MAX9042BEUA [MAXIM]

Micropower, Single-Supply, SOT23 Comparator + Precision Reference ICs; 微功耗,单电源, SOT23比较器+精密电压基准IC
MAX9042BEUA
型号: MAX9042BEUA
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Micropower, Single-Supply, SOT23 Comparator + Precision Reference ICs
微功耗,单电源, SOT23比较器+精密电压基准IC

比较器
文件: 总12页 (文件大小:162K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1569; Rev 1; 1/00  
Micropower, Single-Supply,  
SOT23 Comparator + Precision Reference ICs  
General Description  
Features  
The MAX9040–MAX9043 and MAX9050–MAX9053 fea-  
ture combinations of low-power comparators and a pre-  
cision voltage reference. Their operating voltage range  
makes them ideal for both +3V and +5V systems. The  
MAX9040/MAX9041/MAX9050/MAX9051 have a single  
comparator and reference consuming only 40µA of  
supply current. The MAX9042/MAX9043/MAX9052/  
MAX9053 have dual comparators and a reference,  
while consuming only 55µA of supply current. Low-volt-  
age operation and low supply current make these  
devices ideal for battery-operated systems.  
Comparator + Precision Reference in SOT23  
+2.5V to +5.5V Single-Supply Operation  
(MAX9040–MAX9043)  
Low Supply Current (MAX9042/43/52/53)  
55µA Quiescent  
65µA with 100kHz Switching  
400ns Propagation Delay  
Rail-to-Rail Inputs  
Rail-to-Rail Output Stage Sinks and Sources 8mA  
Internal 3mV Hysteresis  
®
The comparators feature Rail-to-Rail inputs and out-  
puts, with a common-mode input voltage range that  
extends 250mV beyond the supply rails. Input bias cur-  
rent is typically 1.0pA, and input offset voltage is typi-  
cally 0.5mV. Internal hysteresis ensures clean output  
switching, even with slow-moving input signals. The  
output stage features a unique design that limits supply  
current surges while switching, virtually eliminating sup-  
ply glitches typical of many other comparators. This  
design also minimizes overall power consumption  
under dynamic conditions. The comparator outputs  
have rail-to-rail push-pull output stages that sink and  
source up to 8mA. The propagation delay is 400ns,  
even with the low operating supply current.  
Voltage Reference Offers  
0.4% max Initial Accuracy (MAX90_ _A)  
6ppm/°C typ Temperature Coefficient  
Stable for 0 to 4.7nF Capacitive Loads  
Ordering Information  
PIN-  
PACKAGE  
TOP  
MARK  
PART  
TEMP. RANGE  
MAX9040AEUK-T -40°C to +85°C  
MAX9040BEUK-T -40°C to +85°C  
MAX9041AEUT-T* -40°C to +85°C  
MAX9041BEUT-T* -40°C to +85°C  
MAX9041AESA* -40°C to +85°C  
MAX9041BESA* -40°C to +85°C  
5 SOT23-5  
5 SOT23-5  
6 SOT23-6  
6 SOT23-6  
8 SO  
ADNV  
ADNX  
AAHF  
AAHH  
The reference output voltage is set to 2.048V in the  
MAX9040–MAX9043 and to 2.500V in the MAX9050–  
MAX9053. These devices are offered in two grades: an  
A grade with 0.4% initial accuracy and 6ppm/°C  
tempco, and a B grade with 1% initial accuracy and  
100ppm/°C tempco. The voltage reference features a  
proprietary curvature-correction circuit and laser-  
trimmed thin-film resistors. The series-mode references  
can sink or source up to 500µA of load current.  
8 SO  
MAX9042AEUA  
MAX9042BEUA  
MAX9042AESA  
MAX9042BESA  
MAX9043AEUB  
MAX9043BEUB  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
8 µMAX  
8 µMAX  
8 SO  
8 SO  
10 µMAX  
10 µMAX  
Ordering Information continued at end of data sheet.  
*Future product—contact factory for availability.  
Applications  
Precision Battery Management  
Pin Configurations  
Window Comparators  
IR Receivers  
TOP VIEW  
OUT  
1
2
3
5
4
V
CC  
Level Translators  
Digital Line Receivers  
MAX9040  
MAX9050  
V
EE  
Typical Operating Circuit appears at end of data sheet.  
Functional Diagrams appear at end of data sheet.  
Selector Guide appears at end of data sheet.  
IN+  
REF  
SOT23-5  
Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.  
Pin Configurations continued at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 1-800-835-8769.  
Micropower, Single-Supply,  
SOT23 Comparator + Precision Reference ICs  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage (V  
to V ) ....................................-0.3V to +6V  
8-Pin µMAX (derate 4.1mW/°C above +70°C)...........330mW  
10-Pin µMAX (derate 5.6mW/°C above +70°C).........444mW  
8-Pin SO (derate 5.88mW/°C above +70°C)..............471mW  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
CC  
EE  
All Other Pins ...................................(V - 0.3V) to (V  
+ 0.3V)  
EE  
CC  
Output Short-Circuit Duration  
(OUT_, REF) .............Indefinite Short Circuit to Either Supply  
Continuous Power Dissipation (T = +70°C)  
A
5-Pin SOT23 (derate 7.10mW/°C above +70°C)........571mW  
6-Pin SOT23 (derate 8.70mW/°C above +70°C)........696mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICSA Grade (0.4% initial accuracy)  
(V  
= +5V, V = 0, V  
= 0, I  
= 0, I  
= 0, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
CC  
EE  
CM  
OUT  
REF  
A
MIN  
(Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
2.5  
TYP  
MAX  
5.5  
5.5  
55  
UNITS  
MAX9040–MAX9043  
MAX9050–MAX9053  
Supply Voltage Range (Note 2)  
Supply Current  
V
CC  
V
2.7  
V
CC  
V
CC  
V
CC  
V
CC  
= 2.7V  
= 5.0V  
= 2.7V  
= 5.0V  
40  
45  
55  
60  
MAX9040/MAX9041/  
MAX9050/MAX9051  
60  
I
µA  
CC  
80  
MAX9042/MAX9043/  
MAX9052/MAX9053  
85  
COMPARATORS  
T
= +25°C  
0.5  
5.0  
7.0  
A
Over entire common-  
mode range  
Input Offset Voltage (Note 3)  
Input Hysteresis  
V
mV  
mV  
nA  
pA  
V
OS  
T = -40°C to +85°C  
A
V
HYST  
3.0  
0.001  
0.5  
Input Bias Current  
(Notes 4, 5, 6)  
I
Specified common-mode range  
Specified common-mode range  
10.0  
B
Input Offset Current (Note 4)  
I
OS  
T
A
T
A
= +25°C  
V
- 0.25  
V + 0.25  
CC  
EE  
Common-Mode Voltage Range  
(Notes 4, 7)  
CMVR  
CMRR  
PSRR  
= -40°C to +85°C  
V
V
CC  
EE  
Common-Mode Rejection Ratio  
(Note 4)  
Specified common-mode range  
52  
80  
dB  
MAX9040–MAX9043, 2.5V V  
MAX9050–MAX9053, 2.7V V  
5.5V  
5.5V  
55  
55  
80  
80  
CC  
Power-Supply Rejection Ratio  
Input Capacitance (Note 4)  
Output Short-Circuit Current  
CC  
C
2.5  
95  
pF  
IN  
V
V
= 5V  
CC  
I
V
OUT  
= V or V  
mA  
SC  
EE  
CC  
= 2.7V  
35  
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 5V, I  
= 8mA  
SINK  
0.2  
0.15  
4.85  
2.55  
0.55  
0.4  
Output Voltage Low  
Output Voltage High  
V
V
V
OL  
= 2.7V, I  
= 3.5mA  
SINK  
= 5V, I  
= 8mA  
4.45  
2.3  
SOURCE  
V
OH  
= 2.7V, I  
= 3.5mA  
SOURCE  
2
_______________________________________________________________________________________  
Micropower, Single-Supply,  
SOT23 Comparator + Precision Reference ICs  
ELECTRICAL CHARACTERISTICSA Grade (0.4% initial accuracy) (continued)  
(V  
= +5V, V = 0, V  
= 0, I  
= 0, I  
= 0, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
CC  
EE  
CM  
OUT  
REF  
A
MIN  
(Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
40  
MAX  
UNITS  
C = 15pF  
L
Output Rise/Fall Times  
t /t  
R F  
C = 50pF  
L
50  
ns  
C = 200pF  
L
80  
50mV overdrive  
100mV overdrive  
valid logic state  
450  
400  
20  
Output Propagation Delay  
(Note 8)  
C = 15pF,  
L
t
+/t  
-
ns  
µs  
PD PD  
V
CC  
= 2.7V  
Power-Up Time  
t
Time to V  
OUT  
PU  
VOLTAGE REFERENCE  
MAX9040–MAX9043  
MAX9050–MAX9053  
2.040  
2.490  
2.048  
2.500  
2.056  
2.510  
Output Voltage  
V
REF  
T
A
= +25°C  
V
Output Voltage Temperature  
Coefficient (Note 9)  
TCV  
6
30  
ppm/°C  
µV/V  
REF  
2.5V V  
2.7V V  
5.5V, MAX9040–MAX9043  
5.5V, MAX9050–MAX9053  
+50  
+50  
2
+200  
+200  
4
CC  
V  
/
REF  
Line Regulation  
Load Regulation  
V  
CC  
CC  
Sourcing: 0 I  
500µA  
REF  
V  
REF  
I  
REF  
/
µV/µA  
Sinking: -500µA I  
0  
3.5  
4
6
REF  
Output Short-Circuit Current  
Thermal Hysteresis (Note 10)  
Long-Term Stability  
I
V
REF  
= V or V  
CC  
mA  
ppm  
ppm  
µVp-p  
SC  
EE  
T
HYST  
130  
50  
1000h at T = +25°C  
A
f = 0.1Hz to 10Hz  
f = 10Hz to 10kHz  
40  
Noise Voltage  
E
OUT  
105  
µV  
RMS  
V  
/
REF  
Ripple Rejection  
V
= 5V 100mV, f = 120Hz  
84  
dB  
µs  
nF  
CC  
V  
CC  
Turn-On Settling Time  
t (V  
R
)
To V = 1% of final value  
REF  
200  
REF  
Capacitive Load Stability Range  
(Note 6)  
C (V  
L
)
REF  
0
4.7  
ELECTRICAL CHARACTERISTICSB Grade (1% initial accuracy)  
(V  
= +5V, V = 0, V  
= 0, I  
= 0, I  
= 0, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
CC  
EE  
CM  
OUT  
REF  
A
MIN  
(Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
2.5  
TYP  
MAX  
5.5  
UNITS  
MAX9040–MAX9043  
MAX9050–MAX9053  
Supply Voltage Range (Note 2)  
Supply Current  
V
CC  
V
2.7  
5.5  
V
CC  
V
CC  
V
CC  
V
CC  
= 2.7V  
= 5.0V  
= 2.7V  
= 5.0V  
40  
45  
55  
60  
MAX9040/MAX9041/  
MAX9050/MAX9051  
100  
130  
I
µA  
CC  
MAX9042/MAX9043/  
MAX9052/MAX9053  
_______________________________________________________________________________________  
3
Micropower, Single-Supply,  
SOT23 Comparator + Precision Reference ICs  
ELECTRICAL CHARACTERISTICSB Grade (1% initial accuracy) (continued)  
(V  
= +5V, V = 0, V  
= 0, I  
= 0, I  
= 0, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
CC  
EE  
CM  
OUT  
REF  
A
MIN  
(Note 1)  
PARAMETER  
COMPARATOR  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input Offset Voltage (Note 3)  
Input Hysteresis  
V
Over entire common-mode range  
1
9.0  
mV  
mV  
OS  
V
HYST  
3.0  
Input Bias Current  
(Notes 4, 5, 6)  
I
Specified common-mode range  
Specified common-mode range  
0.001  
0.5  
25.0  
nA  
pA  
V
B
Input Offset Current (Note 4)  
I
OS  
Common-Mode Voltage Range  
(Notes 4, 7)  
CMVR  
CMRR  
PSRR  
V
V
CC  
EE  
Common-Mode Rejection Ratio  
(Note 4)  
Specified common-mode range  
52  
80  
dB  
MAX9040–MAX9043, 2.5V V  
MAX9050–MAX9053, 2.7V V  
5.5V  
5.5V  
55  
55  
80  
80  
CC  
Power-Supply Rejection Ratio  
Input Capacitance (Note 4)  
Output Short-Circuit Current  
dB  
pF  
CC  
C
2.5  
95  
IN  
V
V
= 5V  
CC  
I
V
OUT  
= V or V  
mA  
SC  
EE  
CC  
= 2.7V  
35  
CC  
V
V
V
V
= 5V, I  
= 8mA  
SINK  
0.2  
0.15  
4.85  
2.55  
40  
0.55  
CC  
CC  
CC  
CC  
Output Voltage Low  
Output Voltage High  
V
V
V
OL  
= 2.7V, I  
= 3.5mA  
SINK  
= 5V, I  
= 8mA  
4.45  
SOURCE  
V
OH  
= 2.7V, I  
= 3.5mA  
SOURCE  
C = 15pF  
L
Output Rise/Fall Times  
t /t  
R F  
C = 50pF  
L
50  
ns  
C = 200pF  
L
80  
50mV overdrive  
100mV overdrive  
450  
400  
20  
ns  
Output Propagation Delay  
(Note 8)  
C = 15pF,  
L
t
/t  
PD+ PD-  
V
CC  
= 2.7V  
Power-Up Time  
t
Time to V  
valid logic state  
OUT  
µs  
PU  
VOLTAGE REFERENCE  
MAX9040–MAX9043  
2.028  
2.475  
2.048  
2.500  
2.068  
2.525  
Output Voltage  
V
REF  
T
A
= +25°C  
V
MAX9050–MAX9053  
Output Voltage Temperature  
Coefficient (Note 9)  
TCV  
20  
100  
ppm/°C  
µV/V  
REF  
MAX9040–MAX9043  
MAX9050–MAX9053  
+50  
+50  
2
+200  
+200  
4
V  
/
REF  
Line Regulation  
Load Regulation  
2.5V V  
5.5V  
CC  
V  
CC  
Sourcing: 0 I  
500µA  
REF  
V  
REF  
l  
REF  
/
µV/mA  
Sinking: -500µA I  
0  
3.5  
4
6
REF  
Output Short-Circuit Current  
Thermal Hysteresis (Note 10)  
Long-Term Stability  
I
V
REF  
= V or V  
CC  
mA  
SC  
EE  
T
HYST  
130  
100  
ppm  
ppm  
1000h at T = +25°C  
A
4
_______________________________________________________________________________________  
Micropower, Single-Supply,  
SOT23 Comparator + Precision Reference ICs  
ELECTRICAL CHARACTERISTICSB Grade (1% initial accuracy) (continued)  
(V  
= +5V, V = 0, V  
= 0, I  
= 0, I  
= 0, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
CC  
EE  
CM  
OUT  
REF  
A
MIN  
(Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
40  
MAX  
UNITS  
µVp-p  
f = 0.1Hz to 10Hz  
f = 10Hz to 10kHz  
Noise Voltage  
E
OUT  
105  
µVRMS  
V  
/
REF  
Ripple Rejection  
V
= 5V 100mV, f = 120Hz  
84  
dB  
µs  
nF  
CC  
V  
CC  
Turn-On Settling Time  
t (V  
R
To V = 1% of final value  
REF  
200  
REF)  
Capacitive Load Stability Range  
(Note 6)  
C (V  
L
0
4.7  
REF)  
Note 1: All devices are 100% production tested at T = +25°C. Limits over the extended temperature range are guaranteed by  
A
design, not production tested.  
Note 2: Supply voltage range guaranteed by PSRR test on comparator and line regulation of REF.  
Note 3:  
V
OS  
is defined as the center of the input-referred hysteresis band.  
Note 4: For the comparators with the inverting input (IN-) uncommitted.  
Note 5: Input bias current is the average of the inverting and noninverting input bias currents.  
Note 6: Not production tested. Guaranteed by design.  
Note 7: Guaranteed by CMRR test.  
Note 8:  
V
is beyond the offset and hysteresis determined trip point.  
OVERDRIVE  
Note 9: Temperature coefficient is measured by the box method; i.e., the maximum V  
is divided by the maximum T.  
REF  
Note 10: Thermal hysteresis is defined as the change in V  
at +25°C before and after cycling the device from T  
to T  
.
REF  
MIN  
MAX  
Typical Operating Characteristics  
(V  
= +5V, V = 0, V  
= 0, I  
= 0, I = 0, T = +25°C, unless otherwise noted.)  
REF A  
CC  
EE  
CM  
OUT  
MAX9040/MAX9041/MAX9050/MAX9051  
SUPPLY CURRENT vs. TEMPERATURE  
MAX9042/MAX9043/MAX9052/MAX9053  
SUPPLY CURRENT vs. TEMPERATURE  
MAX9040/MAX9041/MAX9050/MAX9051  
SUPPLY CURRENT vs. SWITCHING FREQUENCY  
60  
60  
200  
V
> V  
IN-  
V
> V  
IN+ IN-  
IN+  
V
= +5.0V  
V
V
= +5.0V  
= +2.7V  
CC  
CC  
CC  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
150  
100  
50  
V
= +2.7V  
CC  
V
V
= +5.0V  
= +2.7V  
CC  
CC  
0
-40 -20  
0
20  
40  
60  
80  
-40 -20  
0
20  
40  
60  
80  
0.01  
0.1  
1
10  
100  
1000  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SWITCHING FREQUENCY (kHz)  
_______________________________________________________________________________________  
5
Micropower, Single-Supply,  
SOT23 Comparator + Precision Reference ICs  
Typical Operating Characteristics (continued)  
= 0, I = 0, T = +25°C, unless otherwise noted.)  
REF A  
(V  
= +5V, V = 0, V  
= 0, I  
CC  
EE  
CM  
OUT  
OUTPUT LOW VOLTAGE  
vs. OUTPUT SINK CURRENT  
10,000  
OUTPUT HIGH VOLTAGE  
vs. OUTPUT SOURCE CURRENT  
MAX9042/MAX9043/MAX9052/MAX9053  
SUPPLY CURRENT vs. SWITCHING FREQUENCY  
10,000  
1000  
100  
250  
V
< V  
IN-  
V
> V  
IN+  
IN+  
IN-  
1000  
100  
10  
200  
150  
100  
V
= +2.7V  
V
V
= +2.7V  
CC  
CC  
= +5.0V  
V
= +5.0V  
CC  
CC  
10  
V
V
= +5.0V  
= +2.7V  
CC  
CC  
1
1
50  
0
0.1  
0.1  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
100  
1000  
OUTPUT SINK CURRENT (mA)  
OUTPUT SOURCE CURRENT (mA)  
SWITCHING FREQUENCY (kHz)  
OUTPUT SHORT-CIRCUIT CURRENT  
vs. TEMPERATURE  
OUTPUT SHORT-CIRCUIT CURRENT  
vs. TEMPERATURE  
PROPAGATION DELAY  
vs. CAPACITIVE LOAD (V = 2.7V)  
CC  
120  
100  
80  
60  
40  
20  
0
100  
600  
V
> V  
V
> V  
IN- IN+  
IN+  
IN-  
V
= 50mV  
OD  
OUT SHORTED TO V  
OUT SHORTED TO V  
EE  
CC  
80  
60  
40  
20  
0
550  
500  
450  
400  
350  
V
= +5.0V  
CC  
t
TO V  
= 50%  
OUT  
V
= +5.0V  
PD+  
CC  
OF FINAL VALUE  
t
TO V  
= 50%  
OUT  
PD-  
OF FINAL VALUE  
t
TO V  
= 10%  
OUT  
V
= +2.7V  
V
= +2.7V  
CC  
PD+  
CC  
20  
OF FINAL VALUE  
t
TO V  
= 10%  
OUT  
PD-  
OF FINAL VALUE  
-40  
-20  
0
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
0
100 200 300 400 500 600 700 800 900 1000  
CAPACITIVE LOAD (pF)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
PROPAGATION DELAY  
vs. CAPACITIVE LOAD (V = 5V)  
PROPAGATION DELAY  
vs. TEMPERATURE  
CC  
= 50%  
650  
V
650  
V
t
TO V  
OUT  
= 50mV  
PD+  
= 50mV  
OD  
OD  
OF FINAL VALUE  
600  
550  
500  
450  
400  
350  
300  
600  
t
TO V  
= 50%  
OUT  
PD+  
OF FINAL VALUE  
t
TO V  
= 10%  
OUT  
PD+  
550  
500  
450  
400  
350  
300  
OF FINAL VALUE  
t
TO V  
= 10%  
OUT  
PD+  
t
TO V  
= 50%  
OUT  
OF FINAL VALUE  
PD-  
t
TO V  
= 50%  
OUT  
PD-  
OF FINAL VALUE  
OF FINAL VALUE  
t
TO V  
= 10%  
OUT  
PD-  
OF FINAL VALUE  
t
TO V  
= 10%  
OUT  
PD-  
OF FINAL VALUE  
20 40  
TEMPERATURE (°C)  
0
100 200 300 400 500 600 700 800 900 1000  
CAPACITIVE LOAD (pF)  
-40  
-20  
0
80  
60  
6
_______________________________________________________________________________________  
Micropower, Single-Supply,  
SOT23 Comparator + Precision Reference ICs  
Typical Operating Characteristics (continued)  
(V  
= +5V, V = 0, V  
= 0, I  
= 0, I  
= 0, T = +25°C, unless otherwise noted.)  
REF A  
CC  
EE  
CM  
OUT  
PROPAGATION DELAY  
vs. INPUT OVERDRIVE  
PROPAGATION DELAY (t  
)
PD+  
PROPAGATION DELAY (t  
)
PD-  
900  
800  
700  
600  
500  
400  
300  
200  
A
A
t
, V = 5.0V  
PD+ CC  
t
, V = 2.7V  
PD+ CC  
t
, V = 5.0V  
PD- CC  
B
t , V = 2.7V  
PD- CC  
B
100ns/div  
0
20 40 60 80 100 120 140 160 180 200  
INPUT OVERDRIVE (mV)  
100ns/div  
A = IN+, 50mV/div  
B = OUT, 2V/div  
A = IN+, 50mV/div  
B = OUT, 2V/div  
SWITCHING CURRENT (OUT FALLING EDGE)  
POWER-UP DELAY (OUT)  
SWITCHING CURRENT (OUT RISING EDGE)  
A
B
A
A
B
B
C
C
100ns/div  
5µs/div  
100ns/div  
A = IN+, 100mV/div  
A = V , 2V/div  
CC  
B = OUT, 1V/div  
A = IN+, 100mV/div  
B = OUT, 5V/div  
B = OUT, 5V/div  
C = I , 1mA/div  
C = I , 1mA/div  
CC  
CC  
INPUT BIAS CURRENT  
vs. INPUT VOLTAGE  
REFERENCE OUTPUT VOLTAGE  
TEMPERATURE DRIFT  
POWER-UP DELAY (REF)  
1.00  
0.75  
0.50  
0.25  
0
0.003  
0.002  
0.001  
0
V
= +2.0V  
THREE TYPICAL PARTS  
NORMALIZED TO +25°C  
IN-  
A
B
C
I
B+  
I
B-  
-0.25  
-0.50  
-0.75  
-1.00  
100µs/div  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
(V)  
-40  
-20  
0
20  
40  
60  
80  
A = V , 2V/div  
CC  
B = REF, 1V/div  
V
TEMPERATURE (°C)  
IN+  
C = REF, 50mV/div, 2.048V OFFSET  
_______________________________________________________________________________________  
7
Micropower, Single-Supply,  
SOT23 Comparator + Precision Reference ICs  
Typical Operating Characteristics (continued)  
(V  
= +5V, V = 0, V  
= 0, I  
= 0, I  
= 0, T = +25°C, unless otherwise noted.)  
REF A  
CC  
EE  
CM  
OUT  
LINE REGULATION  
LOAD REGULATION  
150  
2000  
1500  
1000  
500  
T
= +85°C  
A
100  
50  
T
= +25°C  
A
T
= -40°C  
A
0
T
T
= +25°C  
A
-50  
-100  
-150  
-200  
0
= -40°C  
A
-500  
-1000  
-1500  
T
= +85°C  
A
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
-500  
-300  
-100  
100  
300  
500  
INPUT VOLTAGE (V)  
LOAD CURRENT (µA)  
Pin Description  
PIN  
MAX9040  
MAX9050  
MAX9041  
MAX9051  
MAX9042  
MAX9052  
MAX9043  
MAX9053  
NAME  
FUNCTION  
SOT23-5  
SOT23-6  
SO  
6
SO/µMAX  
µMAX  
1
2
1
2
4
5
OUT  
Comparator Output  
4
V
EE  
Negative Supply Voltage  
3
3
3
2
2
IN+  
Comparator Noninverting Input  
Reference Voltage Output  
Positive Supply Voltage  
4
5
1
REF  
5
6
7
8
10  
9
V
CC  
4
2
1
IN-  
Comparator Inverting Input  
No Connection. Not internally connected.  
Comparator A Output  
5, 8  
N.C.  
1
OUTA  
INA+  
INB+  
INB-  
3
4
Comparator A Noninverting Input  
Comparator B Noninverting Input  
Comparator B Inverting Input  
Comparator B Output  
5
6
6
7
7
8
OUTB  
INA-  
3
Comparator A Inverting Input  
8
_______________________________________________________________________________________  
Micropower, Single-Supply,  
SOT23 Comparator + Precision Reference ICs  
age is between the supply rails. Comparator inputs are  
Detailed Description  
protected from overvoltage by internal body diodes  
The MAX9040–MAX9043 and MAX9050–MAX9053 fea-  
connected to the supply rails. As the input voltage  
ture single/dual, low-power, low-voltage comparators  
exceeds the supply rails, these body diodes become  
and a precision voltage reference. They operate from a  
forward biased and begin to conduct. Consequently,  
single +2.5V to +5.5V (MAX904_) or +2.7V to +5.5V  
bias currents increase exponentially as the input volt-  
(MAX905_) supply. The single comparators with refer-  
age exceeds the supply rails.  
ence (MAX9040/MAX9041/MAX9050/MAX9051) con-  
sume only 40µA of supply current, while the dual  
comparators with reference (MAX9042/MAX9043/  
MAX9052/MAX9053) consume only 55µA of supply cur-  
rent. Their common-mode input range extends 0.25V  
beyond each rail. Internal hysteresis ensures clean out-  
put switching, even with slow-moving input signals.  
Comparator Output Stage Circuitry  
The comparators in these devices contain a unique  
output stage capable of rail-to-rail operation with loads  
up to 8mA. Many comparators consume orders-of-mag-  
nitude more current during switching than during  
steady-state operation. However, with this family of com-  
parators, the supply current change during an output  
transition is extremely small. The Typical Operating  
Characteristics graph Supply Current vs. Switching  
Frequency shows the minimal supply current increase  
as the output switching frequency approaches 1MHz.  
This characteristic reduces the need for power-supply  
filter capacitors to reduce glitches created by compara-  
tor switching currents. Another advantage realized in  
high-speed, battery-powered applications is a substan-  
tial increase in battery life.  
The output stage employs a unique design that mini-  
mizes supply current surges while switching, virtually  
eliminating the supply glitches typical of many other  
comparators. Large internal output drivers allow rail-to-  
rail output swing that can sink and source up to 8mA of  
current.  
The precision reference uses a proprietary curvature-  
correction circuit and laser-trimmed thin-film resistors,  
resulting in a temperature coefficient of less than  
30ppm/°C over the extended temperature range and  
initial accuracy of 0.4% (A grade). The reference output  
voltage is set to 2.048V in the MAX9040–MAX9043 and  
to 2.500V in the MAX9050–MAX9053.  
Applications Information  
Additional Hysteresis  
These comparators have 3mV internal hysteresis.  
Additional hysteresis can be generated with two resis-  
tors using positive feedback (Figure 1). Use the follow-  
ing procedure to calculate resistor values:  
Comparator Input Stage Circuitry  
The devices’ input common-mode range extends from  
(V - 0.25V) to (V  
EE  
+ 0.25V). These comparators may  
CC  
operate at any differential input voltage within these lim-  
its. Input bias current is typically 1.0pA if the input volt-  
1) Calculate the trip points of the comparator using  
these formulas:  
V
V  
R2  
CC  
REF  
(
)
V
= V  
+
V
TH  
REF  
CC  
R1+ R2  
R1  
V
R2  
CC  
V
= V  
1−  
R2  
TL  
REF   
IN+  
IN-  
R1+ R2  
V
REF  
OUT  
V
TH  
is the threshold voltage at which the comparator  
switches its output from high to low as V rises  
IN  
V
IN  
above the trip point. V is the threshold voltage at  
TL  
which the comparator switches its output from low to  
MAX9040–9043  
MAX9050–9053  
high as V drops below the trip point.  
IN  
V
EE  
2) The hysteresis band will be:  
R2  
V
HYS  
= V - V = V  
TH TL CC  
R1+ R2  
Figure 1. Additional Hysteresis  
_______________________________________________________________________________________  
9
Micropower, Single-Supply,  
SOT23 Comparator + Precision Reference ICs  
Board Layout and Bypassing  
Power-supply bypass capacitors are not typically need-  
V
CC  
ed, but would be called for in cases where supply  
impedance is high, supply leads are long, or excessive  
noise is expected on the supply lines. Use 100nF  
bypass capacitors under these conditions. Minimize  
signal trace lengths to reduce stray capacitance.  
V
CC  
IN+  
IN-  
V
IN  
OUT  
10k  
Reference Output/Load Capacitance  
The MAX904_/MAX905_ do not require an output  
capacitor on REF for frequency stability. They are sta-  
ble for capacitive loads up to 4.7nF. However, in appli-  
cations where the load or the supply can experience  
step changes, an output capacitor will reduce the  
amount of overshoot (or undershoot) and assist the cir-  
cuit’s transient response. When an application is not  
subject to transient conditions, the REF capacitor can  
be omitted.  
MAX90409043  
MAX90509053  
0.1µF  
V
EE  
Figure 2. Time Averaging of the Input Signal for Data Recovery  
3) In this example, let V  
= +5V and V  
= +2.5V.  
CC  
REF  
Biasing for Data Recovery  
Digital data is often embedded into a bandwidth- and  
amplitude-limited analog path. Recovering the data can  
be difficult. Figure 2 compares the input signal to a  
time-averaged version of itself. This self- biases the  
threshold to the average input voltage for optimal noise  
margin.  
R2  
V
= 2.5 + 2.5  
TH  
R1+ R2  
and  
R2  
R1+ R2  
V
= 2.5 1−  
Even severe phase distortion is eliminated from the dig-  
ital output signal. Be sure to choose R1 and C1 so that  
TL  
4) Select R2. In this example, we will choose 1k.  
5) Select V . In this example, we will choose 50mV.  
1
f
>>  
CAR  
HYS  
2πR1C1  
6) Solve for R1.  
where f  
is the fundamental carrier frequency of the  
CAR  
digital data stream.  
R2  
V
= V  
HYS  
CC  
Chip Information  
R1+ R2  
MAX9040/41/50/51 TRANSISTOR COUNT: 204  
MAX9042/43/52/53 TRANSISTOR COUNT: 280  
1000  
0.050 = 5  
R1+1000  
where R1 100k, V = 2.525V, and V = 2.475V.  
TH  
TL  
10 ______________________________________________________________________________________  
Micropower, Single-Supply,  
SOT23 Comparator + Precision Reference ICs  
Selector Guide  
COMPARATORS  
PER PACKAGE  
V
REF  
(V)  
PART  
IN- CONNECTIONS  
MAX9040  
MAX9041  
MAX9050  
MAX9051  
MAX9042  
MAX9043  
MAX9052  
MAX9053  
1
1
1
1
2
2
2
2
2.048  
2.048  
2.500  
2.500  
2.048  
2.048  
2.500  
2.500  
REF  
Uncommitted  
REF  
Uncommitted  
REF/Uncommitted  
Uncommitted/Uncommitted  
REF/Uncommitted  
Uncommitted/Uncommitted  
Pin Configurations (continued)  
TOP VIEW  
OUT  
1
2
3
6
5
4
V
CC  
OUTA  
REF  
1
2
3
4
5
10  
9
V
CC  
REF  
IN-  
1
2
3
4
8
7
6
5
N.C.  
OUTA  
REF  
1
2
3
4
8
7
6
5
V
CC  
N.C.  
V
CC  
OUTB  
INB-  
MAX9041  
MAX9051  
MAX9043  
MAX9053  
MAX9041  
MAX9051  
MAX9042  
MAX9052  
V
REF  
IN-  
EE  
INA-  
INA+  
8
OUTB  
INB-  
INB+  
IN+  
OUT  
N.C.  
INA+  
7
V
V
INB+  
EE  
EE  
IN+  
V
6
EE  
µMAX  
SO  
µMAX/SO  
SOT23-6  
Ordering Information (continued)  
Typical Operating Circuit  
PIN-  
PACKAGE  
TOP  
MARK  
PART  
TEMP. RANGE  
V
CC  
V
IN  
MAX9050AEUK-T -40°C to +85°C  
MAX9050BEUK-T -40°C to +85°C  
MAX9051AEUT-T* -40°C to +85°C  
MAX9051BEUT-T* -40°C to +85°C  
MAX9051AESA* -40°C to +85°C  
MAX9051BESA* -40°C to +85°C  
5 SOT23-5  
5 SOT23-5  
6 SOT23-6  
6 SOT23-6  
8 SO  
ADNW  
ADNY  
AAHG  
AAHI  
V
CC  
0.1µF  
IN+  
IN-  
OUT  
8 SO  
MAX9052AEUA  
MAX9052BEUA  
MAX9052AESA  
MAX9052BESA  
MAX9053AEUB  
MAX9053BEUB  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
8 µMAX  
8 µMAX  
8 SO  
MAX9041/9043  
MAX9051/9053  
REF  
2.048V/2.500V  
8 SO  
V
EE  
10 µMAX  
10 µMAX  
*Future product—contact factory for availability.  
______________________________________________________________________________________ 11  
Micropower, Single-Supply,  
SOT23 Comparator + Precision Reference ICs  
Functional Diagrams  
OUTA  
V
CC  
MAX9042  
MAX9052  
V
OUT  
EE  
REF  
OUTB  
INB-  
V
CC  
REF  
INA+  
REF  
IN+  
REF  
V
EE  
INB+  
MAX9040  
MAX9050  
OUTA  
REF  
V
CC  
V
OUT  
EE  
MAX9043  
MAX9053  
REF  
OUTB  
INB-  
REF  
IN-  
INA-  
INA+  
V
CC  
REF  
IN+  
V
EE  
INB+  
MAX9041  
MAX9051  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2000 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY