters have remote sense, allowing loads  
to be placed away from the IC. The IC operates over a  
2.6V to 5.5V input supply range.  
S Multi-Output PMIC in a Compact Package  
Two 2A Step-Down Converters with Remote  
Output Voltage Sensing  
Two 300mA LDOs  
Four 150mA LDOs  
< 1µA Shutdown Current  
2.32mm x 2.44mm Package  
S Versatile Step-Down Converters  
Programmable Output Voltage (0.6V to 3.3875V)  
Through I2C Bus  
Fixed-frequency 4.4MHz PWM operation and clocks that  
are 180N out of phase permit the use of small external  
components. Under light load conditions, the step-down  
converters automatically switch to skip mode operation.  
In skip mode operation, switching occurs only as need-  
ed, allowing efficient operation. Placing either of the step-  
down converters into green mode reduces the quiescent  
current consumption of that converter to 5FA (typ).  
Programmable Output Voltage Slew Rate  
(12.5mV/µs to 50mV/µs)  
Dynamic Switching Between Two Output  
Voltages Through V  
Pins  
ID_  
S Efficient Step-Down Converters  
Over 95% Efficiency with Internal Synchronous  
Rectifier  
The IC supports dynamic adjustment of the output  
voltage through its I2C interface. Each step-down  
converter has two register settings for output voltage and  
a setting for ramp rate. Also, each step-down converter  
Automatic Skip Mode at Light Loads  
Low 61µA (typ) Quiescent Current  
5µA (typ) Green Mode per Step-Down Converter  
has a dedicated enable pin and a dedicated V pin to  
ID  
S Programmable LDOs  
toggle between the two programmed output voltages.  
Additionally, an interrupt output is provided, allowing the  
IC to signal its master.  
Programmable Output Voltage (0.8V to 3.95V in  
50mV Steps)  
Programmable Soft-Start Slew Rate  
(5mV/µs–100mV/µs)  
Typical Operating Circuit  
S Reduces Component Size and Board Area Solution  
4.4MHz Step-Down Switching Allows for 1µH  
Inductors  
INPUT  
2.6V TO 5.5V  
OUT1  
C  
= 1µF for All LDOs  
IN1  
IN2  
AV  
OUT1  
LX1  
OUT  
1µH  
0.6V TO  
3.3875V,  
2A  
Reduced Board Space with Remote Capacitor  
LDOs  
PGND1  
Internal Feedback for Step-Down Converters  
1.7V TO 5.5V  
and LDOs  
INA  
OUT2  
LX2  
OUT2  
0.6V TO  
3.3875V,  
2A  
1µH  
INB  
AGND  
Applications  
MAX8967  
1.65V TO 5.5V  
V
PGND2  
IO  
Cellular Handsets and Smartphones  
Tablets  
SCL  
SDA  
LDO1  
LDO2  
LDO3  
LDO4  
LDO5  
LDO6  
0.8V TO 3.95V, 150mA  
2
I C  
0.8V TO 3.95V, 300mA  
0.8V TO 3.95V, 150mA  
0.8V TO 3.95V, 150mA  
0.8V TO 3.95V, 300mA  
0.8V TO 3.95V, 150mA  
Portable Devices  
EN1  
EN2  
V
V
ID1  
ID2  
Ordering Information appears at end of data sheet.  
IRQB  
Note: Some revisions of this device may incorporate deviations from published specifications known as errata. Multiple revisions of any device may  
be simultaneously available through various sales channels. For information about device errata, go to: www.maximintegrated.com/errata.  
For pricing, delivery, and ordering information, please contact Maxim Direct at  
1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
19-6534; Rev 0; 12/12  
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
ABSOLUTE MAXIMUM RATINGS  
IN1, IN2, INA, INB, AV, OUT1, OUT2, ,SCL, SDA, SNSP1,  
SNSN1, SNSP2, SNSN2 to AGND....................-0.3V to +6.0V  
Continuous Power Dissipation (T = +70NC)  
30-Bump, 2.32mm x 2.44mm WLP  
A
EN1, EN2, V , V , IRQB to AGND...... -0.3V to (V  
LDO1, LDO2, LDO3 to AGND.................-0.3V to (V  
LDO4, LDO5, LDO6 to AGND.................-0.3V to (V  
PGND1, PGND2 to AGND ...................................-0.3V to +0.3V  
LX1, LX2 Current..........................................................2.0A  
+ 0.3V)  
+ 0.3V)  
+ 0.3V)  
(derate 20.4mW/NC above +70NC)............................1632mW  
Operating Temperature...................................... -40NC to +85NC  
Junction Temperature .....................................................+150NC  
Storage Temperature Range............................ -65NC to +150NC  
Soldering Temperature (reflow) ......................................+260NC  
ID_ IO  
AV  
INA  
INB  
RMS  
CAUTION! ESD SENSITIVE DEVICE  
PACKAGE THERMAL CHARACTERISTICS (Note 1)  
WLP  
Junction-to-Ambient Thermal Resistance (B )..........49NC/W  
Junction-to-Case Thermal Resistance (B ) ....................9NC/W  
JC  
JA  
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer  
board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional opera-  
tion of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
_
IN  
= V = 3.6V, V = 1.8V, T = -40NC to +85NC, unless otherwise noted. Typical values are T = +25NC.) (Note 2)  
AV IO A A  
PARAMETER  
SYMBOL  
CONDITIONS  
= V  
MIN  
TYP  
MAX  
5.5  
UNITS  
Operating Input Voltage Range  
Overvoltage Lockout  
V
V
V
V
= V  
2.6  
V
V
INPUT  
IN1  
AV  
AV  
IN2  
AV  
OVP  
rising, 100mV hysteresis  
rising, 55mV hysteresis  
5.70  
5.85  
2.4  
6.00  
2.5  
AV Undervoltage Lockout (UVLO)  
UVLO  
2.3  
1.65  
1.4  
V
V
V
V
V
V
Operating Range  
V
5.5  
IO  
IO  
IO  
IO  
IO  
Enable Threshold High  
Enable Threshold Low  
Enable Hysteresis  
V
0.4  
V
100  
+0.1  
0.1  
mV  
T
T
= +25NC  
= +85NC  
-5  
+0.5  
V
> 2.6V, V < 0.4V,  
IO  
EN1 = EN2 = 0  
A
AV  
V
Shutdown Current  
FA  
A
A
V
V
Standby Current  
Supply Current  
V
> 2.6V, V > 1.4V, EN1 = EN2 = 0  
28  
FA  
FA  
A
AV  
IO  
All logic in high or low state  
0.1  
IO  
Quiescent Current  
(Green Mode)  
No switching, V = 1.2V, step-down  
converter in green mode, all LDOs off  
OUT_  
5
FA  
FA  
Quiescent Current  
(Step-Down Converters On)  
No switching, V  
sense off  
= 1.2V remote  
OUT_  
61  
85  
No switching, V  
off, both step-down converters in normal  
mode, all LDOs on  
= 1.2V, remote sense  
OUT_  
Quiescent Current  
(All On Normal Mode)  
176  
75  
FA  
FA  
Quiescent Current (Step-Down  
Converters On, Normal Mode  
Remote sense ON)  
No switching, V  
on, both step-down converters on  
= 1.2V, remote sense  
OUT_  
120  
Maxim Integrated  
2
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
_
IN  
= V = 3.6V, V = 1.8V, T = -40NC to +85NC, unless otherwise noted. Typical values are T = +25NC.) (Note 2)  
AV IO A A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
No switching, V  
step-down converters in green mode,  
all LDOs on  
= 1.2V, both  
OUT_  
Quiescent Current  
(All On Green Mode)  
40  
FA  
Forced PWM, one step-down converter on  
FPWM Current  
only, I  
= 0A, C  
= C = 22FF,  
9
mA  
OUT  
OUT1  
OUT2  
L1 = L2 = 1FH, V  
= 1.2V  
OUT  
Thermal Shutdown  
T
rising, 20NC hysteresis  
+160  
NC  
A
STEP-DOWN CONVERTER 1  
Output Current  
L = 1FH  
2
A
V
Adjustable Output Voltage  
Range  
12.5mV steps  
0.6000  
3.3875  
FPWM, I  
= 0.2A C  
= 22FF,  
OUT1  
OUT1  
Settling Time  
L = 1FH, measure from V  
= 1V to  
20  
Fs  
OUT1  
V
= 1.2V  
OUT1  
Output Voltage Accuracy  
(FPWM)  
V
= 1.2V, FPWM, V  
< 0.95 x V ,  
OUT1  
OUT1 IN  
1.176  
1.152  
1.20  
1.200  
0.04  
1.224  
1.248  
V
V
remote sense disabled (Note 3)  
Output Voltage Accuracy  
(Green Mode)  
Green mode, I P 5mA (Note 3)  
OUT1  
V
= 1.2V, I  
= 0.2A,  
OUT1  
OUT1  
Line Regulation  
%/V  
C
= 22FF, L = 1FH  
OUT1  
Load Regulation  
V
= 1.2V, 0 P I  
P 2A  
+0.125  
4.40  
3000  
1800  
1
%/A  
MHz  
mA  
mA  
A
OUT1  
OUT1  
Switching Frequency  
Peak Current Limit  
Valley Current Limit  
Negative Current limit  
3.96  
4.84  
FPWM mode  
FPWM mode  
FPWM mode  
2500  
3600  
Zero-Crossing Current  
Threshold  
Used in skip mode and green mode  
20  
mA  
PMOS On-Resistance  
NMOS On-Resistance  
V
V
= 3.6V, I  
= 3.6V, I  
= 190mA  
= 190mA  
60  
50  
0.1  
1
mI  
mI  
IN_  
IN_  
OUT1  
OUT1  
T
T
= +25NC  
= +85NC  
-1  
+1  
A
LX Leakage  
V
= V  
0V  
FA  
LX1  
IN ,  
A
Output Discharge Resistor in  
Shutdown  
Feature must be active, see the Register  
Definitions section  
100  
I
Maxim Integrated  
3
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
_
IN  
= V = 3.6V, V = 1.8V, T = -40NC to +85NC, unless otherwise noted. Typical values are T = +25NC.) (Note 2)  
AV IO A A  
PARAMETER  
SYMBOL  
CONDITIONS  
Slew_ _[7:6] = 00, see Table 15  
Slew_ _[7:6] = 01, see Table 15  
Slew_ _[7:6] = 10, see Table 15  
MIN  
TYP  
12.5  
25  
MAX  
UNITS  
Output Step Ramp Rate  
Load Transient FPWM  
mV/Fs  
50  
FPWM mode, V  
= 1.2V, load steps  
OUT1  
between 0.2 to 1.2A in 30ns,  
40  
mV  
C
= 22FF, L = 1FH  
OUT1  
Skip mode, V  
= 1.2V, load steps  
OUT  
Load Transient (Skip Mode)  
Line Transient  
between 0.2 to 1.2A in 30ns,  
40  
0.25  
40  
mV  
%/V  
mV  
Fs  
C
= 22FF, L = 1FH  
OUT1  
V
= 1.2V, I  
= 1.2A,  
OUT  
OUT1  
C
= 22FF, L = 1FH.  
OUT1  
Transitions between output voltage states  
1.0 and 1.4V, I = 400mA,  
Overshoot  
OUT1  
C
= 22FF, L = 1FH  
OUT1  
From chip standby state until first output  
voltage ramp starts  
Chip Enable Time  
250  
From enabling until voltage ramp starts,  
the IC is in normal operating state with  
Enable Time  
25  
Fs  
previous state shut down, I  
P 100mA,  
OUT1  
L = 1FH, C  
= 22FF  
OUT1  
Output POK Threshold  
V
falling, 1.2V nominal setting  
86  
90  
3
94  
%V  
OUT1  
OUT1  
Output POK Threshold  
Hysteresis  
%
Minimum Output Capacitance  
Minimum Inductance  
12  
1
FF  
1FH inductor with 30% duration  
FH  
STEP-DOWN CONVERTER 2  
Output Current  
L = 1FH  
2
A
V
Adjustable Output Voltage  
Range  
12.5mV steps  
0.6000  
3.3875  
FPWM, I  
= 0.2A, C  
= 22FF,  
OUT2  
OUT2  
Settling Time  
L = 1FH, measure from V  
= 1V to  
20  
Fs  
OUT2  
V
= 1.2V  
OUT2  
Output Voltage Accuracy  
(FPWM)  
V
= 1.2V, FPWM, V  
< 0.95 x V ,  
OUT2  
OUT2 IN  
1.176  
1.152  
1.20  
1.200  
0.04  
1.224  
1.248  
V
V
remote sense disabled (Note 3)  
Output Voltage Accuracy  
(Green Mode)  
Green mode, I P 5mA (Note 3)  
OUT2  
V
= 1.2V, I  
= 0.2A,  
OUT2  
OUT2  
Line Regulation  
%/V  
C
= 22FF, L = 1FH  
OUT2  
Maxim Integrated  
4
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
_
IN  
= V = 3.6V, V = 1.8V, T = -40NC to +85NC, unless otherwise noted. Typical values are T = +25NC.) (Note 2)  
AV IO A A  
PARAMETER  
SYMBOL  
CONDITIONS  
= 1.2V, 0 P I P 2A  
MIN  
TYP  
+0.125  
4.40  
3000  
1800  
1
MAX  
UNITS  
%/A  
MHz  
mA  
Load Regulation  
V
OUT2  
OUT2  
Switching Frequency  
Peak Current Limit  
Valley Current Limit  
Negative Current Limit  
3.96  
4.84  
FPWM mode  
FPWM mode  
FPWM mode  
2500  
3600  
mA  
A
Zero-Crossing Current Threshold  
Used in skip mode and green mode  
20  
mA  
PMOS On-Resistance  
NMOS On-Resistance  
V
V
= 3.6V, I  
= 3.6V, I  
= 190mA  
= 190mA  
60  
50  
0.1  
1
mI  
mI  
IN_  
OUT2  
IN_  
OUT2  
T
T
= +25NC  
= +85NC  
-1  
+1  
A
A
LX Leakage  
V
= V ,0V  
FA  
LX2  
IN  
Output Discharge Resistor in  
Shutdown  
Feature must be active, see the Register  
Definitions section  
100  
I
Slew_ _[7:6] = 00, see Table 15  
Slew_ _[7:6] = 01, see Table 15  
Slew_ _[7:6] = 10, see Table 15  
12.5  
25  
Output Step Ramp Rate  
Load Transient FPWM  
mV/Fs  
50  
FPWM mode, V  
= 1.2V, load steps  
OUT2  
between 0.2 to 1.2A in 30ns,  
40  
mV  
C
= 22FF, L = 1FH  
OUT2  
Skip mode, V  
= 1.2V, load steps  
OUT2  
Load Transient (Skip Mode)  
Line Transient  
between 0.2 to 1.2A in 30ns,  
40  
0.25  
40  
mV  
%/V  
mV  
Fs  
C
= 22FF, L = 1FH  
OUT2  
V
= 1.2V, I  
= 1.2A,  
OUT2  
OUT2  
C
= 22FF, L = 1FH  
OUT2  
Transitions between output voltage states  
1.0V and 1.4V, I = 400mA,  
Overshoot  
OUT21  
C
= 22FF, L = 1FH  
OUT2  
From chip standby state until first output  
voltage ramp starts  
Chip Enable Time  
250  
From enabling until voltage ramp starts;  
the IC is in normal operating state with  
Enable Time  
25  
Fs  
previous state shut down, I  
P 100mA,  
OUT2  
L = 1FH, C  
= 22FF  
OUT2  
Output POK Threshold  
V
falling, 1.2V nominal setting  
86  
90  
3
94  
%V  
OUT2  
OUT2  
Output POK Threshold  
Hysteresis  
%
Minimum Output Capacitance  
Minimum Inductance  
12  
1
FF  
1FH inductor with 30% duration  
FH  
Maxim Integrated  
5
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V = 3.6V, V = 1.8V, T = -40NC to +85NC, unless otherwise noted. Typical values are T = +25NC.) (Note 2)  
_
IN  
AV  
IO  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
LDO1  
V
Input Voltage Range  
Undervoltage Lockout  
IN,LDO1  
1.7  
5.5  
1.7  
V
V
V
UVLO,LDO1  
V
rising, 100mV hysteresis  
is the maximum of 3.7V or  
1.6  
IN,LDO1  
V
V
INLDO1  
V
Output Voltage Range  
OUT,LDO1  
0.8  
3.95  
V
+ 0.3V  
OUT,LDO1  
Normal mode  
Green mode  
150  
5
I
Maximum Output Current  
Minimum Output Capacitance  
MAX,LDO1  
mA  
FF  
Normal mode  
Green mode  
0.7  
0.7  
C
OUT,LDO1 (Note 4)  
Time to enable LDO bias only, central bias  
is already enabled  
t
Bias Enable Time  
LBIAS1  
90  
10  
0
Fs  
I
Bias Enable Currents  
QBIAS1  
LDO bias enabled, LDOBIASEN = 1  
FA  
Shutdown, T = +25NC  
A
(Note 5)  
I
AV Supply Current  
AV,LDO1  
No load  
No load  
FA  
FA  
Normal regulation  
Green mode  
3
6
3
0.5  
Shutdown, T = +25NC  
(Note 6)  
A
0
I
INA Input Supply Current  
IN,LDO1  
Normal regulation  
Green mode  
15  
1
30  
3
V
= V  
+
IN,LDO1  
NOM  
0.3V to 5.5V with 1.7V  
minimum, I  
=
OUT,LDO1  
Normal mode  
Green mode  
-3  
-5  
+3  
+5  
0.1mA to I  
,
MAX,LDO1  
V
set to any  
NOM,LDO1  
voltage  
Output Voltage Accuracy  
%
V
= V  
NOM,LDO1  
IN,LDO1  
+ 0.3V to 5.5V with 2.4V  
minimum, I  
OUT,LDO1  
= 0.1mA to 5mA,  
V
set to any  
NOM,LDO1  
voltage  
Maxim Integrated  
6
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V = 3.6V, V = 1.8V, T = -40NC to +85NC, unless otherwise noted. Typical values are T = +25NC.) (Note 2)  
_
IN  
AV  
IO  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
I
= 0.1mA to  
OUT,LDO1  
, V  
MAX,LDO1 IN,LDO1  
= V  
+ 0.3V  
NOM,LDO1  
Normal mode  
Green mode  
0.1  
with 1.7V minimum,  
V
set to any  
NOM,LDO1  
voltage  
Load Regulation  
(Note 7)  
%
I
= 0.1mA  
OUT,LDO1  
to 5mA, V  
=
IN,LDO1  
V
+ 0.3V  
NOM,LDO1  
0.2  
0.03  
0.1  
with 2.4V minimum,  
V
set to any  
NOM,LDO1  
voltage  
V
= V  
NOM,LDO1  
IN,LDO1  
+ 0.3V to 5.5V with 1.7V  
Normal mode minimum, I  
=
OUT,LDO1  
0.1mA, V  
any voltage  
set to  
NOM,LDO1  
Line Regulation  
(Note 7)  
%/V  
V
= V  
NOM,LDO1  
IN,LDO1  
+ 0.3V to 5.5V with 2.4V  
minimum, I  
Green mode  
=
OUT,LDO1  
0.1mA, V  
set to  
NOM,LDO1  
any voltage  
V
IN,LDO1  
60  
120  
300  
= 3.7V  
I
I
=
OUT,LDO1  
MAX,LDO1  
Normal mode  
Green mode  
mV  
mA  
V
IN,LDO1  
V
Dropout Voltage  
DO,LDO1  
150  
= 1.7V  
I
V
= 5mA,  
= 3.7V  
OUT,LDO1  
50  
100  
375  
IN,LDO1  
I
Output Current Limit  
LIM,LDO1  
V
= 0V  
150  
225  
OUT,LDO1  
Normal mode, V  
= V  
+
IN,LDO1  
NOM,LDO1  
0.3V to 5.5V with 1.7V absolute minimum,  
I
I
t
= 1% to 100% to 1% of  
66  
25  
OUT,LDO1  
, V  
set to any voltage,  
MAX,LDO1 NOM,LDO1  
Output Load Transient  
(LDO1OVCLMP_EN = 1)  
(Notes 4, 7)  
= t = 1Fs, LDO1COMP[5:4] = 01  
R1  
F1  
mV  
Green mode, V  
= V  
+
IN,LDO1  
NOM,LDO1  
0.3V to 5.5V with 2.4V absolute minimum,  
= 0.05mA to 5mA to 0.05mA,  
I
OUT,LDO1  
V
set to any voltage,  
NOM,LDO1  
t
= t = 1Fs  
R1  
F1  
Maxim Integrated  
7
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V = 3.6V, V = 1.8V, T = -40NC to +85NC, unless otherwise noted. Typical values are T = +25NC.) (Note 2)  
_
IN  
AV  
IO  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
Normal mode, V = V  
MIN  
TYP  
MAX  
UNITS  
+
IN,LDO1  
NOM,LDO1  
0.3V to V  
+ 0.8V to V  
+
NOM,LDO1  
NOM,LDO1  
0.3V with 1.7V absolute minimum, t = t  
5
R1  
F1  
= 1Fs, I  
= I  
, V  
OUT,LDO1  
MAX,LDO1 NOM,LDO1  
set to any voltage  
Output Line Transient  
(Notes 3, 6)  
mV  
Green mode, V  
= V  
+
IN,LDO1  
NOM,LDO1  
0.3V to V  
+ 0.8V to V  
+
NOM,LDO1  
NOM,LDO1  
0.3V with 2.4V absolute minimum, t = t  
5
R1  
F1  
= 1Fs, I  
= 5mA, V  
set to  
OUT,LDO1  
NOM,LDO1  
any voltage  
f = 1kHz  
63  
51  
44  
57  
33  
50  
Rejection  
from  
V
f = 10kHz  
INLDO1DC  
V
= V  
IN,LDO1  
NOM,  
to  
+
LDO1  
0.3V  
f = 100kHz  
f = 1000kHz  
f = 4450kHz  
V
OUT,LDO1  
Power-Supply Rejection  
PSRR  
dB  
LDO1  
I
V
OUT,LDO1  
INLDO1AC  
= 50mV  
= 10% of  
I
MAX,LDO1  
Green mode, I  
= 1mA, f = 1kHz,  
OUT,LDO1  
rejection from V  
to V  
IN,LDO1  
OUT,LDO1  
OUT,LDO1  
OUT,LDO1  
OUT,LDO1  
V
V
V
= 0.8V  
= 1.8V  
= 3.7V  
45  
45  
f = 10Hz to 100kHz,  
Output Noise  
I
I
= 10% of  
FV  
RMS  
OUT,LDO1  
MAX,LDO1  
60  
100  
5
LDO1SS = 0  
LD01SS = 1  
Startup Ramp Rate  
t
After enabling  
mV/Fs  
kI  
SS,LDO1  
Active discharge  
enabled,  
LDO1ADE = 1  
0.16  
0.3  
V
= 1V,  
OUT,LDO1  
Active-Discharge Resistance  
output disabled  
Active discharge  
disabled,  
1000  
LDO1ADE = 0  
Maxim Integrated  
8
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V = 3.6V, V = 1.8V, T = -40NC to +85NC, unless otherwise noted. Typical values are T = +25NC.) (Note 2)  
_
IN  
AV  
IO  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Clamp Active Regulation  
Voltage  
Clamp active (LDO1OVCLMP_EN = 1), LDO  
output sinking 0.1mA  
V
NOM,  
LDO1  
V
Clamp Disabled Overvoltage  
Sink Current  
V
= V  
x 110%  
2.2  
10  
60  
FA  
Fs  
OUT,LDO1  
NOM,LDO1  
Ramp rate =  
100mV/Fs  
Time from LDO  
enable command  
received to the  
Enable Delay (Note 4)  
Disable Delay (Note 4)  
t
LON,LDO1  
Ramp rate = 5mV/  
output starting to slew  
Fs  
After LDO is disabled; the LDO output  
voltage discharges based on load and  
C
0.1  
10  
Fs  
; to ensure fast discharge times,  
OUT  
enable the active discharge resistor  
Transition Time from Green  
Mode to Normal Mode  
Fs  
NC  
T rising  
165  
150  
92  
Output disabled or  
enabled  
J
Thermal Shutdown  
T falling  
J
V
rising  
falling  
95  
V
when V  
POK  
OUT,LDO1  
OUT,LDO1  
Power-OK Threshold  
V
%
POKTHL1  
switches  
V
84  
87  
OUT,LDO1  
V
pulsed from 100% to 80% of  
OUT,LDO1  
Power-OK Noise Pulse Immunity  
V
25  
Fs  
POKNF1  
regulation  
LDO2  
Input Voltage Range  
V
1.7  
0.8  
5.5  
1.7  
V
V
IN,LDO2  
V
UVLO,  
LDO2  
Undervoltage Lockout  
V
rising, 100mV hysteresis  
is the maximum of 3.7V or  
1.6  
IN,LDO2  
V
V
V
OUT,  
IN,LDO2  
Output Voltage Range  
3.95  
V
+ 0.3V  
LDO2  
OUT,LDO2  
Normal mode  
Green mode  
300  
5
Maximum Output Current  
Minimum Output Capacitance  
I
mA  
FF  
MAX,LDO2  
Normal mode  
Green mode  
0.7  
0.7  
C
OUT,  
(Note 3)  
LDO2  
Time to enable LDO bias only, central bias  
is already enabled  
Bias Enable Time  
t
I
90  
10  
Fs  
LBIAS2  
LBIAS2  
Bias Enable Current  
LDO bias enabled  
FA  
Maxim Integrated  
9
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V = 3.6V, V = 1.8V, T = -40NC to +85NC, unless otherwise noted. Typical values are T = +25NC.) (Note 2)  
_
IN  
AV  
IO  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Shutdown, T = +25NC  
(Note 5)  
A
0
AV Supply Current  
INA Supply Current  
I
No load  
No load  
FA  
AV,LDO2  
Normal regulation  
Green mode  
3
6
3
0.5  
Shutdown, T = +25NC  
A
0
(Note 5)  
I
FA  
IN,LDO2  
Normal regulation  
Green mode  
17  
1
30  
3
V
= V  
NOM,LDO2  
IN,LDO2  
+ 0.3V to 5.5V with 1.7V  
minimum, I  
=
OUT,LDO2  
Normal mode  
-3  
-5  
+3  
+5  
0.1mA to I  
,
MAX,LDO2  
V
set to  
NOM,LDO2  
any voltage  
Output Voltage Accuracy  
%
V
= V  
IN,LDO2  
NOM,LDO2  
+ 0.3V to 5.5V with 2.4V  
Green mode minimum, I  
=
OUT,LDO2  
0.1mA to 5mA, V  
NOM,LDO2  
set to any voltage  
I
I
= 0.1mA to  
OUT,LDO2  
, V  
=
MAX,LDO2 IN,LDO2  
Normal mode  
V
+ 0.3V with 1.7V  
0.1  
0.2  
NOM,LDO2  
minimum, V  
any voltage  
set to  
NOM,LDO2  
Load Regulation  
(Note 6)  
%
I
= 0.1mA to 5mA,  
OUT,LDO2  
V
= V  
+
IN,LDO2  
NOM,LDO2  
Green mode 0.3V with 2.4V minimum,  
V
set to any  
NOM,LDO2  
voltage  
V
= V  
NOM,LDO2  
IN,LDO2  
+ 0.3V to 5.5V with 1.7V  
Normal mode minimum; I  
=
set to  
0.03  
0.1  
OUT,LDO2  
0.1mA, V  
NOM,LDO2  
any voltage  
Line Regulation  
(Note 6)  
%/V  
V
= V  
IN,LDO2  
NOM,LDO2  
+ 0.3V to 5.5V with 2.4V  
Green mode minimum; I  
=
OUT,LDO2  
0.1mA, V  
set to  
NOM,LDO2  
any voltage  
Maxim Integrated  
10  
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V = 3.6V, V = 1.8V, T = -40NC to +85NC, unless otherwise noted. Typical values are T = +25NC.) (Note 2)  
_
IN  
AV  
IO  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
3.7V  
=
=
IN,LDO2  
50  
100  
I
I
=
OUT,LDO2  
MAX,LDO2  
Normal mode  
Green mode  
mV  
V
IN,LDO2  
Dropout Voltage  
V
150  
450  
DO,LDO2  
1.7V  
I
= 5mA, V  
OUT,LDO2  
IN,LDO2  
150  
450  
300  
750  
= 3.7V  
Output Current Limit  
I
V
= 0V  
300  
mA  
mV  
LIM,LDO2  
OUT,LDO2  
Normal mode, V  
= V  
+
IN,LDO2  
NOM,LDO2  
0.3V to 5.5V with 1.7V absolute minimum;  
I
I
t
= 1% to 100% to 1% of  
66  
25  
5
OUT,LDO2  
, V  
set to any voltage,  
MAX,LDO2 NOM,LDO2  
Output Load Transient  
(LDO2OVCLMP_EN = 1)  
(Notes 3, 6 )  
= t = 1Fs, LDO2COMP[5:4] = 01  
R2  
F2  
Green mode, V  
,
= V  
+
IN LDO2  
NOM,LDO2  
0.3V to 5.5V with 2.4V absolute minimum;  
I
= 0.05mA to 5mA to 0.05mA,  
set to any voltage,  
OUT,LDO2  
V
NOM,LDO2  
t
= t = 1Fs  
R2  
F2  
Normal mode, V  
= V  
+
IN,LDO2  
NOM,LDO2  
0.3V to V  
+ 0.8V to V  
+
+
NOM,LDO2  
0.3V with 1.7V absolute minimum;  
= t = 1Fs, I = I ,  
MAX,LDO2  
NOM,LDO2  
t
R2  
F2  
OUT,LDO2  
V
set to any voltage  
NOM,LDO2  
Output Line Transient  
(Notes 3, 6)  
mV  
Green mode, V  
0.3V to V  
= V +  
NOM,LDO2  
IN,LDO2  
+ 0.8V to V  
NOM,LDO2  
NOM,LDO2  
0.3V with 2.4V absolute minimum;  
= t = 1Fs, I = 5mA,  
5
t
R2  
F2  
OUT,LDO2  
V
set to any voltage  
NOM,LDO2  
Maxim Integrated  
11  
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V = 3.6V, V = 1.8V, T = -40NC to +85NC, unless otherwise noted. Typical values are T = +25NC.) (Note 2)  
_
IN  
AV  
IO  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
f = 1kHz  
63  
Rejection from  
f = 10kHz  
51  
44  
57  
33  
50  
V
V
to  
V
V
=
=
IN,LDO2  
INLDO2DC  
OUT,LDO2  
NOM,LDO2  
I
+0.3V  
f = 100kHz  
f = 1000kHz  
f = 4450kHz  
OUT,LDO2  
= 10% of  
V
Power-Supply Rejection  
PSRR  
INLDO2AC  
dB  
LDO2  
I
50mV  
MAX,LDO2  
Green mode, I  
rejection from V  
= 1mA, f = 1kHz,  
OUT,LDO2  
to V  
IN,LDO2  
OUT,LDO2  
V
V
V
= 0.8V  
45  
45  
OUT,LDO2  
OUT,LDO2  
OUT,LDO2  
f = 10Hz to 100kHz,  
Output Noise  
I
I
= 10% of  
= 1.8V  
= 3.7V  
FV  
RMS  
OUT,LDO2  
MAX,LDO2  
60  
100  
5
LDO2SS = 0  
LDO2SS = 1  
Startup Ramp Rate  
t
After enabling  
mV/Fs  
kI  
SS22  
Active discharge  
enabled,  
LDO2ADE = 1  
0.16  
0.3  
V
= 1V,  
OUT,LDO2  
Active-Discharge Resistance  
output disabled  
Active discharge  
disabled, LDO2ADE 1000  
= 0  
Clamp active (LDO2OVCLMP_EN = 1), LDO  
output sinking 0.1mA  
V
NOM,  
LDO2  
Clamp Active Regulation Voltage  
V
Clamp Disabled Overvoltage  
Sink Current  
V
= V  
x 110%  
2.2  
10  
60  
FA  
OUT,LDO2  
NOM,LDO2  
Ramp rate =  
100mV/Fs  
Time from LDO enable  
command received to  
the output starting to  
slew  
Enable Delay (Note 3)  
Disable Delay (Note 3)  
t
Fs  
Fs  
LON2  
Ramp rate = 5mV/  
Fs  
After LDO is disabled; the LDO output  
voltage discharges based on load and  
C
0.1  
; to ensure fast discharge times, enable  
OUT  
the active discharge resistor  
Maxim Integrated  
12  
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V = 3.6V, V = 1.8V, T = -40NC to +85NC, unless otherwise noted. Typical values are T = +25NC.) (Note 2)  
_
IN  
AV  
IO  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
Transition Time from Green  
Mode to Normal Mode  
10  
Fs  
T rising  
165  
150  
92  
Output disabled or  
enabled  
J
Thermal Shutdown  
NC  
T falling  
J
V
rising  
falling  
95  
%
V
when V  
POK  
OUT,LDO2  
OUT,LDO2  
Power-OK Threshold  
V
POKTHL2  
switches  
V
84  
87  
OUT,LDO2  
V
pulsed from 100% to 80% of  
OUT,LDO2  
Power-OK Noise Pulse Immunity  
V
25  
Fs  
POKNF2  
regulation  
LDO3  
Input Voltage Range  
V
1.7  
0.8  
5.5  
1.7  
V
V
IN,LDO3  
V
UVLO,  
LDO3  
Undervoltage Lockout  
V
rising, 100mV hysteresis  
is the maximum of 3.7V or  
1.6  
IN,LDO3  
V
V
V
OUT,  
IN,LDO3  
Output Voltage Range  
3.95  
V
+ 0.3V  
LDO3  
OUT,LDO3  
Normal mode  
Green mode  
150  
5
Maximum Output Current  
Minimum Output Capacitance  
I
mA  
FF  
MAX,LDO3  
Normal mode  
Green mode  
0.7  
0.7  
C
OUT,  
(Note 3)  
LDO3  
Time to enable LDO bias only, central bias is  
already enabled  
Bias Enable Time  
t
90  
10  
0
Fs  
LBIAS3  
Bias Enable Currents  
I
LDO bias enabled  
FA  
QBIAS3  
Shutdown, T  
=
A
+25NC (Note 4)  
Normal regulation  
Green mode  
AV Supply Current  
INA Supply Current  
I
No load  
No load  
FA  
FA  
AV,LDO3  
3
6
3
0.5  
Shutdown, T  
=
A
0
+25NC (Note 5)  
Normal regulation  
Green mode  
I
IN,LDO3  
15  
1
30  
3
Maxim Integrated  
13  
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V = 3.6V, V = 1.8V, T = -40NC to +85NC, unless otherwise noted. Typical values are T = +25NC.) (Note 2)  
_
IN  
AV  
IO  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
= V  
MIN  
TYP  
MAX  
UNITS  
V
IN,LDO3  
NOM,LDO3  
+ 0.3V to 5.5V with 1.7V  
minimum, I  
=
OUT,LDO3  
Normal mode  
Green mode  
-3  
-5  
+3  
0.1mA to I  
,
MAX,LDO3  
V
NOM,LDO3  
set to any voltage  
= V  
Output Voltage Accuracy  
%
V
IN,LDO3  
NOM,LDO3  
+ 0.3V to 5.5V with 2.4V  
minimum, I  
=
OUT,LDO3  
+5  
0.1mA to 5mA,  
V
set to  
NOM,LDO3  
any voltage  
I
I
= 0.1mA to  
OUT,LDO3  
, V  
=
MAX,LDO3 IN,LDO3  
Normal mode  
Green mode  
Normal mode  
Green mode  
V
+ 0.3V with  
0.1  
0.2  
NOM,LDO3  
1.7V minimum, V  
set to any voltage  
NOM,LDO3  
Load Regulation  
(Note 6)  
%
I
= 0.1mA  
OUT,LDO3  
to 5mA, V  
=
IN,LDO3  
V
+ 0.3V with  
NOM,LDO3  
2.4V minimum, V  
set to any voltage  
NOM,LDO3  
V
= V  
IN,LDO3  
NOM,LDO3  
+ 0.3V to 5.5V with 1.7V  
minimum, I  
0.1mA, V  
any voltage  
=
0.03  
0.1  
OUT,LDO3  
set to  
NOM,LDO3  
Line Regulation  
(Note 6)  
%/V  
V
= V  
IN,LDO3  
NOM,LDO3  
+ 0.3V to 5.5V with 2.4V  
minimum, I  
=
OUT,LDO3  
0.1mA, V  
set to  
NOM,LDO3  
any voltage  
V
3.7V  
=
=
IN,LDO3  
60  
120  
300  
I
I
=
OUT,LDO3  
MAX,LDO3  
Normal Mode  
Green Mode  
mV  
mA  
V
IN,LDO3  
Dropout Voltage  
V
150  
DO,LDO3  
1.7V  
I
= 5mA,  
= 3.7V  
OUT,LDO3  
50  
100  
375  
V
IN,LDO3  
Output Current Limit  
I
V
= 0V  
150  
225  
LIM,LDO3  
OUT  
Maxim Integrated  
14  
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V = 3.6V, V = 1.8V, T = -40NC to +85NC, unless otherwise noted. Typical values are T = +25NC.) (Note 2)  
_
IN  
AV  
IO  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
Normal mode, V = V  
MIN  
TYP  
MAX  
UNITS  
+
NOM,LDO3  
IN,LDO3  
0.3V to 5.5V with 1.7V absolute minimum,  
I
I
t
= 1% to 100% to 1% of  
66  
OUT,LDO3  
, V  
set to any voltage,  
MAX,LDO3 NOM,LDO3  
Output Load Transient  
(LDO3OVCLMP_EN = 1)  
(Notes 3, 6)  
= t = 1Fs, LDO3COMP[5:4] = 01  
R3  
F3  
mV  
Green mode, V  
= V  
+
IN,LDO3  
NOM,LDO3  
0.3V to 5.5V with 2.4V absolute minimum,  
= 0.05mA to 5mA to 0.05mA,  
I
25  
5
OUT,LDO3  
V
set to any voltage,  
NOM,LDO3  
t
= t = 1Fs  
R3  
F3  
Normal mode, V  
= V  
+
IN,LDO3  
NOM,LOD3  
0.3V to V  
+ 0.8V to V  
+
NOM,LDO3  
NOM,LDO3  
0.3V with 1.7V absolute minimum,  
= t = 1Fs, I = I ,  
MAX,LDO3  
t
R3  
F3  
OUT,LOD3  
V
set to any voltage  
NOM,LOD3  
Output Line Transient  
(Notes 3, 6)  
mV  
Green mode, V  
to V  
= V  
+ 0.3V  
+ 0.3V  
IN,LDO3  
NOM,LOD3  
+ 0.8V to V  
NOM,LDO3  
NOM,LDO3  
with 2.4V absolute minimum, t = t =1Fs,  
5
R3  
F3  
I
= 5mA, V  
set  
OUT,LOD3  
NOM,LOD3  
to any voltage  
f = 1kHz  
63  
51  
44  
57  
33  
50  
Rejection from  
V
=
f = 10kHz  
INLDO3DC  
V
V
to  
IN,LDO3  
OUT,lDO3  
V
NOM,LDO3  
I
f = 100kHz  
f = 1000kHz  
f = 4450kHz  
OUT,LDO3  
+ 0.3V  
= 10% of  
Power-Supply Rejection  
PSRR  
dB  
LDO3  
V
INLDO3AC  
I
MAX,LDO3  
= 50mV  
Green mode, I  
rejection from V  
= 1mA, f = 1kHz,  
OUT,LDO3  
to V  
IN,LDO3  
OUT,LDO3  
Maxim Integrated  
15  
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V = 3.6V, V = 1.8V, T = -40NC to +85NC, unless otherwise noted. Typical values are T = +25NC.) (Note 2)  
_
IN  
AV  
IO  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
f = 10Hz to  
V
V
V
= 0.8V  
= 1.8V  
= 3.7V  
45  
OUT,LDO3  
OUT,LDO3  
OUT,LDO3  
100kHz, I  
= 10% of  
OUT  
Output Noise  
45  
60  
FV  
RMS  
I
MAX,LDO3  
LDO3SS = 0  
LDO3SS = 1  
100  
5
Startup Ramp Rate  
Active-Discharge Resistance  
t
After enabling  
mV/Fs  
kI  
SS3  
Active discharge enabled,  
LDO3ADE = 1  
0.16  
0.3  
V
OUT,LDO3  
= 1V, output  
disabled  
Active discharge disabled,  
LDO3ADE = 0  
1000  
Clamp Active Regulation  
Voltage  
Clamp active (LDO3OVCLMP_EN = 1),  
LDO output sinking 0.1mA  
V
NOM,  
LDO3  
V
Clamp Disabled Overvoltage  
Sink Current  
V
= V  
x110%  
2.2  
10  
60  
FA  
OUT,LDO3  
NOM,LDO3  
Ramp rate =  
100mV/Fs  
Time from LDO  
enable command  
received to the  
Enable Delay (Note 3)  
Disable Delay (Note 3)  
t
Fs  
Fs  
LON3  
Ramp rate = 5mV/  
output starting to slew  
Fs  
After LDO is disabled; the LDO output  
voltage discharges based on Load and  
C
0.1  
10  
; to ensure fast discharge times  
OUT,LDO3  
enable the active discharge resistor  
Transition Time from Green  
Mode to Normal Mode  
Fs  
NC  
Output  
disabled or  
enabled  
T rising  
165  
150  
92  
J
Thermal Shutdown  
T falling  
J
V
OUT,LDO3  
V
V
rising  
falling  
95  
OUT,LDO3  
OUT,LDO3  
Power-OK Threshold  
V
when V  
switches  
%
POKTHL3  
POK  
84  
87  
V
pulsed from 100% to 80% of  
OUT,LDO3  
Power-OK Noise Pulse Immunity  
V
25  
Fs  
POKNF3  
regulation  
LDO4  
Input Voltage Range  
V
1.7  
0.8  
5.5  
1.7  
V
V
IN,LDO4  
V
UVLO,  
LDO4  
Undervoltage Lockout  
Output Voltage Range  
Maximum Output Current  
V
rising, 100mV hysteresis  
is the maximum of 3.7V or  
1.6  
IN,LDO4  
V
V
V
OUT,  
IN,LDO4  
3.95  
V
+ 0.3V  
LDO4  
OUT,LDO4  
Normal mode  
Green mode  
150  
5
I
mA  
FF  
MAX,LDO4  
Normal mode  
Green mode  
0.7  
0.7  
C
OUT,  
LDO4  
Minimum Output Capacitance  
(Note 3)  
Maxim Integrated  
16  
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V = 3.6V, V = 1.8V, T = -40NC to +85NC, unless otherwise noted. Typical values are T = +25NC.) (Note 2)  
_
IN  
AV  
IO  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
90  
10  
0
MAX  
UNITS  
Fs  
Time to enable LDO bias only, central bias is  
already enabled  
Bias Enable Time  
t
LBIAS4  
Bias Enable Currents  
I
LDO bias enabled  
FA  
QBIAS4  
Shutdown, T = +25NC  
(Note 4)  
A
AV Supply Current  
INB Supply Current  
I
No load  
No load  
FA  
FA  
AV,LDO4  
Normal regulation  
Green mode  
3
6
3
0.5  
Shutdown, T = +25NC  
(Note 5)  
A
0
I
IN,LDO4  
Normal regulation  
Green mode  
15  
1
30  
3
V
= V  
NOM,LDO4  
IN,LDO4  
+ 0.3V to 5.5V with 1.7V  
minimum, I  
= 0.1mA to I  
OUT,LDO4  
Normal mode  
Green mode  
Normal mode  
Green mode  
-3  
-5  
+3  
+5  
,
MAX,LD04  
V
NOM,LDO4  
set to any voltage  
Output Voltage Accuracy  
%
V
= V  
NOM,LDO4  
IN,LDO4  
+ 0.3V to 5.5V with 2.4V  
minimum, I  
=
OUT,LDO4  
0.1mA to 5mA, V  
set to any voltage  
NOM,LDO4  
I
I
= 0.1mA to  
OUT,LDO4  
,
MAX,LD04  
V
= V  
+
IN  
NOM,LDO4  
0.1  
0.2  
0.3V with 1.7V minimum,  
V
set to any  
NOM,LDO4  
Load Regulation  
(Note 6)  
voltage  
%
I
= 0.1mA to  
OUT,LDO4  
5mA, V = V  
+
IN  
NOM,LDO4  
0.3V with 2.4V minimum,  
set to any  
V
NOM,LDO4  
voltage  
Maxim Integrated  
17  
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V = 3.6V, V = 1.8V, T = -40NC to +85NC, unless otherwise noted. Typical values are T = +25NC.) (Note 2)  
_
IN  
AV  
IO  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
= V  
MIN  
TYP  
MAX  
UNITS  
V
IN,LDO4  
NOM,LDO4  
+ 0.3V to 5.5V with 1.7V  
Normal mode  
Green mode  
minimum, I  
=
set to  
0.03  
OUT,LDO4  
0.1mA, V  
NOM,LDO4  
any voltage  
Line Regulation  
(Note 6)  
%/V  
V
= V  
IN,LDO4  
NOM,LDO4  
+ 0.3V to 5.5V with 2.4V  
minimum, I  
=
0.1  
OUT,LDO4  
0.1mA, V  
set to  
NOM,LDO4  
any voltage  
V
3.7V  
=
IN,LDO4  
60  
120  
300  
I
I
=
OUT,LDO4  
MAX,LD04  
Normal mode  
Green mode  
V
=
IN,LDO4  
Dropout Voltage  
V
150  
mV  
mA  
DO,LDO4  
1.7V  
I
= 5mA,  
= 3.7V  
OUT,LDO4  
50  
100  
375  
V
IN,LDO4  
Output Current Limit  
I
V
= 0V  
150  
225  
LIM,LDO4  
OUT,LDO4  
Normal mode, V  
= V  
+
IN,LDO4  
NOM,LDO4  
0.3V to 5.5V with 1.7V absolute minimum.  
I
I
t
= 1% to 100% to 1% of  
66  
25  
5
OUT,LDO4  
, V  
set to any voltage,  
MAX,LDO4 NOM,LD04  
Output Load Transient  
(LDO4OVCLMP_EN = 1)  
(Notes 3, 6)  
= t = 1Fs, LDO4COMP[5:4] = 01  
R4  
F4  
mV  
Green mode, V  
= V  
+
IN,LDO4  
NOM,LDO4  
0.3V to 5.5V with 2.4V absolute minimum,  
= 0.05mA to 5mA to 0.05mA,  
I
V
t
OUT,LDO4  
set to any voltage,  
NOM,LDO4  
= t = 1Fs  
R4  
F4  
Normal mode, V  
0.3V to V  
= V  
+
IN,LDO4  
NOM,LDO4  
+ 0.8V to V  
+
NOM,LDO4  
NOM,LDO4  
0.3V with 1.7V absolute minimum,  
= t = 1Fs, I = I ,  
MAX,LDO4  
t
R4  
F4  
OUT,LDO4  
V
set to any voltage  
NOM,LDO4  
Output Line Transient  
(Notes 3, 6)  
mV  
Green mode, V  
to V  
= V  
+ 0.3V  
+ 0.3V  
IN,LDO4  
NOM,LDO4  
+ 0.8V to V  
NOM,LDO4  
NOM,LDO4  
with 2.4V absolute minimum, t = t = 1Fs,  
5
R4  
= 5mA, V  
NOM,LDO4  
F4  
I
OUT,LDO4  
set to any voltage  
Maxim Integrated  
18  
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V = 3.6V, V = 1.8V, T = -40NC to +85NC, unless otherwise noted. Typical values are T = +25NC.) (Note 2)  
_
IN  
AV  
IO  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
f = 1kHz  
63  
Rejection from  
f = 10kHz  
51  
44  
57  
33  
50  
V
V
I
to  
V
=
+
IN,LDo4  
INLDO4DC  
V
OUT,LDO4  
OUT,LDO4  
NOM,LDO4  
0.3V,  
f = 100kHz  
f = 1000kHz  
f = 4450kHz  
= 10% of  
V
=
Power-Supply Rejection  
PSRR  
INLDO4AC  
dB  
LDO4  
I
50mV  
MAX,LDO4  
Green mode, I  
rejection from V  
= 1mA, f = 1kHz,  
OUT,LDO4  
to V  
IN,LDO4  
OUT,LDO4  
V
V
V
= 0.8V  
= 1.8V  
= 3.7V  
45  
45  
OUT  
OUT  
OUT  
f = 10Hz to  
Output Noise  
100kHz, I  
=
FV  
RMS  
OUT  
10% of I  
MAX  
60  
100  
5
LDO4SS = 0  
LDO4SS = 1  
Startup Ramp Rate  
t
After enabling  
mV/Fs  
kI  
SS4  
Active discharge enabled,  
LDO4ADE = 1  
0.16  
0.3  
V
OUT,LDO4  
Active-Discharge Resistance  
= 1V, output  
disabled  
Active discharge disabled,  
LDO4ADE = 0  
1000  
Clamp Active Regulation  
Voltage  
Clamp active (LDO4OVCLMP_EN = 1),  
LDO output sinking 0.1mA  
V
NOM,  
LDO4  
V
Clamp Disabled Overvoltage  
Sink Current  
V
= V  
x 110%  
2.2  
10  
60  
FA  
OUT,LDO4  
NOM,LDO4  
Ramp rate = 100mv/  
Time from LDO  
enable command  
received to the  
Fs  
Enable Delay (Note 3)  
Disable Delay (Note 3)  
t
Fs  
Fs  
LON4  
Ramp rate = 5mv/Fs  
output starting to slew  
After LDO is disabled; the LDO output  
voltage discharges based on load and  
C
0.1  
10  
; to ensure fast discharge times  
OUT,LDO4  
enable the active discharge resistor  
Transition time from Green  
Mode to Normal Mode  
Fs  
NC  
Output  
disabled or  
enabled  
T rising  
165  
150  
J
Thermal Shutdown  
T falling  
J
Maxim Integrated  
19  
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V = 3.6V, V = 1.8V, T = -40NC to +85NC, unless otherwise noted. Typical values are T = +25NC.) (Note 2)  
_
IN  
AV  
IO  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
OUT,LDO4  
V
V
rising  
falling  
92  
95  
OUT,LDO4  
OUT,LDO4  
Power-OK Threshold  
V
when V  
switches  
%
POKTHL4  
POK  
84  
87  
25  
V
pulsed from 100% to 80% of  
OUT,LDO4  
Power-OK Noise Pulse Immunity  
V
Fs  
POKNF4  
regulation  
LDO5  
Input Voltage Range  
V
1.7  
0.8  
5.5  
1.7  
V
V
IN,LDO5  
V
UVLO,  
LDO5  
Undervoltage Lockout  
V
rising, 100mV hysteresis  
is the maximum of 3.7V or  
1.6  
IN,LDO5  
V
V
V
OUT,  
IN,LDO5  
Output Voltage Range  
3.95  
V
+ 0.3V  
LDO5  
OUT,LDO5  
Normal mode  
Green mode  
300  
5
Maximum Output Current  
Minimum Output Capacitance  
I
mA  
FF  
MAX,LDO5  
Normal mode  
Green mode  
0.7  
0.7  
C
(Note 3)  
OUT,LDO5  
Time to enable LDO bias only,  
central bias is already enabled  
Bias Enable Time  
t
90  
10  
0
Fs  
LBIAS5  
Bias Enable Currents  
I
LDO bias enabled  
FA  
QBIAS5  
Shutdown, T = +25NC  
A
(Note 4)  
AV Supply Current  
INB Supply Current  
I
No load  
No load  
FA  
FA  
AV,LDO5  
Normal regulation  
Green mode  
3
6
3
0.5  
Shutdown, T = +25NC  
(Note 5)  
A
0
I
IN,LDO5  
Normal regulation  
Green mode  
17  
1
30  
3
V
= V  
NOM,LDO5  
IN,LDO5  
+ 0.3V to 5.5V with 1.7V  
minimum, I  
=
OUT,LDO5  
Normal mode  
Green mode  
-3  
-5  
+3  
+5  
0.1mA to I  
,
MAX,LDO5  
V
set to any  
NOM,LDO5  
voltage  
Output Voltage Accuracy  
%
V
= V  
NOM,LDO5  
IN,LDO5  
+ 0.3V to 5.5V with 2.4V  
minimum, I  
=
OUT,LDO5  
0.1mA to 5mA, V  
NOM,LDO5  
set to any voltage  
Maxim Integrated  
20  
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V = 3.6V, V = 1.8V, T = -40NC to +85NC, unless otherwise noted. Typical values are T = +25NC.) (Note 2)  
_
IN  
AV  
IO  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
I
= 0.1mA to  
OUT,LDO5  
, V  
=
MAX,LDO5 IN,LDO5  
Normal mode  
Green mode  
Normal mode  
Green mode  
V
+ 0.3V with  
0.1  
NOM,LDO5  
1.7V minimum, V  
set to any voltage  
NOM,LDO5  
Load Regulation  
(Note 6)  
%
I
= 0.1mA to  
OUT,LDO5  
5mA, V  
=
IN,LDO5  
V
+ 0.3V with  
0.2  
0.03  
0.1  
NOM,LDO5  
2.4V minimum, V  
set to any voltage  
NOM,LDO5  
V
= V  
IN,LDO5  
NOM,LDO5  
+ 0.3V to 5.5V with 1.7V  
minimum. I  
0.1mA, V  
any voltage  
=
OUT,LDO5  
set to  
NOM,LDO5  
Line Regulation  
(Note 6)  
%/V  
V
= V  
IN,LDO5  
NOM,LDO5  
+ 0.3V to 5.5V with 2.4V  
minimum. I  
=
OUT,LDO5  
0.1mA, V  
set to  
NOM,LDO5  
any voltage  
V
3.7V  
=
IN,LDO5  
50  
100  
450  
I
I
=
OUT,LDO5  
MAX,LDO5  
Normal mode  
Green mode  
V
=
IN,LDO5  
Dropout Voltage  
V
150  
mV  
mA  
DO,LDO5  
1.7V  
I
= 5mA,  
= 3.7V  
OUT,LDO5  
150  
450  
300  
750  
V
IN,LDO5  
Output Current Limit  
I
V
= 0V  
300  
LIM,LDO5  
OUT,LDO5  
Normal mode, V  
= V  
+
IN,LDO5  
NOM,LDO5  
0.3V to 5.5V with 1.7V absolute minimum,  
I
I
t
= 1% to 100% to 1% of  
66  
25  
OUT,LDO5  
, V  
set to any voltage,  
MAX,LDO5 NOM,LDO5  
Output Load Transient  
(LDO5OVCLMP_EN = 1)  
(Notes 3, 6)  
= t = 1Fs, LDO5COMP[5:4] = 01  
R5  
F5  
mV  
Green mode, V  
= V  
+
IN,LDO5  
NOM,LDO5  
0.3V to 5.5V with 2.4V absolute minimum,  
= 0.05mA to 5mA to 0.05mA,  
I
OUT,LDO5  
V
set to any voltage,  
NOM,LDO5  
t
= t = 1Fs  
R5  
F5  
Maxim Integrated  
21  
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V = 3.6V, V = 1.8V, T = -40NC to +85NC, unless otherwise noted. Typical values are T = +25NC.) (Note 2)  
_
IN  
AV  
IO  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
Normal mode, V = V  
MIN  
TYP  
MAX  
UNITS  
+
IN,LOD5  
NOM,LDO5  
0.3V to V  
+ 0.8V to V  
+
NOM,LDO5  
NOM,LDO5  
0.3V with 1.7V absolute minimum,  
= t = 1Fs, I = I ,  
MAX,LDO5  
5
t
R5  
F5  
OUT,LDO5  
V
set to any voltage  
NOM,LDO5  
Output Line Transient  
(Notes 3, 6)  
mV  
Green mode, V  
to V  
= V  
+ 0.3V  
+ 0.3V  
IN,LDO5  
NOM,LDO5  
+ 0.8V to V  
NOM,LDO5  
NOM,LDO5  
with 2.4V absolute minimum,  
5
t
= t = 1Fs, I = 5mA,  
R5  
F5  
OUT,LDO5  
V
set to any voltage  
NOM,LDO5  
f = 1kHz  
63  
51  
44  
57  
33  
50  
Rejection from  
f = 10kHz  
V
V
to  
V
V
0.3V  
=
+
IN,LDO5  
INLDO5DC  
OUT,LDO5  
NOM,LDO5  
I
f = 100kHz  
f = 1000kHz  
f = 4450kHz  
OUT,LDO5  
= 10% of  
V
=
Power-Supply Rejection  
PSRR  
INLDO5AC  
dB  
LDO5  
I
50mV  
MAX,LDO5  
Green mode, I  
rejection from V  
= 1mA, f = 1kHz,  
OUT  
to V  
IN,LDO5  
OUT,LDO5  
V
V
V
= 0.8V  
= 1.8V  
= 3.7V  
45  
45  
60  
OUT,LDO5  
f = 10Hz to  
100kHz,  
Output Noise  
FV  
RMS  
OUT,LDO5  
I
I
= 10% of  
OUT  
MAX,LDO5  
OUT,LDO5  
LDO5SS = 0  
LDO5SS = 1  
100  
5
Startup Ramp Rate  
t
After enabling  
mV/Fs  
kI  
SS5  
Active discharge enabled,  
LDO5ADE = 1  
0.16  
0.3  
V
OUT,LDO5  
Active-Discharge Resistance  
= 1V, output  
disabled  
Active discharge disabled,  
LDO5ADE = 0  
1000  
Clamp Active Regulation  
Voltage  
Clamp active (LDO5OVCLMP_EN = 1),  
LDO output sinking 0.1mA  
V
NOM,  
LD05  
V
Maxim Integrated  
22  
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V = 3.6V, V = 1.8V, T = -40NC to +85NC, unless otherwise noted. Typical values are T = +25NC.) (Note 2)  
_
IN  
AV  
IO  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
x 110%  
NOM,LDO5  
MIN  
TYP  
MAX  
UNITS  
Clamp Disabled Overvoltage  
Sink Current  
V
= V  
2.2  
FA  
OUT,LDO5  
Ramp rate =100mV/  
Fs  
Time from LDO  
enable command  
received to the  
10  
60  
Enable Delay (Note 3)  
Disable Delay (Note 3)  
t
Fs  
Fs  
LON5  
Ramp rate = 5mV/  
Fs  
output starting to slew  
After LDO is disabled; the LDO output  
voltage discharges based on load and  
0.1  
10  
C
; to ensure fast discharge times, enable  
OUT  
the active discharge resistor  
Transition Time from Green  
Mode to Normal Mode  
Fs  
NC  
Output  
disabled or  
enabled  
T rising  
165  
150  
92  
J
Thermal Shutdown  
T falling  
J
V
OUT,LDO5  
V
V
rising  
falling  
95  
OUT,LDO5  
OUT,LDO5  
Power-Ok Threshold  
V
V
when V  
switches  
%
POKTHL  
POK  
84  
87  
V
pulsed from 100% to 80% of  
OUT,LDO5  
Power-Ok Noise Pulse Immunity  
V
25  
Fs  
POKNF  
regulation  
LDO6  
Input Voltage Range  
Undervoltage Lockout  
1.7  
0.8  
5.5  
1.7  
V
V
IN,LDO6  
V
Rising, 100mV hysteresis  
1.6  
UVLO,LDO6  
V
V
is the maximum of 3.7V or  
IN,LDO6  
Output Voltage Range  
V
3.95  
V
OUT,LDO6  
+ 0.3V  
OUT,LDO6  
Normal mode  
Green mode  
150  
5
Maximum Output Current  
Minimum Output Capacitance  
I
mA  
FF  
MAX,LDO6  
Normal mode  
Green mode  
0.7  
0.7  
C
(Note 3)  
OUT,LDO6  
Time to enable LDO bias only, central  
bias is already enabled  
Bias Enable Time  
t
90  
10  
0
Fs  
LBIAS6  
Bias Enable Currents  
I
LDO bias enabled  
FA  
QBIAS6  
Shutdown, T = +25NC  
A
(Note 4)  
AV Supply Current  
I
No load  
No load  
FA  
FA  
AV,LDO6  
Normal regulation  
Green mode  
3
6
3
0.5  
Shutdown, T = +25NC  
(Note 5)  
A
0
INB Supply Current  
I
IN,LDO6  
Normal regulation  
Green mode  
15  
1
30  
3
Maxim Integrated  
23  
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V = 3.6V, V = 1.8V, T = -40NC to +85NC, unless otherwise noted. Typical values are T = +25NC.) (Note 2)  
_
IN  
AV  
IO  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
= V  
MIN  
TYP  
MAX  
UNITS  
V
IN,LDO6  
NOM,LDO6  
+ 0.3V to 5.5V with 1.7V  
minimum, I  
=
OUT,LDO6  
Normal mode  
-3  
-5  
+3  
0.1mA to I  
,
MAX,LDO6  
V
set to any  
NOM,LDO6  
voltage  
Output Voltage Accuracy  
%
V
= V  
NOM,LDO6  
IN,LDO6  
+ 0.3V to 5.5V with 2.4V  
Green mode  
Normal mode  
Green mode  
Normal mode  
Green mode  
minimum, I  
=
+5  
OUT,LDO6  
0.1mA to 5mA, V  
set to any voltage  
NOM,LDO6  
I
I
= 0.1mA to  
OUT,LDO6  
, V  
=
MAX,LDO6 IN,LDO6  
V
+ 0.3V with  
0.1  
0.2  
NOM,LDO6  
1.7V minimum, V  
NOM,LDO6  
set to any voltage  
Load Regulation  
(Note 6)  
%
I
= 0.1mA to 5mA,  
OUT,LDO6  
V
= V  
+
IN,LDO6  
NOM,LDO6  
0.3V with 2.4V minimum,  
V
set to any  
NOM,LDO6  
voltage  
V
= V  
NOM,LDO6  
IN,LDO6  
+ 0.3V to 5.5V with 1.7V  
minimum, I  
=
set to  
0.03  
0.1  
OUT,LDO6  
0.1mA, V  
NOM,LDO6  
any voltage  
Line Regulation  
(Note 6)  
%/V  
V
= V  
IN,LDO6  
NOM,LDO6  
+ 0.3V to 5.5V with 2.4V  
minimum, I  
=
OUT,LDO6  
0.1mA, V  
set to  
NOM,LDO6  
any voltage  
V
3.7V  
=
IN,LDO6  
60  
120  
300  
I
I
=
OUT,LDO6  
MAX,LDO6  
Normal mode  
Green mode  
mV  
mA  
V
1.7V  
=
IN,LDO6  
Dropout Voltage  
V
150  
DO,LDO6  
I
V
= 5mA,  
= 3.7V  
OUT,LDO6  
50  
100  
375  
IN,LDO6  
Output Current Limit  
I
V
= 0V  
150  
225  
LIM,LDO6  
OUT,LDO6  
Maxim Integrated  
24  
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V = 3.6V, V = 1.8V, T = -40NC to +85NC, unless otherwise noted. Typical values are T = +25NC.) (Note 2)  
_
IN  
AV  
IO  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
Normal mode, V = V  
MIN  
TYP  
MAX  
UNITS  
+
NOM,LDO6  
IN,LDO6  
0.3V to 5.5V with 1.7V absolute minimum,  
I
I
t
= 1% to 100% to 1% of  
66  
OUT,LDO6  
, V  
set to any voltage,  
MAX,LDO6 NOM,LDO6  
Output Load Transient  
(LDO6OVCLMP_EN = 1)  
(Notes 3, 6)  
= t = 1Fs, LDO6COMP[5:4] = 01  
R6  
F6  
mV  
Green mode, V  
= V  
NOM,LDO6  
IN,LDO6  
+0.3V to 5.5V with 2.4V absolute minimum,  
I
V
= 0.05mA to 5mA to 0.05mA,  
25  
5
OUT,LDO6  
set to any voltage,  
NOM,LDO6  
t
= t = 1Fs  
R6  
F6  
Normal mode, V  
0.3V to V  
= V  
+
IN,LDO6  
NOM,LDO6  
+ 0.8V to V  
+
+
NOM,DLo6  
NOM,LDO6  
0.3V with 1.7V absolute minimum,  
= t = 1Fs, I = I  
MAX,LDO6  
t
V
,
R6  
F6  
OUT,LDO6  
set to any voltage  
NOM,LDO6  
Output Line Transient  
(Notes 3, 6)  
mV  
Normal mode, V  
0.3V to V  
= V +  
NOM,LDO6  
IN,LDO6  
+ 0.8V to V  
NOM,DLo6  
NOM,LDO6  
0.3V with 2.4V absolute minimum,  
5
t
= t = 1Fs, I = 5mA,  
R6  
F6  
OUT,LDO6  
V
set to any voltage  
NOM,LDO6  
f = 1kHz  
63  
51  
44  
57  
33  
50  
Rejection from  
f = 10kHz  
V
V
0.3V,  
=
+
INLOD6DC  
V
V
to  
IN,LDO6  
NOM,LDO6  
OUT,LDO06  
f = 100kHz  
f = 1000kHz  
f = 4450kHz  
I
OUT,LDO6  
V
=
Power-Supply Rejection  
PSRR  
INLDO6AC  
dB  
LDO6  
= 10% of  
50mV  
I
MAX,LDO6  
Green mode, I  
rejection from V  
= 1mA, f = 1kHz,  
OUT,LDO6  
to V  
IN,LDO6  
OUT,LDO6  
Maxim Integrated  
25  
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V = 3.6V, V = 1.8V, T = -40NC to +85NC, unless otherwise noted. Typical values are T = +25NC.) (Note 2)  
_
IN  
AV  
IO  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
f = 10Hz  
to 100kHz,  
V
= 0.8V  
45  
OUT,LDO06  
Output Noise  
I
FV  
RMS  
OUT,LDO6  
V
V
= 1.8V  
= 3.7V  
45  
60  
OUT,LDO06  
= 10% of  
I
OUT,LDO06  
MAX,LDO6  
LDO6SS = 0  
LDO6SS = 1  
100  
5
Startup Ramp Rate  
t
After enabling  
mV/Fs  
kI  
SS,LDO6  
Active discharge enabled,  
LDO6ADE = 1  
0.16  
0.3  
V
OUT,LDO6  
Active-Discharge Resistance  
= 1V, output  
disabled  
Active discharge disabled,  
LDO6ADE = 0  
1000  
Clamp Active Regulation  
Voltage  
Clamp active (LDO6OVCLMP_EN = 1),  
LDO output sinking 0.1mA  
V
NOM,  
LDO6  
V
Clamp Disabled Overvoltage  
Sink Current  
V
= V  
x 110%  
2.2  
10  
60  
FA  
OUT,LDO6  
NOM,LDO6  
Ramp rate =  
100mV/Fs  
Time from LDO  
enable command  
received to the  
Enable Delay (Note 3)  
Disable Delay (Note 3)  
t
Fs  
Fs  
LON6  
Ramp rate = 5mV/  
output starting to slew  
Fs  
After LDO is disabled, the LDO output  
voltage discharges based on load and  
C
0.1  
10  
; to ensure fast discharge times,  
OUT,LDO6  
enable the active discharge resistor  
Transition Time from Green  
mode to Normal Mode  
Fs  
NC  
Output  
disabled or  
enabled  
T rising  
165  
150  
92  
J
Thermal Shutdown  
T falling  
J
V
OUT,LDO6  
V
V
LDO6 rising  
95  
OUT,  
Power-OK Threshold  
V
when V  
switches  
%
POKTHL6  
POK  
falling  
84  
87  
OUT,LDO6  
Power-OK Noise Pulse  
Immunity  
V
pulsed from 100% to 80% of  
OUT,LDO6  
V
25  
Fs  
POKNF6  
regulation  
DIGITAL I/O  
V
V
V
, EN_, SDA, SCL,  
ID_  
Logic Input High Voltage  
Threshold  
V
= V  
= V = 2.6V to 5.5V  
1.4  
V
V
IH  
IN1  
IN2  
AV  
= 1.65V to 3.6V  
IO  
V
V
V
, EN_, SDA, SCL,  
ID_  
Logic Input Low Voltage  
Threshold  
V
= V  
= V = 2.6V to 5.5V  
0.4  
IL  
IN1  
IN2  
AV  
= 1.65V to 3.6V  
IO  
Maxim Integrated  
26  
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V = 3.6V, V = 1.8V, T = -40NC to +85NC, unless otherwise noted. Typical values are T = +25NC.) (Note 2)  
_
IN  
AV  
IO  
A
A
PARAMETER  
Logic Input Current (SDA, SCL)  
SYMBOL  
CONDITIONS  
MIN  
-1  
TYP  
MAX  
UNITS  
V
V
= 0V or  
= 3.6V,  
IL  
T
T
= +25NC  
= +85NC  
+1  
A
FA  
IH  
0.1  
0.1  
EN_ = AGND  
A
T
T
= +25NC  
= +85NC  
-1  
+1  
V
= 0V,  
A
IL  
Logic Input Current (V , EN_)  
FA  
kI  
ID_  
EN_ = AGND  
A
V
, EN_ Logic Input  
ID_  
400  
Pulldown Resistor  
I2C INTERFACE  
SDA Output Low Voltage  
I2C Clock Frequency  
I
= 3mA  
0.1  
V
SDA  
400  
kHz  
Bus-Free Time Between START  
and STOP  
t
See Figure 7 in the Digital I/O section  
See Figure 7 in the Digital I/O section  
1.3  
0.6  
Fs  
Fs  
BUF  
Hold Time Repeated START  
Condition  
t
t
0.1  
HD_STA  
SCL Low Period  
SCL High Period  
t
See Figure 7 in the Digital I/O section  
See Figure 7 in the Digital I/O section  
1.3  
0.6  
0.2  
0.1  
Fs  
Fs  
LOW  
t
HIGH  
Setup Time Repeated START  
Condition  
See Figure 7 in the Digital I/O section  
0.6  
0.1  
Fs  
SU_STA  
HD_DAT  
SDA Hold Time  
SDA Setup Time  
t
See Figure 7 in the Digital I/O section  
See Figure 7 in the Digital I/O section  
0
-0.01  
0.05  
Fs  
Fs  
t
0.1  
SU_DAT  
Maximum pulse width of spikes that must  
be suppressed by the input filter of both the  
DATA and CLK pins  
Glitch Filter  
50  
ns  
Setup Time for STOP Condition  
t
See Figure 7 in the Digital I/O section  
0.6  
0.1  
Fs  
SU_STO  
Note 2: Specifications are 100% production tested at T = +25NC. Limits over the operating temperature range are guaranteed by  
A
design and characterization. LDO_COMP = 01 (default).  
Note 3: V  
is limited to approximately: V - (inductor DCR + output trace resistance + 100mI) x I  
.
OUT  
IN  
OUT  
Note 4: Values are based on simulations and bench testing; they are not production tested.  
Note 5: System shutdown current is guaranteed by testing the combined current part in shutdown in the main bias section.  
Note 6: IN shutdown current is guaranteed by testing the combined current of all IN_ and LDO_ pins in shutdown to a 5FA (max).  
Note 7: Does not include ESR of the capacitance or trace resistance of the module/PCB.  
Maxim Integrated  
27  
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
Typical Operating Characteristics  
(V  
IN_  
= V  
AV  
= 3.6V, V = 1.8V, Typical Application Circuit, T = +25NC, unless otherwise noted.)  
IO  
A
INPUT SUPPLY CURRENT  
vs. INPUT VOLTAGE  
INPUT SUPPLY CURRENT  
vs. INPUT VOLTAGE  
INPUT SUPPLY CURRENT  
vs. INPUT VOLTAGE  
60  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
STEP-DOWN 1 IN GREEN MODE,  
PFM LDOs DISABLED  
STEP-DOWN 1 WITH REMOTE  
SENSE OFF, PFM LDOs DISABLED  
STEP-DOWN 1 WITH REMOTE  
SENSE ON, PFM LDOs DISABLED  
0
0
0
2.5  
2.5  
2.5  
3.5  
4.5  
5.5  
5.5  
5.5  
2.5  
3.5  
4.5  
5.5  
2.5  
3.5  
4.5  
5.5  
5.5  
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT SUPPLY CURRENT  
vs. INPUT VOLTAGE  
INPUT SUPPLY CURRENT  
vs. INPUT VOLTAGE  
INPUT SUPPLY CURRENT  
vs. INPUT VOLTAGE  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
STEP-DOWNs DISABLED  
, LDO1 = 1V IN GREEN MODE  
STEP-DOWNs DISABLED  
, LDO1 = 1V IN NORMAL MODE  
STEP-DOWNs IN GREEN MODE  
LDOs1 = 1V IN GREEN MODE  
V
V
OUT  
OUT  
0
0
0
3.5  
4.5  
2.5  
3.5  
4.5  
5.5  
2.5  
3.5  
4.5  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
STANDBY CURRENT  
vs. INPUT VOLTAGE  
STEP-DOWN EFFICIENCY  
vs. LOAD CURRENT  
STEP-DOWN EFFICIENCY  
vs. LOAD CURRENT  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
V
V
V
V
= 4.2V  
= 3.6V  
= 3.0V  
= 2.6V  
BATT  
BATT  
BATT  
BATT  
V
= 4.2V  
BATT  
V
V
V
= 3.6V  
BATT  
= 3.0V  
= 2.6V  
BATT  
BATT  
V
= 1.2V, FPWM, REMOTE  
OUT  
SENSE DISABLED,  
L = 1µH (TOKO DFE252010R-1R0N)  
STEP-DOWNs DISABLED  
LDOs1 = DISABLED  
V
= 1.2V, PFM, REMOTE SENSE DISABLED,  
OUT  
L = 1µH (TOKO DFE252010R-1R0N)  
0
3.5  
4.5  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
INPUT VOLTAGE (V)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
Maxim Integrated  
28  
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
Typical Operating Characteristics (continued)  
(V  
IN_  
= V  
AV  
= 3.6V, V = 1.8V, Typical Application Circuit, T = +25NC, unless otherwise noted.)  
IO  
A
STEP-DOWN EFFICIENCY  
vs. LOAD CURRENT  
STEP-DOWN EFFICIENCY  
vs. LOAD CURRENT  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
V
= 4.2V  
= 3.6V  
= 3.0V  
= 2.6V  
V
V
V
= 4.2V  
= 3.6V  
= 3.2V  
BATT  
BATT  
BATT  
BATT  
BATT  
BATT  
BATT  
V
V
V
V
= 1.8V, PFM, REMOTE SENSE DISABLED,  
OUT  
L = 1µH (TOKO DFE252010R-1R0N)  
V
= 2.8V, PFM, REMOTE SENSE DISABLED,  
OUT  
L = 1µH (TOKO DFE252010R-1R0N)  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
STEP-DOWN EFFICIENCY  
vs. LOAD CURRENT  
STEP-DOWN LOAD REGULATION  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
1.220  
1.215  
1.210  
1.205  
1.200  
1.195  
1.190  
1.185  
1.180  
V
V
V
V
= 4.2V  
= 3.6V  
= 3.0V  
= 2.6V  
BATT  
BATT  
BATT  
BATT  
V
V
V
V
= 5.5V  
= 4.2V  
= 3.6V  
= 3.0V  
BATT  
BATT  
BATT  
BATT  
V
= 0.6V, PFM, REMOTE SENSE DISABLED,  
L = 1µH (TOKO DFE252010R-1R0N)  
OUT  
FPWM, REMOTE SENSE ENABLED  
0.001  
0.01  
0.1  
1
10  
0
0.5  
1.0  
1.5  
2.0  
LOAD CURRENT (A)  
LOAD CURRENT (mA)  
V
TRANSTION  
V TRANSTION  
ID  
(12.5mV/µs SLEW)  
ID  
(12.5mV/µs SLEW)  
MAX8967 toc14  
MAX8967 toc15  
3.38V  
3.38V  
V
OUT1  
0.6V  
V
OUT1  
0.6V  
V = 4.2V  
IN  
V
= 4.2V  
IN  
40µs/div  
40µs/div  
Maxim Integrated  
29  
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
Typical Operating Characteristics (continued)  
(V  
IN_  
= V  
AV  
= 3.6V, V = 1.8V, Typical Application Circuit, T = +25NC, unless otherwise noted.)  
IO  
A
STEP-DOWN LOAD TRANSIENT  
STEP-DOWN LOAD TRANSIENT  
MAX8967 toc17  
MAX8967 toc16  
V
= 3.6V  
IN  
SKIP MODE  
V
= 1.2V  
1.2A  
OUT  
200mA  
5mA  
I
OUT  
OUT  
I
OUT  
200mA  
V
V
50mV/div  
OUT  
50mV/div  
AC-COUPLED  
AC-COUPLED  
V
V
= 3.6V  
IN  
= 1.2V  
OUT  
20µs/div  
20µs/div  
LDO1 OUTPUT VOLTAGE  
vs. LOAD CURERNT  
LDO2 OUTPUT VOLTAGE  
vs. LOAD CURERNT  
1.796  
1.794  
1.792  
1.790  
1.788  
1.786  
1.784  
1.782  
1.780  
1.778  
1.798  
1.796  
1.794  
1.792  
1.790  
1.788  
1.786  
1.784  
1.782  
1.780  
1.778  
1.776  
V = 4.2V  
BATT  
V
BATT  
= 4.2V  
0
50  
100  
150  
0
100  
200  
300  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LDO4 OUTPUT VOLTAGE  
vs. LOAD CURERNT  
LDO3 OUTPUT VOLTAGE  
vs. LOAD CURERNT  
1.796  
1.795  
1.794  
1.793  
1.792  
1.791  
1.790  
1.789  
1.788  
1.787  
1.786  
1.795  
1.794  
1.793  
1.792  
1.791  
1.790  
1.789  
1.788  
1.787  
V
BATT  
= 4.2V  
V
BATT  
= 4.2V  
0
50  
100  
150  
0
50  
100  
150  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Maxim Integrated  
30  
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
Typical Operating Characteristics (continued)  
(V  
IN_  
= V  
AV  
= 3.6V, V = 1.8V, Typical Application Circuit, T = +25NC, unless otherwise noted.)  
IO  
A
LDO5 OUTPUT VOLTAGE  
vs. LOAD CURERNT  
LDO6 OUTPUT VOLTAGE  
vs. LOAD CURERNT  
1.795  
1.790  
1.785  
1.780  
1.775  
1.770  
1.765  
1.794  
1.793  
1.792  
1.791  
1.790  
1.789  
1.788  
1.787  
1.786  
1.785  
V
= 4.2V  
BATT  
V
= 4.2V  
BATT  
0
100  
200  
300  
0
50  
100  
150  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LDO1 LINE REGULATION  
MAX8967 toc24  
1.7810  
1.7805  
1.7800  
1.7795  
1.7790  
1.7785  
1.7780  
V
= 1.8V, NORMAL MODE, I = 150mA  
OUT  
OUT  
100mA  
1mA  
I
, LDO1  
, LDO1  
OUT  
V
OUT  
50mV/div  
AC-COUPLED  
2.5  
3.5  
4.5  
5.5  
20µs/div  
INPUT VOLTAGE (V)  
LDO2 LINE REGULATION  
LDO SLEW CONTROL (5mV/µs)  
MAX8967 toc27  
1.7795  
1.7790  
1.7785  
1.7780  
1.7775  
1.7770  
V
= 1.8V, NORMAL MODE, I = 300mA  
OUT  
OUT  
3.95V  
0.8V  
V
= 4.2V  
IN  
NO LOAD  
V
, LDO1  
OUT  
2.5  
3.5  
4.5  
5.5  
200µs/div  
INPUT VOLTAGE (V)  
Maxim Integrated  
31  
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
Typical Operating Characteristics (continued)  
(V  
IN_  
= V  
AV  
= 3.6V, V = 1.8V, Typical Application Circuit, T = +25NC, unless otherwise noted.)  
IO  
A
LDO OUTPUT VOLTAGE ACCURACY  
vs. TEMPERATURE  
LDO SLEW CONTROL (100mV/µs)  
MAX8967 toc28  
0.25  
0.20  
0.15  
0.10  
0.05  
0
3.95V  
0.8V  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
V
= 4.2V  
IN  
NO LOAD  
V
, LDO1  
OUT  
V
= 1V, NORMAL MODE  
50 100  
OUT,LDO1  
-50  
0
10µs/div  
TEMPERATURE (°C)  
STEP-DOWN SWITCHING FREQUENCY  
vs. LOAD CURRENT  
LIGHT LOAD WAVEFORMS  
MAX8967 toc31  
4.60  
4.55  
4.50  
4.45  
4.40  
4.35  
4.30  
4.25  
4.20  
V
= 1V, FPWM  
OUT1  
AC-COUPLED  
50mV/div  
V
OUT1  
2V/div  
V
LX1  
LX1  
I
V
V
= 50mA  
= 1.2V  
OUT  
OUT  
0
500mA/div  
= 3.6V  
IN  
0
I
0
500  
1000  
1500  
2000  
2µs/div  
LOAD CURRENT (mA)  
MODERATE LOAD WAVEFORMS  
HEAVY LOAD WAVEFORMS  
MAX8967 toc33  
MAX8967 toc32  
AC-COUPLED  
50mV/div  
AC-COUPLED  
50mV/div  
V
OUT1  
V
OUT1  
2V/div  
2V/div  
V
I
V
I
LX1  
LX1  
LX1  
I
= 500mA  
OUT  
V
V
0
0
= 1.2V  
OUT  
= 3.6V  
500mA/div  
500mA/div  
IN  
I
V
V
= 1A  
OUT  
LX1  
0
= 1.2V  
0
OUT  
= 3.6V  
IN  
100µs/div  
100ns/div  
Maxim Integrated  
32  
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
Typical Applications Circuit  
INPUT  
2.6V TO 5.5V  
IN1  
IN2  
AV  
SNSP1  
OUT1  
C
IN1,2  
10µF  
OUT1  
0.6V TO 3.3875V,  
2A  
1µH  
LX1  
C
1µF  
AV  
C
22µF  
OUT1  
SNSN1  
PGND1  
1.7V TO 5.5V  
INA  
C
INA,B  
2.2µF  
INB  
SNSP2  
OUT2  
AGND  
OUT2  
0.6V TO 3.3875V,  
2A  
1µH  
LX2  
V
IO  
C
22µF  
OUT2  
MAX8967  
SNSN2  
PGND2  
1.65V TO 5.5V  
V
IO  
0.8V TO 3.95V, 150mA  
LDO1  
LDO2  
LDO3  
LDO4  
LDO5  
LDO6  
SCL  
SDA  
EN1  
EN2  
C
LDO1  
1µF  
0.8V TO 3.95V, 300mA  
C
LDO2  
1µF  
0.8V TO 3.95V, 150mA  
C
LDO3  
1µF  
0.8V TO 3.95V, 150mA  
V
IO  
C
LDO4  
1µF  
V
V
ID1  
ID2  
0.8V TO 3.95V, 300mA  
C
LDO5  
1µF  
0.8V TO 3.95V, 150mA  
IRQB  
C
LDO6  
1µF  
PGND AGND  
Maxim Integrated  
33  
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
Pin Configuration  
TOP VIEW  
(BUMP SIDE DOWN)  
MAX8967  
1
2
3
4
5
6
+
PGND2  
LX2  
OUT2  
AGND  
EN2  
EN1  
A
B
C
D
E
IN2  
SNSP2  
SNSN2  
V
LDO1  
LDO4  
ID2  
SCL  
IN1  
SDA  
V
IRQB  
INA  
INB  
IO  
SNSP1  
SNSN1  
OUT1  
V
ID1  
LDO2  
LDO5  
PGND1  
LX1  
AV  
LDO3  
LDO6  
WLP  
Pin Description  
PIN  
NAME  
FUNCTION  
Step-Down Converter 2 Power Ground. Bypass IN2 to PGND2 with a 10FF ceramic capacitor as close as  
possible to the IC.  
A1  
PGND2  
Step-Down Converter 2 Inductor Switching Node. Connect a 1FH inductor from LX2 to OUT2. LX2 is high  
impedance when disabled.  
A2  
A3  
LX2  
Step-Down Converter 2 Output Sense and Discharge Connection. Bypass OUT2 to PGND2 with a 22FF  
ceramic capacitor. OUT2 can also be connected to ground through an internal 100I resistor using an I2C  
command when disabled.  
OUT2  
A4  
A5  
AGND  
EN2  
Analog Ground. Connect AGND to PGND_.  
Enable Logic Input for Step-Down Converter 2. Step-down converter 2 can also be enabled through I2C.  
EN2 has an internal 800kI pulldown resistor.  
Enable Logic Input for Step-Down Converter 1. Step-down converter 1 can also be enabled through I2C.  
EN1 has an internal 800kI pulldown resistor.  
A6  
B1  
B2  
EN1  
IN2  
Step-Down Converter 2 Input Supply. Bypass IN2 to PGND2 with a 10FF ceramic capacitor as close as  
possible to the IC. Connect IN2 to both IN1 and AV.  
Step-Down Converter 2 Positive Remote Voltage Sense. Connect SNSP2 to the positive terminal of the  
OUT2 bypass capacitor.  
SNSP2  
Maxim Integrated  
34  
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
Pin Description (continued)  
PIN  
B3  
NAME  
SNSN2  
FUNCTION  
Step-Down Converter 2 Negative Remote Voltage Sense. Connect SNSN2 to the negative terminal of the  
OUT2 bypass capacitor.  
Voltage Identification Digital 2. To toggle between two step-down converter 2 output voltages, toggle V  
ID2  
B4  
V
ID2  
logic-high and logic-low. V  
has an internal 800kI pulldown resistor.  
ID2  
B5  
B6  
C1  
C2  
C3  
LDO1  
LDO4  
SCL  
LDO1 Output. Bypass LDO1 to AGND with a 1FF ceramic capacitor.  
LDO4 Output. Bypass LDO4 to AGND with a 1FF ceramic capacitor.  
I2C Clock Signal. Connect SCL to V with a 2.2kI pullup resistor.  
IO  
SDA  
I2C Data Signal. Connect SCA to V with a 2.2kI pullup resistor.  
IO  
V
I/O Input Supply. Connect V to the I2C bus master’s power supply.  
IO  
IO  
Interrupt Open-Drain Active-Low Output. IRQB signals if there is a fault. Connect IRQB to V with a  
IO  
100kI pullup resistor.  
C4  
C5  
C6  
D1  
D2  
D3  
D4  
IRQB  
INA  
Input Supply for LDOs 1, 2, and 3. Bypass INA to AGND with a 2.2FF ceramic capacitor as close as  
possible to the IC.  
Input Supply for LDOs 4, 5, and 6. Bypass INB to AGND with a 2.2FF ceramic capacitor as close as  
possible to the IC.  
INB  
Power input for Step-Down Converter 1. Bypass IN1 to PGND1 as close as possible to the IC. Connect  
IN1 to both IN2 and AV.  
IN1  
Step-Down Converter 1 Positive Remote Voltage Sense. Connect SNSP1 to the positive terminal of the  
OUT1 bypass capacitor.  
SNSP1  
SNSN1  
Step-Down Converter 1 Negative Remote Voltage Sense. Connect SNSN1 to the negative terminal of the  
OUT1 bypass capacitor.  
Voltage Identification Digital 1. To toggle between two different step-down converter 1 output voltages  
V
ID1  
toggle V  
logic-high and logic-low. V  
has an internal 800kI pulldown resistor.  
ID1  
ID1  
D5  
D6  
LDO2  
LDO5  
LDO2 Output. Bypass LDO2 to AGND with a 1FF ceramic capacitor.  
LDO5 Output. Bypass LDO5 to AGND with a 1FF ceramic capacitor.  
Step-Down Converter 1 Power Ground. Bypass IN1 to PGND1 with a 10FF ceramic capacitor as close as  
possible to the IC.  
E1  
E2  
PGND1  
LX1  
Inductor Connection for Buck 1. LX is high impedance when disabled.  
Step-Down Converter 1 Output Sense and Discharge Connection. Bypass OUT1 to PGND1 with a 22FF  
ceramic capacitor.  
E3  
OUT1  
OUT1 can also be connected to ground through an internal 100I resistor using an I2C command when  
disabled.  
Analog Input Supply. Connect AV to IN1 and IN2. Bypass AV to AGND with 1FF ceramic capacitor as  
close as possible to the IC.  
E4  
AV  
E5  
E6  
LDO3  
LDO6  
LDO3 Output. Bypass LDO3 to AGND with a 1FF ceramic capacitor.  
LDO6 Output. Bypass LDO6 to AGND with a 1FF ceramic capacitor.  
Maxim Integrated  
35  
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
core voltages are restored, providing the optimal operat-  
ing condition for best system performance.  
General Description  
The MAX8967’s two ultra-low I step-down converters  
Q
Remote Output Voltage Sensing  
Each step-down converter’s output features remote out-  
put voltage sensing for improved output voltage accu-  
racy. The remote sense accommodates a distance that  
incures up to a 200mV correction in the output voltage.  
The SNSP_ and SNSN_ inputs connect directly across  
the load, with the SNSN_ connected to a quiet analog  
ground near the load, and SNSP_ connected directly to  
the output bypass capacitor.  
are ideal for powering modems, applications processor  
cores, memory, system I/O, and portable devices. In  
normal operation, these step-down converters consume  
only 16FA (typ) of quiescent current. In green mode, the  
quiescent current is reduced to 5FA (typ) per converter  
with reduced load capability. Each step-down converter  
can be independently put into green mode by writing a  
bit in its control register.  
Step-Down Converters  
Each step-down converter provides internal feed-  
back, minimizing external component count. Both  
step-down converter output voltages are programmed  
through the IC’s serial interface. A 4.4MHz switching  
frequency minimizes external component size.  
Dynamic voltage scaling is available to reduce power  
consumption. Both step-down converters feature auto-  
matic transition from skip mode to FPWM operation.  
Forced PWM operation can be enabled by writing a bit  
in a control register.  
The remote sense feature requires a 1V or greater differ-  
ence between AV and OUT_ for best performance. The  
remote sense feature can be disabled through registers  
to reduce quiescent current consumption. In addition,  
this feature is disabled during green mode operation.  
Output Voltage Slew Rate  
Both step-down converters feature an adjustable slew  
rate when increasing or decreasing output voltage. The  
nominal slew rate is 12.5mV/Fs. Two additional slew rates  
are provided (25mV/Fs and 50mV/Fs), so that faster and  
slower slew rates can be programmed. An option for  
fastest possible ramp rate is also provided to allow the  
converter to operate at current limit for the fastest pos-  
sible slew rate.  
Interleaved Switching  
The step-down converter’s high-side switches turn on  
during opposite clock edges of the oscillator. This helps  
minimize input current ripple, thus reducing the input  
capacitance required to reduce input voltage ripple.  
When decreasing the output voltage, two settings are  
provided with a single register bit. When this control bit is  
set, the converter operates in forced PWM (FPWM) mode  
with negative inductor current so that the output voltage  
can be decreased in finite steps at the selected slew  
rate. When this control bit is reset, the converter operates  
in skip mode, and the actual slew rate of the output is  
dependent on the external load, and might not necessar-  
ily track the slew rate set for falling output voltages.  
Skip Mode/FPWM Operation  
In the normal operating state, both step-down converters  
automatically transition from skip mode to fixed-frequency  
operation as load current increases. For operating  
modes where lowest output ripple is required, forced  
PWM switching behavior can be enabled by writing a  
bit in the appropriate FPWM_ register. See Table 3 and  
Table 15.  
Output Ripple  
Voltage Control Using V  
For normal operation (not in green mode), output ripple  
ID  
Both step-down converters feature V control to reduce  
should be < 20mV  
for an output current < 50mA.  
ID  
P-P  
power consumption in the loads such as modem and  
Ripple can be further reduced by increasing output  
capacitance above the minimum for stable operation.  
Transition from skip to PWM operation should occur at  
current levels below 50mA. In green mode, the output  
applications processor cores. Each V control allows  
ID  
the converter to transition between two states setup in  
advance using I2C. Essentially two voltage states are  
accessible without the overhead associated with I2C con-  
ripple can increase to 40mV  
(max) for V  
= 0.7V.  
P-P  
OUT_  
trol. V control allows the core voltages to be reduced  
when the processor clock is throttled back. When exiting  
This value can be decreased by adding additional output  
capacitance.  
ID  
sleep mode (by changing the state of V ), the normal  
ID  
Maxim Integrated  
36  
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
Green Mode Operation  
In green mode, the quiescent current of each of the  
step-down converters are reduced from 16FA (typ) to  
5FA (typ). If the output voltages are adjusted during  
green mode slew rate is very slow. Also, output current  
is limited to 5mA. Green mode is enabled by setting bits  
PWR_[5:4] = 10 in the appropriate converter’s control  
register. See Table 3. Each converter can be individually  
selected to enter green mode.  
Discharge Resistance  
The IC provides an internal 100I discharge resistor for  
each disabled step-down converter. The discharge resis-  
tor connection can be enabled and disabled through the  
nADEN_ register bit for maximum flexibility. See Table 3.  
LDO Detailed Description  
The IC provides six LDOs with adjustable outputs as  
shown in Table 1.  
Shutdown, Standby, and Reset  
SHUTDOWN  
= EN1 = EN2 = 0V  
V
IO  
I
= 0µA  
Q
NO VALID SUPPLY FOR  
VALID SUPPLY FOR  
V /IN1/IN2/AV  
IO  
AND EN1 = EN2 = 0 AND  
TEMPERATURE IN RANGE  
V
IO  
/IN1/IN2/AV OR  
TEMPERATURE  
NOT IN RANGE  
NO VALID SUPPLY FOR  
/IN1/IN2/AV  
VALID SUPPLY FOR  
V /IN1/IN2/AV  
IO  
AND TEMPERATURE  
IN RANGE EN_ = 1  
STANDBY  
REFERENCE ON  
V
IO  
AND EN1 = EN2 = 0  
I
= 20µA  
Q
PWR1 _[5:4] = 00 AND  
PWR2 _[5:4] = 00 AND  
EN1 = EN2 = 0V AND  
A VALID VIO SUPPLY  
PWR1 _[5:4] 00 OR  
PWR2 _[5:4] 00  
STEPDOWN  
CONVERTER  
1 OR 2 IS ON  
Figure 1. Power Mode State Diagram  
Table 1. LDO Description  
MAXIMUM OUTPUT  
CURRENT (mA)  
LDO  
V
_ RANGE (V)  
INPUT SUPPLY  
V
RANGE (V)  
C
(FF)  
IN  
OUT  
OUT  
LDO1  
LDO2  
LDO3  
LDO4  
LDO5  
LDO6  
1.7 to 5.5  
1.7 to 5.5  
1.7 to 5.5  
1.7 to 5.5  
1.7 to 5.5  
1.7 to 5.5  
INA  
INA  
INA  
INB  
INB  
INB  
0.8 to 3.95  
0.8 to 3.95  
0.8 to 3.95  
0.8 to 3.95  
0.8 to 3.95  
0.8 to 3.95  
150  
300  
150  
150  
300  
150  
1
1
1
1
1
1
Maxim Integrated  
37  
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
LDO Power Modes  
All LDO regulators have independent enable and  
disable control through their LDO_PWR[7:6] bits. In  
addition, each LDO has a special green mode that  
reduces the quiescent current to 1.5FA (typ). In green  
mode, each regulator supports a load of up to 10mA. The  
load regulation performance degrades proportionally  
with the reduced load current.  
Active Discharge  
Each linear regulator has an active-discharge resistor  
feature that can be enabled/disabled with the LDO_ADE  
bit. See Table 3 and Table 20. Enabling the active  
discharge feature helps ensure a complete and time-  
ly power-down of all system peripherals. The default  
condition of the active-discharge resistor feature is  
enabled so that whenever VUVLO,LDO_ is below its  
UVLO threshold, all regulators are disabled with their  
active discharge resistors turned on. When VUVLO,LDO_  
is less than 1.0V, the NMOS transistors that control  
the active discharge resistors lose their gate drive and  
become open.  
Several usage options are available for green mode.  
To force individual regulators to green mode set LDO_  
PWR[7:6] = 10.  
Soft-Start and Dynamic Voltage Change  
The LDO regulators have a programmable soft-start rate.  
When an LDO is enabled, the output voltage ramps to its  
final voltage at a slew rate of either 5mV/Fs or 100mV/Fs,  
depending on the state of the LDO_SS bit. See Table 3  
and Table 20.  
When the regulator is disabled while the active discharge  
is disabled, the internal active-discharge resistor is not  
connected to its output and the output voltage decays at  
a rate that is determined by the output capacitance and  
the external load.  
The 5mV/Fs ramp rate limits the input inrush current to  
around 5mA on a 300mA regulator with a 1FF output  
capacitor and no load. The 100mV/Fs ramp rate results in  
a 100mA inrush current with a 1FF output capacitor and  
no load, but achieves regulation within 50Fs. The soft-  
start ramp rate is also the rate of change at the output  
when switching dynamically between two output voltages  
without disabling.  
When the regulator is enabled, the internal active-  
discharge resistor is not connected to its output. When  
the regulator is disabled while the active discharge is  
enabled, an internal active-discharge resistor is con-  
nected to its output which discharges the energy stored  
in the output capacitance.  
Adjustable Compensation  
All six LDOs have adjustable compensation to facilitate  
remote capacitor capability. This feature can be used to  
adjust the compensation of the LDO based on the resis-  
tance and inductance to the remote capacitor. This abil-  
ity allows each LDO to be programmed for optimal load  
transient performance based on the location of its remote  
capacitor. See Table 20 for more details. The LDO com-  
pensation should be switched only when that LDO is off.  
If the compensation switches when the LDO is enabled,  
it causes unknown output glitches, due to switching in  
uncharged capacitors as compensation changes.  
The soft-start circuitry of the LDOs supports starting into  
a prebiased output.  
Power-OK Comparator  
Each regulator includes a power-OK (POK) compara-  
tor. The POK comparator signals (LDO_POK) indicate  
when each output has lost regulation (i.e., the output  
voltage is below V ). The POK signal has a 25Fs  
POKTHL  
noise immunity filter (V ). The POK comparator  
POKNF_  
is disabled in green mode to save power. When any of  
the POK signals (LDO_POK) go low, then an interrupt is  
generated.  
Overvoltage Clamp  
Each LDO has an overvoltage clamp that allows it to sink  
current when the output voltage is above its target volt-  
age. This overvoltage clamp is default enabled but can  
be disabled with LDO_OVCLMP_EN. See Table 3 and  
Table 15. The following list briefly describes three typi-  
cal applications scenarios that pertain to the overvoltage  
clamp.  
Note that the LDOs implement a proprietary POK scheme  
that allows the POK comparator to operate correctly even  
while the LDO is in its soft-start period. If the LDO is over-  
loaded when it is in its soft-start period, POK is low. If it  
is not overloaded during its soft-start period, POK is high.  
Maxim Integrated  
38  
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
•ꢀ LDO’s Load Leaking Current into the LDO’s  
heat dissipated can exceed the maximum junction tem-  
perature of the part. If the junction temperature reaches  
approximately +165NC, the thermal overload protection  
is activated.  
Output: Some LDO loads leak current into an  
LDO output during certain operating modes.  
This is typically seen with microprocessor loads.  
For example, a microprocessor with 3.3V, 2.5V,  
1.8V, and 1.0V supply rails is running in standby  
mode. In this mode, the higher voltage rails can  
leak currents of several mA into the lower voltage  
rails. If the 1.0V rail is supplied by an LDO, the  
LDO output voltage rises based on the amount of  
leakage current. With the LDO overvoltage clamp  
enable, when the output voltage rises above its  
target regulation voltage, the overvoltage clamp  
sinks current from the output capacitor to bring  
the output voltage back within regulation.  
The IC maximum power dissipation depends on the  
thermal resistance of the IC package and circuit board.  
The power dissipated in the device is:  
PD = P  
×(1/η1 - 1) + P  
× (1/η2 - 1)  
OUT1  
OUT2  
where E1 and E2 are the efficiencies of each converter  
while P and P are the output power of each  
OUT1  
OUT2  
converter.  
The maximum allowed power dissipation is:  
P
= (T - T )/θ  
JA  
MAX  
JMAX  
A
•ꢀ Negative Load Transient to 0A: When the LDO  
load current quickly ramps to 0A (i.e., 300mA to  
0A load transient with 1Fs transition time), the  
output voltage can overshoot (i.e., soar). Since  
the LDO cannot turn off its pass device immedi-  
ately, the LDO output voltage overshoots. In this  
instance, when the output voltage sores above  
target regulation voltage, the overvoltage clamp  
sinks current from the output capacitor to bring  
the output voltage back within regulation.  
T
- T is the temperature difference between  
A
the IC’s maximum rated junction temperature and the  
surrounding air, B is the thermal resistance of the  
junction through the PCB, copper traces, and other  
materials to the surrounding air.  
JMAX  
JA  
Digital Interface  
The IC has four types of digital interface:  
•ꢀ Twoꢀ enablepinsꢀ (EN_),ꢀ oneforꢀ eachstep-downꢀ  
•ꢀ Negative Dynamic Voltage Transition: When  
the LDO output target voltage is decreased (i.e.,  
1.2V to 0.8V) when the system loading is light,  
the energy in the output capacitor tends to hold  
the output voltage up. When the output voltage is  
above its target regulation voltage, the overvolt-  
age clamp sinks current from the output capacitor  
to bring the output voltage back within regulation.  
converter  
•ꢀ Two V pins (V ), one for each step-down converter  
ID ID_  
•ꢀ Anꢀinterruptꢀpin,ꢀIRQB  
•ꢀ Aꢀtwo-wireꢀI2C interface  
The I2C interface is use to set the state of the IC while the  
two enable and two V pins, one set for each step-down  
converter, are used to rapidly transition between on/off  
and two voltage and mode states previously defined  
using I2C communication.  
ID  
LDO Interrupt  
The power-OK comparators outputs drive a set of inter-  
rupts. Each regulator is capable of generating an inter-  
rupt, when the output goes out of regulation in normal  
operation. In green mode, the POK comparators are  
disabled and the regulators do not generate interrupts.  
Enable (EN_)  
Two enable logic input pins are provided to allow rapid  
transitions between on and off for each step-down  
converter. The enable pins work in conjunction with the  
I2C step-down converter PWR MD (mode) bits to control  
on/off, normal or green mode, and enabling/disabling of  
remote sense per step-down converter. Each converter  
can be enabled through the dedicated enable pin or  
through the I2C with a logical OR function.  
Thermal Considerations  
In most applications, the IC does not dissipate much heat  
due to its high efficiency. But in applications where the IC  
runs at high ambient temperature with heavy loads, the  
Maxim Integrated  
39  
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
Voltage Identification Digital (V  
)
I2C Interface  
ID_  
pins are provided to allow rapid transitions  
2
Two V  
An I C-compatible, 2-wire serial interface controls the  
step-down converter output voltage, ramp rate, operat-  
ing mode, and synchronization. The serial bus consists  
of a bidirectional serial-data line (SDA) and a serial-clock  
input (SCL). The master initiates data transfer on the bus  
and generates SCL to permit data transfer.  
ID_  
between two previously configured states for each step-  
down converter. There are multiple registers for output  
voltage and mode of operation for each converter as well.  
IRQB  
The IRQB is an active-low, open-drain output that signals  
a fault on any one or more of the step-down converters or  
LDOs. Each converter and LDO is individually monitored  
for its POK status, and thermal shutdown for the entire  
MAX8967 is monitored.  
2
I C is an active-low open-drain bus. SDA and SCL  
require pullup resistors (500Ior greater). Optional resis-  
tors (24I) in series with SDA and SCL can protect the  
device inputs from high-voltage spikes on bus lines.  
Series resistors also minimize crosstalk and undershoot  
on bus signals.  
Table 2. Step-Down Converter Modes  
Bit Transfer  
One data bit is transferred during each SCL clock cycle.  
The data on SDA must remain stable during the high  
period of the SCL clock pulse. See Figure 2. Changes in  
SDA while SCL is high are control signals. See the START  
and STOP Conditions section for more information.  
EN_  
0
I2C MD BITS  
MODE  
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Off  
0
On, green  
0
On, normal, remote sense on  
On, normal, remote sense off  
On, normal, remote sense on  
On, green  
0
Each transmit sequence is framed by a START (S) condi-  
tion and a STOP (P) condition. Each data packet is 9 bits  
long, 8 bits of data followed by the acknowledge bit. The  
IC supports data transfer rates with SCL frequencies up  
to 400kHz.  
1
1
1
On, normal, remote sense on  
On, normal, remote sense off  
1
SDA  
SCL  
CHANGE OF DATA  
ALLOWED  
DATA LINE STABLE DATA VALID  
2
Figure 2. I C Bit Transfer  
Maxim Integrated  
40  
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
START and STOP Conditions  
When the serial interface is inactive, SDA and SCL idle  
high. A master device initiates communication by issuing  
a START condition. A START condition is a high-to-low  
transition on SDA with SCL high. A STOP condition is  
a low-to-high transition on SDA, while SCL is high. See  
Figure 3.  
Acknowledge  
The number of data bytes between the START and STOP  
conditions for the transmitter and receiver are unlimited.  
Each 8-bit byte is followed by an acknowledge bit. The  
acknowledge bit is a high-level signal put on SDA by the  
transmitter during which time the master generates an  
extra acknowledge related clock pulse. A slave receiver  
that is addressed must generate an acknowledge after  
each byte it receives. Also, a master receiver must  
generate an acknowledge after each byte it receives that  
has been clocked out of the slave transmitter.  
A START condition from the master signals the beginning  
of a transmission to the IC. The master terminates trans-  
mission by issuing a not-acknowledge (nACK) followed  
by a STOP condition. See the Acknowledge section for  
more information. The STOP condition frees the bus.  
To issue a series of commands to the slave, the master  
can issue REPEATED START (Sr) commands instead  
of a STOP command to maintain control of the bus. In  
general, a REPEATED START command is functionally  
equivalent to a regular START command.  
The device that acknowledges must pull down the DATA  
line during the acknowledge clock pulse, so that the  
DATA line is stable low during the high period of the  
acknowledge clock pulse (setup and hold times must  
also be met). A master receiver must signal an end of  
data to the transmitter by not generating an acknowledge  
on the last byte that has been clocked out of the slave. In  
this case, the transmitter must leave SDA high to enable  
the master to generate a STOP condition.  
When a STOP condition or incorrect address is detected,  
the IC internally disconnects SCL from the serial interface  
until the next START condition, minimizing digital noise  
and feedthrough.  
Update of Output Operation Mode  
If updating the output voltage or operation mode register  
for the mode that the is currently operating in, the output  
voltage/operation mode is updated at the same time the  
IC sends the acknowledge for the I2C data byte.  
System Configuration  
A device on the I2C bus that generates a message is  
called a transmitter and a device that receives the mes-  
sage is a receiver. The device that controls the message  
is the master and the devices that are controlled by the  
master are called slaves.  
SDA BY MASTER  
D0  
D7  
D6  
SDA  
SCL  
NOT ACKNOWLEDGE  
SDA BY SLAVE  
ACKNOWLEDGE  
8
SCL  
1
2
9
CLOCK PULSE FOR  
ACKNOWLEDGEMENT  
START  
CONDITION  
STOP  
CONDITION  
START CONDITION  
2
2
Figure 3. I C START and STOP Conditions  
Figure 4. I C Acknowledge  
Maxim Integrated  
41  
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
Slave Address  
A bus master initiates communication IC by issuing a  
START condition followed by the slave address. The  
slave address byte consists of 7 address bits (1100011x)  
and a read/write bit (R/W). After receiving the proper  
address, the IC issues an acknowledge by pulling SDA  
low during the ninth clock cycle.  
The IC uses a default I2C slave address of C6h. There  
are two other slave addresses (C8h and CAh) that can  
be assigned. Contact the factory for details. See the  
Selector Guide.  
any register pointer even though only a subset of those  
registers actually exists in the device. The write byte pro-  
tocol is as follows:  
1) The master sends a START command.  
2) The master sends the 7-bit slave address followed  
by a write bit.  
3) The addressed slave asserts an acknowledge by  
pulling SDA low.  
4) The master sends an 8-bit register pointer.  
5) The slave acknowledges the register pointer.  
6) The master sends a data byte.  
Write Operations  
The IC recognizes the write byte protocol as defined in  
the SMBus specification. The write byte protocol allows  
the I2C master device to send 1 byte of data to the slave  
device. The write byte protocol requires a register pointer  
address for the subsequent write. The IC acknowledges  
7) The slave acknowledges the data byte.  
8) The slave updates with the new data.  
9) The master sends a STOP condition.  
LEGEND  
MASTER TO  
SLAVE  
SLAVE TO  
MASTER  
a) WRITING TO A SINGLE REGISTER WITH THE WRITE BYTE PROTOCOL  
NUMBER  
OF BITS  
1
7
1
0
1
8
1
8
1
1
S
SLAVE ADDRESS  
A
REGISTER POINTER  
A
DATA  
A
P
R/W  
b) WRITING TO MULTIPLE REGISTERS  
NUMBER  
OF BITS  
1
7
1
1
8
1
8
1
8
1
S
SLAVE ADDRESS  
0
A
REGISTER POINTER X  
A
DATA X  
A
DATA X + 1  
A
R/W  
NUMBER OF BITS  
8
1
8
1
DATA X + n - 1  
A
DATA X + n  
A
P
2
Figure 5. I C Write Operation  
Maxim Integrated  
42  
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
Read Operations  
The method for reading a single register (byte) is shown  
below. To read a single register:  
In addition to the write-byte protocol, the IC can write  
to multiple registers as shown in Figure 5. This protocol  
allows the I2C master device to address the slave only  
once and then send data to a sequential block of regis-  
ters starting at the specified register pointer.  
1) The master sends a START command.  
2) The master sends the 7-bit slave address followed  
by a write bit.  
Use the following procedure to write to a sequential block  
of registers:  
3) The addressed slave asserts an acknowledge by  
pulling SDA low.  
1) The master sends a START command.  
2) The master sends the 7-bit slave address followed  
by a write bit.  
4) The master sends an 8-bit register pointer.  
5) The slave acknowledges the register pointer.  
6) The master sends a repeated START condition.  
3) The addressed slave asserts an acknowledge by  
pulling SDA low.  
7) The master sends the 7-bit slave address followed  
by a read bit.  
4) The master sends the 8-bit register pointer of the  
first register to write.  
8) The slave assets an acknowledge by pulling  
SDA low.  
5) The slave acknowledges the register pointer.  
6) The master sends a data byte.  
9) The slave sends the 8-bit data (contents of  
the register).  
7) The slave acknowledges the data byte.  
8) The slave updates with the new data.  
10) The master assets a not acknowledge by keeping  
SDA high.  
9) Steps 6 to 8 are repeated for as many registers in  
the block, with the register pointer automatically  
incremented each time.  
11) The master sends a STOP condition.  
10) The master sends a STOP condition.  
LEGEND  
MASTER TO  
SLAVE  
SLAVE TO  
MASTER  
a) READING A SINGLE REGISTER  
1
7
1
0
1
8
1
1
7
1
1
8
1
1
NUMBER OF BITS  
S
SLAVE ADDRESS  
A
REGISTER POINTER  
A
Sr  
SLAVE ADDRESS  
1
A
DATA  
A
P
R/W  
R/W  
b) READING MULTIPLE REGISTERS  
NUMBER OF BITS  
1
7
1
1
8
1
1
7
1
8
1
1
1
...  
S
SLAVE ADDRESS  
0
A
REGISTER POINTER X  
A
Sr  
SLAVE ADDRESS  
A
DATA X  
A
R/W  
...  
R/W  
1
8
1
8
8
1
1
NUMBER OF BITS  
...  
A
DATA X+1  
DATA X+n-1  
A
DATA X+n  
A
P
2
Figure 6. I C Read Operation  
Maxim Integrated  
43  
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
In addition, the IC can read a block of multiple sequential  
8) The slave assets an acknowledge by pulling  
registers as shown in section B of Figure 6. Use the fol-  
lowing procedure to read a sequential block of registers:  
SDA low.  
9) The slave sends the 8-bit data (contents of  
the register).  
1) The master sends a START command.  
2) The master sends the 7-bit slave address followed  
by a write bit.  
10) The master assets an acknowledge by pulling  
SDA low when there is more data to read, or a not  
acknowledge by keeping SDA high when all data  
has been read.  
3) The addressed slave asserts an acknowledge by  
pulling SDA low.  
11) Steps 9 and 10 are repeated for as many registers  
in the block, with the register pointer automatically  
incremented each time.  
4) The master sends an 8-bit register pointer of the first  
register in the block.  
5) The slave acknowledges the register pointer.  
6) The master sends a repeated START condition.  
12) The master sends a STOP condition.  
7) The master sends the 7-bit slave address followed  
by a read bit.  
SDA  
t
BUF  
t
SU,STA  
t
SU,DAT  
t
HD,STA  
t
LOW  
t
SU,STO  
t
HD,DAT  
t
SCL  
HIGH  
t
HD,STA  
t
t
F
R
START CONDITION  
REPEATED START CONDITION  
STOP  
CONDITION  
START  
CONDITION  
2
Figure 7. I C Timing Diagram  
Maxim Integrated  
44  
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
I2C Commands  
Register Reset  
All resisters associated with the IC’s I2C interface are reset to their default values when the voltage applied to V drops  
IO  
below the 0.4V threshold. See the Electrical Characteristics table. The slave address of the IC is 0xC6.  
I2C High Level Register Map  
2
Table 3. I C High Level Register Map  
BIT  
REGISTER  
DESCRIPTION  
7
MSB  
0
LSB  
6
5
4
3
2
1
0x00  
0x01  
ID  
ID[7:0]  
Chip Configuration  
FREQ[2:0]  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
Step-Down 1  
Voltage V High  
ID  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0B  
VOUT_B1_VIDH[7:0]  
VOUT_B1_VIDL[7:0]  
Step-Down 1  
Voltage V Low  
ID  
Step-Down 1  
FALL  
SLEW1H  
SLEW1H[7:6]  
PWR1H[5:4]  
PWR1L[5:4]  
nADEN1H FPWM1H  
nADEN1L FPWM1L  
RSVD  
RSVD  
Configuration V High  
ID  
Step-Down 1  
FALL  
SLEW1L  
SLEW1L[7:6]  
Configuration V Low  
ID  
Step-Down 2  
VOUT_B2_VIDH[7:0]  
VOUT_B2_VIDL[7:0]  
Voltage V High  
ID  
Step-Down 2  
Voltage V Low  
ID  
Step-Down 2  
FALL  
SLEW2H  
SLEW2H[7:6]  
SLEW2L[7:6]  
PWR2H[5:4]  
PWR2L[5:4]  
nADEN2H FPWM2H  
nADEN2L FPWM2L  
RSVD  
RSVD  
RSVD  
Configuration V High  
ID  
Step-Down 2  
FALL  
SLEW2L  
Configuration V Low  
ID  
LDO_  
PNOK  
Status  
PNOK1  
PNOK2  
TH  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
LDO_  
PNOK_  
INT  
PNOK1_  
INT  
PNOK2_  
INT  
0x0C  
Interrupt  
TH_INT  
THM  
RSVD  
RSVD  
LDO_  
PNOKM  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
Interrupt Mask  
PNOK1M PNOK2M  
LDO1PWR[7:6]  
LDO 1 Configuration 1  
LDO 1 Configuration 2  
LDO 2 Configuration 1  
LDO 2 Configuration 2  
LDO 3 Configuration 1  
LDO 3 Configuration 2  
LDO1TV[5:0]  
LDO1OV  
RSVD  
LDO1  
ADE  
LDO1COMP[5:4]  
LDO2COMP[5:4]  
LDO3COMP[5:4]  
LDO1POK  
RSVD  
LDO1SS  
LDO2SS  
LDO3SS  
CLMP_EN  
LDO2PWR[7:6]  
LDO2TV[5:0]  
LDO2OV  
RSVD  
LDO2  
ADE  
LDO2POK  
RSVD  
CLMP_EN  
LDO3PWR[7:6]  
LDO3TV[5:0]  
LDO3OV  
RSVD  
LDO3  
ADE  
LDO3POK  
RSVD  
CLMP_EN  
Maxim Integrated  
45  
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
2
Table 3. I C High Level Register Map (continued)  
BIT  
REGISTER  
DESCRIPTION  
7
MSB  
0
LSB  
6
5
4
3
2
1
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
LDO 4 Configuration 1  
LDO 4 Configuration 2  
LDO 5 Configuration 1  
LDO 5 Configuration 2  
LDO 6 Configuration 1  
LDO 6 Configuration 2  
LDO4PWR[7:6]  
LDO4OV  
CLMP_EN  
LDO5PWR[7:6]  
LDO5OV  
CLMP_EN  
LDO6PWR[7:6]  
LDO6OV  
CLMP_EN  
RSVD  
RSVD  
LDO4TV[5:0]  
LDO4POK RSVD  
LDO5TV[5:0]  
LDO5POK RSVD  
LDO6TV[5:0]  
LDO4  
ADE  
RSVD  
LDO4COMP[5:4]  
LDO5COMP[5:4]  
LDO6COMP[5:4]  
LDO4SS  
LDO5SS  
LDO5  
ADE  
RSVD  
LDO6  
ADE  
RSVD  
LDO6POK  
RSVD  
LDO6SS  
L01_INT  
0x1B  
0x1C  
LDO INT  
L06_INT  
L05_INT  
L04_INT  
L03_INT  
L02_INT  
LDO INTM  
L06_INTM L05_INTM L04_INTM L03_INTM L02_INTM L01_INTM  
Table 4. ID Register  
COMMAND NAME  
ID  
MAX8967 I2C address  
0x00  
I2C address  
Command code  
Access type  
Read only  
Reset condition  
Hard wired, not reset  
BIT  
NAME  
DESCRIPTION  
Code is a unique chip version identifier  
DEFAULT  
7–0  
ID[7:0]  
0x66  
Table 5. Chip Configuration Register  
COMMAND NAME  
I2C address  
CHIP CONFIGURATION  
MAX8967 I2C address  
0x01  
Command code  
Access type  
Read/write  
Reset condition  
Power-up/chip reset  
BIT  
7, 6, 5  
4–0  
NAME  
DESCRIPTION  
DEFAULT  
0b000  
0b0  
Switching frequency selection bits  
000 = 4.4MHz  
001 = 4.8MHz  
010 = 4.0MHz  
011 = RSVD  
100 = 4.2MHz  
101 = RSVD  
110 = 4.6MHz  
111 = RSVD  
FREQ[2:0]  
Reserved  
Maxim Integrated  
46  
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
Table 6. Step-Down 1 Output Voltage VID High  
COMMAND NAME  
STEP-DOWN CONVERTER 1 VOLTAGE VID HIGH  
I2C address  
MAX8967 I2C address  
Command code  
Access type  
0x02  
Read/write  
Reset condition  
Power-up/chip reset  
BIT  
NAME  
DESCRIPTION  
DEFAULT  
0x00  
7:0  
VOUT_ B1_VIDH [7:0]  
See Table 14  
Table 7. Step-Down 1 Output Voltage VID Low  
COMMAND NAME  
STEP-DOWN CONVERTER 1 VOLTAGE VID LOW  
MAX8967 I2C address  
0x03  
I2C address  
Command code  
Access type  
Read/write  
Reset condition  
Power-up/chip reset  
BIT  
NAME  
DESCRIPTION  
DEFAULT  
7–0  
VOUT_B1_VIDL [7:0]  
See Table 14  
0x30  
Table 8. Step-Down 1 Configuration Register VID High  
COMMAND NAME  
STEP-DOWN CONVERTER 1 CONFIGURATION VID HIGH  
I2C address  
MAX8967 I2C address  
Command code  
Access type  
0x04  
Read/write  
Reset condition  
Power-up/chip reset  
BIT  
NAME  
DESCRIPTION  
DEFAULT  
7–0  
See Table 15  
See Table 15  
0x00  
Table 9. Step-Down 1 Configuration Register VID Low  
COMMAND NAME  
STEP-DOWN CONVERTER 1 CONFIGURATION VID LOW  
I2C address  
MAX8967 I2C address  
Command code  
Access type  
0x05  
Read/write  
Reset condition  
Power-up/chip reset  
BIT  
NAME  
DESCRIPTION  
DEFAULT  
7–0  
See Table 15  
See Table 15  
0x00  
Maxim Integrated  
47  
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
Table 10. Step-Down 2 Voltage Register VID High  
COMMAND NAME  
STEP-DOWN 2 VOLTAGE VID HIGH  
I2C address  
MAX8967 I2C address  
Command code  
Access type  
0x06  
Read/write  
Reset condition  
Power-up/chip reset  
BIT  
NAME  
DESCRIPTION  
DEFAULT  
7–0  
VOUT_B2_VIDH[7:0]  
See Table 14  
0x00  
Table 11. Step-Down 2 Output Voltage VID Low  
COMMAND NAME  
STEP-DOWN 2 VOLTAGE VID LOW  
I2C address  
MAX8967 I2C address  
Command code  
Access type  
0x07  
Read/write  
Reset condition  
Power-up/chip reset  
BIT  
NAME  
DESCRIPTION  
DEFAULT  
7–0  
VOUT_B2_VIDL[7:0]  
See Table 14  
0x30  
Table 12. Step-Down 2 Configuration Register VID High  
COMMAND NAME  
STEP-DOWN 2 CONFIGURATION VID HIGH  
I2C address  
MAX8967 I2C address  
Command code  
Access type  
0x08  
Read/write  
Reset condition  
Power-up/chip reset  
BIT  
NAME  
DESCRIPTION  
DEFAULT  
7–0  
See Table 15  
See Table 15  
0x00  
Table 13. Step-Down 2 Configuration Register VID Low  
COMMAND NAME  
STEP-DOWN 2 CONFIGURATION VID LOW  
I2C address  
MAX8967 I2C address  
Command code  
Access type  
0x09  
Read/write  
Reset condition  
Power-up/chip reset  
BIT  
NAME  
DESCRIPTION  
DEFAULT  
7–0  
See Table 15  
See Table 15  
0x00  
Maxim Integrated  
48  
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
Table 14. Step-Down Output Voltage Table  
BIT  
DESCRIPTION  
DEFAULT  
0x00 =  
0x20 =  
0x40 =  
0x60 =  
0x80 =  
0xA0 =  
0xC0 =  
0.6000V  
1.0000V  
1.4000V  
1.8000V  
2.2000V  
2.6000V  
3.0000V  
0x01 =  
0x21 =  
0x41 =  
0x61 =  
0x81 =  
0xA1 =  
0xC1 =  
0.6125V  
1.0125V  
1.4125V  
1.8125V  
2.2125V  
2.6125V  
3.0125V  
0x02 =  
0x22 =  
0x42 =  
0x62 =  
0x82 =  
0xA2 =  
0xC2 =  
0.6250V  
1.0250V  
1.4250V  
1.8250V  
2.2250V  
2.6250V  
3.0250V  
0x03 =  
0x23 =  
0x43 =  
0x63 =  
0x83 =  
0xA3 =  
0xC3 =  
0.6375V  
1.0375V  
1.4375V  
1.8375V  
2.2375V  
2.6375V  
3.0375V  
0x04 =  
0x24 =  
0x44 =  
0x64 =  
0x84 =  
0xA4 =  
0xC4 =  
0.6500V  
1.0500V  
1.4500V  
1.8500V  
2.2500V  
2.6500V  
3.0500V  
0x05 =  
0x25 =  
0x45 =  
0x65 =  
0x85 =  
0xA5 =  
0xC5 =  
0.6625V  
1.0625V  
1.4625V  
1.8625V  
2.2625V  
2.6625V  
3.0625V  
0x06 =  
0x26 =  
0x46 =  
0x66 =  
0x86 =  
0xA6 =  
0xC6 =  
0.6750V  
1.0750V  
1.4750V  
1.8750V  
2.2750V  
2.6750V  
3.0750V  
0x07 =  
0x27 =  
0x47 =  
0x67 =  
0x87 =  
0xA7 =  
0xC7 =  
0.6875V  
1.0875V  
1.4875V  
1.8875V  
2.2875V  
2.6875V  
3.0875V  
0x08 =  
0x28 =  
0x48 =  
0x68 =  
0x88 =  
0xA8 =  
0xC8 =  
0.7000V  
1.1000V  
1.5000V  
1.9000V  
2.3000V  
2.7000V  
3.1000V  
0x09 =  
0.7125V  
0x29 =  
1.1125V  
0x49 =  
1.5125V  
0x69 =  
1.9125V  
0x89 =  
2.3125V  
0xA9 =  
2.7125V  
0xC9 =  
3.1125V  
See the  
Electrical  
VOUT_B_  
VID_[7:0]  
Characteristics  
table.  
0x0A =  
0.7250V  
0x2A =  
1.1250V  
0x4A =  
1.5250V  
0x6A =  
1.9250V  
0x8A =  
2.3250V  
0xAA =  
2.7250V  
0xCA =  
3.1250V  
0x0B =  
0.7375V  
0x2B =  
1.1375V  
0x4B =  
1.5375V  
0x6B =  
1.9375V  
0x8B =  
2.3375V  
0xAB =  
2.7375V  
0xCB =  
3.1375V  
0x0C =  
0.7500V  
0x2C =  
1.1500V  
0x4C =  
1.5500V  
0x6C =  
1.9500V  
0x8C =  
2.3500V  
0xAC =  
2.7500V  
0xCC =  
3.1500V  
0x0D =  
0.7625V  
0x2D =  
1.1625V  
0x4D =  
1.5625V  
0x6D =  
1.9625V  
0x8D =  
2.3625V  
0xAD =  
2.7625V  
0xCD =  
3.1625V  
0x0E =  
0.7750V  
0x2E =  
1.1750V  
0x4E =  
1.5750V  
0x6E =  
1.9750V  
0x8E =  
2.3750V  
0xAE =  
2.7750V  
0xCE =  
3.1750V  
0x0F =  
0x2F =  
0x4F =  
0x6F =  
0x8F =  
0xAF =  
0xCF =  
0.7875V  
1.1875V  
1.5875V  
1.9875V  
2.3875V  
2.7875V  
3.1875V  
0x10 =  
0x30 =  
0x50 =  
0x70 =  
0x90 =  
0xB0 =  
0xD0 =  
0.8000V  
1.2000V  
1.6000V  
2.0000V  
2.4000V  
2.8000V  
3.2000V  
0x11 =  
0x31 =  
0x51 =  
0x71 =  
0x91 =  
0xB1 =  
0xD1 =  
0.8125V  
1.2125V  
1.6125V  
2.0125V  
2.4125V  
2.8125V  
3.2125V  
0x12 =  
0x32 =  
0x52 =  
0x72 =  
0x92 =  
0xB2 =  
0xD2 =  
0.8250V  
1.2250V  
1.6250V  
2.0250V  
2.4250V  
2.8250V  
3.2250V  
0x13 =  
0x33 =  
0x53 =  
0x73 =  
0x93 =  
0xB3 =  
0xD3 =  
0.8375V  
1.2375V  
1.6375V  
2.0375V  
2.4375V  
2.8375V  
3.2375V  
Maxim Integrated  
49  
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
Table 14. Step-Down Output Voltage Table (continued)  
BIT  
DESCRIPTION  
DEFAULT  
0x14 =  
0x34 =  
0x54 =  
0x74 =  
0x94 =  
0xB4 =  
0xD4 =  
0.8500V  
1.2500V  
1.6500V  
2.0500V  
2.4500V  
2.8500V  
3.2500V  
0x15 =  
0x35 =  
0x55 =  
0x75 =  
0x95 =  
0xB5 =  
0xD5 =  
0.8625V  
1.2625V  
1.6625V  
2.0625V  
2.4625V  
2.8625V  
3.2625V  
0x16 =  
0x36 =  
0x56 =  
0x76 =  
0x96 =  
0xB6 =  
0xD6 =  
0.8750V  
1.2750V  
1.6750V  
2.0750V  
2.4750V  
2.8750V  
3.2750V  
0x17 =  
0x37 =  
0x57 =  
0x77=  
0x97 =  
0xB7 =  
0xD7 =  
0.8875V  
1.2875V  
1.6875V  
2.0875V  
2.4875V  
2.8875V  
3.2875V  
0x18 =  
0x38 =  
0x58 =  
0x78 =  
0x98 =  
0xB8 =  
0xD8 =  
0.9000V  
1.3000V  
1.7000V  
2.1000V  
2.5000V  
2.9000V  
3.3000V  
0x19 =  
0.9125V  
0x39 =  
1.3125V  
0x59 =  
1.7125V  
0x79 =  
2.1125V  
0x99 =  
2.5125V  
0xB9 =  
2.9125V  
0xD9 =  
3.3125V  
See the  
Electrical  
VOUT_ B_  
VID_[7:0]  
Characteristics  
table.  
0x1A =  
0.9250V  
0x3A =  
1.3250V  
0x5A =  
1.7250V  
0x7A =  
2.1250V  
0x9A =  
2.5250V  
0xBA =  
2.9250V  
0xDA =  
3.3250V  
0x1B =  
0.9375V  
0x3B =  
1.3375V  
0x5B =  
1.7375V  
0x7B =  
2.1375V  
0x9B =  
2.5375V  
0xBB =  
2.9375V  
0xDB =  
3.3375V  
0x1C =  
0.9500V  
0x3C =  
1.3500V  
0x5C =  
1.7500V  
0x7C =  
2.1500V  
0x9C =  
2.5500V  
0xBC =  
2.9500V  
0xDC =  
3.3500V  
0x1D =  
0.9625V  
0x3D =  
1.3625V  
0x5D =  
1.7625V  
0x7D =  
2.1625V  
0x9D =  
2.5625V  
0xBD =  
2.9625V  
0xDD =  
3.3625V  
0x1E =  
0.9750V  
0x3E =  
1.3750V  
0x5E =  
1.7750V  
0x7E =  
2.1750V  
0x9E =  
2.5750V  
0xBE =  
2.9750V  
0xDE =  
3.3750V  
0x1F =  
0x3F =  
0x5F =  
0x7F =  
0x9F =  
0xBF =  
0xDF =  
0.9875V  
1.3875V  
1.7875V  
2.1875V  
2.5875V  
2.9875V  
3.3875V  
Maxim Integrated  
50  
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
Table 15. Step-Down Configuration Table  
BIT  
NAME  
DESCRIPTION  
DEFAULT  
Active-Low Step-Down Converter Falling Slew Rate Enable  
0 = The slew rate control circuit is active when the output voltage is decreased. The  
desired regulation voltage is decreased in 12.5mV steps, and forced PWM mode is  
enabled so that negative inductor current can be used to pull energy out of the output  
capacitor.  
0
FALLSLEW_  
0b0  
1 = The slew rate control circuit is disabled when the output voltage is decreased.  
The desired regulation voltage is decreased in 12.5mV steps, but it is up to the external  
load to drain energy from the output capacitor in order to pull down on the output voltage.  
1
2
RSVD  
Reserved  
0b0  
0b0  
Step-Down Forced PWM Mode Enable  
0 = Step-Down Converter automatically skips pulses under light load conditions, and  
transfers to fixed frequency operation as the load current increases.  
1 = Step-Down Converter operates with fixed frequency under all load conditions.  
FPWM_  
Active-Low Buck Converter Active Discharge Enable  
0 = The active discharge function is enabled. When the buck converter is disabled, an  
internal 100I discharge resistor is connected to the output to discharge the energy  
stored in the output capacitor. When the buck converter is enabled, the discharge  
resistor is disconnected from the output.  
3
nADEN_  
0b0  
1 = The active discharge function is disabled. When the buck converter is disabled, the  
internal 100I discharge resistor is not connected to the output, and the discharge rate is  
dependent on the output capacitance and the load present. When the buck converter is  
enabled, the discharge resistor is disconnected from the output.  
Step-Down Power Mode Configuration. These bits determine the mode of operation for  
this converter.  
00 = Disabled  
5:4  
7:6  
PWR_[5:4]  
0b00  
0b00  
01 = Normal operation mode with remote sense disabled  
10 = Green mode  
11 = Normal operation mode with remote sense enabled  
Step-Down Rising Slew Rate  
00 = 12.5mV/Fs ramp rate  
01 = 25mV/Fs ramp rate  
SLEW_[7:6]  
10 = 50mV/Fs ramp rate  
11 = No slew rate control. Output voltage increases as fast as the current limit allows.  
Maxim Integrated  
51  
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
Table 16. Status  
COMMAND NAME  
STATUS  
I2C address  
MAX8967 I2C address  
Command code  
0x0B  
Read only. Status is masked by the interrupt mask register and  
is cleared by reading related interrupt register bits.  
Access type  
Reset condition  
Power-up/chip reset/0b1 written to bit  
BIT  
NAME  
DESCRIPTION  
0 = Step-down converter 1 is on.  
1 = Step-down converter 1 is off or faulted.  
DEFAULT  
7
PNOK1  
0b1  
0 = Step-down converter 2 is on.  
1 = Step-down converter 2 is off or faulted.  
6
5
4
PNOK2  
TH  
0b1  
0b0  
0b0  
0 = Temperature is below the thermal shutdown threshold.  
1 = Temperature exceeds the thermal shutdown threshold.  
0 = One or more LDOs are off or above the POK threshold.  
0 = One or more LDOs are on and below the POK threshold.  
LDO_PNOK  
3
2
1
0
RSVD  
RSVD  
RSVD  
RSVD  
Reserved  
Reserved  
Reserved  
Reserved  
0b1  
0b1  
0b1  
0b1  
Table 17. Interrupt  
COMMAND NAME  
I2C address  
INTERRUPT  
MAX8967 I2C address  
Command code  
Access type  
0x0C  
Read—clear on read  
Power-up/chip reset/0b1 written to bit  
Reset condition  
BIT  
NAME  
DESCRIPTION  
DEFAULT  
Step-Down 1 Interrupt Bit  
7
PNOK1_INT  
PNOK2_INT  
TH_INT  
0 = Output is normal  
1 = Output has fallen below the power-OK threshold.  
0b0  
Step-Down 2 Interrupt Bit  
0 = Output is normal  
1 = Output has fallen below the power-OK threshold.  
6
5
0b0  
0b0  
Thermal Interrupt Bit  
0 = Die temperature is normal  
1 = Die temperature has exceeded thermal shutdown threshold  
4
3
2
1
0
LDO_PNOK_INT  
RSVD  
One or more LDO power-OK levels have not been maintained.  
0b0  
0b0  
0b0  
0b0  
0b0  
Reserved  
Reserved  
Reserved  
Reserved  
RSVD  
RSVD  
RSVD  
Maxim Integrated  
52  
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
Table 18. Interrupt Mask  
COMMAND NAME  
I2C address  
INTERRUPT MASK  
MAX8967 I2C address  
0x0D  
Command code  
Access type  
Read–clear on read  
Power-up/chip reset/0b1 written to bit  
Reset condition  
BIT  
NAME  
DESCRIPTION  
DEFAULT  
Step-Down 1 Interrupt Mask Bit  
7
PNOK1M  
0 = Interrupt is unmasked.  
1 = Interrupt is masked.  
0b1  
Step-Down 2 Interrupt Mask Bit  
0 = Interrupt is unmasked.  
1 = Interrupt is masked.  
6
5
4
PNOK2M  
THM  
0b1  
0b1  
0b1  
Thermal Interrupt Mask Bit  
0 = Interrupt is unmasked.  
1 = Interrupt is masked.  
LDO Interrupt Mask Bit  
0 = Interrupt is unmasked.  
1 = Interrupt is masked.  
LDO_PNOKM  
3
2
1
0
RSVD  
RSVD  
RSVD  
RSVD  
Reserved  
Reserved  
Reserved  
Reserved  
0b1  
0b0  
0b0  
0b0  
Maxim Integrated  
53  
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
Table 19. LDO_ Configuration 1 Register  
REGISTER NAME  
Register address  
Access type  
LDO_ CONFIGURATION 1  
See Table 3  
Read/write  
Reset condition  
Power-up/chip reset  
BIT  
NAME  
DESCRIPTION  
DEFAULT  
LDO Power Mode Configuration  
00 = Output disabled  
01 = Output disabled  
10 = Green mode  
7, 6  
LDO_PWR [7:6]  
0b00  
11 = Normal mode  
Sets the Target Voltage of the LDO.  
Programmed in 0.05V steps.  
0x00 =  
0.80V  
0x0A =  
1.30V  
0x14 =  
1.80V  
0x1E =  
2.30V  
0x28 =  
2.80V  
0x32 =  
3.30V  
0x3C =  
3.80V  
0x01 =  
0.85V  
0x0B =  
1.35V  
0x15 =  
1.85V  
0x1F =  
2.35V  
0x29 =  
2.85V  
0x33 =  
3.35V  
0x3D =  
3.85V  
0x02 =  
0.90V  
0x0C =  
1.40V  
0x16 =  
1.90V  
0x20 =  
2.40V  
0x2A =  
2.90V  
0x34 =  
3.40V  
0x3E =  
3.90V  
0x03 =  
0.95V  
0x0D =  
1.45V  
0x17 =  
1.95V  
0x21 =  
2.45V  
0x2B =  
2.95V  
0x35 =  
3.45V  
0x3F =  
3.95V  
0x04 =  
1.00V  
0x0E =  
1.50V  
0x18 =  
2.00V  
0x22 =  
2.50V  
0x2C =  
3.00V  
0x36 =  
3.50V  
5–0  
LDO_TV[5:0]  
0b00  
0x05 =  
1.05V  
0x0F =  
1.55V  
0x19 =  
2.05V  
0x23 =  
2.55V  
0x2D =  
3.05V  
0x37 =  
3.55V  
0x06 =  
1.10V  
0x10 =  
1.60V  
0x1A =  
2.10V  
0x24 =  
2.60V  
0x2E =  
3.10V  
0x38 =  
3.60V  
0x07 =  
1.15V  
0x11 =  
1.65V  
0x1B =  
2.15V  
0x25 =  
2.65V  
0x2F =  
3.15V  
0x39 =  
3.65V  
0x08 =  
1.20V  
0x12 =  
1.70V  
0x1C =  
2.20V  
0x26 =  
2.70V  
0x30 =  
3.20V  
0x3A =  
3.70V  
0x09 =  
1.25V  
0x13 =  
1.75V  
0x1D =  
2.25V  
0x27 =  
2.75V  
0x31 =  
3.25V  
0x3B =  
3.75V  
Maxim Integrated  
54  
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
Table 20. LDO_ Configuration 2 Register  
REGISTER NAME  
Register address  
Access type  
LDO_ CONFIGURATION 2  
See Table 3.  
Read only for bit 3, and read/write for the rest  
Power-up/chip reset  
Reset condition  
BIT  
7
NAME  
LDO_OVCLMP_EN  
RSVD  
DESCRIPTION  
DEFAULT  
0b1  
Overvoltage Clamp Enable  
0 = Overvoltage clamp disabled.  
1 = Overvoltage clamp enabled.  
6
Reserved  
0b0  
LDO Compensation  
00 = Assume 50mI/5nH trace impedance to remote capacitor.  
01 = Assume 100mI/10nH trace impedance to remote capacitor.  
10 = Assume 50mI to 200mI /5nH to 20nH trace impedance to  
remote capacitor.  
11 = Assume 100mI to 400mI /10nH to 40nH trace impedance to  
remote capacitor.  
5, 4  
LDO_COMP  
0b01  
Note: The LDO_COMP bits should only be changed with the LDO  
is disabled. If the compensation bits are changed when the LDO is  
enabled, the output voltage glitches as the compensation changes.  
Voltage OK Status Bit  
0 = The voltage is less than the POK threshold and the device is in  
normal mode.  
3
LDO_POK  
0b0  
1 = The voltage is above the POK threshold or the LDO is operating  
in its green mode or the LDO is disabled.  
2
1
RSVD  
Reserved  
Active Discharge Enable  
0 = The active discharge function is disabled.  
1 = The active discharge function is enabled.  
LDO_ADE  
0b1  
Sets the LDO Soft-Start Slew Rate  
(Applies to both startup and output voltage setting changes)  
0 = Fast Startup and Dynamic Voltage Change—100mV/Fs.  
1 = Slow Startup and Dynamic Voltage Change—5mV/Fs.  
0
LDO_SS  
0b1  
Maxim Integrated  
55  
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
Table 21. LDO_INT Register  
REGISTER NAME  
LDO_INT  
Register address  
Access type  
0x1B  
Read—clear on read  
Power-up/chip reset  
Reset condition  
BIT  
NAME  
DESCRIPTION  
DEFAULT  
7, 6  
RSVD  
Reserved  
LDO6 Interrupt Bit  
5
4
3
2
1
0
L06_INT  
L05_INT  
L04_INT  
L03_INT  
L02_INT  
L01_INT  
0 = LDO output is normal.  
1 = LDO output has fallen below the power-OK threshold.  
0b0  
0b0  
0b0  
0b0  
0b0  
0b0  
LDO5 Interrupt Bit  
0 = LDO output is normal.  
1 = LDO output has fallen below the power-OK threshold.  
LDO4 Interrupt Bit  
0 = LDO output is normal.  
1 = LDO output has fallen below the power-OK threshold.  
LDO3 Interrupt Bit  
0 = LDO output is normal.  
1 = LDO output has fallen below the power-OK threshold.  
LDO2 Interrupt Bit  
0 = LDO output is normal.  
1 = LDO output has fallen below the power-OK threshold.  
LDO1 Interrupt Bit  
0 = LDO output is normal.  
1 = LDO output has fallen below the power-OK threshold.  
Maxim Integrated  
56  
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
Table 22. LDO_INTM Register  
REGISTER NAME  
LDO_INTM  
Register address  
Access type  
0x1C  
Read—clear on read  
Power-up/chip reset  
Reset condition  
BIT  
NAME  
DESCRIPTION  
DEFAULT  
7, 6  
RSVD  
Reserved  
0b11  
LDO6 Interrupt Mask Bit  
0 = Interrupt is unmasked.  
1 = Interrupt is masked.  
5
4
3
2
1
0
L06_INTM  
L05_INTM  
L04_INTM  
L03_INTM  
L02_INTM  
L01_INTM  
0b1  
0b1  
0b1  
0b1  
0b1  
0b1  
LDO5 Interrupt Mask Bit  
0 = Interrupt is unmasked.  
1 = Interrupt is masked.  
LDO4 Interrupt Mask Bit  
0 = Interrupt is unmasked.  
1 = Interrupt is masked.  
LDO3 Interrupt Mask Bit  
0 = Interrupt is unmasked.  
1 = Interrupt is masked.  
LDO2 Interrupt Mask Bit  
0 = Interrupt is unmasked.  
1 = Interrupt is masked.  
LDO1 Interrupt Mask Bit  
0 = Interrupt is unmasked.  
1 = Interrupt is masked.  
Input Capacitor Selection  
Applications Information  
Inductor Selection  
Each step-down converter operates with a 1FH nominal  
inductance. It is recommended to use an inductor with a  
DCR less than 50mI to reduce I2R losses.  
Since ripple cancelation is used, the worst case condition  
is if one supply is operating at near its 2A maximum while  
the other supply is providing very little current. Since the  
IC can normally be connected to a node with significant  
capacitance, only 4.7FF need be applied locally. A 10FF  
ceramic capacitor with X5R rating is recommended.  
Output Capacitor Selection  
The IC is designed to operate with at least a 22µF  
ceramic capacitor (X5R rated) connected to each step-  
down converter output. Note that a significant share of  
each output’s capacitance can be placed as bypassing  
at the load.  
PCB Layout  
Nearly all noise generated by the IC is found across IN1,  
IN2, and PGND_ pins. The bypass capacitors for these  
pins should be placed closest to the IC. PGND_ and AGND  
should be connected only after the PGND_ pins connect  
to its corresponding step-down converter’s input capaci-  
tor. Both step-down converters have remote sensing which  
accommodates a distance that incurs up to a 200mV cor-  
rection in the output voltage. Refer to the MAX8967 EV kit  
for more details.  
A 1µF (X5R rated ceramic capacitor is required for each  
LDO output. The capacitor can be remotely placed away  
from the IC and the appropriate compensation can be  
2
selected through an I C command. See Table 20.  
Maxim Integrated  
57  
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
Ordering Information  
PART  
PIN-PACKAGE  
30 WLP  
TEMP RANGE  
-40NC to +85NC  
-40NC to +85NC  
-40NC to +85NC  
-40NC to +85NC  
BUCK OUT1 (V)  
BUCK OUT2 (V)  
MAX8967EWV+T  
MAX8967AEWV+T  
MAX8967BEWV+T  
MAX8967CEWV+T  
1.20  
1.20  
1.20  
1.20  
1.20  
1.80  
2.80  
3.20  
30 WLP  
30 WLP  
30 WLP  
+Denotes a lead (Pb)-free/RoHS-compliant package.  
Chip Information  
Package Information  
For the latest package outline information and land patterns  
(footprints), go to www.maximintegrated.com/packages. Note  
that a “+”, “#”, or “-” in the package code indicates RoHS status  
only. Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
PROCESS: BiCMOS  
PACKAGE PACKAGE OUTLINE  
LAND  
TYPE  
CODE  
NO.  
PATTERN NO.  
Refer to  
Application Note 1891  
30 WLP  
W302B2+2  
21-0548  
Maxim Integrated  
58  
MAX8967  
Dual 2A Step-Down Converters with 6 LDOs  
for Baseband and Applications Processor  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
0
12/12  
Initial release  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent  
licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and  
max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000  
59  
©
2012 Maxim Integrated  
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  

相关型号:

MAX8969

Step-Up Converter for Handheld Applications
MAXIM

MAX8969EWL33

Step-Up Converter for Handheld Applications
MAXIM

MAX8969EWL33+

Step-Up Converter for Handheld Applications
MAXIM

MAX8969EWL35

Step-Up Converter for Handheld Applications
MAXIM

MAX8969EWL35+

Step-Up Converter for Handheld Applications
MAXIM

MAX8969EWL37

Step-Up Converter for Handheld Applications
MAXIM

MAX8969EWL37+

Step-Up Converter for Handheld Applications
MAXIM

MAX8969EWL42

Step-Up Converter for Handheld Applications
MAXIM

MAX8969EWL42+

Step-Up Converter for Handheld Applications
MAXIM

MAX8969EWL50

Step-Up Converter for Handheld Applications
MAXIM

MAX8969EWL50+

Step-Up Converter for Handheld Applications
MAXIM

MAX8969_12

Step-Up Converter for Handheld Applications
MAXIM