MAX9144 [MAXIM]

40ns, Low-Power, 3V/5V, Rail-to-Rail Single-Supply Comparators; 为40ns ,低功耗, 3V / 5V ,轨到轨单电源比较器
MAX9144
型号: MAX9144
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

40ns, Low-Power, 3V/5V, Rail-to-Rail Single-Supply Comparators
为40ns ,低功耗, 3V / 5V ,轨到轨单电源比较器

比较器
文件: 总12页 (文件大小:326K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2064; Rev 0; 6/01  
40ns, Low-Power, 3V/5V, Rail-to-Rail  
Single-Supply Comparators  
General Description  
Features  
Fast, 40ns Propagation Delay (10mV Overdrive)  
The MAX9140/MAX9141 are single and the MAX9142/  
MAX9144 are dual/quad high-speed comparators opti-  
mized for systems powered from a 3V or 5V supply. The  
MAX9141 features latch enable and device shutdown.  
These devices combine high speed, low power, and  
Rail-to-Rail® inputs. Propagation delay is 40ns, while  
supply current is only 150µA per comparator.  
Low Power:  
0.45mW Power Dissipation Per Comparator (3V)  
150µA Supply Current  
Optimized for 3V and 5V Applications  
(Operation Down to 2.7V)  
The input common-mode range of the MAX9140/  
MAX9141/MAX9142/MAX9144 extends beyond both  
power-supply rails. The outputs pull to within 0.3V of  
either supply rail without external pullup circuitry, mak-  
ing these devices ideal for interface with both CMOS  
and TTL logic. All input and output pins can tolerate a  
continuous short-circuit fault condition to either rail.  
Internal hysteresis ensures clean output switching, even  
with slow-moving input signals.  
Rail-to-Rail Input Voltage Range  
Low, 500µV Offset Voltage  
Internal Hysteresis for Clean Switching  
Outputs Swing 300mV of Power Rails  
CMOS/TTL-Compatible Outputs  
Output Latch (MAX9141 only)  
Shutdown Function (MAX9141 only)  
Available in SC70 and SOT23 Packages  
The MAX9140/MAX9141/MAX9142/MAX9144 are high-  
er-speed, lower-power, and lower-cost upgrades to  
industry-standard comparators MAX941/MAX942/  
MAX944.  
Ordering Information  
The MAX9140 are offered in tiny 5-pin SC70 and SOT23  
packages. The MAX9141 and MAX9142 are available in  
8-pin SOT23 and SO packages, while the MAX9144 is  
available in both 14-pin SO and TSSOP packages.  
TEMP.  
RANGE  
PIN-  
PACKAGE  
TOP  
MARK  
PART  
MAX9140EXK-T -40°C to +85°C  
MAX9140EUK-T -40°C to +85°C  
MAX9141EKA-T -40°C to +85°C  
5 SC70-5  
5 SOT23-5  
8 SOT23-8  
8 SO  
ACC  
ADQP  
AAFD  
Applications  
Line Receivers  
MAX9141ESA  
-40°C to +85°C  
Battery-Powered Systems  
Threshold Detectors/Discriminators  
3V/5V Systems  
MAX9142EKA-T -40°C to +85°C  
8 SOT23-8  
8 SO  
AAFE  
MAX9142ESA  
MAX9144EUD  
MAX9144ESD  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
14 TSSOP  
14 SO  
Zero-Crossing Detectors  
Sampling Circuits  
Pin Configurations  
TOP VIEW  
OUTA  
INA-  
OUTD  
IND-  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
MAX9140  
OUT  
GND  
IN+  
1
2
3
5
4
V
CC  
MAX9141  
V
1
2
3
4
1
2
3
4
MAX9142  
8
7
6
5
N.C.  
OUT  
8
7
6
5
V
CC  
OUTA  
INA-  
A
B
D
C
CC  
+
+
INA  
IND  
+
IN  
OUTB  
INB-  
A
GND  
V
CC  
MAX9144  
IN-  
SHDN  
LE  
+
INA  
+
+
INB  
INB-  
OUTB  
B
INC  
GND  
+
INB  
GND  
IN-  
INC-  
SOT23/SO  
SOT23/SO  
OUTC  
8
SC70/SOT23  
TSSOP/SO  
Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.  
