MAX9124 [MAXIM]

Quad LVDS Line Driver; 四路LVDS线路驱动器
MAX9124
型号: MAX9124
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Quad LVDS Line Driver
四路LVDS线路驱动器

驱动器
文件: 总9页 (文件大小:197K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1991; Rev 0; 4/01  
Quad LVDS Line Driver  
General Description  
Features  
Pin Compatible with DS90LV031A  
Guaranteed 800Mbps Data Rate  
250ps Maximum Pulse Skew  
The MAX9124 quad low-voltage differential signaling  
(LVDS) line driver is ideal for applications requiring high  
data rates, low power, and low noise. The MAX9124 is  
guaranteed to transmit data at speeds up to 800Mbps  
(400MHz) over controlled impedance media of approxi-  
mately 100. The transmission media may be printed  
circuit (PC) board traces, backplanes, or cables.  
Conforms to TIA/EIA-644 LVDS Standard  
Single +3.3V Supply  
The MAX9124 accepts four LVTTL/LVCMOS input levels  
and translates them to LVDS output signals. Moreover,  
the MAX9124 is capable of setting all four outputs to a  
high-impedance state through two enable inputs, EN and  
EN, thus dropping the device to an ultra-low-power state  
of 16mW (typ) during high impedance. The enables are  
common to all four transmitters. Outputs conform to the  
ANSI TIA/EIA-644 LVDS standard.  
16-Pin TSSOP and SO Packages  
Ordering Information  
PART  
TEMP. RANGE  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
16 TSSOP  
16 SO  
The MAX9124 operates from a single +3.3V supply and is  
specified for operation from -40°C to +85°C. It is available  
in 16-pin TSSOP and SO packages. Refer to the MAX9125/  
MAX9126 data sheet for quad LVDS line receivers.  
MAX9124EUE  
MAX9124ESE  
Applications  
Typical Applications Circuit  
Digital Copiers  
Laser Printers  
DSLAMs  
LVDS SIGNALS  
Network  
Switches/Routers  
Cell Phone Base  
Stations  
MAX9126  
MAX9124  
Backplane  
Interconnect  
Add/Drop Muxes  
T
X
T
X
T
X
T
X
115  
115Ω  
115Ω  
115Ω  
R
X
R
X
R
X
R
X
Clock Distribution  
Digital Cross-Connects  
Pin Configuration  
LVTTL/LVCMOS  
DATA INPUT  
LVTTL/LVCMOS  
DATA OUTPUT  
TOP VIEW  
IN1  
OUT1+  
OUT1-  
EN  
1
2
3
4
5
6
7
8
16 V  
CC  
15 IN4  
14 OUT4+  
13 OUT4-  
12 EN  
MAX9124  
OUT2-  
OUT2+  
IN2  
11 OUT3-  
10 OUT3+  
IN3  
GND  
9
TSSOP/SO  
100SHIELDED TWISTED CABLE OR MICROSTRIP PC BOARD TRACES  
* Future product—contact factory for availability.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Quad LVDS Line Driver  
ABSOLUTE MAXIMUM RATINGS  
CC  
IN_, EN, EN to GND....................................-0.3V to (V  
OUT_+, OUT_- to GND..........................................-0.3V to +3.9V  
Short-Circuit Duration (OUT_+, OUT_-) .....................Continuous  
V
to GND...........................................................-0.3V to +4.0V  
Storage Temperature Range.............................-65°C to +150°C  
Maximum Junction Temperature .....................................+150°C  
Operating Temperature Range ...........................-40°C to +85°C  
Lead Temperature (soldering, 10s) .................................+300°C  
ESD Protection  
+ 0.3V)  
CC  
Continuous Power Dissipation (T = +70°C)  
A
16-Pin TSSOP (derate 9.4mW/°C above +70°C) .........755mW  
Human Body Model, OUT_+, OUT_- .............................. 6kV  
16-Pin SO (derate 8.7mW/°C above +70°C)................696mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS  
(V  
= +3.0V to +3.6V, R = 1001ꢀ, T = -40°C to +85°C. Typical values are at V  
= +3.3V, T = +25°C, unless otherwise  
CC A  
CC  
L
A
noted.) (Notes 1, 2)  
MAX  
UNITS  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
368  
1
LVDS OUTPUT (OUT_+, OUT_-)  
Differential Output Voltage  
V
Figure 1  
Figure 1  
Figure 1  
Figure 1  
250  
450  
25  
mV  
mV  
V
OD  
Change in Magnitude of V  
Between Complementary Output  
States  
OD  
V  
OD  
OS  
Offset Voltage  
V
1.125  
0.90  
1.25  
4
1.375  
25  
Change in Magnitude of V  
Between Complementary Output  
States  
OS  
V  
mV  
OS  
Output High Voltage  
Output Low Voltage  
V
1.6  
V
V
OH  
V
OL  
Differential Output Short-Circuit  
Current (Note 3)  
I
Enabled, V  
= 0  
OD  
-9  
-9  
mA  
mA  
µA  
OSD  
OUT_+ = 0 at IN_ = V  
= 0, enabled  
or OUT_- = 0 at IN_  
CC  
Output Short-Circuit Current  
Output High-Impedance Current  
Power-Off Output Current  
I
I
-3.8  
OS  
EN = low and EN = high, OUT_+ = 0 or V  
OUT_- = 0 or V  
,
CC  
-10  
-10  
10  
10  
OZ  
, R = ∞  
L
CC  
V
= 0 or open, OUT_+ = 0 or 3.6V, OUT_-  
CC  
I
µA  
OFF  
= 0 or 3.6V, R = ∞  
L
INPUTS (IN_, EN, EN)  
High-Level Input Voltage  
Low-Level Input Voltage  
Input Current  
V
2.0  
GND  
-20  
V
V
V
IH  
CC  
V
0.8  
20  
IL  
I
IN_, EN, EN = 0 or V  
µA  
IN  
CC  
SUPPLY CURRENT  
No-Load Supply Current  
Loaded Supply Current  
I
R = , IN_ = V or 0 for all channels  
CC  
9.2  
11  
30  
mA  
mA  
CC  
L
I
R = 100, IN_ = V or 0 for all channels  
22.7  
CCL  
L
CC  
Disabled, IN_ = V or 0 for all channels,  
CC  
Disabled Supply Current  
I
4.9  
6
mA  
CCZ  
EN = 0, EN = V  
CC  
2
_______________________________________________________________________________________  
Quad LVDS Line Driver  
SWITCHING CHARACTERISTICS  
(V  
= +3.0V to +3.6V, R = 1001ꢀ, C = 10pF, T = -40°C to +85°C. Typical values are at V  
= +3.3V, T = +25°C, unless  
CC A  
CC  
L
L
A
otherwise noted.) (Notes 4, 5, 6)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Differential Propagation Delay  
High to Low  
t
Figures 2 and 3  
0.8  
0.8  
1.42  
2.0  
ns  
PHLD  
PLHD  
Differential Propagation Delay  
Low to High  
t
Figures 2 and 3  
Figures 2 and 3  
Figures 2 and 3  
1.44  
0.02  
2.0  
ns  
ns  
ns  
Differential Pulse Skew (Note 7)  
t
t
0.25  
0.35  
SKD1  
SKD2  
Differential Channel-to-Channel  
Skew (Note 8)  
Differential Part-to-Part Skew  
(Note 9)  
t
t
Figures 2 and 3  
Figures 2 and 3  
0.8  
1.2  
ns  
ns  
SKD3  
SKD4  
Differential Part-to-Part Skew  
(Note 10)  
Rise Time  
t
t
Figures 2 and 3  
Figures 2 and 3  
Figures 4 and 5  
Figures 4 and 5  
Figures 4 and 5  
Figures 4 and 5  
0.1  
0.1  
0.35  
0.35  
0.7  
0.7  
5
ns  
ns  
ns  
ns  
ns  
ns  
TLH  
THL  
PHZ  
Fall Time  
Disable Time High to Z  
Disable Time Low to Z  
Enable Time Z to High  
Enable Time Z to Low  
t
t
5
PLZ  
t
5
PZH  
t
5
PZL  
Maximum Operating Frequency  
(Note 11)  
f
400  
MHz  
MAX  
Note 1: Maximum and minimum limits over temperature are guaranteed by design and characterization. Devices are 100ꢀ tested  
at T = +25°C.  
A
Note 2: Currents into the device are positive, and current out of the device is negative. All voltages are referenced to ground except  
V
OD  
.
Note 3: Guaranteed by correlation data.  
Note 4: AC parameters are guaranteed by design and characterization.  
Note 5: C includes probe and jig capacitance.  
L
Note 6: Signal generator conditions for dynamic tests: V = 0, V  
= 3V, f = 100MHz, 50ꢀ duty cycle, R = 50, t 1ns, t ≤  
O R F  
OL  
OH  
1ns (0ꢀ to 100ꢀ).  
Note 7: t  
Note 8: t  
is the magnitude difference of differential propagation delay. t  
= |t  
PHLD  
- t  
|.  
SKD1  
SKD2  
SKD1  
PHLD PLHD  
is the magnitude difference of t  
or t  
of one channel to the t  
or t  
of another channel on the same  
PHLD  
PLHD  
PLHD  
device.  
Note 9: t is the magnitude difference of any differential propagation delays between devices at the same V  
and within 5°C  
CC  
SKD3  
of each other.  
Note 10:t is the magnitude difference of any differential propagation delays between devices operating over the rated supply  
SKD4  
and temperature ranges.  
Note 11: f signal generator conditions: V = 0, V  
= 3V, f = 400MHz, 50ꢀ duty cycle, R = 50, t 1ns, t 1ns (0ꢀ to  
MAX  
OL  
OH  
O
R
F
100ꢀ). Transmitter output criteria: duty cycle = 45ꢀ to 55ꢀ, V  
250mV.  
OD  
_______________________________________________________________________________________  
3
Quad LVDS Line Driver  
Typical Operating Characteristics  
(T = +25°C)  
A
SINGLE-ENDED OUTPUT VOLTAGE  
vs. LOAD RESISTANCE  
SINGLE-ENDED OUTPUT VOLTAGE vs.  
LOAD RESISTANCE  
(R = 50TO 400)  
L
(R = 0 TO 7k)  
L
2.10  
1.90  
1.70  
1.50  
1.30  
1.10  
0.90  
0.70  
0.50  
0.30  
2.40  
2.20  
2.00  
1.80  
1.60  
1.40  
1.20  
1.00  
0.80  
OUT_+  
OUT_-  
D
+
OUT  
V
= +3.6V  
CC  
V
CC  
= +3.6V  
CC  
_V = +3.0V  
CC  
_V = +3.0V  
0.60  
0.40  
0.20  
D
-
OUT  
0
50 100 150 200 250 300 350 400  
0
1000 2000 3000 4000 5000 6000 7000  
R ()  
R ()  
L
L
Pin Description  
PIN  
NAME  
IN_  
FUNCTION  
1, 7, 9, 15  
2, 6, 10, 14  
3, 5, 11, 13  
LVTTL/LVCMOS Driver Inputs  
Noninverting LVDS Driver Outputs  
Inverting LVDS Driver Outputs  
OUT_+  
OUT_-  
Driver Enable Inputs. The driver is disabled and in high impedance when EN is low and EN is high.  
For other combinations of EN and EN, the outputs are active.  
4, 12  
EN, EN  
8
GND  
Ground  
16  
V
Power-Supply Input. Bypass V  
to GND with 0.1µF and 0.001µF ceramic capacitors.  
CC  
CC  
4
_______________________________________________________________________________________  
Quad LVDS Line Driver  
Detailed Description  
Table 1. Input/Output Function Table  
The LVDS interface standard is a signaling method  
intended for point-to-point communication over a con-  
trolled-impedance medium as defined by the  
ANSI/TIA/EIA-644 and IEEE 1596.3 standards. The  
LVDS standard uses a lower voltage swing than other  
common communication standards, achieving higher  
data rates with reduced power consumption while  
reducing EMI emissions and system susceptibility to  
noise.  
ENABLES  
EN  
INPUTS  
OUTPUTS  
EN  
IN_  
X
OUT_+  
OUT_ -  
L
H
Z
L
Z
H
L
L
All other combinations  
of ENABLE inputs  
H
H
close to the device as possible, with the smaller valued  
capacitor closest to V  
.
CC  
The MAX9124 is an 800Mbps quad differential LVDS  
driver that is designed for high-speed, point-to-point,  
and low-power applications. This device accepts  
LVTTL/LVCMOS input levels and translates them to  
LVDS output signals.  
Differential Traces  
Output trace characteristics affect the performance of  
the MAX9124. Use controlled-impedance traces to  
match trace impedance to the transmission medium.  
Eliminate reflections and ensure that noise couples as  
common mode by running the differential trace pairs  
close together. Reduce skew by matching the electrical  
length of the traces. Excessive skew can result in a  
degradation of magnetic field cancellation.  
The MAX9124 generates a 2.5mA to 4.0mA output cur-  
rent using a current-steering configuration. This current-  
steering approach induces less ground bounce and no  
shoot-through current, enhancing noise margin and sys-  
tem speed performance. The driver outputs are short-  
circuit current limited and enter a high-impedance state  
when the device is not powered or is disabled.  
Maintain the distance between the differential traces to  
avoid discontinuities in differential impedance. Avoid  
90° turns and minimize the number of vias to further  
prevent impedance discontinuities.  
The current-steering architecture of the MAX9124  
requires a resistive load to terminate the signal and  
complete the transmission loop. Because the device  
switches current and not voltage, the actual output volt-  
age swing is determined by the value of the termination  
resistor at the input of an LVDS receiver. Logic states  
are determined by the direction of current flow through  
the termination resistor. With a typical 3.7mA output  
current, the MAX9124 produces an output voltage of  
370mV when driving a 100load.  
Cables and Connectors  
Transmission media should have a nominal differential  
impedance of 100. To minimize impedance disconti-  
nuities, use cables and connectors that have matched  
differential impedance.  
Avoid the use of unbalanced cables such as ribbon or  
simple coaxial cable. Balanced cables, such as twisted  
pair, offer superior signal quality and tend to generate  
less EMI due to canceling effects. Balanced cables  
tend to pick up noise as common mode, which is  
rejected by the LVDS receiver.  
Termination  
Because the MAX9124 is a current-steering device, no  
output voltage will be generated without a termination  
resistor. The termination resistors should match the dif-  
ferential impedance of the transmission line. Output  
voltage levels depend upon the value of the termination  
resistor. The MAX9124 is optimized for point-to-point  
interface with 100termination resistors at the receiver  
inputs. Termination resistance values may range  
between 90and 132, depending on the characteris-  
tic impedance of the transmission medium.  
Board Layout  
For LVDS applications, a four-layer PC board that pro-  
vides separate power, ground, LVDS signals, and input  
signals is recommended. Isolate the LVTTL/LVCMOS  
and LVDS signals from each other to prevent coupling.  
Chip Information  
TRANSISTOR COUNT: 2007  
Applications Information  
PROCESS: CMOS  
Power-Supply Bypassing  
with high-frequency, surface-mount  
Bypass V  
CC  
ceramic 0.1µF and 0.001µF capacitors in parallel as  
_______________________________________________________________________________________  
5
Quad LVDS Line Driver  
C
L
OUT_+  
OUT_ +  
OUT_ -  
R /2  
L
IN_  
V
IN_  
CC  
R
L
GENERATOR  
V
OS  
V
OD  
GND  
R /2  
L
50  
C
L
OUT_-  
Figure 2. Driver Propagation Delay and Transition Time Test  
Circuit  
Figure 1. Driver V  
and V Test Circuit  
OS  
OD  
3V  
1.5V  
1.5V  
IN_  
0
t
t
PHLD  
PLHD  
OUT_ -  
OUT_+  
V
OH  
OL  
0 DIFFERENTIAL  
80%  
0
V
80%  
-)  
0
V
DIFF  
= (V  
+) - (V  
OUT_  
OUT_  
0
50%  
20%  
V
DIFF  
20%  
t
t
THL  
TLH  
Figure 3. Driver Propagation Delay and Transition Time Waveforms  
C
L
OUT_+  
V
CC  
IN_  
R
R
L/2  
GND  
+1.2V  
EN  
EN  
GENERATOR  
L/2  
50Ω  
OUT_-  
1/4 MAX9124  
C
L
Figure 4. Driver High-Impedance Delay Test Circuit  
6
_______________________________________________________________________________________  
Quad LVDS Line Driver  
EN WHEN EN = V  
3V  
CC  
1.5V  
1.5V  
0
3V  
1.5V  
PHZ  
1.5V  
EN WHEN EN = 0  
OUT_+ WHEN IN_ = V  
0
t
t
PZH  
CC  
V
OH  
OUT_- WHEN IN_ = 0  
50%  
50%  
50%  
50%  
1.2V  
1.2V  
OUT_+ WHEN IN_ = 0  
OUT_- WHEN IN_ = V  
V
OL  
CC  
t
t
PZL  
PLZ  
Figure 5. Driver High-Impedance Delay Waveform  
Functional Diagram  
OUT1+  
OUT1-  
OUT2+  
IN1  
IN2  
IN3  
IN4  
OUT2-  
OUT3+  
OUT3-  
OUT4+  
OUT4-  
EN  
EN  
_______________________________________________________________________________________  
7
Quad LVDS Line Driver  
Package Information  
8
_______________________________________________________________________________________  
Quad LVDS Line Driver  
Package Information (continued)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 _____________________ 9  
© 2001 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX9124ESE

Quad LVDS Line Driver
MAXIM

MAX9124ESE+T

Line Driver, 4 Func, 4 Driver, CMOS, PDSO16, 0.150 INCH, SOIC-16
MAXIM

MAX9124ESE-T

Line Driver, 4 Func, 4 Driver, CMOS, PDSO16, 0.150 INCH, SOIC-16
MAXIM

MAX9124EUE

Quad LVDS Line Driver
MAXIM

MAX9124EUE+

Line Driver, 4 Func, 4 Driver, CMOS, PDSO16, 4.40 MM, TSSOP-16
MAXIM

MAX9124EUE+T

暂无描述
MAXIM

MAX9124EUE-T

Line Driver, 4 Func, 4 Driver, CMOS, PDSO16, 4.40 MM, TSSOP-16
MAXIM

MAX9124EVKIT

Evaluation Kit for the MAX9124/MAX9125/MAX9126
MAXIM

MAX9125

Quad LVDS Line Receivers with Integrated Termination
MAXIM

MAX9125ESE

Quad LVDS Line Receivers with Integrated Termination
MAXIM

MAX9125ESE+

Line Receiver, 4 Func, 4 Rcvr, CMOS, PDSO16, 0.150 INCH, SOIC-16
MAXIM

MAX9125ESE+T

Line Receiver, 4 Func, 4 Rcvr, CMOS, PDSO16, 0.150 INCH, SOIC-16
MAXIM