________________________________________________________________Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
40ns, Low-Power, 3V/5V, Rail-to-Rail  
Single-Supply Comparators  
ABSOLUTE MAXIMUM RATINGS  
Power Supply Ranges  
Continuous Power Dissipation (T = +70°C)  
A
Supply Voltage (V  
to GND)...........................................+6V  
5-Pin SC70 (derate 3.1mW/°C above +70°C).............247mW  
CC  
Differential Input Voltage.......................-0.3V to (V  
Common-Mode Input Voltage to GND ..-0.3V to (V  
LE Input Voltage (MAX9141 only) .........-0.3V to (V  
SHDN Input Voltage (MAX9141 only)....-0.3V to (V  
Input/Output Short-Circuit Duration to  
+ 0.3V)  
+ 0.3V)  
+ 0.3V)  
+ 0.3V)  
5-Pin SOT23 (derate 7.1mW/°C above +70°C)...........571mW  
8-Pin SOT23 (derate 9.1mW/°C above +70°C)...........727mW  
8-Pin SO (derate 5.9mW/°C above +70°C)..............470.6mW  
14-Pin TSSOP (derate 9.1mW/°C above +70°C) ........727mW  
14-Pin SO (derate 8.33mW/°C above +70°C)..........666.7mW  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
CC  
CC  
CC  
CC  
V
CC  
or GND .....................................................Continuous  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= 5V, V  
= 0, SHDN = LE = V  
(MAX9141 only), C = 15pF, T = T  
to T  
, unless otherwise noted. Typical values are  
MAX  
CC  
CC  
MIN  
CM  
L
A
at T = +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Operating Supply Voltage  
V
(Note 2)  
(Note 3)  
2.7  
5.5  
V
CC  
V
+
CC  
0.2  
Input Voltage Range  
Input Offset Voltage  
V
-0.2  
V
CMR  
T
T
= +25°C  
0.5  
2
A
V
(Note 4)  
mV  
OS  
= T  
to T  
4.5  
A
MIN  
MAX  
Input Hysteresis  
V
(Note 5)  
(Note 6)  
1.5  
90  
8
mV  
nA  
HYST  
Input Bias Current  
I
320  
120  
800  
750  
B
Input Offset Current  
I
nA  
OS  
Common-Mode Rejection Ratio  
Power-Supply Rejection Ratio  
CMRR  
PSRR  
V
= 5.5V (Note 7)  
80  
80  
µV/V  
µV/V  
CC  
2.7V  
V
5.5V  
CC  
V
-
V
0.3  
-
CC  
CC  
Output High Voltage  
V
I
I
= 4mA  
V
OH  
SOURCE  
0.425  
Output Low Voltage  
V
= 4mA  
SINK  
0.3  
0.04  
165  
0.425  
1
V
OL  
Output Leakage Current  
I
SHDN = GND, MAX9141 only (Note 8)  
µA  
LEAK  
MAX9141  
275  
V
V
= V  
= V  
= 3V  
= 5V  
MAX9140/MAX9142/  
MAX9144  
MAX9141  
MAX9140/MAX9142/  
MAX9144  
CM  
CM  
CC  
CC  
150  
200  
165  
250  
320  
300  
Supply Current (Per Comparator)  
Propagation Delay  
I
µA  
ns  
CC  
MAX9141 only, SHDN = GND;  
V
12  
40  
30  
= V  
= 3V  
CM  
CC  
t
,
PD+  
t
V
= 3V, V  
= 10mV  
CC  
OD  
PD-  
Differential Propagation Delay  
Propagation Delay Skew  
dt  
V
V
= 10mV (Note 9)  
= 10mV (Note 10)  
2
2
ns  
ns  
PD  
OD  
OD  
V
/2 +  
0.4  
CC  
Logic Input Voltage High  
V
(Note 11)  
(Note 11)  
V
/2  
V
IH  
CC  
V
/2 -  
0.4  
CC  
Logic Input Voltage Low  
Logic Input Current  
V
V
/2  
CC  
V
IL  
I , I  
IL IH  
V
= 0 to V (Note 11)  
CC  
2
10  
µA  
LOGIC  
2
_______________________________________________________________________________________  
40ns, Low-Power, 3V/5V, Rail-to-Rail  
Single-Supply Comparators  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 5V, V  
= 0, SHDN = LE = V  
(MAX9141 only), C = 15pF, T = T  
to T  
, unless otherwise noted. Typical values are  
MAX  
CC  
CC  
MIN  
CM  
L
A
at T = +25°C.) (Note 1)  
A
PARAMETER  
Data-to-Latch Setup Time  
Latch-to-Data Hold Time  
Latch Pulse Width  
SYMBOL  
CONDITIONS  
MIN  
TYP  
16  
16  
45  
60  
1
MAX  
UNITS  
ns  
t
(Note 12)  
(Note 12)  
(Note 12)  
(Note 12)  
(Note 13)  
(Note 13)  
S
t
ns  
H
t
ns  
LPW  
Latch Propagation Delay  
Shutdown Enable Time  
Shutdown Disable Time  
t
ns  
LPD  
µs  
5
µs  
Note 1: All devices are 100% production tested at T = +25°C. Specifications over temperature are guaranteed by design.  
A
Note 2: Inferred from PSRR test.  
Note 3: Inferred from CMRR test. Note also that either or both inputs can be driven to the absolute maximum limit (0.3V beyond either  
supply rail) without damage or false output inversion.  
Note 4:  
V
OS  
is defined as the center of the input-referred hysteresis zone. See Figure 1.  
Note 5: The input-referred trip points are the extremities of the differential input voltage required to make the comparator output  
change state. The difference between the upper and lower trip points is equal to the width of the input-referred hysteresis  
zone. See Figure 1.  
Note 6: The polarity of I reverses direction as V  
approaches either supply rail.  
B
CM  
Note 7: Specified over the full common-mode voltage range (V  
).  
CMR  
Note 8: Specification is for current flowing into or out of the output pin for V  
is in shutdown.  
driven to any voltage from V to GND while the part  
CC  
OUT  
Note 9: Specified between any two channels in the MAX9142/MAX9144.  
Note 10: Specified as the difference between t  
and t  
for any one comparator.  
PD+  
PD-  
Note 11: Applies to the MAX9141 only for both SHDN and LE.  
Note 12: Applies to the MAX9141 only. Comparator is active with LE driven high and is latched with LE driven low (V  
= 10mV). See  
OD  
Figure 2.  
Note 13: Applicable to the MAX9141 only. Comparator is active with the SHDN driven high and is shutdown with SHDN driven low.  
Shutdown enable time is the delay when the SHDN is driven high to the time the output is valid. Shutdown disable time is the  
delay when the SHDN is driven low to the time the comparator shuts down.  
_______________________________________________________________________________________  
3
40ns, Low-Power, 3V/5V, Rail-to-Rail  
Single-Supply Comparators  
Typical Operating Characteristics  
(V  
= 3.0V, V  
= 0, C =15pF, V  
= 10mV, T = +25°C, unless otherwise noted.)  
CC  
CM  
L
OD A  
MAX9140 SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
OUTPUT LOW VOLTAGE  
vs. TEMPERATURE  
300  
250  
200  
150  
100  
50  
330  
328  
326  
324  
322  
320  
I
= 4mA  
SINK  
T = +85 C  
A
T = +25 C  
A
T = -40 C  
A
0
3
4
5
6
-40 -20  
0
20  
40  
60  
80 100  
V
CC  
(V)  
TEMPERATURE ( C)  
OUTPUT SHORT-CIRCUIT (SINK) CURRENT  
vs. TEMPERATURE  
OUTPUT HIGH VOLTAGE  
vs. TEMPERATURE  
50  
45  
40  
35  
5.20  
5.15  
I
V
= 4mA  
SOURCE  
= 5.5V  
CC  
5.10  
5.05  
5.00  
-40 -20  
0
20  
40  
60  
80 100  
-40 -20  
0
20  
40  
60  
80 100  
TEMPERATURE ( C)  
TEMPERATURE ( C)  
OUTPUT SHORT-CIRCUIT (SOURCE)  
CURRENT vs. TEMPERATURE  
INPUT BIAS CURRENT  
vs. TEMPERATURE  
45  
35  
25  
15  
140  
120  
100  
80  
60  
40  
20  
0
-40 -20  
0
20  
40  
60  
80 100  
-50  
-25  
0
25  
50  
75  
100  
TEMPERATURE ( C)  
TEMPERATURE ( C)  
4
_______________________________________________________________________________________  
40ns, Low-Power, 3V/5V, Rail-to-Rail  
Single-Supply Comparators  
Typical Operating Characteristics (continued)  
(V  
= 3.0V, V  
= 0, C =15pF, V  
= 10mV, T = +25°C, unless otherwise noted.)  
CC  
CM  
L
OD A  
INPUT OFFSET VOLTAGE  
vs. TEMPERATURE  
TRIP POINT  
vs. TEMPERATURE  
500  
400  
300  
200  
100  
0
1.0  
0.8  
V
TRIP+  
0.6  
0.4  
0.2  
0
-100  
-200  
-300  
-400  
-500  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
V
TRIP-  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
TEMPERATURE ( C)  
TEMPERATURE ( C)  
INPUT VOLTAGE RANGE  
vs. TEMPERATURE  
PROPAGATION DELAY  
vs. INPUT OVERDRIVE  
7
6
45  
40  
35  
30  
25  
20  
V
CC  
= 5.5V  
V
+
CMR  
5
t
PD+  
4
3
t
PD-  
2
1
0
V
-
CMR  
-1  
-40 -20  
0
20  
40  
60  
80 100  
0
20  
40  
60  
80  
100  
TEMPERATURE ( C)  
INPUT OVERDRIVE (mV)  
PROPAGATION DELAY  
vs. TEMPERATURE  
PROPAGATION DELAY  
vs. CAPACITIVE LOAD  
50  
45  
40  
35  
30  
25  
55  
50  
45  
40  
35  
30  
25  
20  
t
PD+  
t
PD+  
t
PD-  
t
PD-  
-50  
-25  
0
25  
50  
75  
100  
15  
30  
45  
60  
75  
90  
105  
TEMPERATURE ( C)  
CAPACITIVE LOAD (pF)  
_________________________________________________________________________________________________  
5
40ns, Low-Power, 3V/5V, Rail-to-Rail  
Single-Supply Comparators  
Typical Operating Characteristics (continued)  
(V  
= 3.0V, V  
= 0, C =15pF, V  
= 10mV, T = +25°C, unless otherwise noted.)  
CC  
CM  
L
OD  
A
SINUSOID RESPONSE AT 4MHz  
PROPAGATION DELAY (t -)  
PROPAGATION DELAY (t +)  
PD  
PD  
V
OD  
= 10mV  
V
CC  
= 5.5V  
V
CC  
= 5.5V  
V
OD  
= 10mV  
V
CC  
= 5.5V  
INPUT  
50mV/div  
INPUT  
50mV/div  
INPUT  
50mV/div  
OUTPUT  
2V/div  
OUTPUT  
2V/div  
OUTPUT  
2V/div  
50ns/div  
10ns/div  
10ns/div  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX9140 MAX9141 MAX9142 MAX9144  
1
2
1
2
OUTA  
INA-  
Comparator A Output  
Comparator A Inverting Input  
Comparator A Noninverting Input  
Positive Supply  
3
3
INA+  
5
1
8
4
V
CC  
2
4
5
5
INB+  
INB-  
Comparator B Noninverting Input  
Comparator B Inverting Input  
Comparator B Output  
6
6
7
7
OUTB  
OUTC  
INC-  
INC+  
GND  
IND+  
IND-  
OUTD  
IN+  
4
8
Comparator C Output  
9
Comparator C Inverting Input  
Comparator C Noninverting Input  
Ground  
10  
11  
12  
13  
14  
3
2
Comparator D Noninverting Input  
Comparator D Inverting Input  
Comparator D Output  
Noninverting Input  
4
3
IN-  
Inverting Input  
———–  
———–  
Shutdown: MAX9141 is active when SHDN is driven high;  
———–  
6
5
SHDN  
MAX9141 is in shutdown when SHDN is driven low.  
The output is latched when LE is low. The latch is transparent when  
LE is high.  
LE  
1
7
8
OUT  
N.C.  
Comparator Output  
No Connection. Not internally connected.  
6
_______________________________________________________________________________________  
40ns, Low-Power, 3V/5V, Rail-to-Rail  
Single-Supply Comparators  
Detailed Description  
The MAX9140/MAX9141/MAX9142/MAX9144 single-  
supply comparators feature internal hysteresis, high  
speed, and low power. Their outputs are pulled to with-  
in 300mV of either supply rail without external pullup or  
pulldown circuitry. Rail-to-rail input voltage range and  
low-voltage single-supply operation make these  
devices ideal for portable equipment. The  
MAX9140/MAX9141/MAX9142/MAX9144 interface  
directly to CMOS and TTL logic.  
V
TRIP+  
V
IN+  
V
V
HYST  
V
+ V  
2
TRIP+  
TRIP-  
=
OS  
IN-  
V
= 0  
V
TRIP-  
Most high-speed comparators oscillate in the linear  
region because of noise or undesired parasitic feed-  
back. This tends to occur when the voltage on one  
input is at or equal to the voltage on the other input. To  
counter the parasitic effects and noise, the MAX9140/  
MAX9141/MAX9142/MAX9144 have an internal hystere-  
sis of 1.5mV.  
V
V
OH  
COMPARATOR  
OUTPUT  
OL  
The hysteresis in a comparator creates two trip points:  
one for the rising input voltage and one for the falling  
input voltage (Figure 1). The difference between the trip  
points is the hysteresis. The average of the trip points is  
the offset voltage. When the comparators input volt-  
ages are equal, the hysteresis effectively causes one  
comparator input voltage to move quickly past the  
other, thus taking the input out of the region where  
oscillation occurs. Standard comparators require hys-  
teresis to be added with external resistors. The  
MAX9140/MAX9141/MAX9142/MAX9144s fixed internal  
hysteresis eliminates these resistors. To increase hys-  
teresis and noise margin even more, add positive feed-  
back with two resistors as a voltage divider from the  
output to the noninverting input.  
Figure 1. Input and Output Waveform, Noninverting Input  
Varied  
Input Stage Circuitry  
The MAX9140/MAX9141/MAX9142/MAX9144 include  
internal protection circuitry that prevents damage to the  
precision input stage from large differential input volt-  
ages. This protection circuitry consists of two back-to-  
back diodes between IN+ and IN- as well as two series  
4.1k resistors (Figure 3). The diodes limit the differen-  
tial voltage applied to the internal circuitry of the com-  
Figure 1 illustrates the case where IN- is fixed and IN+  
is varied. If the inputs were reversed, the figure would  
look the same, except the output would be inverted.  
parators to be no more than 2V , where V is the for-  
F
F
ward voltage drop of the diode (about 0.7V at +25°C).  
For a large differential input voltage (exceeding 2V ),  
F
this protection circuitry increases the input bias current  
at IN+ (source) and IN- (sink).  
The MAX9141 includes an internal latch that allows  
storage of comparison results. The LE pin has a high  
input impedance. If LE is high, the latch is transparent  
(IN+ - IN-) - 2V  
F
(i.e., the comparator operates as though the latch is not  
Input Current =  
2 x 4.1k  
present). The comparator's output state is latched  
when LEis pulled low (Figure 2).  
Input current with large differential input voltages  
should not be confused with input bias current (I ). As  
B
Shutdown Mode (MAX9141 Only)  
——–  
long as the differential input voltage is less than 2V ,  
F
The MAX9141 shuts down when the SHDN pin is low.  
this input current is equal to I . The output is in the cor-  
B
When shut down, the supply current drops to less than  
rect logic state if one or both inputs are within the com-  
mon-mode range.  
12µA, and the three-state output becomes high imped-  
——–  
ance. The SHDN pin has a high-input impedance.  
———–  
Connect SHDN to V  
for normal operation. Exit shut-  
CC  
down with LE high (transparent state); otherwise, the  
output will be indeterminate.  
_______________________________________________________________________________________  
7
40ns, Low-Power, 3V/5V, Rail-to-Rail  
Single-Supply Comparators  
t
S
t
H
V
OD  
V
OS  
DIFFERENTIAL  
INPUT  
VOLTAGE  
t
LPW  
V
CC  
V
CC  
2
LE  
0
t
t
LPD  
PD  
V
OH  
V
CC  
2
OUT  
V
OL  
Figure 2. MAX9141 Timing Diagram with Latch Operator  
Output Stage Circuitry  
The MAX9140/MAX9141/MAX9142/MAX9144 contain a  
current-driven output stage as shown in Figure 4.  
MAX9140  
MAX9141  
MAX9142  
MAX9144  
During an output transition, I  
or I  
is pushed  
SOURCE  
SINK  
or pulled to the output pin. The output source or sink  
current is high during the transition, creating a rapid  
4.1k  
IN+  
TO INTERNAL  
CIRCUITRY  
slew rate. Once the output voltage reaches V  
or  
OH  
V
, the source or sink current decreases to a small  
OL  
value, capable of maintaining the V  
condition. This significant decrease in current con-  
or V  
static  
OL  
OH  
serves power after an output transition has occurred.  
TO INTERNAL  
CIRCUITRY  
One consequence of a current-driven output stage is a  
linear dependence between the slew rate and the load  
capacitance. A heavy capacitive load will slow down a  
voltage output transition. This can be useful in noise-  
sensitive applications where fast edges may cause  
interference.  
IN–  
4.1k  
Applications Information  
Circuit Layout and Bypassing  
The high-gain bandwidth of the MAX9140/MAX9141/  
MAX9142/MAX9144 requires design precautions to  
realize the full high-speed capabilities of these com-  
parators. The recommended precautions are:  
Figure 3. Input Stage Circuitry  
3) Pay close attention to the decoupling capacitors  
bandwidth, keeping leads short.  
4) On the inputs and outputs, keep lead lengths  
short to avoid unwanted parasitic feedback  
around the comparators.  
1) Use a printed circuit board with a good, unbro-  
ken, low-inductance ground plane.  
2) Place a decoupling capacitor (a 0.1µF ceramic  
5) Solder the device directly to the printed circuit  
board instead of using a socket.  
capacitor is a good choice) as close to V  
possible.  
as  
CC  
8
_______________________________________________________________________________________  
40ns, Low-Power, 3V/5V, Rail-to-Rail  
Single-Supply Comparators  
V
= 3.3V  
DD  
VREFC  
V
DD  
V
CC  
MAX9140  
MAX9141  
MAX9142  
MAX9144  
SERIAL  
DIGITAL  
INPUT  
SDI  
I
SOURCE  
8-BIT DAC  
MAX512  
OUTPUT  
DACOUTC  
V
GND  
SS  
MAX9140  
I
SINK  
GND  
ANALOG IN  
Figure 4. Output Stage Circuitry  
Figure 5. 3.3V Digitally Controlled Threshold Detector  
Chip Information  
MAX9140 TRANSISTOR COUNT: 158  
MAX9141 TRANSISTOR COUNT: 192  
MAX9142 TRANSISTOR COUNT: 314  
MAX9144 TRANSISTOR COUNT: 620  
PROCESS: Bipolar  
V
= 3V  
CC  
10k  
3V  
0
COAX LINE  
20k  
MAX9140  
CLEAN  
DIGITAL  
SIGNAL  
20k  
Figure 6. Line Receiver Application  
_______________________________________________________________________________________  
9
40ns, Low-Power, 3V/5V, Rail-to-Rail  
Single-Supply Comparators  
________________________________________________________Package Information  
10 ______________________________________________________________________________________  
40ns, Low-Power, 3V/5V, Rail-to-Rail  
Single-Supply Comparators  
___________________________________________Package Information (continued)  
______________________________________________________________________________________ 11  
40ns, Low-Power, 3V/5V, Rail-to-Rail  
Single-Supply Comparators  
___________________________________________Package Information (continued)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 __________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600  
© 2001 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY